
Reducing SAT to Max2SAT

Carlos Ansótegui1 and Jordi Levy2

1Logic & Optimization Group (LOG), University of Lleida
2IIIA-CSIC

carlos.ansotegui@udl.cat, levy@iiia.csic.es

Abstract
In the literature we find reductions from 3SAT to
Max2SAT. These reductions are based on the usage
of a gadget, i.e., a combinatorial structure that al-
lows translating constraints of one problem to con-
straints of another. Unfortunately, the generation of
these gadgets lacks an intuitive or efficient method.
In this paper, we provide an efficient and construc-
tive method for Reducing SAT to Max2SAT and
show empirical results of how MaxSAT solvers are
more efficient than SAT solvers solving the transla-
tion of hard formulas for Resolution.

1 Introduction
The SAT problem asks to determine whether there is an as-
signment to the Boolean variables in a Boolean formula in
Conjunctive Normal Form (CNF) that satisfies all clauses
(constraints). Its optimization version, the Maximum Satis-
fiability (MaxSAT) problem is the task of finding an assign-
ment to the variables of the formula such that a maximum
number of clauses is satisfied.

In this paper, we review the reductions from 3SAT into
Max2SAT from [Garey et al., 1976] and [Trevisan et al.,
2000] (allowing to prove that Max2SAT is NP-Complete).
These reductions are based on the usage of a gadget, i.e., a fi-
nite combinatorial structure that allows translating constraints
of one problem to constraints of another. Obviously, we also
have to ensure that the gadgets can be constructed in polyno-
mial time.

Unfortunately, in general, the gadgets available in the liter-
ature lack an intuitive and efficient construction method. As
stated in [Trevisan et al., 2000]: “Despite their importance,
the construction of gadgets has always been a “black art” with
no general methods of construction known”. The first known
gadget from 3SAT to Max2SAT was provided by [Garey et
al., 1976] and later on in [Trevisan et al., 2000] a gadget of
better quality, actually optimal, was automatically computed.

In general, we are not just interested in any gadget but those
of high quality. Roughly speaking, a (α, β)-gadget from a
family of constraints F1 to F2 is a translation of every F1

constraint into β-many F2 constraints such that when the
original constraint is falsified, α − 1 many new constraints
are falsified, and when the original constraint is satisfied, α

new constraints are satisfied. One of the main applications of
gadgets is to translate results of in/approximability from one
constraint problem to another. A ρ-approximation algorithm
for a family of constraint problems F is a polynomial algo-
rithm that computes an assignment that satisfies a fraction
ρ of the maximum number of satisfiable constraints. If we
have a (α, β)-gadget from F1 to F2 and a ρ-approximation
algorithm for F2, then we can obtain a (1 − α(1 − ρ))-
approximation algorithm for F1. Therefore, the smaller the
parameter α is, the better the translation works. Notice that,
for α = 1, the translation is somehow perfect. [Trevisan
et al., 2000], using an optimal (smallest possible α) gad-
get from 3SAT into Max2SAT, and [Feige and Goemans,
1995] 0.931-approximability result for Max2SAT, were able
to prove 0.801-approximability of Max3SAT. However, this
approximability bound was later improved with direct tech-
niques, and nowadays it doesn’t seem easy to improve ap-
proximability or inapproximability results with gadgets.

Equipped with gadgets from 3SAT to Max2SAT, SAT can
be trivially reduced to Max2SAT by first reducing SAT to
3SAT using the folklore gadget that splits a kSAT clause into
a set of 3SAT clauses. As we will see, the concatenation of
these gadgets is not optimal, even for k = 4.

Our first contribution in this paper is to provide a new
generation method for gadgets from kSAT into Max2SAT
to which we refer as the regular gadget. Additionally, we
prove the new gadget can be refined by the application of the
MaxSAT resolution rule, obtaining a gadget with the best α
reported so far, for arbitrary k. We also show that the gadget
seems to be optimal up to k = 5 by using a MIP solver to
prove it.

Our second contribution is to prove the usefulness of gad-
gets to boost SAT solvers. This is an additional application
of gadgets not reported so far. In particular, we present an
approach that translates SAT into Max2SAT and applies a
MaxSAT solver. We experiment with several gadgets on SAT
instances encoding the Pigeon Hole principle and show the
efficiency of the new approach. Finally, we sketch a base al-
gorithm that can be used to design a new generation of SAT
solvers.

2 Preliminaries
A k-ary constraint function is a Boolean function f :
{0, 1}k → {0, 1}. A constraint family is a set F of con-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1367

straint functions (with possibly distinct arities). A constraint,
over variables V = {x1, . . . , xn} and constraint family F , is
a pair formed by a k-ary constraint function f ∈ F and a sub-
set of k variables, noted f(xi1 , . . . , xik), or f(x) for simplic-
ity. A (weighted) constraint problem, over variables V and
constraint family F , is a multiset of pairs (weight, constraint)
over V and F , where the weight is a rational number, noted
P = {(w1) f1(x

1
i1
, . . . , x1ik1

), . . . ,(wm) fm(xmi1 , . . . , x
m
ikm

)}.
In this paper we will focus on constraint functions that may
be represented as (weighted) clauses (w) l1 ∨ · · · ∨ lk, where
li’s are literals and w a rational weight. An assignment is a
function I : {x1, . . . , xn} → {0, 1}. We say that an assign-
ment I satisfies a constraint f(xi1 , . . . , xik), if I(f(x)) =def
f(I(xi1), . . . , I(xik)) = 1. The value of an assignment I for
a constraint problem P = {(wi) fi(x)}i=1,...,m, is the sum of
the weights of the constraints that this assignment satisfies,
i.e. I(P) =

∑m
i=1 wi I(fi(x)). An assignment is said to be

optimal for a constraint problem if it maximizes its value.
We refer to MaxEkSAT as the constraint family defined by

the constraint functions of the form f(x1, . . . , xk) = l1 ∨
· · · ∨ lk, where every li may be either xi or xi.

We refer to Max2SAT as the union of the constraint fami-
lies MaxEiSAT, for 0 ≤ i ≤ k, and to MaxSAT as the union
for every i ≥ 0.

Definition 1. An (α, β)-gadget from F1 to F2 is a function
that, for any constraint f(x) over F1 returns a weighted con-
straint problem P = {(wi) gi(x, b)}i=1,...,m over F2 and
variables {x} ∪ {b}, where b are fresh variables distinct
from x, such that β =

∑m
i=1 wi and, for any assignment

I : {x} → {0, 1}:
1. If I(f(x)) = 1, for any extension of I to I ′ : {x} ∪
{b} → {0, 1}, I ′(P) ≤ α and there exists one of such
extension with I ′(P) = α.

2. If I(f(x)) = 0, for any extension of I to I ′ : {x} ∪
{b} → {0, 1}, I ′(P) ≤ α− 1.

Additionally, if there exist one of such extensions with
I ′(P) = α− 1, the gadget is said to be strict.

An optimal gadget is a gadget of minimum α.

Lemma 1. The concatenation of a (α1, β1)-gadget from F1

to F2 and a (α2, β2)-gadget from F2 to F3 results into a
(β1 (α2 − 1) + α1, β1β2)-gadget from F1 to F3.

Proof. The first gadget multiplies the total weight of con-
straints by β1, and the second by β2. Therefore, the com-
position multiplies it by β = β1β2.

For any assignment, if the original constraint is falsified,
the optimal extension after the first gadget satisfies constraints
with a weight of α1 − 1, and falsifies the rest β1 − (α1 −
1). The second gadget satisfies constraints for a weight of
α2 − 1 of the falsified plus α2 of the satisfied. Therefore, the
composition satisfies constraints with a total weight (α2 −
1)(β1 − (α1 − 1)) + α2(α1 − 1) = β1(α2 − 1) + α1 − 1.

If the original constraint is satisfied, the optimal extension
after the first gadget satisfies α1 and falsifies the rest β1−α1.
After the second gadget the weight of satisfied constraints is
(α2 − 1)(β1 − α1) + α2α1 = β1(α2 − 1) + α1.

The difference between both situations is one, hence the
composition is a gadget, and α = β1(α2 − 1) + α1.

3 From 3SAT to Max2SAT
In order to show that the Max2SAT problem is NP-hard, it
suffices to show that the 3SAT problem can be reduced to the
Max2SAT problem. One way to perform such reduction is
through the usage of gadgets.

Imagine we are given a 3SAT formula. The idea is to
replace every clause into the 3SAT formula by a set of
Max2SAT clauses polynomial on the size of the clause. The
replacement strategy is precisely what we call a gadget. If
any clause has fewer than 3 literals, we can simply not apply
the gadget.
Lemma 2 ([Garey et al., 1976]). Given a 3SAT clause x1 ∨
x2 ∨ x3, the set of Max2SAT clauses:

(1) x1
(1) x2
(1) x3
(1) x1 ∨ x2
(1) x1 ∨ x3
(1) x2 ∨ x3

(1) b1

(1) b1 ∨ x1
(1) b1 ∨ x2
(1) b1 ∨ x3

Defines a (7, 10)-gadget from 3SAT to Max2SAT, where b1 is
an auxiliary variable.

Proof. Notice that if an assignment satisfies x1∨x2∨x3, then
exactly 7 of the 10 Max2SAT clauses can be satisfied. On the
contrary, if an assignment does not satisfy x1 ∨ x2 ∨ x3, then
exactly 6 of the 10 Max2SAT clauses can be satisfied.

Let ϕ be a 3SAT formula of m1 unary, m2 binary and m3

ternary clauses, and ϕ′ the resulting Max2SAT formula after
replacing every ternary clause by the Max2SAT clauses from
an (α, β)-gadget from 3SAT into Max2SAT. Then, ϕ is sat-
isfiable iff the maximum number of satisfied clauses in ϕ′ is
m1+m2+αm3. As concluded in [Garey et al., 1976], since
3SAT reduces to Max2SAT, it follows that Max2SAT (as a
decision problem) is NP-complete.

4 MaxSAT Equivalent Gadgets
We can further refine the (7, 10)-gadget from [Garey et al.,
1976] by applying the MaxSAT resolution rule on the set of
Max2SAT clauses. This rule was first defined by [Larrosa
and Heras, 2005; Larrosa et al., 2008], and proven complete
by [Bonet et al., 2006; Bonet et al., 2007]. In MaxSAT Res-
olution we proceed by replacing a set of clauses with another
set of MaxSAT equivalent clauses:

(w) x ∨ C1

(w) x ∨ C2

(w) C1 ∨ C2

(w) x ∨ C1 ∨ C2

(w) x ∨ C1 ∨ C2

(w1+w2) C

(w1) C

(w2) C

(w1) C

(w2) C

(w1+w2) C

Applying the following transformations to the origi-
nal [Garey et al., 1976] gadget in Lemma 2, and removing
the empty clause (2) that we obtain, we get the 3SAT to
Max2SAT gadget described in Lemma 3:

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1368

x1 x1 ∨ x2 x2 x3 x1 ∨ x3 b1 b1 ∨ x1

x2

x1 ∨ x2

x1

x3

x1 ∨ x3 b1 ∨ x1(2)

Notice that in these gadget transformations we are allowed
to remove empty clauses (w) , and it has the effect of reduc-
ing the value of α in w (in the case of the [Garey et al., 1976]
gadget, from α = 7 to α = 5).

Lemma 3. Given a 3SAT clause x1 ∨ x2 ∨ x3, the set of
Max2SAT clauses:

(1) x1 ∨ x2
(1) x1 ∨ x3
(1) x2 ∨ x3

(1) b1 ∨ x1
(1) b1 ∨ x2
(1) b1 ∨ x3

Defines a (5, 6)-gadget from 3SAT to Max2SAT, where b1 is
an auxiliary variable.

Notice that the set of clauses described in Lemma 3 is un-
satisfiable. Since MaxSAT resolution is complete, this means
that we could derive an additional empty clause. However,
in this refutation process, the rest of the clauses obtained are
not binary. Therefore, the process of gadget transformation
described in this section, based on MaxSAT resolution and
empty-clause removal, allows us to simplify and reduce the α
of a gadget, but it is not a complete method. In particular, we
will see in the next sections that there are more efficient 3SAT
to Max2SAT gadgets that cannot be obtained in this way.

5 Computing Gadgets Automatically
In [Trevisan et al., 2000] a gadget from 3SAT to Max2SAT
was computed automatically through a Mixed Integer Pro-
gramming formulation.

Lemma 4 ([Trevisan et al., 2000]). Given a 3SAT clause x1∨
x2 ∨ x3, the set of Max2SAT clauses:

(1/2) x1 ∨ x3
(1/2) x1 ∨ x3
(1/2) x1 ∨ b1
(1/2) x1 ∨ b1

(1/2) x3 ∨ b1
(1/2) x3 ∨ b1
(1) x2 ∨ b1

Defines a (3.5, 4)-gadget from 3SAT to Max2SAT optimal and
strict, where b1 is a new fresh auxiliary variable. Notice that
all clauses have weight 1/2, except the last one.

We reproduce to some extent the approach in [Trevisan et
al., 2000]. The main idea is to limit the search space of pos-
sible gadgets to a finite and reasonably sized one. Given the
input kSAT clause x1 ∨ · · · ∨ xk and a maximum number of
auxiliary variables bj , we consider all the possible Max2SAT

k #b α β time
3 1 3.5 4 0.1
4 2 6 7 5
5 3 8.5 10 1200

Table 1: Gadgets for kSAT into Max2SAT automatically computed.

clauses we can build with the xi and bj vars. Then, we cre-
ate a Mixed Integer Programming formulation that addition-
ally includes a set of positive real variables representing the
weight for each of the possible Max2SAT clauses. The idea
is to let the MIP solver find an assignment to the weight vari-
ables that satisfies the definition of an (α, β)-gadget and min-
imizes the value of α. If the MIT solver finds weight 0 for
a Max2SAT clause, then this clause is not considered in the
gadget.

In Table 1, we present the results for input clauses of length
k and number of auxiliary variables #b. We applied on the
MIP formulation the solver Gurobi v9.1. The machine has
2.1GHz and 5GB RAM. We show the α and β of the com-
puted gadget and the time exhausted in less than 8 hours.
From the results, we can conclude that we need to come up
with a constructive generation method, as we do in the next
Section, if we want to scale. However, these results are inter-
esting since they prove that does exist a better gadget in terms
of α with a less or equal number of auxiliary variables.

6 From kSAT to Max2SAT
A trivial way to reduce MaxSAT to Max2SAT is to re-
duce MaxSAT to Max3SAT, and then apply a gadget
from Max3SAT into Max2SAT. We can reduce MaxSAT to
Max3SAT with the following well-known gadget:
Lemma 5. Given a kSAT clause x1 ∨ . . . ∨ xk, the set of
Max3SAT clauses:

(1) x1 ∨ x2 ∨ b1
(1) b1 ∨ x3 ∨ b2
. . .

(1) bk−4 ∨ xk−2 ∨ bk−3
(1) bk−3 ∨ xk−1 ∨ xk

Defines a (k−2, k−2)-gadget from kSAT to Max3SAT, where
b1, b2, . . . , bk−4, bk−3 are fresh auxiliary variables.

By Lemma 1, the concatenation of the (k − 2, k − 2)-
gadget from kSAT to Max3SAT (in Lemma 5) with any
(α, β)-gadget from Max3SAT to Max2SAT results into a
(α(k − 2), β(k − 2))-gadget from kSAT to Max2SAT.

Table 2 shows the result of concatenating the (k−2, k−2)-
gadget in Lemma 5 with the (7, 10)-gadget from [Garey
et al., 1976] (Lemma 2), with the refined (5, 6)-gadget in
Lemma 3 and the (3.5, 4)-gadget from [Trevisan et al., 2000]
(Lemma 4), compared with the Regular gadget that we de-
scribe below.

Now, we introduce a new gadget from kSAT into
Max2SAT. The gadget is inspired in the regular encoding
[Ansótegui and Manyà, 2004] for cardinality constraints. It
is not optimal, but easy to generalize for any size of clauses
k, it only contains clauses with unit weight and, as we will

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1369

α β Source
7 (k − 2) 10 (k − 2) [Garey et al., 1976]
5 (k − 2) 6 (k − 2) Lemma 3
3.5 (k − 2) 4 (k − 2) [Trevisan et al., 2000]
2.5 (k − 2) + 1 3 (k − 2) + 1 Refined Regular

Table 2: Some (α, β)-gadgets from kSAT to Max2SAT.

see later, it can be transformed into a more efficient gadget
applying MaxSAT resolution.

Theorem 1 (Regular Gadget). Given a kSAT clause x1 ∨
. . .∨xk, the set of Max2SAT clauses, after replacing bk−1 by
xk:

(1) xi i = 1, . . . , k

(1) xi ∨ bi i = 1, . . . , k − 1

(1) xi+1 ∨ bi i = 1, . . . , k − 2

(1) bi ∨ bi+1 i = 1, . . . , k − 2

defines the regular (3 (k − 2) + 2, 4 (k − 2) + 3)-gadget
from kSAT to Max2SAT, where b1, . . . , bk−2 are fresh aux-
iliary variables.

Proof. When we replace xi by false, for i = 1, . . . , k, and
simplify, we get k copies of the empty clause , plus 2k− 2
satisfied clauses, and the formula {b1 ∨ b2, . . . , bk−3 ∨ bk−2}
that is trivially satisfiable. Hence, the maximal number of
satisfied clauses is 3 (k − 2) + 1.

When some of the xi’s are set to true, the number of cases
to analyze is bigger. To make it simpler, consider the formula:

ϕ = {xi, xi ∨ bi, xi ∨ bi−1, bi−1 ∨ bi | i = 1, . . . , k}

For any assignment to the original variables, by setting the
additional variables b0 = 1, bk = 0 and bk−1 = xk, the
number of unsatisfied clauses in ϕ is the same as in the
original formula (simply, there are 4 more satisfied clauses).
Let S = {i1, . . . , ir} the ordered list of indexes of vari-
ables xi’s set to true, where r ≥ 1. When we replace the
xi’s by their values in the formula, and simplify, we get
ϕ′ = {bi−1, bi | i ∈ S} ∪ {b0 ∨ b1, . . . , bk−1 ∨ bk}, plus
k − |S| empty clauses, plus some satisfied clauses. For ev-
ery two consecutive indexes ij , ij+1 ∈ S, we get a pair-
wise disjoint set of minimally unsatisfiable clauses ϕ′j =

{bij , bij ∨bij+1, . . . , bij+1−2∨bij+1−1, bij+1−1}, and the rest
of clauses of ϕ′ not included in any of these subsets is satisfi-
able. Therefore, the minimal number of falsified clauses in ϕ′
is |S|−1. Therefore, for any assignment I setting at least one
xi to true, the minimal number of falsified clauses in I(ϕ) is
(k − |S|) + (|S| − 1) = k − 1. The same holds for the orig-
inal set of clauses. Hence the number of satisfied clauses is
β−(k−1) = (4(k−2)+3)−(k−1) = 3(k−2)+2 = α.

Now, we show how the process MaxSAT resolution and
empty-clause elimination described in Section 4, applied to
the clauses of this regular gadget (Theorem 1), results into
the more efficient gadget described in Theorem 2.

We start transforming

(1) x1

(1) x1 ∨ b1
(1) b1

(1) x1 ∨ b1
Now, we iterate, for i = 1, . . . , k− 2, the following MaxSAT
resolution (that results from applying 4 times the MaxSAT
resolution rule):

(1) xi+1

(1) bi
(1/2) xi+1 ∨ bi

(1/2) xi+1 ∨ bi+1

(1/2) bi ∨ bi+1

(1/2)

(1) bi+1

(1/2) xi+1 ∨ bi
(1/2) xi+1 ∨ bi+1

(1/2) bi ∨ bi+1

Since xk and bk−1 denote the same variable, we transform

(1) xk

(1) bk−1
(1)

Finally, we remove the clause (k/2) .
Theorem 2 (Refined Regular Gadget). Given a kSAT
clause x1 ∨ . . . ∨ xk, the set of Max2SAT clauses, after re-
placing bk−1 by xk:

(1) x1 ∨ b1
(1/2) xi+1 ∨ bi, (1/2) xi+1 ∨ bi i = 1, . . . , k − 2

(1/2) xi+1 ∨ bi+1, (1/2) xi+1 ∨ bi+1

(1/2) bi ∨ bi+1, (1/2) bi ∨ bi+1

defines the (refined) regular (2.5 (k − 2) + 1, 3 (k − 2) + 1)-
gadget from kSAT to Max2SAT, where b1, . . . , bk−2 are fresh
auxiliary variables.

Proof. The correctness of this gadget is a consequence of
Theorem 1 and the fact that MaxSAT resolution and elim-
ination of empty clauses preserve gadgets. The value of β
can be easily computed adding the weights of all clauses.
The value of alpha can be computed from the original gadget
α′ = 3(k − 2) + 2 and removing the weight of the removed
empty clauses α = α′ − k/2 = 2.5(k − 2) + 1.

Notice that the refined regular gadget, for k = 3, is the
same as the [Trevisan et al., 2000] gadget of Lemma 4. More-
over, for k = 3, 4 and 5 the refined regular gadget coincides
with the gadgets found automatically in Section 5.

7 Why Reducing SAT to Max2SAT?
Suppose that we were able to find a (α, β)-gadget from SAT
to Max2SAT satisfying α = β. It would allow us to trans-
late any k-clause into a set of binary clauses that is satisfiable
when the original clause is satisfied, and unsatisfiable, when

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1370

the original clause is unsatisfied. In other words, we were
able to prove that P=NP. The gadget in Lemma 5 satisfies the
property α = β reducing SAT to 3SAT, but (obviously) the
same is not possible from 3SAT (or SAT) to 2SAT.

The following lemma shows us how we can reduce the
problem of obtaining (by resolution or similar methods) an
empty clause from a formula ϕ, to the problem of obtaining
several empty clauses from a 2SAT formula ϕ′ (by MaxSAT
resolution or similar methods). In other words, how to solve
SAT with a MaxSAT solver.

Lemma 6. For any SAT formula ϕ, let ϕ′ be the formula
resulting from replacing every k-clause, with k > 2, by a set
of binary clauses using a kSAT to Max2SAT (αk, βk)-gadget.
Then ϕ is unsatisfiable if, and only if, the minimal number of
unsatisfiable clauses in ϕ′ is at least

1 +
∑
C∈ϕ
|C|>2

(β|C| − α|C|)

In the next sections, we will show that this reduction of
SAT to Max2SAT makes sense from a practical point of view.
Here, we show that it also has some advantages from a theo-
retical perspective. In particular, we prove that the pigeon-
hole principle PHPn

n−1, which requires exponentially long
resolution proofs, when translated into Max2SAT, can be
proved applying O(n3) iterations of the MaxSAT resolution
rule.

The idea that MaxSAT resolution can be more efficient
than the classical resolution to prove some formula was
first proposed by [Ignatiev et al., 2017; Bonet et al., 2018;
Morgado et al., 2019]. There, they prove that after translating
the PHPn

m principle using the dual-rail encoding, it has poly-
nomial proofs using MaxSAT resolution. [Larrosa and Rol-
lon, 2020] prove the same result for MaxSAT resolution ex-
tended with the split rule and using negative weights. [Atse-
rias and Lauria, 2019] also prove it for circular resolution. Fi-
nally, [Bonet and Levy, 2020] prove the equivalence of these
last two proof systems and the subsumption of weighted dual-
rail. In this paper, we take a step forward to the efficient au-
tomatization of MaxSAT to solve SAT.

Lemma 7. MaxSAT resolution obtains (n−1) from⋃n
i=1{(1) xi} ∪

⋃n
i,j=1
i6=j
{(∞) xi ∨ xj} in (n+2)(n−1)

2 steps.

Proof. First, we prove that we can construct the MaxSAT res-
olution proof:

(1) x1 ∨ · · · ∨ xr
(1) xr+1

(∞) xi ∨ xr+1, i = 1, . . . , r

(1)

(1) x1 ∨ · · · ∨ xr+1

in r+1 steps: Cutting (1) x1∨ · · ·∨xr and (∞) x1∨xr+1 we
get, among other clauses, (1) x1∨· · ·∨xr+1 and (1) x2∨· · ·∨
xr ∨ xr+1. Now, iterativelly, we cut (1) xj ∨ · · · ∨ xr ∨ xr+1

and (∞) xj ∨ xr+1 to obtain, among other clauses, (1) xj+1 ∨
· · ·xr ∨ xr+1, for j = 2, . . . , r. Finally we cut (1) xr+1 and
(1) xr+1 to obtain an empty clause.

To obtain the desired proof, we repeat the previous proof
iterativelly, for r = 1, ..., n− 1, obtaining (n−1) . The total
number of rule applications is

∑n−1
r=1 r+1 = (n+2)(n−1)

2 .

Consider the Pigeon-Hole Problem PHPn
m with n pigeons,

m holes and n > m where Boolean var xi,j set to true means
pigeon i goes in hole j. We have two sets of clauses: a set of
At-Least-One (ALO) clauses meaning that a pigeon must go
on at least one hole, and a set of At-Most-One (AMO) clauses
meaning that no two pigeons can go to the same hole. We can
encode this problem into SAT as follows:

n⋃
i=1

{xi,1 ∨ · · · ∨ xi,m} ∪
m⋃
j=1

n⋃
i,i′=1
i6=i′

{xi,j ∨ xi′,j}

The translation of the ALO clauses using the (origi-
nal) regular gadget results into the set of unary clauses⋃n

i=1

⋃m
j=1{(1) xi,j} plus some binary clauses. The set of

AMO clauses does not need to be translated since they are al-
ready binary. Moreover, they can be assigned infinite weight
since they must be satisfied by the MaxSAT solver. In order to
conclude the unsatisfiability of the original PHPn

m principle,
the MaxSAT solver must obtain at least 1 + n(βm − αm) =
1+n(4(m−2)+3− (3(m−2)+2) = 1+n(m−1) empty
clauses.
Theorem 3. The translation of PHPn

m principle to Max2SAT
using the original Regular gadget has MaxSAT refutation
proofs of size O(mn2).

Proof. In the proof, we only need to consider the unary
clauses and the binary infinite-weighted clauses (the other bi-
nary clauses are not needed in the proof). We can decompose
the formula as ϕ =

⋃m
j=1 ϕj , where ϕj =

⋃n
i=1{(1) xi,j} ∪⋃n

i,i′=1
i6=i′
{xi,j ∨ xi′,j}. According to Lemma 7, from each

ϕj we can obtain (n−1) in (n+2)(n−1)
2 MaxSAT refuta-

tion steps. For all the formulas, we will get (m(n−1)) in
m (n+2)(n−1)

2 steps. When n > m, the number of empty
clauses obtainedm(n−1) is bigger than or equal to the num-
ber of required empty clauses 1+n(m−1), which proves the
unsatisfiability of PHPn

m.

8 Solving SAT Through MaxSAT in Practice
In this section, we explore the potential of gadgets from SAT
into Max2SAT in order to solve SAT formulas that are hard to
Resolution. We evaluate the usefulness of gadgets on the Pi-
geon Hole Principle. For the experiments, we used a machine
of 2.1GHz and 5GB RAM memory.

In table 3, we show the experiments we have conducted. In
particular, we experimented with SAT solver CaDiCaL (ver-
sion 1.0.3), winner of the SAT Race 2019 [Biere, 2019] and
the top performing three MaxSAT solvers from the weighted
category of the MaxSAT Evaluation 2020 [Bacchus et al.,
2019]: RC2 [Ignatiev et al., 2019], MaxHS [Davies and Bac-
chus, 2011] and Uwrmaxsat [Piotrów, 2020].

The CaDiCaL SAT solver was run on the SAT instance
(sayϕ) that encodes the Pigeon-Hole principle as described in

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1371

n 12 13 14 15 20 30 50 100
SAT

CaDiCaL 17.6 91 500 3526 - - - -
MaxHS 3236 - - - - - - -
UWr 988 - - - - - - -

Max2SAT [Garey et al., 1976]
RC2 0.1 0.1 0.13 0.23 0.74 4.48 43.75 1347
MaxHS 0.1 0.1 0.11 0.11 0.43 2.20 58.34 1174
UWr 0.1 0.1 0.13 0.19 0.68 3.97 35.66 1046

Max2SAT [Trevisan et al., 2000]
RC2 32 218 11602 - - - - -
MaxHS 0.1 0.14 0.2 5569 - - - -
UWr 380 12835 4288 - - - - -

Max2SAT Regular
RC2 0 0 0 0.1 0.1 0.22 0.93 10.5
MaxHS 0 0 0 0 0 0 0.15 1.35
UWr 0 0.1 0.4 0 0 0.1 0.16 1.39

Table 3: Run times for PHPn
n−1 encodings. ’-’ stands for timeout.

Section 7. In particular, we created PHPn
n−1 SAT instances

for n ∈ {11, 12, 13, 14, 15, 20, 30, 50, 100}.
The MaxSAT solvers were run on a MaxSAT formula built

from the generated PHPn
n−1 SAT instance ϕ as follows: the

2SAT clauses in ϕ are assigned∞weight and the rest (n−1)-
ary clauses are translated into MaxSAT using a gadget.

In the first 3 rows of table 3, we can see the result of ap-
plying the CaDiCaL solver and the MaxSAT solvers on the
original SAT instances. For the MaxSAT solvers, we use as
input the MaxSAT formula that incorporates with weight∞
all the clauses of the SAT instance (RC2 was not able to ac-
cept this input). As we can see, the MaxSAT solvers are not
as powerful as the CaDiCaL SAT solver. CaDiCaL can to
solve the SAT instances, in less than 8 hours, up to n = 15.

In the next 6 rows, we show the behavior of the MaxSAT
solvers on the concatenation of the gadget from Lemma 5
and the gadgets from [Garey et al., 1976] and [Trevisan et
al., 2000], respectively. As we can see, MaxSAT solvers with
the [Garey et al., 1976] gadget work much better than the SAT
approach with CaDiCaL, and they are able to solve n = 100
in around 20 minutes. On the other hand, with [Trevisan et
al., 2000] we see better results than with CaDiCaL but the
impact is less obvious. There is also an erratic behaviour of
MaxHS on n = 14 and 15, and of Uwrmaxsat on n = 13.

In the last 3 rows, we present the results with the Regu-
lar gadget. Clearly, it is the best performing one and allows
all the MaxSAT solvers to solve n = 100 in less than 2 sec-
onds. For the regular gadget and n = 100, we additionally
shuffled the instance 100 times, obtaining the (median, max)
results: Uwrmaxsat (3.14, 3.49), MaxHS (2.80, 3.19) which
confirm the goodness of the gadget and, RC2 (22.4, 383.25)
that seems to be affected by the shuffling.

Finally, based on our findings we present Algorithm 1 that
intends to be a conceptual base for a new generation of SAT
solvers. It takes as input the SAT CNF instance to be solved,
an (α, β)-gadget and a MaxSAT solver.

Algorithm 1 relies on two points. First, to find a good bal-
ance between which clauses we keep as hard and which are
translated with the gadget. Second, to preserve as hard that
subset of clauses that is not too hard to solve, for example,

Algorithm 1: SAT through MaxSAT
1 Input: CNF ϕ, (α, β)-gadget G, MaxSAT solver MS
2 lb← 0
3 φ← ∅
4 while 〈S, ϕ〉 ← next subset(ϕ) do
5 for C ∈ S do
6 if harden(C) then
7 φ← φ ∪ {(∞) C}
8 else
9 φ← φ ∪ G(C)

10 lb← lb+ β|C| − α|C|

11 opt← MS(φ)
12 if opt > lb then
13 return Unsat

14 return Sat

any polynomial class, like 2SAT, Horn, etc.
Second, when we apply the gadget to a subset of clauses,

we immediately get a lower bound on the cost the MaxSAT
solver will find for that particular set of clauses. That is
the sum of β|C| − α|C|, for each clause C we translate to
Max2SAT through the gadget. Moreover, if for this subset
of clauses the MaxSAT solver is able to find a greater cost
than the mentioned lower bound then we can conclude that
the original set of kSAT clauses is unsatisfiable. This way
we make SAT solvers approaches able to count, being the ab-
sence of this capacity what precisely lies at the very heart of
the drawbacks of Resolution.

In particular, Algorithm 1 iterates on subsets of the origi-
nal input SAT instance (line 4) till all the formula has been
processed. Then, for every clause in the current subset, it de-
cides whether it has to be hard (function harden at line 6) or
it has to be translated into a set of Max2SAT clauses through
the input gadget. The resulting MaxSAT clauses are added to
the working formula ϕ (lines 7 and 9). Whenever a clause is
translated through the gadget the lower bound lb is increased
according to β|C| − α|C| (line 10). If the MaxSAT solver ex-
ecuted on ϕ returns a cost greater than lb we can stop and
declare the input SAT formula is unsatisfiable (line 13).

9 Conclusions
In this paper, we have contributed to filling the gap between
SAT and MaxSAT towards the promise of MaxSAT to boost
SAT. We have presented a constructive method for generat-
ing a new (α,β)-gadget from kSAT into Max2SAT. Although
gadgets have been used in the literature to improve approx-
imability and non-approximability results, here we have in-
troduced a new application. In particular, we have shown how
these gadgets can be applied to solve efficiently SAT formu-
las that are hard for resolution, which can constitute the base
for a new generation of SAT solvers.

Acknowledgements
Supported by projects PROOFS (PID2019-109137GB-C21)
and EU-H2020-RIP LOGISTAR (No. 769142).

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1372

References
[Ansótegui and Manyà, 2004] Carlos Ansótegui and Felip

Manyà. Mapping problems with finite-domain variables
into problems with boolean variables. In SAT 2004 - The
Seventh International Conference on Theory and Applica-
tions of Satisfiability Testing, 10-13 May 2004, Vancouver,
BC, Canada, Online Proceedings, 2004.

[Atserias and Lauria, 2019] Albert Atserias and Massimo
Lauria. Circular (yet sound) proofs. In Mikolás Janota and
Inês Lynce, editors, Theory and Applications of Satisfiabil-
ity Testing - SAT 2019 - 22nd International Conference,
SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceed-
ings, volume 11628 of Lecture Notes in Computer Science,
pages 1–18. Springer, 2019.

[Bacchus et al., 2019] Fahiem Bacchus, Matti Järvisalo, and
Ruben Martins. MaxSAT Evaluation 2019 : Solver and
Benchmark Descriptions. Technical Report Department
of Computer Science Report Series B-2019-2, University
of Helsinki, 2019.

[Biere, 2019] Armin Biere. CaDiCaL at the SAT Race 2019.
In Marijn Heule, Matti Järvisalo, and Martin Suda, edi-
tors, Proc. of SAT Race 2019 – Solver and Benchmark De-
scriptions, volume B-2019-1 of Department of Computer
Science Series of Publications B, pages 8–9. University of
Helsinki, 2019.

[Bonet and Levy, 2020] Maria Luisa Bonet and Jordi Levy.
Equivalence between systems stronger than resolution. In
Luca Pulina and Martina Seidl, editors, Theory and Ap-
plications of Satisfiability Testing - SAT 2020 - 23rd In-
ternational Conference, Alghero, Italy, July 3-10, 2020,
Proceedings, volume 12178 of Lecture Notes in Computer
Science, pages 166–181. Springer, 2020.

[Bonet et al., 2006] Maria Luisa Bonet, Jordi Levy, and Fe-
lip Manyà. A complete calculus for max-sat. In Armin
Biere and Carla P. Gomes, editors, Theory and Applica-
tions of Satisfiability Testing - SAT 2006, 9th International
Conference, Seattle, WA, USA, August 12-15, 2006, Pro-
ceedings, volume 4121 of Lecture Notes in Computer Sci-
ence, pages 240–251. Springer, 2006.

[Bonet et al., 2007] Maria Luisa Bonet, Jordi Levy, and Fe-
lip Manyà. Resolution for Max-SAT. Artif. Intell., 171(8-
9):606–618, 2007.

[Bonet et al., 2018] Maria Luisa Bonet, Sam Buss, Alexey
Ignatiev, João Marques-Silva, and António Morgado.
Maxsat resolution with the dual rail encoding. In Sheila A.
McIlraith and Kilian Q. Weinberger, editors, AAAI, pages
6565–6572, 2018.

[Davies and Bacchus, 2011] Jessica Davies and Fahiem Bac-
chus. Solving MAXSAT by solving a sequence of sim-
pler SAT instances. In Jimmy Ho-Man Lee, editor, Prin-
ciples and Practice of Constraint Programming - CP 2011
- 17th International Conference, CP 2011, Perugia, Italy,
September 12-16, 2011. Proceedings, volume 6876 of Lec-
ture Notes in Computer Science, pages 225–239. Springer,
2011.

[Feige and Goemans, 1995] U. Feige and M. Goemans. Ap-
proximating the value of two power proof systems, with
applications to MAX 2SAT and MAX DICUT. In Pro-
ceedings Third Israel Symposium on the Theory of Com-
puting and Systems, pages 182–189, 1995.

[Garey et al., 1976] M. R. Garey, David S. Johnson, and
Larry J. Stockmeyer. Some simplified np-complete graph
problems. Theor. Comput. Sci., 1(3):237–267, 1976.

[Ignatiev et al., 2017] Alexey Ignatiev, António Morgado,
and João Marques-Silva. On tackling the limits of reso-
lution in SAT solving. In Proc. of the 20th Int. Conf. on
Theory and Applications of Satisfiability Testing, SAT’17,
pages 164–183, 2017.

[Ignatiev et al., 2019] Alexey Ignatiev, António Morgado,
and João Marques-Silva. RC2: an efficient maxsat solver.
J. Satisf. Boolean Model. Comput., 11(1):53–64, 2019.

[Larrosa and Heras, 2005] Javier Larrosa and Federico
Heras. Resolution in max-sat and its relation to local
consistency in weighted csps. In IJCAI, pages 193–198,
2005.

[Larrosa and Rollon, 2020] Javier Larrosa and Emma Rol-
lon. Augmenting the power of (partial) maxsat resolution
with extension. In The Thirty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2020, The Thirty-Second
Innovative Applications of Artificial Intelligence Confer-
ence, IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 1561–1568.
AAAI Press, 2020.

[Larrosa et al., 2008] Javier Larrosa, Federico Heras, and Si-
mon de Givry. A logical approach to efficient max-sat
solving. Artif. Intell., 172(2-3):204–233, 2008.

[Morgado et al., 2019] António Morgado, Alexey Ignatiev,
Maria Luisa Bonet, João Marques-Silva, and Sam Buss.
Drmaxsat with maxhs: First contact. In Mikolás Janota
and Inês Lynce, editors, Theory and Applications of Sat-
isfiability Testing - SAT 2019 - 22nd International Confer-
ence, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Pro-
ceedings, volume 11628 of Lecture Notes in Computer Sci-
ence, pages 239–249. Springer, 2019.

[Piotrów, 2020] Marek Piotrów. Uwrmaxsat: Efficient solver
for maxsat and pseudo-boolean problems. In 32nd IEEE
International Conference on Tools with Artificial Intelli-
gence, ICTAI 2020, Baltimore, MD, USA, November 9-11,
2020, pages 132–136. IEEE, 2020.

[Trevisan et al., 2000] Luca Trevisan, Gregory B. Sorkin,
Madhu Sudan, and David P. Williamson. Gadgets, ap-
proximation, and linear programming. SIAM J. Comput.,
29(6):2074–2097, 2000.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1373

	Introduction
	Preliminaries
	From 3SAT to Max2SAT
	MaxSAT Equivalent Gadgets
	Computing Gadgets Automatically
	From kSAT to Max2SAT
	Why Reducing SAT to Max2SAT?
	Solving SAT Through MaxSAT in Practice
	Conclusions

