
The OpenKnowledge System:
An Interaction-Centered Approach to Knowledge

Sharing

Ronny Siebes1, Dave Dupplaw2, Spyros Kotoulas1, Adrian Perreau de Pinninck3,
Frank van Harmelen1, and David Robertson4

1 Vrije Universiteit Amsterdam
{ronny,kot,frankh}@few.vu.nl

2 University of Southampton, UK
dpd@ecs.soton.ac.uk

3 Artificial Intelligence Research Institute (IIIA - CSIC)
adrianp@iiia.csic.es

4 The University of Edinburgh, Edinburgh, UK
dr@inf.ed.ac.uk

Abstract. The information that is made available through the semantic web will
be accessed through complex programs (web-services, sensors, etc.) that may in-
teract in sophisticated ways. Composition guided simply by the specifications of
programs’ inputs and outputs is insufficient to obtain reliable aggregate perfor-
mance - hence the recognised need for process models to specify the interactions
required between programs. These interaction models, however, are traditionally
viewed as a consequence of service composition rather than as the focal point for
facilitating composition. We describe an operational system that uses models of
interaction as the focus for knowledge exchange. Our implementation adopts a
peer to peer architecture, thus making minimal assumptions about centralisation
of knowledge sources, discovery and interaction control.

1 Introduction

The pool of potentially available knowledge on the Internet is immeasurably large. It is
fed by the traditional Web: by application programs feeding data onto the Web, by Web
services accessed through various forms of application interface, by devices that sense
the physical environment, and so on. It is consumed in a wide variety of ways and by
diverse mechanisms (and of course consumers may also be suppliers). The aspiration
of OpenKnowledge is to allow knowledge to be shared freely and reliably, regardless of
the source or consumer. Reliability here is interpreted as a semantic issue. The Internet
is in the fortunate situation that physical and syntactic reliability have been solved to
satisfactory degrees, making semantic reliability the main challenge. Semantic reliabil-
ity means that we want the meaning ascribed to knowledge that is fed into the pool, to
be preserved adequately for the purposes of consumers.

Of course such “open knowledge sharing” is an aspiration that we know to be
unattainable, in the strong sense where all knowledge supplied can be consumed with

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part I, LNCS 4803, pp. 381–390, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

382 R. Siebes et al.

perfect freedom and reliability. Globally consistent common knowledge is impossible
to guarantee in an asynchronous distributed system1.

Interaction-specific knowledge sharing: The good news is that only a small propor-
tion of the pool of available knowledge will be of use to any given consumer, since each
must have an upper limit on how much knowledge it can process. A pragmatic aim of
open knowledge sharing, then, is to obtain knowledge appropriate to the activities in
which each consumer wants to engage, while maintaining free and (adequately) reliable
connections between suppliers and consumers.

The standard way in which activities (and their sequencing) are described is via pro-
cess languages like BPEL [2] or LCC [14], since no complex activity can be represented
formally without modeling its temporal structure. In principle, we could use (models of)
these activities to limit the scope of knowledge that we attempt to share. There is a prob-
lem however: activity models are themselves knowledge that must be shared. In other
words, when an item of knowledge is openly shared in the context of some common
activity it is necessary for the supplier and consumer to have knowledge of that context,
otherwise there is no benefit (in terms of reliable knowledge sharing) from the activity
focus.

For this reason the OpenKnowledge project has at its core a mechanism for sharing
models of activities that require interaction across the Internet. We refer to such models
as interaction models [14]. We expect that communities of practice will naturally form
around collections of interaction models and that these communities can be stabilized
by a mechanism for their rapid sharing across peer groups. Notice that this is explicitly
an interaction-centered approach to knowledge sharing, as opposed to the traditional
data-centered approach.

By building a system, we demonstrate that sharing interaction models at very low
cost to consumers and suppliers is possible. The novelty of this system is that each
interchange of knowledge is made in the context of the (shared) interaction model.
The system is completely distributed using P2P technology. Each peer that participates
in the OK system will at least run a piece of code that we call the OpenKnowledge
Kernel [4] enabling the base functionality to find these interactions and the code or
peers that enable to run the services.

2 Relevant Literature

Clearly, many others have previously identified the goals of reliably sharing knowledge
freely and reliably, regardless of the source or consumer. In this paper, we will not dis-
cuss the plethora of work in the dominant data-oriented attempts at solving this problem,
such as data-integration [10], schema and ontology mapping [15], data-mediators [7],
etc. Instead, in this section we discuss some of the approaches that have also taken an
interaction-oriented approach: web-services, grid-services and multi-agent systems. Al-
though typically data-centric, we also include P2P systems in our comparison, because
the OpenKnowledge architecture has strong P2P characteristics

We do not aim to provide a full-scale literature study here. Instead, we identify the
key ideas behind each of these approaches, and argue why OpenKnowledge occupies a
unique niche in this landscape.

1 Even if it were a philosophically and culturally coherent notion.

The OpenKnowledge System 383

Web Services. Perhaps the most closely related effort to OpenKnowledge is the work
on web-services [3]. The aim of web-services is to enable invoking and executing of
services in a distributed, scalable and interoperable manner. The work on semantic web-
services [19] adds to this the goals to automatically locate and compose such services
in an open and heterogeneous environment like the Web.

Both approaches (web-services and OpenKnowledge) use the principle that if the
services are formulated into information objects (web-service descriptions either purely
syntactic, such as WSDL [5] or semantic such as WSDL-S [17] and OWL-S [11]), then
they can also be the subject of reasoning tasks for search and composition.

The OpenKnowledge approach is in some ways more flexible than the web-services
approach, but in other ways more restricted. Semantic web-service work aims at auto-
matic on-line composition of simple services into complex services, by means of intel-
ligent algorithms (e.g. based on configuration [20] or planning [21]), whereas, Open-
Knowledge restricts itself to executing predefined “work-flows” of services (the “inter-
action models” to be discussed later in this paper). The only decision that OpenKnowl-
edge makes at run-time is which instance of a service is executed; that is, which agent
providing the service will be used (i.e. “recruiting”, not composition).

This recruiting aspect of OpenKnowledge is more general than the web-service ar-
chitecture because it separates the advertising of a service from the execution of a
service. In the web-service architecture, it is generally assumed that advertisements
of service functionality are accompanied with the name of the executor of the ser-
vice. In short: the matching goals of both approaches are the same (finding a service
that matches a given functionality), while the composition goals of both approaches
are different: OpenKnowledge aims to recruit peers to execute predefined work-flows,
whereas semantic web-services aims to automatically compose complex work-flows
out of atomic services.

Furthermore, OpenKnowledge explicitly acknowledges the need for approximate
matching of service requests with advertisements, whereas this is only marginally the
case in the semantic web-service world [1], and entirely absent in regular web-services.

Finally, OpenKnowledge aims explicitly for a distributed storage model for the work-
flows and service descriptions, whereas all the dominant web-service architectures
(UDDI [12] for regular web-services, WSMX [8] for semantic web-services) assume
a centralised architecture.

Grid-Services. The general area of grid-services is even less well circumscribed than
web-services, hence it is more difficult to make a crisp comparison. Literature on Grids
[6] often align their approaches to the service-oriented architecture (SOA). In contrast
to web-services, grid-services are typically organized in fixed work-flows. This makes
them more similar to the OpenKnowledge approach, however, grid-services emphasise
various aspects that are ignored in OpenKnowledge: long-term stability of services,
provenance, quality of service and resource monitoring. Similar to web-services, grid-
services differ from Open Knowledge by advertising a service functionality together
with the identification of the service-provider; OpenKnowledge decouples these two
and hence allows for a separate “recruiting” step. Finally, and perhaps most importantly,
most grid-systems provide only a centralized mechanism for advertising services and
work-flows, while OpenKnowledge aims for a fully distributed mechanism.

384 R. Siebes et al.

In particular, the myGrid project [18] is in many respects close to the goals of
OpenKnowledge in its use of pre-configured work-flows and its approach to manual
composition of such work-flows. However, it relies on centralized storage of such work-
flow patterns, which is in sharp contrast with the fully distributed architecture of Open-
Knowledge.

Peer-to-peer systems. Obviously, OpenKnowledge is close in spirit to the work on
peer-to-peer (P2P) systems. The central P2P ideas of distributed storage, lack of cen-
tralized address registers and the symmetric roles of every peer as both provider and
requester, are fully adopted by OpenKnowledge. Nevertheless, OpenKnowledge makes
two important deviations from most P2P systems. First, most P2P systems aim at data
sharing, whereas OpenKnowledge aims at service sharing. Of course, data sharing is
simply a special case of service sharing (namely sharing a data-access service), making
the OpenKnowledge system more generic. Secondly, OpenKnowledge is in the small,
but rapidly growing, family of semantic P2P systems [16], which use rich descriptions
of the content that each peer has to offer for purposes of routing queries through the
network.

Agents. A final class of closely related systems is that of multi-agent systems. In gen-
eral, there is a superficial similarity between multi-agent and P2P systems: distributed
sets of autonomous processes exchanging information. However, on closer inspection,
there are rather significant differences. In particular, agent systems often have highly
structured architectures inside each agent often relying on cognitive metaphors for their
architectural constructs (such as the Believes, Desires and Intentions (BDI) architec-
ture [13]). P2P systems typically treat their peers as atomic. Finally, agent-systems em-
phasize their pro-active nature (autonomously reacting on their changing environment),
while P2P systems, including OpenKnowledge, assume more classical reactive stance.

The differences and similarities described above are all summarized in Table 1. This
table shows that OpenKnowledge inherits many aspects from other approaches but also
occupies a particular niche, having features not fully explored by others.

3 An Extensive Example Describing the Functionality of the
OpenKnowledge System

In this section we provide an extensive example how our system can be used. The
architecture of the system is described in another paper [4]. From a user perspective,
the OpenKnowledge system is a software bundle that allows a user to find, compose and
execute tasks. Those tasks can be executed by users and/or software components. The
tasks are described by Interaction Models (IM), where each IM is a formally described
set of roles together with the process-flow between those roles. Users subscribe their
peer to play roles within an interaction. For example, the task of buying an item requires
at least the seller and buyer roles, and perhaps a payment service role. We call instances
of these roles (e.g. a particular seller or a particular buyer) OK-Components (OKCs).
An OKC, for example a creditcard service, may play a role in many IMs. If the roles
are constrained by some external functionality, then services provide that functionality.
Much of the functionality of the OK system relies on the Discovery and Team formation
Service (DTS), which is a distributed storage and retrieval system over a P2P network.
Its main responsibilities being the following:

The OpenKnowledge System 385

Web-Services similarities: service-oriented,
distributed,
automated search
based on semantic descriptions

differences: Web-Services OpenKnowledge
composition of atomic services predefined workflows
fixed link to executing party dynamic recruiting
centralised advertising distributed
equivalence matching approximate matching

Grid-Services similarities: service-oriented,
fixed workflows
distributed

differences: Grid-Services OpenKnowledge
provenance absent
QoS reputation mechanisms
resource monitoring absent
centralised advertising distributed
fixed link to executing party dynamic recruiting

Peer-to-Peer Systems similarities: distributed,
scalable,
symmetric roles of each peer

differences: P2P Systems OpenKnowledge
aimed at data-sharing service sharing
independent of content exploit semantics

Multi-Agent Systems similarities: distributed,
symmetric roles of each peer

differences: Multi-Agent Systems OpenKnowledge
cognitive architecture none
central brokers scalable discovery
pro-active behaviour reactive

Fig. 1. OpenKnowledge compared to other approaches

– IM Discovery - the DTS is used to publish, discover and retrieve IMs.
– OKC Discovery - the DTS is also used to publish, discover and retrieve OKCs. This

enables reusability thus providing scalable functionality. OKCs can be discovered
either in the context of an already known IM or independently.

– Role subscription - peers can subscribe a locally stored OKC to play a role in an IM.
Additional information such as annotations and restrictions concerning the other
participants can be given along with the subscription.

– Coordinator subscription - peers may also subscribe to act as interaction
coordinators.

– Team formation and interaction initialization - the DTS uses subscription informa-
tion to form teams of OKCs, which will, potentially, participate in an interaction,
and finds a subscribed coordinator to orchestrate them.

The system is based on previous work where the algorithms are simulated and imple-
mentations are emulated in order to see the performance of them [9]. More about the
DTS can be read in the architecture paper [4]. Now we will explain the functionality of
the first OpenKnowledge system by going through an example where we show how a
dictionary service can be created and used.

3.1 Writing and Publishing an IM

In figure 2 user A uses the OpenKnowledge System to develop an IM for the dictionary
service, by describing an interaction between two roles. One role is used to query the

386 R. Siebes et al.

service, called the inquirer, and the oracle role provides the answer. In this example,
the IM is written in the LCC language [14]. Current work in the project is to also have
support to other languages like BPEL. The LCC model can be read as follows:

Fig. 2. User interface showing an IM editor (LCC as the language in this example) and a button
to publish the IM on the OpenKnowledge network

1. r(inquirer,initial). This line states that the ’inquirer’ role is the one that starts the
interaction.

2. r(oracle,necessary,1). Statement indicating that at least 1 peer needs to play the
oracle role.

3. a(inquirer,ID2)::. A statement giving the ’inquirer’ role an identifier ’ID2’ and the
’::’ means that the definition of the role starts after it.

4. ask(W) => a(oracle,ID) <- toknow(W). If the user wants to know a definition
for a word ’W’ it can start the interaction by fulfilling the constraint toknow(W). In LCC
the ‘<-’ symbol is used to indicate that after it a constraint is defined. When the constraint
is satisfied (i.e. the user provided ‘W’), a message ’textttask(W)’ is sent to the ’oracle’ role
identified by ’ID’ (note that a(oracle,ID) relates the role to an identifier). In LCC the
‘=>’ symbol is used to indicate that a message (in this case ask(W)) is sent from the current
role to another role (in this case the ‘oracle’).

5. definition(W,D) <= a(oracle,ID). In this line the ‘inquirer’ waits for the ora-
cle role (a(oracle,ID)) to send a message with the definition as content (definition
(W,D)). In LCC the ‘<=’ symbol is used to indicate that a message (in this case
definition(W,D)) should be expected from another role (in this case the ‘oracle’ role).

6. null <- show(W,D). When the ‘oracle’ sent the message to this role, this statement
shows the answer to the user. In this case show is a special constraint which is understood
by the system to show a message (in this case with the query: W and the answer: D) in the user
interface. null means that nothing happens after the constraint show(W,D) is fulfilled.

7. a(oracle,ID)::. Gives the ‘oracle’ role identifier ‘ID’ and starts to give its definition.
8. ask(W) <= a(inquirer,ID2). This line makes the ‘oracle’ role wait for a message

ask(W) from the ‘inquirer’.
9. definition(W,D) => a(inquirer,ID2) <- define(W,D). When the

‘oracle’ got the ‘ask’ message (previous line is executed), it will try to fulfill the ‘define
(W,D)’ constraint, and if that is true, a message with the content definition(W,D) is
sent to the ‘inquirer’.

The OpenKnowledge System 387

Now that a user A wrote down the IM, they should provide some keywords to
describe the functionality of the IM. In the system we provide automated mapping
and similarity algorithm to relate similar keywords during search.These keywords are
needed by the DTS to index them in order to be retrieved by other peers. In this case,
A decides to give the keywords ‘oracle, wordnet, dictionary, words’. Our current work
tries to extend the ways to describe the functionality of an IM, for example by providing
concepts from ontologies instead of keywords. Now that the IM is ready and the key-
words are provided, the user can decide to publish it on the OpenKnowledge network
by connecting to the network and pressing the ‘Publish Interaction Model’ button. The
DTS will make sure it is scalably stored and indexed by the provided keywords.

3.2 Creating and Publishing OKC’s

Besides writing the IM in the previous section, user A also writes the OKCs that imple-
ment both roles in the IM respectively. Currently, the user A has to implement their OKC
by writing some code to a specific Java API. In simple terms, the methods in the Java
source code should match the names and the arguments of the constraints in the roles,
which are toknow(W) and show(W,D) for the ‘inquirer’ role and define(W,D)
for the ‘oracle’ role. Note that here we assume W and D are of type STRING, where in
the extended LCC language also types are supported, meaning that the definitions would
be something like show(W:STRING,D:STRING). After user A has implemented the
interfaces, (s)he opens the window from the OpenKnowledge Kernel software where it
can wrap the code into OKC’s (the figure is not shown here due to space constraints).

The user loads its IM and attaches the java implementations of the role constraints via
the user interface of the kernel. Also the OKCs may be described by a set of keywords,
because they can be used as role implementations for other IMs and therefore need to
be indexed so that they can be retrieved by the DTS. The intuition behind this is that
an OKC implementing a credit-card payment service can be used in many IMs. Also
these keywords can be used in the OKC selection process that allows a user to select
their preferred OKCs after multiple matches have been found to an IM. For example, it
can be that two OKCs exactly match the same ‘oracle’ role but one delivers results in
English and the other in Spanish.

By clicking the ’Create OpenKnowledge Component’ button, the OKC is created
and ready to be used. By sending a ’subscribe’ message to the DTS (not shown in the
figures), it tells the network that it is able to execute the role of ‘oracle’ for the given
IM. Given that the user used Wordnet as the underlying implementation, it annotates
the OKC with the keywords ‘dictionary, english, wordnet,lookup’ (not shown in the
figures). Besides this, A decides to publish the ‘inquirer’ OKC to the network, so that
other users also may download it and run it on their own machines.

3.3 Searching for IMs and OKCs

Peer B wants to find a service that will allow it to find definitions of words in Span-
ish. It opens the search window from the OpenKnowledge Kernel (not shown due to
space constraints). In this case, in the beginning (s)he searches for IMs matching to the
word ‘oracle’. The system starts searching and shows the found IMs together with their
roles to the user. Assume that user B finds the IM together with the roles ’orcale’ and

388 R. Siebes et al.

’inquirer’. The user wants to play the role of the inquirer written by user A and therefore
decides to download it and tells the DTS that it is willing to play the role.

3.4 Team Formation and Execution

Given that in the previous steps A and B have both told the DTS that by subscribing their
OKCs that they are willing to play the roles of ‘oracle’ and ‘inquirer‘ respectively, the
DTS knows that all roles are instantiated meaning that there are enough peers to start
the interaction. Now imagine that another user C also published an OKC that is able
to fulfill the role of ‘oracle’, but has annotated its OKC with the keywords dictionary,
spanish. So now there are three peers ready to play. The DTS selects a coordinator peer
from the pool of peers. This is currently selected randomly (but current ongoing work
is to make it reputation-based). This coordinator receives a message from the DTS with
the three peers, their OKC descriptors and the IM. The coordinator now can start the
team formation process.

The coordinator sends each peer the list of peers willing to play together with their
OKC descriptions. Now the peers can select, automatically or with the user in the loop
(depends on the OKC implementation), with whom to play. Assume that both the Span-
ish and English oracles have automatic selection process saying that they always like
to play with whomever. However, the inquirer has user B in the loop, where the user
selects the peer from user C, because its OKC description matches its wishes and sends
its preferences back to the coordinating peer. Now that the coordinator has (within a
certain time-out) received enough replies to start the interaction, its starts executing it.
The coordinator sends a message to Peer B which solves the constraint by asking the
user (using a visualizer showing the constraint to the user). The word is sent back to
the coordinator which continues parsing the IM and reaches a constraint that must be
satisfied by the dictionary role to give the word definition. The coordinator sends the
constraint to Peer C which solved it and returns the definition in a message. The co-
ordinator continues parsing and finds a constraint in which the querier role must show
the user the word definition. It sends Peer B a message with this constraint and it is
solved by showing the query results to the user. The IM is finished at this point, so the
coordinator sends a message to each peer so they can stop the OKC instances.

As said, this example demonstrates the functionality of the system, but it is very
simple. The interface presented is only one of the many possible interfaces, because we
have designed the architecture to be as independent as possible from the user presenta-
tion system.

3.5 Other Examples

Some interesting examples can be made within the trade domain, like an interaction
model for a transaction of goods. Somebody may publish an IM that contains the
process-flow between a seller, a buyer and a payment service. Peers can subscribe
themselves to these roles and when all roles are instantiated the interaction starts. The
Coordinator initiates the interaction and coordinates it. Especially in this case, all role-
players may want to have a trustworthy controller, and can specify the requirements for
a coordinator when subscribing to an OKC.

Another example comes from a case study that we undertook in the bio-informatics
domain [22]. In that paper we present a system that can be used to analyse real data

The OpenKnowledge System 389

of relevance to the structural bio-informatics community where comparative models of
yeast protein structures from different resources are analysed for consistency between
them. The interaction model described in that paper, written in the LCC language, de-
scribes the interaction between the roles of data collector, receiver and source, that
together perform the task.

4 Summary

Much of the information that might be accessed in semantic webs is accessible through
complex programs (web-services, sensors, etc.) that may interact in sophisticated ways.
Composition guided simply by specifications of programs’ input-output behaviours is
insufficient to obtain reliable aggregate performance - hence the recognised need for
process models to specify the interactions required between programs. These interac-
tion models, however, are traditionally viewed as a consequence of service composition
rather than as the focal point for facilitating composition. We have described an opera-
tional system that uses models of interaction as the focus for knowledge exchange. Our
implementation adopts a peer to peer architecture, thus making minimal assumptions
about centralisation of knowledge sources of interaction control. The direct contribution
of this paper is to present the first operational system of this kind. The secondary con-
tribution of this paper is to provide a new angle on service orchestration and ontology
matching that re-interprets traditional methods for these tasks in a dynamic context.

Acknowledgements. This work has been supported by the FP6 OpenKnowledge
project2. A. Perreau de Pinninck is supported by a CSIC predoctoral fellowship under
the I3P program, which is partially funded by the European Social Fund.

References

1. Akahani, J., Hiramatsu, K., Kogure, K.: Coordinating Heterogeneous Information Services
based On Approximate Ontology Translation. In: AA MAS 2002. First International Joint
Conference on Autonomous Agents & Multiagent Systems (2002)

2. Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K., Roller, D.,
Smith, D., Thatte, S., Trickovic, I., Weerawarana, S.: Business process execution language
for web services, version 1.0. Technical report (2004)

3. Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., Weerawarana, S.: Unraveling the
Web services web: an introduction to SOAP, WSDL, and UDDI. IEEE Internet Comput-
ing 6(2), 86–93 (2002)

4. de Pinninck, A.P., Dupplaw, D., Kotoulas, S., Siebes, R.: The openknowledge kernel. In:
Proceedings of the IX CESSE conference, Vienna, Austria (2007)

5. Meredith, G., Weerawarana, S., Christensen, E., Curbera, F.: Web services description lan-
guage (wsdl) 1.1. Technical report (2001)

6. Foster, I., Kesselman, C.: The grid: blueprint for a new computing infrastructure. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA (1998)

7. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J.,
Vassalos, V., Widom, J.: The TSIMMIS Approach to Mediation: Data Models and Lan-
guages. Journal of Intelligent Information Systems 8(2), 117–132 (1997)

2 http://www.openk.org/

390 R. Siebes et al.

8. Haller, A., Cimpian, E., Mocan, A., Oren, E., Bussler, C.: WSMX-a semantic service-
oriented architecture. In: Proceedings IEEE International Conference on Web Services, 2005.
ICWS 2005, pp. 321–328. IEEE Computer Society Press, Los Alamitos (2005)

9. Kotoulas, S., Siebes, R.: Adaptive routing in structured peer-to-peer overlays. In: 3rd Intl.
IEEE workshop on Collaborative Service-oriented P2P Information Systems (COPS work-
shop at WETICE07), Paris, France, IEEE Computer Society Press, Los Alamitos (2007)

10. Lenzerini, M.: Data integration: a theoretical perspective. In: Proceedings of the twenty-first
ACM SIGMOD-SIGACT-SIGART symposium on Principles of database systems, pp. 233–
246. ACM Press, New York (2002)

11. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,
S., Paolucci, M., Parsia, B., Payne, T., et al.: OWL-S: Semantic Markup for Web Services.
W3C Member Submission 22 (2004)

12. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Importing the Semantic Web in UDDI.
Web Services, E-Business and Semantic Web Workshop (2002)

13. Rao, A.S., Georgeff, M.P.: Modeling rational agents with a BDI-architecture. Readings in
agent, 317–328 (1997)

14. Robertson, D.: A lightweight coordination calculus for agent systems. In: Leite, J.A.,
Omicini, A., Torroni, P., Yolum, p. (eds.) DALT 2004. LNCS (LNAI), vol. 3476, pp. 183–
197. Springer, Heidelberg (2005)

15. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. Journal on Data
Semantics IV, 146–171 (2005)

16. Siebes, R., Kotoulas, S.: proute: Peer selection using shared term similarity matrices. Web
Intelligence and Agent Systems 5(1), 89–107 (2007)

17. Sivashanmugam, K., Verma, K., Sheth, A., Miller, J.: Adding Semantics to Web Services
Standards. In: Proceedings of the International Conference on Web Services, pp. 395–401
(2003)

18. Stevens, R., Robinson, A., Goble, C.A.: mygrid: Personalised bioinformatics on the informa-
tion grid. In: proceedings of 11th International Conference on Intelligent Systems in Molec-
ular Biology, Brisbane, Australia (2003)

19. Sycara, K.P., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction
and composition of semantic web services. J. Web Sem. 1(1), 27–46 (2003)

20. ten Teije, A., van Harmelen, F., Wielinga, B.: Configuration of web services as parametric
design

21. Traverso, P., Pistore, M.: Automated Composition of Semantic Web Services into Executable
Processes. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, Springer, Heidelberg (2004)

22. Gerloff, D., Sharman, J., Quang, X., Walton, C., Robertson, D.: Peer to Peer Experimentation
in Protein Structure Prediction: an Architecture, Experiment and Initial Results. In: Interna-
tional Workshop on Distributed, High-performance and Grid Computing in Computational
Biology, Eilat, Israel (2007)

	The OpenKnowledge System: An Interaction-Centered Approach to Knowledge Sharing
	Introduction
	Relevant Literature
	An Extensive Example Describing the Functionality of the OpenKnowledge System
	Writing and Publishing an IM
	Creating and Publishing OKC's
	Searching for IMs and OKCs
	Team Formation and Execution
	Other Examples

	Summary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /MTEX
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

