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Abstract

Starting from a decomposition result of MTL-chains as ordinal sums, we focus our
attention on a particular kind of indecomposable semihoops, namely weakly cancellative
semihoops. Weak cancellation property is proved to be the difference between cancellation
and pseudocomplementation, so it gives a new axiomatization of Product logic and ΠMTL.
By adding this property, some new fuzzy logics (propositional and first-order) are defined
and studied obtaining some results about their (finite) strong standard completeness and
other logical and algebraic properties.
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1 Introduction

Hájek introduced in [27] the logic BL as a common generalization of the three main fuzzy
logics:  Lukasiewicz logic, Product logic and Gödel logic, semantically defined from a continu-
ous t-norm (the  Lukasiewicz t-norm, the product of reals and the minimum, respectively). In
particular, Product logic (see [29]) was proved to be the axiomatic extension of BL obtained
by adding:

¬¬χ→ ((ϕ ∗ χ→ ψ ∗ χ)→ (ϕ→ ψ)) (Π1),

and

ϕ ∧ ¬ϕ→ 0 (Π2),

where first one is the law of cancellativity and the second one is the law of pseudocom-
plementation.

Actually, Hájek conjectured that BL was complete with respect to the semantics given
by continuous t-norms and their residua. This was proved by Cignoli, Esteva, Godo and
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Torrens in [11]. Also in [27] an algebraic semantics was given for BL logic based on the
variety of BL-algebras (bounded integral commutative prelinear divisible residuated lattices).
The algebraic semantics for  Lukasiewicz logic, Product logic and Gödel logic (MV-algebras,
product algebras and Gödel algebras, respectively) were obtained as subvarieties of the variety
of all BL-algebras.

Nevertheless, the necessary and sufficient condition for a t-norm to have a residuated
implication is not the continuity, but the left-continuity. For that reason, Esteva and Godo
in [16] defined a logic weaker than BL, which they called MTL (for Monoidal T-norm based
Logic) aiming to capture the logic of all left-continuous t-norms and their residua. Jenei
and Montagna proved in [35] that MTL was indeed complete with respect to the semantics
given by the class of all left-continuous t-norms and their residua. This kind of completeness
with respect to a class of left-continuous t-norms and their residua has been called standard
completeness. Later on, in [15] the standard completeness was proved also for some other
axiomatic extensions of MTL (namely SMTL and IMTL). However, the standard completeness
of ΠMTL, the extension of MTL obtained by adding pseudocomplementation and cancellation
(the analogue of Product logic in the non-divisible case) was left in [15] as an open problem.
It remained unsolved until Horč́ık proved this logic to be standard complete in [32].

Esteva and Godo gave also an algebraic semantics for MTL based on MTL-algebras
(bounded integral commutative prelinear residuated lattices). This class is a variety that
contains the class of BL-algebras as a proper subvariety and it is possible to prove that in
fact it is an equivalent algebraic semantics for MTL logic in the sense of Blok and Pigozzi
[6]. Therefore, MTL is an algebraizable logic,1 i.e. it belongs to the class of logics which is
better studied by Abstract Algebraic Logic and for which this discipline gives a lot of im-
portant results. In particular, we have an order-reversing isomorphism between the lattice of
subvarieties of MTL-algebras and the lattice of axiomatic extensions of MTL, which implies
that the study of such extensions is equivalent to the study of varieties of MTL-algebras,
and this gives a correspondence between logical and algebraic properties. The structure of
BL-algebras is well-known and some important parts of their lattice of subvarieties have been
completely described (see for instance [37], [2], [20]), but in the framework of MTL, i.e. when
the property of divisibility is not assumed, few algebraic studies have been done till now (see
[10], [25], [26], [32], [33], [41] and [42], and, in a more general framework, see [4] and [23]).

This paper is devoted to the investigation of some varieties of MTL-algebras, or equiv-
alently to some axiomatic extensions of MTL. We focus our attention on the so called
weakly cancellative MTL-algebras (WCMTL-algebras for short) and on their logic, WCMTL.
WCMTL-algebras are MTL-algebras in which the monoidal operation is either cancellative
or has 0 as a result. The interest of this variety and of its corresponding logic is motivated
as follows:

• Both MV-algebras and Product algebras are weakly cancellative, hence WCMTL-algebras
are obtained from the join of the varieties of MV-algebras and of Product algebras
by removing divisibility. Moreover, it will turn out that ΠMTL-algebras are exactly
WCMTL-algebras without zero divisors, and that MV-algebras are exactly the involu-
tive WCMTL-algebras.

• While the structure of involutive MTL-algebras seems to be very hard to describe (every
1Actually, it has been recently proved in [22] that all the logics of a much bigger family (which includes

MTL and its axiomatic extensions) are algebraizable.
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MTL-algebra generates an involutive one by disconnected rotation [41], so involutive
MTL-algebras can contain the zero-free reduct of any MTL-algebra), the structure of
WCMTL-algebras, although not easy, seems to be more accessible. Moreover some
techniques introduced by Horč́ık for the study of ΠMTL-algebras can be successfully
applied to WCMTL-algebras.

• WCMTL-chains are either indecomposable as ordinal sums or are the ordinal sum of a
two-element chain and a cancellative (hence indecomposable) residuated lattice. So they
constitute an interesting example of indecomposable (or almost indecomposable) MTL-
algebras. This also suggests the investigation of the variety Ω(WCMTL) generated by
all ordinal sums of zero-free subreducts of WCMTL-algebras. Interestingly, the divisible
Ω(WCMTL)-algebras are precisely the BL-algebras.

The paper is organized as follows. After some preliminaries, we prove that, as in the
case of BL-algebras (see [2]), all MTL-chains have a maximum decomposition as ordinal
sum of indecomposable totally ordered semihoops. Then, we introduce weak cancellation
to obtain a class of those indecomposable semihoops. Moreover, some interesting properties
of weak cancellation are proved, obtaining a new axiomatization for the cancellative fuzzy
logics (Product logic and ΠMTL) and defining a new hierarchy of fuzzy logics. We study
some properties of those logics and their corresponding algebraic semantics, namely finite
embedding property, finite model property and standard completeness. We finish with some
concluding remarks and open problems.

2 Preliminaries

In [27] the logic BL is defined as a Hilbert-style calculus in the language L = {∗,→, 0} of
type 〈2, 2, 0〉 where the only inference rule is Modus Ponens and the axiom schemata are the
following (taking → as the least binding connective):

(A1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(A2) ϕ ∗ ψ → ϕ
(A3) ϕ ∗ ψ → ψ ∗ ϕ
(A4) ϕ ∗ (ϕ→ ψ)→ ψ ∗ (ψ → ϕ)
(A5a) (ϕ→ (ψ → χ))→ (ϕ ∗ ψ → χ)
(A5b) (ϕ ∗ ψ → χ)→ (ϕ→ (ψ → χ))
(A6) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(A7) 0→ ϕ

Some other connectives are defined as follows:
ϕ ∧ ψ := ϕ ∗ (ϕ→ ψ);

ϕ ∨ ψ := ((ϕ→ ψ)→ ψ) ∧ ((ψ → ϕ)→ ϕ);

ϕ↔ ψ := (ϕ→ ψ) ∗ (ψ → ϕ);

¬ϕ := ϕ→ 0;

1 := ¬0.
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 Lukasiewicz logic  L is the extension of BL with the law of involution:

¬¬ϕ→ ϕ (Inv),

Gödel logic G can be obtained by adding to BL the contraction axiom schema:

ϕ→ ϕ ∗ ϕ (Con),

and Product logic Π can be obtained by adding to BL the following two axiom schemata:

¬¬χ→ ((ϕ ∗ χ→ ψ ∗ χ)→ (ϕ→ ψ)) (Π1),

and

ϕ ∧ ¬ϕ→ 0 (Π2),

where the first one is the law of cancellativity and the second one expresses the law of
pseudocomplementation (it will be called (PC) in the paper).

In [19] another important axiomatic extension of BL, SBL, is introduced by adding to BL
the axiom schema (PC). This logic is weaker than Gödel and Product logic.

MTL is also presented by means of a Hilbert-style calculus in [16] but now in the enriched
language L = {∗,→,∧, 0} of type (2, 2, 2, 0). The only inference rule is again Modus Ponens
and the axiom schemata are the following:

(B1) (ϕ→ ψ)→ ((ψ → χ)→ (ϕ→ χ))
(B2) ϕ ∗ ψ → ϕ
(B3) ϕ ∗ ψ → ψ ∗ ϕ
(B4) ϕ ∧ ψ → ϕ
(B5) ϕ ∧ ψ → ψ ∧ ϕ
(B6) ϕ ∗ (ϕ→ ψ)→ ϕ ∧ ψ
(B7a) (ϕ→ (ψ → χ))→ (ϕ ∗ ψ → χ)
(B7b) (ϕ ∗ ψ → χ)→ (ϕ→ (ψ → χ))
(B8) ((ϕ→ ψ)→ χ)→ (((ψ → ϕ)→ χ)→ χ)
(B9) 0→ ϕ

The connectives ∨,↔,¬ and 1 are defined as in BL.
BL is proved to be the axiomatic extension of MTL obtained by adding the divisibility

axiom:

ϕ ∧ ψ → ϕ ∗ (ϕ→ ψ) (Div)

Some other axiomatic extensions of MTL are introduced in [16]. Namely, IMTL is obtained
by adding the axiom schema (Inv), SMTL is obtained by adding (PC), and ΠMTL is obtained
by adding (PC) and (Π2).

Let FmL be the set of L-formulas built over a countable set of variables. Given Γ∪{ϕ} ⊆
FmL, we write Γ `MTL ϕ if, and only if, ϕ is provable from Γ in the system MTL.

Definition 2.1 ([16]). Let A = 〈A, ∗,→,∧,∨, 0, 1〉 be an algebra of type 〈2, 2, 2, 2, 0, 0〉. A
is an MTL-algebra iff it is a bounded integral commutative residuated lattice satisfying the
prelinearity equation:

(x→ y) ∨ (y → x) ≈ 1
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The negation operation is defined as ¬a = a → 0. If the lattice order is total we will
say that A is an MTL-chain. The MTL-chains defined over the real unit interval [0, 1] (with
the usual order) are those where ∗ is a left-continuous t-norm2 and they are called standard
MTL-chains. If ◦ is a left-continuous t-norm, [0, 1]◦ will denote the standard chain given by
◦.

The zero-free subreducts of MTL-algebras are term equivalent to prelinear semihoops,
which are defined as follows:

Definition 2.2 ([18]). An algebra A = 〈A, ∗,→,∧, 1〉 of type 〈2, 2, 2, 0〉 is a prelinear semi-
hoop3 iff:

• A = 〈A,∧, 1〉 is an inf-semilattice with upper bound.

• 〈A, ∗, 1〉 is a commutative monoid isotonic w.r.t. the inf-semilattice order.

• For every a, b ∈ A, a ≤ b iff a→ b = 1.

• For every a, b, c ∈ A, a ∗ b→ c = a→ (b→ c).

• For every a, b, c ∈ A, (a→ b)→ c ≤ ((b→ a)→ c)→ c.

An operation ∨ is defined as: a ∨ b = ((a → b) → b) ∧ ((b → a) → a). If in addition it
has a minimum element, then it is a bounded prelinear semihoop (i.e. term equivalent to an
MTL-algebra).

For the discussion of the paper we will need some usual notions defined for MTL-algebras
and prelinear semihoops. We write them here for the reader’s convenience.

Definition 2.3 ([2]). Let 〈I,≤〉 be a totally ordered set. For all i ∈ I, let Ai be a totally
ordered semihoop (hence prelinear) such that for i 6= j, Ai ∩ Aj = {1}. Then

⊕
i∈I Ai (the

ordinal sum of the family {Ai : i ∈ I}) is the structure whose universe is
⋃

i∈I Ai and whose
operations are:

x ∗ y =


x ∗Ai y if x, y ∈ Ai,

y if x ∈ Ai and y ∈ Aj \ {1} with i > j,

x if x ∈ Ai \ {1} and y ∈ Aj with i < j.

x→ y =


x→Ai y if x, y ∈ Ai,

y if x ∈ Ai and y ∈ Aj with i > j,

1 if x ∈ Ai \ {1} and y ∈ Aj with i < j.

For every i ∈ I, Ai is called a component of the ordinal sum.
If in addition I has a minimum, say i0, and Ai0 is bounded, then the ordinal sum

⊕
i∈I Ai

forms an MTL-chain.
2A t-norm is a binary operation ◦ : [0, 1]2 → [0, 1] which is associative, commutative, isotonic and has 1 as

a neutral element (see [36]).
3These algebras are sometimes also called MTLH-algebras.
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Definition 2.4. Let A be an MTL-chain or a totally ordered semihoop. We define a binary
relation ∼ on A by letting for every a, b ∈ A, a ∼ b if, and only if, there is n ≥ 1 such that
an ≤ b ≤ a or bn ≤ a ≤ b. It is easy to check that ∼ is an equivalence relation. Its equivalence
classes are called Archimedean classes. Given a ∈ A, its Archimedean class is denoted as
[a]∼.

A filter in an MTL-algebra is defined in [16] as any subset F such that:

• 1 ∈ F

• If a ∈ F and a ≤ b, then b ∈ F

• If a, b ∈ F , then a ∗ b ∈ F .

F (a) will denote the principal filter generated by the element a. It can be described as follows:
F (a) = {b : an ≤ b for some n ≥ 1}. There is the usual correspondence between filters and
congruences in MTL-algebras:

Proposition 2.5. Let A be an MTL-algebra. For every filter F ⊆ A we define Θ(F ) :=
{〈a, b〉 ∈ A2 : a ↔ b ∈ F}, and for every congruence θ of A we define Fi(θ) := {a ∈ A :
〈a, 1〉 ∈ θ}. Then, Θ is an order isomorphism from the set of filters onto the set of congruences
and Fi is its inverse.

Given a filter F and an element a, [a]F will denote the equivalence class of a w.r.t. to the
congruence Θ(F ).

Theorem 2.6 ([16]). MTL-algebras are representable as a subdirect product of MTL-chains.

MTL will denote the class of all MTL-algebras. It is well known that this class is defin-
able by equations; hence it is a variety.4 Given Γ ∪ {ϕ} ⊆ FmL and A ∈ MTL, we write
Γ |=A ϕ if, and only if, v(ϕ) = 1A whenever v is an evaluation of the formulas in A such that
v[Γ] ⊆ {1A}. With this notation we can express the completeness of MTL with respect to
the semantics given by MTL as follows:

For every Γ ∪ {ϕ} ⊆ FmL, Γ `MTL ϕ iff Γ |=A ϕ for every A ∈MTL.
Furthermore, it is possible to prove that MTL is an algebraizable logic in the sense of

Blok and Pigozzi [6] and MTL is its equivalent algebraic semantics. This implies that there
is an order-reversing isomorphism between axiomatic extensions of MTL and subvarieties of
MTL. If Σ ⊆ FmL and L is the logic obtained by adding to MTL the formulas of Σ as axiom
schemata, then the equivalent algebraic semantics of L is the subvariety of MTL axiomatized
by the equations {ϕ ≈ 1 : ϕ ∈ Σ}. We denote this variety by L and we call its members
L-algebras. We will do two exceptions to that rule: the algebras associated to  L are called
MV-algebras following the terminology of Chang in [9], and the algebras associated to the
Classical Propositional Calculus (CPC for short) are called, of course, Boolean algebras (we
will use B2 to denote the Boolean algebra of two elements, and BA to denote the variety of
Boolean algebras).

All the logics so far mentioned are propositional logics. However, already in [27], the first-
order version for BL and its axiomatic extensions is introduced and in [16] it is generalized
to MTL and its axiomatic extensions.

4For any unexplained notion on Universal Algebra see [8].
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Given a first-order language J and some axiomatic extension L of MTL5, the first-order
version of L in the language J , L∀, is defined by means of a Hilbert-style calculus where
the axioms are all formulas resulting from the axioms of L by substituting the propositional
variables for arbitrary formulas of J , plus the following axiom schemata for the quantifiers:

(∀1) ∀xϕ(x)→ ϕ(t) (where t is a term substitutable for x in ϕ(x))

(∃1) ϕ(t)→ ∃xϕ(x) (where t is a term substitutable for x in ϕ(x))

(∀2) ∀x(ν → ϕ)→ (ν → ∀xϕ) (where x is not free in ν)

(∃2) ∀x(ν → ϕ)→ (∃xϕ→ ν) (where x is not free in ν)

(∀3) ∀x(ν ∨ ϕ)→ (∀xϕ ∨ ν) (where x is not free in ν)

and the inference rules are Modus Ponens and Generalization: ϕ
∀x ϕ .

The semantics for L∀ logic is defined in the following way. Given an L-chain A, an A-
structure for J is defined as M = 〈M, (rP )P , (mc)c〉, where M 6= ∅, for each n-ary predicate
P of J , rP is a function from Mn to A, and for each constant symbol c of J , mc is an element
of M . An M-evaluation is a mapping v assigning to each object variable x of J , an element
v(x) ∈ M . Given two M-evaluations v and v′, and an object variable x, v ≡x v

′ means that
v(y) = v′(y) for every y 6= x.

The values of the terms given by M and v are defined as: ||x||M,v = v(x) and ||c||M,v =
mc. The truth value of a formula ϕ is an element ||ϕ||AM,v ∈ A and it is defined inductively
as:

||P (t1, . . . , tn)||AM,v = rP (||t1||M,v, . . . , ||tn||M,v)
||ϕ ∗ ψ||AM,v = ||ϕ||AM,v ∗A ||ψ||AM,v

||ϕ ∧ ψ||AM,v = ||ϕ||AM,v ∧A ||ψ||AM,v

||ϕ→ ψ||AM,v = ||ϕ||AM,v →A ||ψ||AM,v

||0||AM,v = 0A

||1||AM,v = 1A

||∀xϕ||AM,v = inf{||ϕ||AM,v′ : v ≡x v
′}

||∃xϕ||AM,v = sup{||ϕ||AM,v′ : v ≡x v
′}

if the suprema and the infima exist in A; otherwise the truth value of the formula is
undefined. The structure M is called A-safe when the truth values are defined for every
formula and every M-evaluation.

Given an A-structure M and a J -formula ϕ, the truth value of ϕ in M is defined as
||ϕ||AM = inf{||ϕ||AM,v : vM-evaluation}. Let T be a set of J -formulas. M is an A-model of
T if ||ϕ||AM = 1A for every ϕ ∈ T . With this notation, we can write the completeness theorem
for all first-order fuzzy logics (cf. [13]).

Theorem 2.7. Let J be a first-order language and L an axiomatic extension of MTL. Then,
for every J -formula ϕ and every set of J -formulas T , T `L∀ ϕ if, and only if, for each
L-chain A and each A-safe model of T , ||ϕ||AM = 1A.

We also need to recall some relevant properties of Universal Algebra.

Definition 2.8. A class K of algebras is locally finite (LF, for short) if, and only if, for every
A ∈ K and for every finite set B ⊆ A, the subalgebra generated by B, 〈B〉A, is also finite.

5We consider MTL as a trivial axiomatic extension of itself.
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Definition 2.9. Let A = 〈A, 〈fi : i ∈ I〉〉 be an algebra and let B ⊆ A be a non-empty set.
The partial subalgebra B of A with domain B is the partial algebra 〈B, 〈fi : i ∈ I〉〉, where for
every i ∈ I, fi n-ary, b1, . . . , bn ∈ B,

fBi (b1, . . . , bn) =
{
fAi (b1, . . . , bn) if fAi (b1, . . . , bn) ∈ B,
undefined otherwise.

Given a class K of algebras, Kfin will denote the class of its finite members.

Definition 2.10. A class K of algebras has the finite embeddability property (FEP, for short)
if, and only if, every finite partial subalgebra of some member of K can be embedded in some
algebra of Kfin.

Definition 2.11. A class K of algebras of the same type has the strong finite model property
(SFMP, for short) if, and only if, every quasiequation that fails to hold in every algebra of K
can be refuted in some member of Kfin.

Definition 2.12. A class K of algebras of the same type has the finite model property (FMP,
for short) if, and only if, every equation that fails to hold in every algebra of K can be refuted
in some member of Kfin.

A variety has the FMP if, and only if, it is generated by its finite members and a quasiva-
riety has the SFMP if, and only if, it is generated (as a quasivariety) by its finite members. In
[7] it is proved that for classes of algebras of finite type closed under finite products (hence, in
particular, for varieties of MTL-algebras) the FEP and the SFMP are equivalent. Moreover,
it is clear that for every class of algebras L which is the equivalent algebraic semantics of a
logic L, we have:

• If L is locally finite, then it has the FEP.

• If L has the FEP, then it has the FMP.

• If L has the FMP, then L is decidable.

None of these implications can be inverted.
G is locally finite, so it has all the properties. The FEP is true for MV-algebras (see [5]),

BL-algebras and SBL-algebras (see [1] and [39]). The FEP also holds in MTL, IMTL and
SMTL (proved by Ono, private communication). However, since there are no finite Π-chains
and ΠMTL-chains (except for the trivial one and B2), the FMP (hence also the FEP) fails
for ΠMTL and Π. Nevertheless, Product logic is decidable (see [27]), but the decidability of
ΠMTL is an open question.

Finally, we recall the notion of standard completeness. If a logic L is an axiomatic exten-
sion of MTL, we say that L enjoys (finite) strong standard completeness if, and only if, for
every (finite) set of formulas T ⊆ FmL and every formula ϕ, T `L ϕ iff T |=A ϕ for every
standard L-algebra A. We will call this property (F)SSC, for short. The three main fuzzy
logics enjoy FSSC; it is proved in [31] for  L, in [29] for Product logic and in [14] for Gödel
logic. But only for the last one SSC is true. SSC for MTL, IMTL and SMTL is proved in [35]
and [15]. FSSC is also true for BL and SBL (proved in [11]) and for ΠMTL (proved in [32]).

A first-order fuzzy logic L∀ enjoys (finite) strong standard completeness (again we use
(F)SSC, for short) if, and only if, for every (finite) set of formulas T ∪ {ϕ}, T `L∀ ϕ iff
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||ϕ||AM = 1A for every model M of T over a standard L-chain A. G∀ and MTL∀ enjoy SCC
(see [27] and [40], respectively). On the other hand,  L∀, Π∀ and BL∀ do not enjoy FSSC (see
[28] and [38]).

3 Main results

3.1 Decomposition of MTL-chains as ordinal sums of totally ordered semi-
hoops

Definition 3.1. A totally ordered semihoop is indecomposable if, and only if, it is not iso-
morphic to any ordinal sum of two non-trivial totally ordered semihoops.

Theorem 3.2. For every MTL-chain A, there is a maximum decomposition as ordinal sum
of indecomposable totally ordered semihoops, with the first one bounded.

Proof. First we need to define the set D of decompositions of A. For every F ⊆ P(A \ {1}),
F ∈ D if, and only if, F is a partition of A \ {1} such that for every B ∈ F , B ∪ {1} is a
subuniverse of the zero-free reduct of A (hence the universe of a totally ordered semihoop B)
and A =

⊕
{B : B ∈ F}. A partial order � is defined in D in the following way:

for every F,G ∈ D, F � G if, and only if, for each B ∈ G there is a B′ ∈ F such that B ⊆ B′,
i.e. the decomposition G is finer than F .

We will use Zorn’s Lemma to show that the partially ordered set 〈D,�〉 has some maximal
element. Suppose that C = {Dk : k ∈ K} is a chain of 〈D,�〉. Then, we define the following
equivalence relation on A \ {1}:
For every a, b ∈ A \ {1}, a ≡ b if, and only if, a and b belong to the same class of Dk

for every k ∈ K. Let [a]≡ denote the equivalence class of a w.r.t ≡. We will prove that
{[a]≡ : a ∈ A\{1}} ∈ D and it is an upper bound of C. Take a ∈ A\{1}. It is straightforward
to check that [a]≡ ∪ {1} is closed under ∗ and →. Now take a, b ∈ A \ {1} such that a < b
and [a]≡ 6= [b]≡. Then, there is some k ∈ K such that a and b are not in the same component
of Dk, thus a ∗ b = a. Therefore, {[a]≡ : a ∈ A \ {1}} ∈ D. Now take arbitrary k ∈ K
and a ∈ A \ {1}. Then, by the definition of ≡ all the elements of [a]≡ must be in the same
component of Dk, so Dk � {[a]≡ : a ∈ A \ {1}}.

Therefore, by Zorn’s Lemma for every F ∈ D, there exists a maximal decomposition
M ∈ D such that F � M . Finally, we will prove that there is a maximum one, i.e. there
cannot be two different maximal decompositions. Suppose that M1,M2 ∈ D are two different
maximal elements. Then there is A ∈ M1 which is not included in any element of M2.
Moreover, A is indecomposable so it is not a union of elements of M2, thus there is B ∈ M2

such that A ∩ B 6= ∅ and B 6⊆ A. Then it is easy to see that A could be decomposed as
ordinal sum of A ∩B and A \B, a contradiction.

Corollary 3.3. Let A be an MTL-chain. If the partition {[a]∼ : a ∈ A \ {1}} given by the
Archimedean classes gives a decomposition as ordinal sum, then it is the maximum one.

Proof. With the notation of the previous proof, take an arbitrary F ∈ D. For every a ∈ A\{1},
there is some B ∈ F such that [a]∼ ⊆ B, since the elements of F are closed under ∗. Therefore,
F � {[a]∼ : a ∈ A \ {1}}. So if {[a]∼ : a ∈ A \ {1}} ∈ D, then it is the maximum.

Unfortunately, the class of indecomposable totally ordered semihoops is really big. For
instance, as the following proposition proves, all involutive MTL-chains are indecomposable.

9



Proposition 3.4. All IMTL-chains are indecomposable.

Proof. Let A be an IMTL-chain. If A ∼= B2, it is clearly indecomposable. Suppose that
A 6∼= B2 and it is decomposable as ordinal sum of two non-trivial totally ordered semihoops,
i.e. A ∼= C1 ⊕ C2. Then, there is a ∈ C2 \ {1} and it satisfies ¬¬a = 1, but this contradicts
the fact that the negation is involutive.

3.2 The property of weak cancellation

In this section we will study a different class of indecomposable semihoops that seems more
accessible than the class of all IMTL-chains. These semihoops are defined by considering a
generalization of the property of cancellation that we will call weak cancellation.

An MTL-chain A is said to be cancellative if, and only if, for every a, b, c ∈ A if a 6= 0 and
a ∗ b = a ∗ c, then b = c. This property is typically satisfied by the product of real numbers.
The axiom (Π1) was proposed to express the law of cancellation in order to axiomatize the
logic of the product t-norm. Nevertheless, (Π1) is proved to be equivalent to the property of
cancellativity in the presence of the axiom (PC), i.e. it is equivalent to the cancellativity for
SMTL-chains. Now we propose an alternative axiom that is equivalent to the cancellativity
for all MTL-chains:
¬ψ ∨ ((ψ → ϕ ∗ ψ)→ ϕ) (C).

Proposition 3.5. The variety generated by cancellative MTL-chains is axiomatized by the
equation corresponding to axiom (C), i.e. ¬y ∨ ((y → x ∗ y)→ x) ≈ 1.

Proof. Let A be an MTL-chain. We have to prove that A |= ¬y ∨ ((y → x ∗ y) → x) ≈ 1
if, and only if, A is cancellative. First, suppose that the equation is valid in A and take
a, b, c ∈ A such that a 6= 0 and a ∗ b = a ∗ c. Then, using the equation we have: (a→ b ∗ a)→
b = (a→ c ∗ a)→ c = 1, hence a→ b ∗ a = b and a→ c ∗ a = c, so b = c. Conversely, suppose
that the chain is cancellative and let’s check that for any pair of elements a, b ∈ A we have
¬b ∨ ((b→ a ∗ b)→ a) = 1. If b = 0, it is obviously true. Otherwise, using the cancellativity
we obtain b→ a ∗ b = a, so the equation is also true.

Therefore, in the axiomatization of Product logic and ΠMTL we could replace the axiom
(Π1) by (C). But, in fact, the law of cancellation implies the pseudocomplementation as the
following lemma shows.

Lemma 3.6. Let A be an MTL-chain. If A |= ¬y ∨ ((y → x ∗ y) → x) ≈ 1, then A |=
x ∧ ¬x ≈ 0.

Proof. If there exists a ∈ A such that a∧¬a 6= 0, then a,¬a 6= 0. Thus, applying cancellation,
from a ∗ ¬a = a ∗ 0 we obtain ¬a = 0, a contradiction.

Corollary 3.7. Π is the axiomatic extension of BL obtained by adding (C) and ΠMTL is
the axiomatic extension of MTL obtained by adding (C).

In particular, we have found a new axiomatization for Product logic that is also different
from the one proposed6 by Cintula in [12].

6This axiomatization was also obtained by adding only one axiom with two variables to BL. In fact, it was
proved in the same paper that it cannot be done with one axiom in one variable only.
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Therefore, cancellativity (C) is a very strong axiom for the axiomatization of Product
logic and ΠMTL which makes (PC) superfluous. We may wonder if there is an axiom which
does not imply (C) but, added to SBL (resp. SMTL) gives an axiomatization of Π (resp.
ΠMTL). We will prove that the answer to this question is provided by the following weaker
form of cancellativity:

Definition 3.8. Let A be an MTL-chain. We say that A is weakly cancellative if, and only
if, for every a, b, c ∈ A if a ∗ b = a ∗ c 6= 0, then b = c.

Analogously to Proposition 3.5 we can give an equivalent equation for this property:

Proposition 3.9. Let A be an MTL-chain. Then, A |= ¬(x ∗ y) ∨ ((y → x ∗ y)→ x) ≈ 1 if,
and only if, A is weakly cancellative.

We will refer to the corresponding axiom schema as axiom of weak cancellation (WC):
¬(ϕ ∗ ψ) ∨ ((ψ → ϕ ∗ ψ)→ ϕ) (WC)
This axiom turns out to be the difference between pseudocomplementation and cancella-

tion that we were looking for:

Proposition 3.10. Let A be an MTL-chain. Then the following are equivalent:

(i) A |= x ∧ ¬x ≈ 0 and A |= ¬(x ∗ y) ∨ ((y → x ∗ y)→ x) ≈ 1

(ii) A |= ¬y ∨ ((y → x ∗ y)→ x) ≈ 1

Proof. (ii)⇒ (i): It follows from lemma 3.6. (i)⇒ (ii): Suppose that a ∗ b = a ∗ c for some
a, b, c ∈ A with a 6= 0. If a ∗ b 6= 0, then by weak cancellation b = c. Suppose now that
a ∗ b = 0, i.e. a ≤ ¬b. If b 6= 0, then ¬b = 0 (by pseudocomplementation), hence a = 0, a
contradiction. Thus b = 0 and analogously c = 0, so b = c.

Another interesting fact about weak cancellation is that (WC) added to IMTL axiomatizes
 Lukasiewicz logic. Recall that an MTL-algebra satisfying x ∨ y ≈ (x→ y)→ y is already an
MV-algebra.

Proposition 3.11. Let A be an IMTL-chain. Then, A |= x ∨ y ≈ (x→ y)→ y if, and only
if, A |= ¬(x ∗ y) ∨ ((y → x ∗ y)→ x) ≈ 1.

Proof. One direction follows from the fact that all MV-algebras are weakly cancellative. For
the other one, suppose that A is a weakly cancellative IMTL-chain and take a pair of arbitrary
elements a, b ∈ A. We have to check that a∨b = (a→ b)→ b. If a ≤ b, it is obvious. Suppose
a > b, i.e. ¬b ∗ a 6= 0. Then, (a → b) → b = ¬b → ¬(a → b) = ¬b → a ∗ ¬b = a = a ∨ b, by
weak cancellation.

Corollary 3.12.  Lukasiewicz logic is the axiomatic extension of IMTL obtained by adding
the axiom schema (WC).

Therefore, in the involutive case the property of weak cancellation is not giving any new
logic. But in the general case we obtain a new logic and a new variety of MTL-algebras.
Let WCMTL be the axiomatic extension of MTL obtained by adding (WC). Of course its
equivalent algebraic semantics is the variety of weakly cancellative MTL-algebras, that are
called WCMTL-algebras. We will now axiomatize their zero-free subreducts, the weakly
cancellative prelinear semihoops.
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Proposition 3.13. The class of zero-free subreducts of WCMTL-algebras is the variety of
prelinear semihoops satisfying the equation:

(x ∗ y → z) ∨ ((y → x ∗ y)→ x) ≈ 1.

Proof. Let A be a totally ordered semihoop. We have to check that A |= (x ∗ y → z)∨ ((y →
x ∗ y) → x) ≈ 1 if, and only if, A is a zero-free subreduct of some WCMTL-chain C. First
suppose that A |= (x∗y → z)∨((y → x∗y)→ x) ≈ 1. If there is a minimum element in A, say
m, then we define C as the L-expansion of A where 0 is interpreted as m. It is obvious that
C satisfies the equation of weak cancellation for MTL-algebras. If A has no minimum, then
define C := B2⊕A. It is clear that C is an MTL-chain and A is one of its zero-free subreducts.
To check that it satisfies the equation of weak cancellation for MTL-algebras, take an arbitrary
pair of elements a, b ∈ C such that a∗b 6= 0 (hence a, b ∈ A). Then, since there is no minimum
inA, there is some c < a∗b, hence a∗b→ c 6= 1, which implies (b→ a∗b)→ a = 1. Conversely,
suppose that A is a zero-free subreduct of some WCMTL-chain C. Then for every a, b, c ∈ A,
we have (a ∗ b→ c) ∨ ((b→ a ∗ b)→ a) ≥ (a ∗ b→ 0) ∨ ((b→ a ∗ b)→ a) = 1.

We will show now that this kind of semihoops gives some examples of indecomposable
totally ordered semihoops.

Proposition 3.14. Let A be a weakly cancellative totally ordered semihoop. Then:

(1) If A is unbounded, then it is indecomposable.

(2) Suppose that A is bounded.

(2.1) If A has no zero divisors, then it is a ΠMTL-chain and it is decomposable as
A ∼= B2 ⊕ C, where C is the zero-free subreduct whose domain is A \ {0}.

(2.2) If A has zero divisors, then it is indecomposable.

Proof. First suppose that A is unbounded and decomposable as A ∼= C1 ⊕ C2. Then, take
a ∈ C1 \ {1} and b ∈ C2 \ {1}. Since it is unbounded there is some c < a. Then, the
equation of weakly cancellative semihoops would not hold because a ∗ b → c = a → c 6= 1
and (a → a ∗ b) → b = (a → a) → b = b 6= 1. Now suppose that A is bounded and has
no zero divisors. This means that it is pseudocomplemented, hence, by Proposition 3.10 it is
cancellative, i.e. a ΠMTL-chain. Clearly, it is decomposable as A ∼= B2⊕C, where C = A\{1}.
Suppose that A is bounded, it has zero divisors and it is decomposable as A ∼= C1⊕C2. Then,
the existence of zero divisors implies that C1 6∼= B2. Take a ∈ C1 \ {0, 1} and b ∈ C2 \ {1}.
Then, a ∗ b → 0 = a → 0 6= 1 and (a → a ∗ b) → b = (a → a) → b = b 6= 1, so A cannot be
weakly cancellative.

Given an MTL-chain A and an element a ∈ A, the truncation of A with respect to a is the
algebra A[a] = 〈{x ∈ A : a ≤A x ≤A 1A}, ∗Aa ,→Aa ,≤A, a, 1A〉 where ∗Aa is defined as x ∗Aa y =
(x∗A y)∨a, and→Aa is its residuum (i. e. the restriction of→A to {x ∈ A : a ≤A x ≤A 1A}).

It can be easily checked that any truncation of a ΠMTL-chain is a WCMTL-chain. It is
well known (see [3]) that each MV-chain is isomorphic to a truncation of some Π-chain, i.e.
given an MV-chain A there is a Π-chain B and an element b ∈ B such that A ∼= B[b]. It seems
natural to ask whether the same kind of result is true in the general non-divisible case, i.e.
whether each WCMTL-chain is isomorphic to a truncation of some ΠMTL-chain. We will
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end the section giving a negative answer to such question by using an example of a totally
ordered monoid defined in [21].

For any a, b, c, d ∈ N, 〈a, b, c〉 will denote the submonoid of N generated by a, b, c, and
〈a, b, c〉/d will denote the totally ordered monoid obtained by identifying with ∞ all elements
of 〈a, b, c〉 that are greater than or equal to d.

Let S = {32∗}∪〈9, 12, 16〉/30 denote the totally ordered monoid obtained from 〈9, 12, 16〉/30
by adding one additional element, denoted by 32∗. This element satisfies 16 + 16 = 32∗,
32∗ + z =∞ for z 6= 0, and the whole monoid is to be ordered as follows:

0 < 9 < 12 < 16 < 18 < 21 < 24 < 25 < 27 < 28 < 32∗ <∞ .

All the relations that do not involve 32∗ are as in 〈9, 12, 16〉/30, so we have to only check
that x ≤ y implies x+ z ≤ y + z when some of the terms attain the value 32∗. If x or y or z
is equal to 32∗ then it is easy to see. If x + z = 32∗ and x, z 6= 32∗ then x = z = 16. Thus
32∗ = 16 + 16 ≤ y + 16 because if y > x then y + 16 =∞.

Now since we want to make from this monoid an MTL-chain A, we reverse the order:

0 > 9 > 12 > 16 > 18 > 21 > 24 > 25 > 27 > 28 > 32∗ >∞ .

It is clear that a residuum exists since A is finite and linearly ordered. Even the weak
cancellation is satisfied. Suppose that x + z = y + z 6= ∞. Then if x + z = y + z 6= 32∗

then you can cancel like in N. If x + z = y + z = 32∗ then there are three possibilities: (1):
x = y = z = 16; (2): x = 0, z = 32∗, and y = 0; (3): x = 32∗, z = 0, and y = 32∗. Thus
A = 〈A,+,→,≤,∞, 0〉 is a WCMTL-chain.

Now let us introduce the following identity:

(x1 ∗ z1 → y1 ∗ z2) ∨ (x2 ∗ z2 → y2 ∗ z1) ∨ (y1 ∗ y2 → x1 ∗ x2) ≈ 1 (1)

This identity is not valid in A. Indeed, let

x1 = 16 , y1 = 18 , z1 = 16 ,
x2 = 12 , y2 = 9 , z2 = 12 .

Then we get the following:

x1 + z1 → y1 + z2 = 32∗ →∞ = 9 ,
x2 + z2 → y2 + z1 = 24→ 25 = 9 ,
y1 + y2 → x1 + x2 = 27→ 28 = 9 .

Thus
(x1 + z1 → y1 + z2) ∨ (x2 + z2 → y2 + z1) ∨ (y1 + y2 → x1 + x2) = 9 6= 0 .

On the other hand, we claim that given any ΠMTL-chain B = 〈B, ∗,→,≤, 0, 1〉, every
truncation B[a] = 〈B[a], ∗a,→a,≤, a, 1〉, satisfies the identity (1). There are four cases.

1. It is clear that if one of the inequalities x1 ∗a z1 ≤ y1 ∗a z2, x2 ∗a z2 ≤ y2 ∗a z1, y1 ∗a y2 ≤
x1 ∗a x2 is valid then the identity (1) is obviously valid.

2. Let y1 or y2 equals a. Then y1 ∗a y2 = a ≤ x1 ∗a x2.

3. Let z1 or z2 equals a. Then either x1 ∗a z1 = a ≤ y1 ∗a z2 or x2 ∗a z2 = a ≤ y2 ∗a z1
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4. Suppose that x1 ∗a z1 > y1 ∗a z2, x2 ∗a z2 > y2 ∗a z1, and y1, y2, z1, z2 > a. Then we have
x1 ∗ x2 ∗ z1 ∗ z2 > y1 ∗ y2 ∗ z1 ∗ z2 in the original ΠMTL-chain B. By cancellativity of B
we get x1 ∗ x2 > y1 ∗ y2 in L. After truncation we obtain that x1 ∗a x2 ≥ y1 ∗a y2. Thus
the identity (1) is valid in this case as well.

Summing up, the identity is valid in all truncations of any ΠMTL-chain, but it is not valid
in the WCMTL-chain A. Thus, A cannot be isomorphic to any truncation of a ΠMTL-chain.

3.3 The logics of weakly cancellative chains and their ordinal sums

In the previous section we have defined the logic of weakly cancellative MTL-chains, WCMTL.
Now we will consider the logic of ordinal sums of weakly cancellative totally ordered semi-
hoops. This can be done with any axiomatic extension of MTL, so it is worth formulating
first this process in an abstract way.

Definition 3.15. Let L be an axiomatic extension of MTL. We define Ω(L) as the variety of
MTL-algebras generated by all the ordinal sums of zero-free subreducts of L-chains with the
first bounded, and we denote by Ω(L) its corresponding logic.

Some well known subvarieties of MTL are closed under this operator, for instance:

• Ω(G) = G

• Ω(BL) = BL

• Ω(SBL) = SBL

• Ω(SMTL) = SMTL

• Ω(MTL) = MTL

In some other cases they are not closed but we obtain an already known variety:

• Ω(BA) = G

• Ω(MV) = BL

But sometimes the operator Ω gives new varieties (and hence new fuzzy logics) as we will
show now for Ω(WCMTL) and Ω(ΠMTL).

Definition 3.16. Let K be the variety of MTL-algebras such that letting x ≺ y = x→ x ∗ y
and I(x) = x→ x2, satisfy the following conditions:
(1) (x ∧ y → x ∗ y) ∨ I(x ∗ y) ∨ ((x→ x ∗ y)→ y) = 1
(2) (x ≺ y) ∗ (z → x) ≤ z ≺ y
(3) (x ≺ y) ∗ (x→ z) ∗ (z → y) ≤ (z ≺ y) ∨ (x ≺ z) ∨ I(x ∗ y)

We will prove that K = Ω(WCMTL).
Note that x ≺ y = 1 if x ≤ y and x ∗ y = x. In an ordinal sum of weakly cancellative

totally ordered semihoops, this happens if either x is the minimum of the component which y
belongs to or y = 1 or x < y and x and y belong to different components. Moreover I(x) = 1
iff x is an idempotent. Thus the intuitive meaning of (1) is that either x∗y = x or x∗y = y or
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x ∗ y is an idempotent or x and y belong to the same component and satisfy the cancellation
law. The intuitive meaning of (2) is the following: suppose that x < y, that x and y are not
in the same component and that z ≤ x < y. Then z and y, are in different components. The
complementary property is true in all totally ordered semihoops: if x < y ≤ z and x ∗ y = x,
then x ∗ z ≥ x ∗ y = x, so x ∗ z = x. Finally (3) means that if x ∗ y = x and x is not an
idempotent, then for any z with x ≤ z ≤ y we must have either x ∗ z = x or z ∗ y = z.

Lemma 3.17. Equations (1), (2) and (3) hold in any ordinal sum of weakly cancellative
totally ordered semihoops whose first component is bounded.

Proof. This is not completely trivial because we have to verify that the equations hold also
when the lefthand side is not 1. In the sequel we write x� y to mean that x < y and x and
y are not in the same component. We also write x ≡ y to mean that x and y are in the same
component.

We start from equation (1). The equation clearly holds if x 6≡ y or if x∗y is an idempotent.
If x ≡ y and x ∗ y is not an idempotent, then x ∗ y must satisfy the cancellation law and the
third disjunct is 1.

Now consider equation (2). The equation clearly holds if z ≺ y = 1, hence a fortiori
if z � y. The equation also holds if z ≤ x and x ≺ y = 1, because then either z = x
or z � y, and in both cases z ≺ y = 1. The equation also holds if x ≤ z, because then
(x → x ∗ y) ∗ (z → x) ≤ z → z ∗ y. It remains to consider the case where z < x and either
y � x or x ≡ y. If z < x and y � x then x ≺ y = y, and (2) becomes y ≤ z ≺ y, which
is clearly satisfied. Finally suppose z < x and x ≡ y. Without loss of generality we can also
suppose z ≡ x ≡ y, otherwise z � y and z ≺ y = 1. Thus (2) becomes x ≺ y ≤ z ≺ y. If z ∗ y
is not an idempotent, then x ≺ y = z ≺ y = y and (2) holds. If x ∗ y is an idempotent, then
x ∗ y = z ∗ y is the minimum m of the component which x, y, z belong to, and (2) becomes
x → m ≤ z → m, which clearly holds as z < x. Finally if z ∗ y = m is an idempotent and
x ∗ y is not (so x ∗ y > m), then x ≺ y = y and z ≺ y = z → m. Now from z ∗ y = m by
residuation we derive y ≤ z → m and the claim is proved.

We verify (3). Note that (3) holds (in any ordinal sum of WCMTL semihoops) if either
x ∗ y is an idempotent or z ≺ y = 1 or x ≺ z = 1 (thus in particular if z � y or x� z). Thus
we suppose that none of the above conditions holds. If y � z then z → y = y and (3) holds.
If z � x then x → z = z and (3) holds. It remains to consider the case where x ≡ z ≡ y.
In this case, since we have excluded that x ∗ y is an idempotent, we have x ≺ y = y. Now
let C be the component which x, y, z belong to. If either C has no minimum or z ∗ y is not
the minimum of C, then x ≺ y = z ≺ y = y, and (3) is verified. If C has a minimum m and
z ∗ y = m, then x ≺ y = y ≤ z → m = z ≺ y and once again (3) is verified.

Lemma 3.18. Let A be an MTL-chain which satisfies (1), (2) and (3). Then A is the
ordinal sum of an ordered family of weakly cancellative totally ordered semihoops, whose first
component is bounded.

Proof. By Theorem 3.2 any linearly ordered MTL-algebra can be decomposed as an ordinal
sum of sum-indecomposable totally ordered semihoops, with the first bounded. So it is
sufficient to prove that a sum-indecomposable linearly ordered semihoop satisfying (1), (2)
and (3) is weakly cancellative. Let C be such a semihoop. We claim that C has no idempotent
elements except from its maximum and its minimum (if such a minimum exists). Suppose
by contradiction that u is idempotent and that there are a, b ∈ C with a < u < b. Then

15



x ∗ u = u for all x ≥ u, and by (2), for all z ≤ u ≤ v one has z ∗ v = z. Then C = C1 ⊕ C2

where C2 = {z : z ≥ u} and C1 = (C \ C2)∪{1}, contradicting our assumption that C is sum-
indecomposable. We now prove that if both x and y are not idempotent, then x ∗ y < x ∧ y.
The claim is obvious if x = y so we can assume without loss of generality that x < y. The
claim is also obvious if x ∗ y is the minimum m of C, because m is an idempotent and x, y
are not such, so m = x ∗ y < x ∧ y. Thus suppose by contradiction that there is z ∈ C such
that z < x ∗ y = x ∧ y = x < y. Since x ∗ y is not an idempotent, by axiom (3), for any u
with x ≤ u ≤ y we have either x ∗ u = x or u ∗ y = u. Now let C1 = {u : u ∗ y = u} ∪ {1} and
C2 = (C \ C2) ∪ {1}. C1 \ {1} is downwards closed, so for all w ∈ C2 and for all z ∈ C1 \ {1}
we have z ≤ w. We claim that for all w ∈ C2 and for all z ∈ C1 \ {1} we have z ∗w = z. This
implies that C = C1 ⊕ C2, which is impossible. Thus let w ∈ C2 and z ∈ C1 \ {1}. We can
assume without loss of generality that z is not an idempotent, otherwise z is the minimum
of C and the claim is trivial. Moreover by the definition of C1 we have that z ∗ y = z. So if
w ≥ y, we have z ∗ w = z as desired. If w < y, then since z ∗ y = z is not an idempotent, by
axiom (3) with x replaced by z we have that either w ∗ y = w or z ∗w = z. But w ∗ y = w is
excluded, because w ∈ C2. So z ∗ w = z and the proof is complete.

Thus we obtain a finite axiomatization for the variety generated by those ordinal sums:

Theorem 3.19. K is the variety generated by the ordinal sums of weakly cancellative totally
ordered semihoops (with the first bounded), i.e. K = Ω(WCMTL).

Now consider the variety Ω(ΠMTL). Adapting slightly the axiomatization and the proof
of the last theorem we obtain the following result.

Theorem 3.20. The variety Ω(ΠMTL) generated by ordinal sums of cancellative semihoops
(with the first bounded) is axiomatized by:
(1’) (x ∧ y → x ∗ y) ∨ I(x) ∨ ((x→ x ∗ y)→ y) = 1
(2) (x ≺ y) ∗ (z → x) ≤ z ≺ y
(3) (x ≺ y) ∗ (x→ z) ∗ (z → y) ≤ (z ≺ y) ∨ (x ≺ z) ∨ I(x ∗ y)

Accordingly, we define the corresponding logics. The logic Ω(WCMTL) is the axiomatic
extension of MTL obtained by adding the following schemata:

(a) (ϕ ∧ ψ → ϕ ∗ ψ) ∨ I(ϕ ∗ ψ) ∨ ((ϕ→ ϕ ∗ ψ)→ ψ)

(b) (ϕ ≺ ψ) ∗ (χ→ ϕ)→ χ ≺ ψ

(c) (ϕ ≺ ψ) ∗ (ϕ→ χ) ∗ (χ→ ψ)→ (χ ≺ ψ) ∨ (ϕ ≺ χ) ∨ I(ϕ ∗ ψ)

and the logic Ω(ΠMTL) is the axiomatic extension of MTL obtained by adding the fol-
lowing schemata:

(a’) (ϕ ∧ ψ → ϕ ∗ ψ) ∨ I(ϕ) ∨ ((ϕ→ ϕ ∗ ψ)→ ψ)

(b) (ϕ ≺ ψ) ∗ (χ→ ϕ)→ χ ≺ ψ

(c) (ϕ ≺ ψ) ∗ (ϕ→ χ) ∗ (χ→ ψ)→ (χ ≺ ψ) ∨ (ϕ ≺ χ) ∨ I(ϕ ∗ ψ)
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Let (OS) be the conjunction of the schemata (a), (b) and (c), and let (OS’) be the
conjunction of the schemata (a’), (b) and (c). Adding combinations of the schemata (WC),
(PC), (OS), (OS’), (Div) and (Inv) to MTL we obtain the hierarchy of logics depicted in
figure 1, where CPC is the Classical Propositional Calculus and the following two new logics
appear:

• SΩ(WCMTL) is Ω(WCMTL) plus (PC).

• WCBL is BL plus (WC).

MTL

IMTLSMTL
Ω(WCMTL)

BL

WCBL

ŁП

CPC

WCMTL

SBL

ПMTL

(OS)
(Inv)

(WC)

(PC)

(Div)

(WC)

(Inv)(PC)

(Inv) (PC)

(PC)

(WC)

(Div)

(Div)

(WC)

(PC)

(PC)

(WC)

(Div)

SΩ(WCMTL)

Ω(ПMTL)

(OS')

(OS)

Figure 1: Graphic of axiomatic extensions of MTL obtained by adding combinations of the schemata
(WC), (PC), (OS), (Div) and (Inv). All the depicted inclusions are proper.

3.4 LF, FEP and FMP in weakly cancellative fuzzy logics

We will study some properties of these logics and their corresponding varieties of MTL-
algebras.

Lemma 3.21. Let A be an MTL-chain. Then, A is a WCBL-chain if, and only if, it is an
MV-chain or a Π-chain.
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Proof. One direction is trivial. For the other one, let A be a WCBL-chain and consider its
decomposition as ordinal sum of Wajsberg hoops (with the first bounded), A ∼=

⊕
i∈I Ci.

If |I| = 1, then A ∼= Ci0 is an MV-chain. If |I| > 1 it must be of the form A ∼= B2 ⊕ C,
with C cancellative (otherwise the weak cancellation would not be satisfied), hence it is a
Π-chain.

Proposition 3.22. WCBL is the infimum of Π and  L in the lattice of axiomatic extensions
of MTL. Thus, WCBL = V([0, 1]L, [0, 1]Π) and WCBL enjoys FSSC.

Proof. It follows directly from the previous lemma.

Therefore, WCBL is the logic  LΠ defined in [11] for which we have found now an alternative
axiomatization.

Corollary 3.23. WCBL does not have the finite model property.

Proof. Suppose WCBL has the FMP. Then, WCBL would be generated as a variety by the
finite WCBL-chains, but since there are no finite Π-chains with more than two elements, it
would be generated by finite MV-algebras, so WCBL = MV, a contradiction.

Thus WCBL lacks also the FEP. Nevertheless, WCBL logic is still decidable, since it is
the infimum of Π and  L and those logics are decidable.

Proposition 3.24. Let A be an MTL-chain. Then, A is an SΩ(WCMTL)-chain if, and only
if, it is an ordinal sum of totally ordered weakly cancellative semihoops such that the first one
is a ΠMTL-chain.

Proof. One direction is trivial. For the other one, letA be a SΩ(WCMTL)-chain. In particular
it is a Ω(WCMTL)-chain, so it is decomposable as an ordinal sum of totally ordered weakly
cancellative semihoops with the first one bounded. Then, it is obvious that the axiom (PC)
implies that the first component must be an SMTL-chain, hence a ΠMTL-chain.

Proposition 3.25. Let K ⊆ MTL be a variety. If for every n ≥ 2, K 6|= xn ≈ xn−1, then K
is not locally finite.

Proof. For every n ≥ 2, there is An ∈ K and an ∈ An such that an
n < an−1

n . Consider the
algebra

∏
n≥2An and the element a = 〈a2, a3, a4, . . . , 〉 ∈

∏
n≥2An. Then for every n ≥ 2, we

have an < an−1, thus the subalgebra generated by a is infinite.

Corollary 3.26. All the logics depicted in figure 1 (except for Gödel logic and the Classical
Propositional Calculus) have a non locally finite equivalent algebraic semantics.

Proof. Notice that for every n ≥ 2, [0, 1]L 6|= xn ≈ xn−1 and [0, 1]Π 6|= xn ≈ xn−1, and all the
corresponding varieties contain one of these algebras, hence they all satisfy the condition of
the last proposition.

Finally, we will prove that the FMP fails for all logics between Ω(WCMTL) and ΠMTL
(both included). First we need some lemmas.

Lemma 3.27. Each finite WCMTL-chain A is Archimedean, i.e. for any 0 < x < y < 1
there is n such that yn ≤ x.
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Proof. Suppose not. Then x < yn for all n. Since yn 6= 0 for all n, we have y > y2 > y3 > . . .
by weak cancellativity. Thus A must be infinite, a contradiction.

Lemma 3.28. Let A be an MTL-chain and p, q ∈ A. If p→ q = q then q = max [q]F (p).

Proof. Assume that p → q = q. Suppose that z ∈ [q]F (p). Then z → q ∈ F (p). Thus there
exists n ∈ ω such that pn ≤ z → q. By residuation we get z ≤ pn → q. Since we assume that
p → q = q, we have pn → q = pn−1 → (p → q) = pn−1 → q = q. Thus we obtain that z ≤ q.
Hence q = max [q]F (p).

Lemma 3.29. Let A be an Archimedean MTL-chain. Then A is either a BL-chain or it has
a co-atom.

Proof. Suppose that there is no co-atom. Then we will show that the divisibility condition,
a ∧ b = a ∗ (a → b), holds in A. If a ≤ b or a equals 1, then the equality trivially holds.
If a → b = 0 then b = 0 and the equality again holds. Thus suppose that a > b, a, b 6= 1,
and a → b > 0. By residuation we get a ∗ (a → b) ≤ b. Suppose that a ∗ (a → b) < b. Let
M = A \ {1}. Clearly

∨
M = 1 because there is no co-atom. Since A is Archimedean, we get

that for each r ∈M there exists kr ∈ ω (possibly 0) such that

rkr+1 ≤ a→ b < rkr .

Thus we obtain for all r ∈M :

a ∗ rkr+1 ≤ a ∗ (a→ b) < b < a ∗ rkr .

The last inequality holds since a→ b is the maximal solution of the inequality a ∗ x ≤ b and
a→ b < rkr .

Further, from the existence of residuum we get
∨

r∈M (b ∗ r) = b ∗
∨
M = b. Hence there

must be an s ∈M such that a ∗ (a→ b) < b ∗ s. Thus we obtain

a ∗ sks+1 ≤ a ∗ (a→ b) < b ∗ s ≤ a ∗ sks+1 ,

a contradiction.

Lemma 3.30. In each Archimedean WCMTL-chain A the identity

((p→ q)→ q)2 ≤ p ∨ q ∨ ¬q (2)

is valid.

Proof. If there is no co-atom, then by Lemma 3.29, A is a WCBL-chain hence either a Π-chain
or an MV-chain. But in any Π-chain or MV-chain the identity (2) is valid.

Thus suppose that there is a co-atom a. The only interesting case is for 1 > p > q > 0.
We can also assume that p→ q > 0 otherwise q = 0. Since A is Archimedean, there is n ∈ ω
such that

an+1 ≤ p→ q < an .

Since an > p→ q, we get an → q < p (if p ≤ an → q then an ≤ p→ q). It follows that

(p→ q)→ q ≤ an+1 → q = a→ (an → q) ≤ a→ p .
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Thus (p→ q)→ q ≤ a→ p.
Now we claim that (p → q) → q ≤ a. If not then (p → q) → q = 1, i.e. p → q = q.

Thus by Lemma 3.28 we have q = max [q]F (p). Since A is Archimedean, F (p) equals either
to A or to A \ {0}. Thus q ∈ F (p) and q = 1. But we assume that 1 > p > q > 0. Hence
(p→ q)→ q ≤ a.

Finally, we get

((p→ q)→ q)2 ≤ a ∗ ((p→ q)→ q) ≤ a ∗ (a→ p) ≤ p ≤ p ∨ q ∨ ¬q .

Let ϕ = (q → (p ∗ q))→ p, ψ = (p→ q)→ q, and χ = p ∨ q ∨ ¬q.

Lemma 3.31. In any finite Ω(WCMTL)-chain A the identity ϕ ∧ ψ2 ≤ χ is valid.

Proof. If p ≤ q then ψ = q and ϕ ∧ ψ2 = ϕ ∧ q2 ≤ χ. Thus let us suppose that p > q.
First, let p, q belong to different components. Then ϕ = (q → q) → p = p. Thus

ϕ ∧ ψ2 ≤ ϕ = p ≤ χ.
Second, let p, q be in the same component. This component is a zero-free subreduct of

a finite WCMTL-chain W. By Lemma 3.27 we know that W is Archimedean. Thus by
Lemma 3.30 we get that ψ2 ≤ χ is valid in W. Since W is a subalgebra of A, we get that
ϕ ∧ ψ2 ≤ ψ2 ≤ χ is valid in A.

Lemma 3.32. There is a ΠMTL-chain A such that ϕ ∧ ψ2 ≤ χ is not valid in A.

Proof. Consider the algebra A defined as follows:

• The domain of A is {〈0, 0〉} ∪ ((0, 1]× (0, 1]).

• The lexicographic order ≤lex defines the lattice structure.

• Multiplication is defined componentwise.

• Implication ⇒ is defined as follows: if 〈a, b〉 ≤lex 〈c, d〉, then 〈a, b〉 ⇒ 〈c, d〉 = 〈1, 1〉; if
〈a, b〉 6= 〈0, 0〉, then 〈a, b〉 ⇒ 〈0, 0〉 = 〈0, 0〉; if a, b, c, d > 0 and a ≥ c and b ≥ d, then
〈a, b〉 ⇒ 〈c, d〉 = 〈 ca ,

d
b 〉; if a > c and b ≤ d, then 〈a, b〉 ⇒ 〈c, d〉 = 〈 ca , 1〉.

It is readily seen that A is a ΠMTL-algebra. For e(p) = 〈1, 1
2〉 and e(q) = 〈12 , 1〉, we have

e(ϕ) = e(ψ2) = 〈1, 1〉 and e(χ) 6= 〈1, 1〉.

Thus we get the following theorem.

Theorem 3.33. If K is a variety such that ΠMTL ⊆ K ⊆ Ω(WCMTL), then K has not the
FMP (and hence also the FEP is false in K).

Proof. Let A be the chain defined in the previous lemma. Therefore, A is an infinite chain
of K where ϕ ∧ ψ2 ≤ χ fails, but by Lemma 3.31, the equation is valid in all the finite chains
of K.
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3.5 On standard completeness theorems

In this section we discuss the standard completeness of the logics introduced so far and of
their first-order extensions.

Theorem 3.34. WCMTL enjoys FSSC.

Proof. We will prove it by following the method used in [32] and its modification from [33]
for the FSSC of ΠMTL, so we will not check again the details that are already done there.
Take a finite set T ∪ {ϕ} ⊆ FmL such that T 6`WCMTL ϕ. Then, there is a WCMTL-chain
A = 〈A, ∗,→,∧,∨, 0A, 1A〉 and an evaluation e : FmL → A such that e[T ] ⊆ {1A} and
e(ϕ) 6= 1A. Consider the set G := {e(ψ) : ψ is a subformula of some formula of T ∪ {ϕ}}.
G is finite because T is. Let S be the submonoid of A generated by G. As in [32], S is
residuated and the residuum is given by: a→ b = max{z ∈ S : a ∗ z ≤ b}. Thus, the enriched
submonoid S = 〈S, ∗,→,∧,∨, 0A, 1A〉 is a countable MTL-chain. Moreover, since its monoidal
operation is just the restriction of the monoidal operation of A, it is clear that it is also weakly
cancellative, hence a WCMTL-chain. Now we consider the evaluation e′ : FmL → S such
that for every propositional variable v,

e′(v) =
{
e(v) if v appears in some formula of T ∪ {ϕ}
0A otherwise.

One can prove by induction that e′(ψ) = e(ψ) for every ψ a subformula of some formula of
T ∪{ϕ}. Furthermore, since S is generated from a finite set by using the monoidal operation,
then it has only a finite number of Archimedean classes.

Now define a new chain over the set S′ := {〈s, r〉 : s ∈ S \ {0A}, r ∈ (0, 1]} ∪ {〈0A, 1〉},
with the lexicographical order ≤lex and the following operations:

〈a, x〉 ∗′ 〈b, y〉 =
{
〈0A, 1〉 if a ∗ b = 0A,
〈a ∗ b, xy〉 otherwise.

〈a, x〉 →′ 〈b, y〉 =
{
〈a→ b, 1〉 if a ∗ (a→ b) < b,
〈a→ b,min{1, y/x}〉 otherwise.

S ′ = 〈S′, ∗′,→′,≤lex, 〈0A, 1〉, 〈1A, 1〉〉 is an MTL-chain with a finite number of Archimedean
classes, and there is an embedding Ψ : S → S ′ defined by Ψ(a) = 〈a, 1〉. Moreover S ′ is weakly
cancellative. Indeed, if 〈a, x〉, 〈b, y〉, 〈c, z〉 ∈ S′ are such that 〈a, x〉 ∗′ 〈b, y〉 = 〈a, x〉 ∗′ 〈c, z〉 6=
〈0A, 1〉, then 〈a ∗ b, xy〉 = 〈a ∗ c, xz〉 6= 〈0A, 1〉. Thus, a ∗ b = a ∗ c 6= 0A and xy = xz 6= 0
which, using the weak cancellation of A and the cancellation of the product of reals, implies
b = c and y = z.

Finally, as in [33] the set S′ is order isomorphic to the real unit interval [0, 1], so there is
a standard WCMTL-chain B and an isomorphism Φ : S ′ → B. This standard chain and the
evaluation Φ ◦Ψ ◦ e′ are a countermodel for the derivation of ϕ from T .

Theorem 3.35. Ω(WCMTL), SΩ(WCMTL) and Ω(ΠMTL) enjoy FSSC.

Proof. Consider first the Ω(WCMTL) case. The first part of the proof runs parallel to the
previous one. Take a finite set T ∪ {ϕ} ⊆ FmL such that T 6`Ω(WCMTL) ϕ. Then, there is
a Ω(WCMTL)-chain A = 〈A, ∗,→,∧,∨, 0A, 1A〉 and an evaluation e : FmL → A such that
e[T ] ⊆ {1A} and e(ϕ) 6= 1A. Consider the set G := {e(ψ) : ψ is a subformula of some formula
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of T ∪ {ϕ}}. G is finite because T is. Let S be the submonoid of A generated by G. Again
it is residuated, so we have an enriched submonoid S = 〈S, ∗,→,∧,∨, 0A, 1A〉 such that is
a countable MTL-chain (with a finite number of Archimedean classes). Moreover, since its
monoidal operation is just the restriction of the monoidal operation of A, it is clear that it is
also an ordinal sum of weakly cancellative totally ordered semihoops with the first bounded,
hence a Ω(WCMTL)-chain. Since it is finitely generated, this ordinal sum must have a finite
number of components, say S =

⊕
i<k Ci for some natural number k. Now we consider the

evaluation e′ : FmL → S such that for every propositional variable v,

e′(v) =
{
e(v) if v appears in some formula of T ∪ {ϕ}
0A otherwise.

Again, by induction, it is provable that e′(ψ) = e(ψ) for every ψ a subformula of some
formula of T ∪ {ϕ}.

Finally, applying to every weakly cancellative totally ordered semihoop of the ordinal sum
the construction of the proof of the previous theorem, we have for every i < k an embedding
Ci ↪→ [0, 1]∗i into a standard WCMTL-chain. Therefore, there is an embedding f : S ↪→⊕

i<k[0, 1]∗i . It is clear that
⊕

i<k[0, 1]∗i is isomorphic to a standard Ω(WCMTL)-chain.
This standard Ω(WCMTL)-chain with the evaluation f ◦ e′ gives the desired countermodel
for the derivation of ϕ from T .

For the cases of SΩ(WCMTL) and Ω(ΠMTL) the proof is similar. For the first one we
only need to realize that the first component of the ordinal sum of S now is a ΠMTL-chain
and it will be embedded into a standard ΠMTL-chain, so in the end we will get a standard
SΩ(WCMTL)-chain. For the second one, notice that all the components of S are cancellative
so they embed into standard ΠMTL-chains, so in the end a standard Ω(ΠMTL)-chain is
obtained.

Furthermore, taking into account that in the proofs of the last two theorems the standard
chains that are built have only finitely many Archimedean classes, we can improve the finite
standard completeness results by considering only the semantics given by standard chains
with a finite number of Archimedean classes.

Corollary 3.36. If L is a logic from the set {WCMTL, Ω(WCMTL), Ω(ΠMTL), SΩ(WCMTL)},
then for every finite set of formulas T ∪ {ϕ} we have:

T `L ϕ if, and only if, T |=A ϕ for every standard L-chain A with finitely many
Archimedean classes.

Now we will prove that no logic between Ω(WCMTL) and Π (both included) enjoys SSC.
Consider the following set Γ of sentences in a language whose propositional variables are
p0, ..., pn, ..., pω:

1. pi ↔ p2
i+1 (i ∈ ω).

2. ¬¬p0.

3. pi → pω (i ∈ ω).

Claim (A). For any standard Ω(WCMTL)-algebra A one has:
Γ |=A p0 → pω ∗ p0
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Proof of Claim (A). Suppose that all formulas of Γ are satisfied in A under some evaluation
e. Let, for k = 0, 1, ..., n, ..., ω, ak = e(pk). Then by (2), a0 6= 0 and by (1) and (3), for all
k ∈ ω we have a2

k+1 = ak and ak ≤ aω. So all ai with i < ω are in the same component.
If aω = 1 the result is obvious. Suppose aω < 1. Let a = sup {ak : k ∈ ω} (such a

supremum exists by the completeness of [0, 1]). Then a ≤ aω. Moreover by the left-continuity
of the monoidal operation ·, we have a2 = sup

{
a2

k+1 : k ∈ ω
}

= sup {ak : k ∈ ω} = a. So a
is an idempotent, between a0 and aω. It follows that aω and a0 are in different components,
therefore a0 · aω = a0, and the claim is proved.

Claim (B). There are a product algebra B and an evaluation e in B such that e(A) = 1
for all A ∈ Γ and e(pω · p0) < e(p0).

Proof of Claim (B). Let B = {〈0, 0〉} ∪ {〈1, p〉 : 0 < p ≤ 1} ∪ ((0, 1) × (0,+∞)), ordered
by the lexicographic order ≤lex (thus if 0 < a < b ≤ 1 then for any c, d ∈ (0,+∞), one
has 〈a, c〉 <lex 〈b, d〉) and having ordinary product (defined componentwise) as monoidal
operation. Thus our algebra consists of 〈0, 0〉 plus the negative cone of the multiplicative
group (0,+∞)2 ordered lexicographically. Here the identity is 〈1, 1〉, therefore negative means
less than 〈1, 1〉. In other words, it is a product algebra. Now define inductively e(p0) =

〈
1
2 , 1
〉
,

e(pi+1) =
〈√

e(pi), 1
〉

. Further, define e(pω) =
〈
1, 1

2

〉
. It is immediate to verify that e(A) =

〈1, 1〉 for any A ∈ Γ and that e(pω · p0) =
〈

1
2 ,

1
2

〉
<lex

〈
1
2 , 1
〉

= e(p0). This concludes the proof
of Claim (B).

Theorem 3.37. No propositional logic between Ω(WCMTL) and Product logic Π (both in-
cluded) enjoys SSC.

Proof. Let L be such a logic and L the corresponding variety. Then the standard elements
of L are standard Ω(WCMTL)-algebras and the algebra B in Claim B is in L. Hence Γ |=A
p0 → pω ∗ p0 holds in any standard algebra A in L, but not in all algebras in L (B is a
counterexample). It follows that Γ 6`L p0 → pω ∗ p0.

Corollary 3.38. The following logics do not enjoy SSC: Π, WCBL, SBL, BL, ΠMTL,
Ω(ΠMTL), WCMTL, SΩ(WCMTL) and Ω(WCMTL).

We now prove that if L is any (recursively enumerable) logic between Ω(WCMTL) and
Π (both included), its first-order extension L∀ does not enjoy FSSC. Indeed the set of finite
consequence relations valid in all standard models of L is not recursively enumerable.

We denote with IΣ1 the fragment of arithmetic with induction only for Σ1-formulas (with
the order in the language). Recall that it is finitely axiomatizable (see [30, Theorem 2.52, p.
78]). Let Γ be the finite set consisting of:

1. All axioms of IΣ1, with functions represented as predicates (in the obvious manner).

2. All axioms of the form ∀x1...∀xn(P (x1, ..., xn) ∨ ¬P (x1, ..., xn)), P a predicate symbol
of IΣ1.

3. The axiom ¬¬U(0) ∧ ∀x∀y(S(x, y) → (U(y)2 ↔ ∃z((z � x) ∧ U(z))), where S is a
predicate symbol of IΣ1 such that S(x, y) represents the relation y = x + 1, � is a
binary symbol of IΣ1 representing the order of natural numbers, and U is a unary
predicate not in the language of IΣ1.

4. The axiom ∀x∀y(x ≈ y → ((U(x)→ U(y))).
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Let B be a standard WCMTL-algebra, and let A be a first-order structure over B with
a domain of individuals D. Given a formula α(x1, . . . , xn) and c1, . . . , cn ∈ D, let us write
eA,B(α(c1, . . . , cn)) for ||α(x1, . . . , xn)||BA,v where v is an evaluation of object variables such
that for i = 1, . . . , n, v(xi) = ci. In the sequel we omit the subscript A,B when it is clear
from the context. Now assume that e(B) = 1 for all B ∈ Γ. Define, for c, d ∈ D, c ≡ d
iff e(c ≈ d) = 1. Then ≡ is an equivalence relation (remember that by axioms of the form
(2), every formula of IΣ1 has a crisp value). Let for d ∈ D, [d] denote its equivalence class
modulo ≡. We define a model NA,e of IΣ1 as follows:

• The domain of NA,e is D/ ≡, that is, {[d] : d ∈ D} .

• For every n-ary predicate symbol P we define
PN

A,e
=
{
〈[d1], ..., [dn]〉 ∈

(
NA,e

)n : e(P (d1, ..., dn)) = 1
}
.

Note that for every sentence φ in the language of IΣ1 one has: NA,e |= φ iff e(φ) = 1.
Thus since all axioms of IΣ1 are in Γ, NA,e is a model of IΣ1.

Let for every universal sentence in prenex normal form
η = ∀x1...∀xnβ(x1, ..., xn) with β open, ηU = ¬U(0) ∨ ∀x1...∀xn((U(0) → (U(x1) ∗ U(0))) ∨
... ∨ (U(0)→ (U(xn) ∗ U(0)) ∨ β(x1, ..., xn)).

Theorem 3.39. For any universal sentence η in the language of IΣ1, the following are
equivalent:
(a) η is true in the standard model.
(b) For every first-order structure A+ on a standard Ω(WCMTL)-algebra A, one has Γ |=A+

ηU .
(c) For every first-order structure A+ on a standard Π-algebra A, one has Γ |=A+ ηU

Proof. Since (b) trivially implies (c) we only prove (a)⇒ (b) and (c)⇒ (a).
(a)⇒ (b). Suppose that η is true in the standard model of natural numbers and let A+ be

a first-order structure over a standard Ω(WCMTL)-algebra A such that e(φ) = 1 for all φ ∈ Γ.
If e(U(0)) = 0, then e(ηU ) ≥ e(¬U(0)) = 1. Suppose e(U(0)) > 0. Consider the function f
from the domain D of individuals into A defined by f(d) = e(U(d)). Note that by the validity
of axiom (4) of Γ, if c ≡ d, then f(c) = f(d). Thus we can consider f as a function from NA,e

into A. Since NA,e is a model of IΣ1, it contains an isomorphic copy of the standard model N
of natural numbers, so we will identify every natural number n with its copy in N . Note that
f(0) > 0 and the validity of axiom (3) of Γ implies that for every n one has f(n) = f(n+ 1)2,
therefore as in the proof of Claim (A) we see that sup {f(n) : n ∈ ω} is an idempotent element
of A. Moreover, again by axiom (3) of Γ, the function f([d]) is weakly increasing in [d]. Thus
for any non-standard [d], f([d]) ≥ sup {f(n) : n ∈ ω}, and there is an idempotent element
between f(0) and f([d]). So f(0) · f([d]) = f(0), and e(U(d) ∗ U(0)) = e(U(0)). Now
consider [d1], ..., [dn] ∈ NA,e. If they are all standard numbers then NA,e |= β([d1], ..., [dn]) as
∀x1...∀xnβ(x1, ..., xn) is true in the standard model. Hence e(β(d1, ..., dn)) = 1. If at least one
of the [di] is non-standard, then e(U(di) ∗U(0)) = e(U(0)) and e(U(0)→ (U(0) ∗U(di)) = 1.
By the arbitrariness of d1, ..., dn we have that e(ηU ) = 1.

(c) ⇒ (a). Suppose that η is false in the standard model N . Let k1, ..., kn be natural
numbers such that β(k1, ..., kn) is false in N . Let [0, 1]Π be the standard product algebra.
Define a first-order structure A on [0, 1]Π as follows: the domain D of interpretation of object
variables is the set N of natural numbers; moreover, writing e for eA,[0,1]Π , define:
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• For every predicate P (x1, ..., xn) in the language of IΣ1 and for r1, ..., rn ∈ N, define
e(P (r1, ..., rn)) = 1 iff P (r1, ..., rn) is true in N and
e(P (r1, ..., rn)) = 0 otherwise.

• Finally define inductively e(U(0)) = 1
2 and e(U(n+ 1)) =

√
e(U(n)).

Then we get e(U(0) → (U(ki) ∗ U(0))) < 1, e(β(k1, ..., kn)) = 0 and e(¬U(0)) = 0,
therefore e(ηU ) < 1.

Theorem 3.40. Let L be a logic between Ω(WCMTL) and Product logic Π (both included).
Then the consequence relation for L∀ with respect to the standard semantics for L is not
recursively enumerable. Thus if L∀ is recursively enumerable, then it has no FSSC.

Proof. By the previous result we can recursively associate to every universal sentence η of
arithmetic a finite set Γ of sentences and a sentence ηU such that for any class K of standard
algebras contained in the class of all standard Ω(WCMTL)-algebras and such that [0, 1]Π ∈ K
one has that η is true in N iff Γ |= ηU is valid in all first-order structures over algebras in K.
Since the set of universal sentences which are true in N is not recursively enumerable, the
set of finite consequence relations which are valid in K is in turn not recursively enumerable.
Taking the class of standard algebraic models of L as K we get the claim.

4 Concluding remarks

We have introduced and studied the property of weak cancellation and we have obtained the
following results:

• We have proved a theorem of representation of MTL-chains as ordinal sums of in-
decomposable totally ordered semihoops. A characterization of such indecomposable
semihoops is still not known, but weak cancellation gives a big and interesting class of
indecomposable totally ordered semihoops.

• Weak cancellation gives a new way to define  Lukasiewicz logic from IMTL.

• Weak cancellation is exactly the difference between cancellation and pseudocomplemen-
tation, so it gives an alternative axiomatization of Π and ΠMTL and allows to define a
new hierarchy of fuzzy logics.

• The ordinal sums of weakly cancellative totally ordered semihoops define a new logic,
Ω(WCMTL), that it is analogous to BL, in the sense that all BL-chains are decomposable
as ordinal sums of Wajsberg hoops (hence weakly cancellative).

• We have studied some properties of these weakly cancellative fuzzy logics, but some
important problems remain open. These properties are gathered in the following table:
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LF FEP FMP Decidable FSSC SSC
MTL No Yes Yes Yes Yes Yes
IMTL No Yes Yes Yes Yes Yes
SMTL No Yes Yes Yes Yes Yes

Ω(WCMTL) No No No ? Yes No
SΩ(WCMTL) No No No ? Yes No

WCMTL No No No ? Yes No
Ω(ΠMTL) No No No ? Yes No

ΠMTL No No No ? Yes No
BL No Yes Yes Yes Yes No
SBL No Yes Yes Yes Yes No

WCBL No No No Yes Yes No
Π No No No Yes Yes No
G Yes Yes Yes Yes Yes Yes
 L No Yes Yes Yes Yes No
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logic, Studia Logica 61 (1998) 35–47.

[4] P. Bahls, J. Cole, N. Galatos, P. Jipsen and C. Tsinakis. Cancellative residuated
lattices, Algebra Universalis 50 (2003) 83–106.

[5] W. J. Blok and I. M. A. Ferreirim. On the structure of hoops, Algebra Universalis
43 (2000) 233–257.

[6] W. J. Blok and D. Pigozzi. Algebraizable logics, Mem. Amer. Math. Soc. 396, vol
77, 1989.

26



[7] W. J. Blok and C. J. Van Alten. The finite embeddability property for residuated
lattices, pocrims and BCK-algebras, Algebra Universalis 48 (2002) 253–271.

[8] S. Burris and H. P. Sankappanavar. A course in Universal Algebra, Springer Verlag,
New York, 1981.

[9] C.C. Chang. Algebraic analysis of many valued logics, Trans. Amer. Math. Soc. 88
(1958) 456–490.

[10] A. Ciabattoni, F. Esteva and L. Godo. T-norm based logics with n-contraction,
Neural Network World 5 (2002), 441–452.

[11] R. Cignoli, F. Esteva, L. Godo and A. Torrens. Basic Fuzzy Logic is the logic of
continuous t-norms and their residua, Soft Computing 4 (2000) 106–112.

[12] P. Cintula. About axiomatic systems of product fuzzy logic, Soft Computing 5 (2001)
243–244.
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[17] F. Esteva, L. Godo and A. Garćıa-Cerdaña. On the hierarchy of t-norm based
residuated fuzzy logics. In Beyond Two: Theory and Applications of Multiple-Valued
Logic, Ed. M. Fitting and E. Orlowska, Springer-Verlag, 2003, 251–272.
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