
Artificial Intelligence 337 (2024) 104208

Contents lists available at ScienceDirect

Artificial Intelligence

journal homepage: www.elsevier.com/locate/artint

Polynomial calculus for optimization ✩

Ilario Bonacina a,∗, Maria Luisa Bonet a, Jordi Levy b

a UPC Universitat Politecnica de Catalunya, Spain
b Artificial Intelligence Research Institute (IIIA), Spanish Research Council (CSIC), Spain

A R T I C L E I N F O A B S T R A C T

MSC:

03F20

68T15

03B05

03B35

68T20

Keywords:

MaxSAT

SAT

Proof systems

Polynomial calculus

Algebraic reasoning

Proof complexity

MaxSAT is the problem of finding an assignment satisfying the maximum number of clauses in a
CNF formula. We consider a natural generalization of this problem to generic sets of polynomials
and propose a weighted version of Polynomial Calculus to address this problem.

Weighted Polynomial Calculus is a natural generalization of the systems MaxSAT-Resolution
and weighted Resolution. Unlike such systems, weighted Polynomial Calculus manipulates
polynomials with coefficients in a finite field and either weights in ℕ or ℤ. We show the soundness
and completeness of weighted Polynomial Calculus via an algorithmic procedure.

Weighted Polynomial Calculus, with weights in ℕ and coefficients in 𝔽2, is able to prove efficiently
that Tseitin formulas on a connected graph are minimally unsatisfiable. Using weights in ℤ, it also
proves efficiently that the Pigeonhole Principle is minimally unsatisfiable.

1. Introduction

The question of whether a set of polynomials 𝐹 = {𝑓1, … , 𝑓𝑚} is satisfiable—i.e. to know if there exists an assignment of the
variables 𝛼 s.t. 𝑓𝑖(𝛼) = 0 for every 𝑖—is at the root of algebraic geometry, and it is a natural generalization of SAT, since we can
encode CNF formulas as sets of polynomials (over {0, 1}-valued variables).

The state-of-the-art practical SAT solving is dominated by CDCL SAT solvers, all of them based on the Resolution proof system
[2,3]. In the last two decades, these solvers have reached remarkable efficiency in industrial SAT instances, even adding rules that
deal with new variables, for instance to pre-process the given instance [4, Chapter 9]. To get further substantial improvements we
think it will be necessary to broaden the current paradigm beyond Resolution. Therefore it makes sense to look at the problem from
a different point of view, and using algebraic language and methods might have an impact on solving instances.

Another line of investigation is focusing on encodings to overcome the limitations of CDCL solving. For instance, [5,6] has shown
that the dual-rail encoding allows translating SAT instances into MaxSAT problems. This results in translations of the Pigeonhole
Principle with polynomial size proofs using MaxSAT resolution. The same applies to the translation of SAT to Max2SAT using the
gadget described in [7]. Moreover, in both cases, general-purpose MaxSAT solvers are able to solve these instances in practice, even
though these MaxSAT solvers are not based on MaxSAT-Resolution.

✩ A preliminary version of this work appeared in the conference SAT 2023 [1].

* Corresponding author.
Available online 29 August 2024
0004-3702/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).

E-mail addresses: ilario.bonacina@upc.edu (I. Bonacina), bonet@cs.upc.edu (M.L. Bonet), levy@iiia.csic.es (J. Levy).

https://doi.org/10.1016/j.artint.2024.104208

Received 29 July 2023; Received in revised form 25 July 2024; Accepted 18 August 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:ilario.bonacina@upc.edu
mailto:bonet@cs.upc.edu
mailto:levy@iiia.csic.es
https://doi.org/10.1016/j.artint.2024.104208
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2024.104208&domain=pdf
https://doi.org/10.1016/j.artint.2024.104208
http://creativecommons.org/licenses/by-nc/4.0/

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

There are algebraic systems that are stronger than Resolution, and therefore it makes sense to extend those systems to solve
MaxSAT problems to see if we can improve on the dual-rail and Max2SAT translations. Moreover, algebraic systems inherently allow
more alternative encodings of the problems. For instance, we can use a direct encoding into polynomials, or encode first via a CNF and
then translate them into polynomials. These encodings allow us to use algorithms to compute Groebner bases [8–10], and efficiency
may be gained by these translations. For instance, a direct algebraic encoding, and Groebner-based techniques are useful in practice
for coloring [11–13] and the verification of multiplier circuits [14–17]. The proof system capturing Groebner-based algorithms is
Polynomial Calculus (𝖯𝖢) [18], which is a proof system strictly stronger than Resolution. Polynomial Calculus is degree-automatable,
in the sense that bounded degree proofs can be found efficiently (in time 𝑛𝑂(𝑑) , where 𝑑 is the degree). This is one more reason to
extend 𝖯𝖢 techniques to MaxSAT.

In this paper, we consider the generalization of MaxSAT to the context of polynomials, that is the question of what is the maximum
number of polynomials of a given set we are able to simultaneously satisfy. Equivalently, the minimum number of polynomials that
we cannot satisfy. In this algebraic context, there are also MaxSAT problems that have natural direct encodings as sets of polynomials,
for instance, max-cut (see Example 2.3) or max-coloring. Therefore a generalization of MaxSAT to the context of polynomials and a
generalization of 𝖯𝖢 to MaxSAT might be beneficial to solving these problems more efficiently.

We define an extension of 𝖯𝖢 suitable for MaxSAT, i.e. a system that not only is able to prove that a set of polynomials is
unsatisfiable but to prove what is the maximum number of polynomials that can be satisfied simultaneously.

Our generalization of 𝖯𝖢 to a system suitable for MaxSAT is done in a similar way as the adaptation of Resolution to systems
suitable for MaxSAT, such as MaxSAT-Resolution [19,20] and weighted Resolution [21,22]. Therefore, we think that generalizing 𝖯𝖢
to MaxSAT might be relevant to the optimization instances where 𝖯𝖢 reasoning is useful in the decision version (e.g. coloring and
multiplier circuits).

As weighted Resolution is a system for MaxSAT handling weighted clauses, we consider weighted 𝖯𝖢, a system handling weighted
polynomials. We consider polynomials over finite fields. The intuitive reason for this is that, over a finite field 𝔽𝑞 with 𝑞 elements, for
any non-zero element 𝑎 of 𝔽𝑞 , 𝑎𝑞−1 = 1. Therefore we can express a polynomial inequality 𝑓 ≠ 0 as the polynomial equality 𝑓𝑞−1 = 1.
We define weighted Polynomial Calculus for polynomials with coefficients in 𝔽2 in Section 4 and in Section 7 we give the definition
in the general case.

We call 𝗐𝖯𝖢𝔽2 ,ℕ the weighted version of Polynomial Calculus that handles weighted polynomials with coefficients in 𝔽2 and
weights in ℕ. Intuitively the positive weight of a clause/polynomial is the “penalty” we pay to falsify it. Weighted Resolution has
been generalized to ℤ-weighted Resolution, i.e. weighted resolution but with negative weights [23,21,24,25]. In a similar way, we also
define 𝗐𝖯𝖢𝔽2 ,ℤ as 𝗐𝖯𝖢𝔽2 ,ℕ but where we allow negative weights in the proofs. Intuitively the meaning of a weighted clause/polynomial
with a negative weight is that it is introduced in the proof as an “assumption” to be justified later, and the negative weight is to keep
track of such assumptions yet to be justified.

The system 𝗐𝖯𝖢𝔽2 ,ℤ is strictly stronger than 𝗐𝖯𝖢𝔽2 ,ℕ, which in turn is strictly stronger than MaxSAT-Resolution, and moreover
𝗐𝖯𝖢𝔽2 ,ℤ is also strictly stronger than ℤ-weighted Resolution (aka Sherali-Adams and Circular Resolution [26,21]), for details see
Section 8.

The main technical contribution of this work is the definition of the systems 𝗐𝖯𝖢𝔽𝑞 ,ℕ/𝗐𝖯𝖢𝔽𝑞 ,ℤ and the proof of the completeness
of 𝗐𝖯𝖢𝔽𝑞 ,ℕ, and therefore of 𝗐𝖯𝖢𝔽𝑞 ,ℤ. This is proved in detail for 𝔽2 in Section 5 and we show how to adapt it to the general case
in Section 7. The completeness is proved via a saturation process which is a natural generalization of an analogous process used in
[19,20,27] to prove the completeness of MaxSAT-Resolution.

Structure of the paper Section 2 contains all the necessary preliminaries, in particular, the definition of 𝖯𝖢 and the extension of
MaxSAT to polynomials. In Section 3, we introduce and discuss the structural rules that will be used in 𝗐𝖯𝖢𝔽2 ,ℕ and 𝗐𝖯𝖢𝔽2 ,ℤ. In
Section 4, we give the formal definition of 𝗐𝖯𝖢𝔽2 ,ℕ and 𝗐𝖯𝖢𝔽2 ,ℤ. Section 5 contains the completeness of 𝗐𝖯𝖢𝔽2 ,ℕ. In Section 6,
we give an application of the saturation process to Tseitin formulas. Section 7 shows how to generalize the definition of 𝗐𝖯𝖢𝔽2 ,ℕ
and 𝗐𝖯𝖢𝔽2 ,ℤ from 𝔽2 to a generic finite field and includes a small example to illustrate the theoretical constructions in the section.
Section 8 shows the relations between 𝗐𝖯𝖢𝔽2 ,ℕ, 𝗐𝖯𝖢𝔽2 ,ℤ and other proof systems for MaxSAT. Finally, in Section 9, we give some
concluding remarks.

2. Preliminaries

For 𝑛 ∈ℕ, let [𝑛] = {1, … , 𝑛}. We usually use capital letters to denote (multi-)sets.

2.1. Propositional formulas and MaxSAT

A clause 𝐶 is a set of literals, i.e. Boolean variables 𝑥𝑖 or negated Boolean variables ¬𝑥𝑖 from a given set of variables {𝑥1, … , 𝑥𝑛}. A
CNF formula is a set of clauses, and a 𝑘-CNF is a CNF where each clause has at most 𝑘 literals. An assignment 𝛼∶ {𝑥1, … , 𝑥𝑛} → {0, 1}
satisfies a clause if it maps at least a literal to 1, where 𝛼(¬𝑥𝑖) ∶= 1 − 𝛼(𝑥𝑖). If an assignment 𝛼 maps a clause 𝐶 to 0 we say that 𝛼
falsifies 𝐶 . The empty clause ⊥ is falsified by any assignment. An assignment satisfies a CNF formula if it satisfies all the clauses in it.

Let 𝑋 be a generic set of variables. To define partial weighted MaxSAT, we distinguish between hard and soft clauses. The hard
clauses need to be satisfied, while the soft ones consist of a clause and a weight (a number in ℕ). The weight of a soft clause is the
2

cost associated with falsifying it. Given a set of clauses 𝐹 (the soft clauses) and a disjoint set of clauses 𝐻 (the hard clauses), Weighted

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

Partial MaxSAT is the problem of finding an assignment to the variables 𝑋 that satisfies all the hard clauses 𝐻 , and that minimizes
the sum of the weights of the falsified clauses in 𝐹 .

2.2. Polynomials over finite fields

Let 𝔽𝑞 be a finite field with 𝑞 elements (it exists whenever 𝑞 = 𝑝𝑘 for some prime 𝑝 and integer 𝑘). The finite field with 𝑞 elements
𝔽𝑞 is unique up to isomorphism and for each element of 𝑎 ∈ 𝔽 , 𝑎𝑞 = 𝑎 and 𝑝 ⋅ 𝑎 = 𝑎+⋯+ 𝑎

⏟⏞⏞⏟⏞⏞⏟
𝑝

= 0.

Given a finite set of variables 𝑋, with 𝔽𝑞[𝑋] we denote the ring of multivariate polynomials with coefficients in 𝔽𝑞 and variables
in 𝑋.

We denote polynomials using the letters 𝑓, 𝑔, while we use Greek letters to denote assignments. An assignment is a function
𝛼∶ 𝑋 → 𝔽𝑞 and for a polynomial 𝑓 ∈ 𝔽𝑞[𝑋], 𝑓 (𝛼) is the evaluation of 𝑓 in 𝛼: the element of 𝔽𝑞 resulting from substituting each
variable 𝑥 in 𝑓 with 𝛼(𝑥) and simplifying the resulting expression using the field operations. If 𝑓 (𝛼) = 0 we say that 𝛼 satisfies 𝑓 . Any
constant polynomial 𝑐 in 𝔽𝑞[𝑋] with 𝑐 ≠ 0 is a trivially unsatisfiable polynomial (the analogue of the empty clause).

To encode CNF formulas over the variables {𝑥1, … , 𝑥𝑛} into sets of polynomials we use the encoding with twin variables. That is
we consider polynomials over the variables 𝑋 = {𝑥1, … , 𝑥𝑛, �̄�1, … , �̄�𝑛}. The intended meaning of �̄�𝑖 is 1 − 𝑥𝑖.

For every clause 𝐶 = {𝑥𝑖 ∶ 𝑖 ∈ 𝐼} ∪ {¬𝑥𝑗 ∶ 𝑗 ∈ 𝐽}, we associate the monomial 𝑀(𝐶) =
∏

𝑖∈𝐼 �̄�𝑖
∏

𝑗∈𝐽 𝑥𝑗 in the twin variables 𝑋.
Then a set of clauses {𝐶1, … , 𝐶𝑚} is encoded as

{𝑀(𝐶1), … , 𝑀(𝐶𝑚)} ∪ {𝑥2𝑖 − 𝑥𝑖, 𝑥𝑖 + �̄�𝑖 − 1 ∶ 𝑖 ∈ [𝑛]} . (1)

The purpose of the polynomials 𝑥2
𝑖
− 𝑥𝑖 and 𝑥𝑖 + �̄�𝑖 − 1 is to enforce the solutions of (1) to take Boolean values 0, 1 and to

enforce the variables 𝑥𝑖 and �̄�𝑖 to take opposite values. Any assignment 𝛼∶ {𝑥1, … , 𝑥𝑛} → {0, 1} can be extended to an assignment
𝛼′ ∶𝑋→ {0, 1}, where for each 𝑖 ∈ [𝑛], 𝛼′(𝑥𝑖) = 𝛼(𝑥𝑖) and 𝛼′(�̄�𝑖) = 1 −𝛼(𝑥𝑖). Then 𝛼 satisfies a CNF formula (i.e. 𝛼 maps all the clauses
to 1) if and only if 𝛼′ satisfies the polynomial encoding of 𝐹 (i.e. 𝛼′ is a common solution of the polynomials).

2.3. Polynomial calculus

The algebraic proof system Polynomial Calculus was originally introduced by Clegg et al. [18]. Even though the system can be
defined for any field (or even rings, see for instance [28]), in this paper we only consider finite fields.

Polynomial Calculus over 𝔽𝑞 (𝖯𝖢𝔽𝑞) is a proof system that handles polynomials in 𝔽𝑞[𝑋]. A derivation in 𝖯𝖢𝔽𝑞 of a polynomial 𝑓
from a set of polynomials 𝐹 is a sequence of polynomials 𝑓1, … , 𝑓𝑚, where 𝑓𝑚 = 𝑓 , and for each 𝑖 either 𝑓𝑖 ∈ 𝐹 , or 𝑓𝑖 = 𝑔𝑓𝑗 for some
𝑔 ∈ 𝔽𝑞[𝑋] and 𝑗 < 𝑖, or 𝑓𝑖 = 𝑓𝑗 + 𝑓𝑘 for some 𝑗, 𝑘 < 𝑖. In other words, 𝖯𝖢𝔽𝑞 uses the following two inference rules

𝑓 𝑔

𝑓 + 𝑔
,

𝑓

𝑔𝑓
,

for all 𝑓, 𝑔 ∈ 𝔽𝑞[𝑋].
A refutation is a derivation of the polynomial 1, and the size of a derivation is the total number of bits needed to express it.
Sometimes, the inference rules of 𝖯𝖢𝔽𝑞 are given as

𝑓 𝑔

𝑓 + 𝑔
,

𝑓

𝛼𝑓
and

𝑓

𝑥𝑓

for all 𝑓, 𝑔 ∈ 𝔽𝑞[𝑋], 𝛼 ∈ 𝔽𝑞 , and 𝑥 ∈𝑋. This will just give a polynomial increase in the size of the derivations (hence it is p-equivalent
to our presentation of 𝖯𝖢𝔽𝑞). 𝖯𝖢𝔽𝑞—together with an encoding of formulas into polynomials—is a Cook-Reckhow propositional proof
system [29].

With the twin encoding of CNF formulas into polynomials, it is well-known that for every 𝑞, 𝖯𝖢𝔽𝑞 p-simulates Resolution and
indeed the p-simulation is strict [28]. For example, Tseitin formulas (see Section 6) have polynomial size 𝖯𝖢𝔽2 refutations while they
require exponential size in Resolution [30].

Notice that the variables �̄�𝑖s of the twin-variables encoding are not strictly needed for the encoding (they could be eliminated just
by substituting 1 − 𝑥𝑖 for each occurrence of �̄�𝑖), but 𝖯𝖢𝔽𝑞 with this alternative encoding does not p-simulate Resolution, not even on
𝑘-CNFs [31]. With different encodings of CNF formulas, for instance, using {±1}-valued variables, 𝖯𝖢𝔽2 becomes incomparable with
Resolution [32,33].

2.4. MaxSAT on sets of polynomials

Let 𝑋 be a generic set of variables. In this paper, we generalize partial weighted MaxSAT to arbitrary polynomials in 𝔽𝑞 [𝑋]. The
generalization of the hard constraints of MaxSAT is some finite set of polynomials 𝐻 ⊆ 𝔽𝑞[𝑋], while the generalization of the soft

constraints is a multi-set of the form
3

𝐹 = {[𝑓1 , 𝑤1],… , [𝑓𝑚 , 𝑤𝑚]} ,

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

where 𝑓𝑖 ∈ 𝔽𝑞[𝑋] and 𝑤𝑖 ∈ℕ. A pair [𝑓 , 𝑤] where 𝑓 ∈ 𝔽𝑞[𝑋] and 𝑤 ∈ℤ is a weighted polynomial. The weight 𝑤 informally measures
the “importance” we give to satisfying the polynomial 𝑓 . In this context, we are interested in assignments 𝛼 that minimize the weight
of the falsified soft polynomials in 𝐹 , and satisfy all the polynomials in 𝐻 .

Definition 2.1 (𝐻 -compatible assignment). Let 𝐻 ⊆ 𝔽𝑞[𝑋]. An assignment 𝛼∶ 𝑋→ 𝔽𝑞 is 𝐻 -compatible if for every ℎ ∈𝐻 , ℎ(𝛼) = 0.

The polynomials in 𝐻 could be used to enforce specific types of assignments.

Example 2.2 (Boolean axioms). If 𝐻 = {𝑥2 −𝑥 ∶ 𝑥 ∈𝑋}, the 𝐻 -compatible assignments are all the functions 𝛼∶ 𝑋→ {0, 1}. We refer
to this 𝐻 as Boolean axioms. If we are over 𝔽2 then, equivalently, 𝐻 could be taken as ∅.

In the case of twin variables 𝑋 = {𝑥1, … , 𝑥𝑛, �̄�1, … , �̄�𝑛} and the Boolean axioms 𝐻 = {𝑥2
𝑖
− 𝑥𝑖, 𝑥𝑖 + �̄�𝑖 − 1 ∶ 𝑖 ∈ [𝑛]}, the 𝐻 -

compatible assignments are all the functions 𝛼∶ 𝑋→ {0, 1} satisfying the additional property that for each 𝑖 ∈ [𝑛], 𝛼(𝑥𝑖) = 1 − 𝛼(�̄�𝑖).
We refer to this case as Boolean axioms with twin variables. Similarly as before, if we are over 𝔽2 , then, equivalently, 𝐻 could be taken
as {𝑥𝑖 + �̄�𝑖 − 1 ∶ 𝑖 ∈ [𝑛]}.

Now, for each assignment 𝛼∶ 𝑋→ 𝔽𝑞 , we measure how close it is to satisfying all the polynomials in 𝐹 , and we do this by defining
its cost as the sum of the weights of the polynomials in 𝐹 not satisfied by 𝛼. Therefore, the cost of the assignment 𝛼 on 𝐹 is

cost(𝛼,𝐹) =
∑
𝑖∈[𝑚]

𝑤𝑖𝜒𝑖(𝛼) , (2)

where 𝜒𝑖(𝛼) is 1 if 𝑓𝑖(𝛼) ≠ 0, and 0 otherwise. Finally, to solve a partial weighted MaxSAT problem, we want the minimum value of
cost(𝛼, 𝐹) for any 𝐻 -compatible assignment 𝛼, i.e.

cost𝐻 (𝐹) = min
𝛼 𝐻-compatible

cost(𝛼,𝐹) . (3)

If 𝐻 = ∅, we denote cost𝐻 (𝐹) simply as cost(𝐹). Of course, if 𝐹 is satisfiable using a 𝐻 -compatible assignment, then cost𝐻 (𝐹) = 0.

Notice that, the polynomials in 𝐻 and the weighted polynomials in 𝐹 could come from the translation of a partial weighted
MaxSAT instance. However, we cannot assume this is always the case. Sometimes a direct encoding with polynomials not coming
from CNF formulas is more natural. For instance, this is the case of max-cut.

Example 2.3 (max-cut). Given a graph 𝐺 = (𝑉 , 𝐸) consider 𝑋 = {𝑥𝑣 ∶ 𝑣 ∈ 𝑉 } and let 𝐹 = {[𝑥𝑣1 +𝑥𝑣2 + 1 , 1] ∶ (𝑣1, 𝑣2) ∈𝐸} ⊆ 𝔽2[𝑋].
Finding cost(𝐹) is equivalent to finding a max-cut in 𝐺. This codification could be easily generalized to weighted max-cut.

3. Structural inference rules for MaxSAT calculi

In this paper, we construct calculi for MaxSAT on sets of polynomials. That is we are given as input a finite set of hard polynomials
𝐻 ⊆ 𝔽𝑞[𝑋] and a multi-set of weighted polynomials 𝐹 , that is 𝐹 consists of pairs [𝑓 , 𝑤] with 𝑓 ∈ 𝔽𝑞[𝑋] and 𝑤 ∈ℕ. The calculi we
consider, given 𝐹 and 𝐻 construct a sequence of multi-sets of weighted polynomials 𝐿0, … , 𝐿𝓁 via the application of inference rules
used as substitution rules, that is rules that when applied to some 𝐿𝑖 replace the premises with the conclusions to get to 𝐿𝑖+1 . The goal
for a MaxSAT calculus is then to start from 𝐿0 = 𝐹 and to get to a multiset 𝐿𝓁 containing [1 , 𝑐] using the inference rules proper of
the calculus to certify that cost𝐻 (𝐹) ≥ 𝑐.

Definition 3.1 (strong soundness). A substitution rule is strongly sound if, for every assignment 𝛼, the cost of the set of premises on 𝛼
equals the cost of the conclusions on 𝛼.

We give the notion of strong soundness to avoid confusion with the usual notion of sound inference rules. In this article we only
consider substitution rules strongly sound.

In this section we discuss the basic structural substitution rules for our calculi for MaxSAT: the fold-unfold equivalence and the
𝐻 -equivalence. In the next section we define the remaining rules.

Definition 3.2 (fold-unfold equivalence, ≈). Let 𝐹 , 𝐺 be two multi-sets of weighted polynomials, we say that 𝐹 and 𝐺 are fold-unfold
equivalent (𝐹 ≈ 𝐺) if there is a sequence of multi-sets of weighted polynomials starting with 𝐹 and ending with 𝐺 where from one
multi-set to the next, one of the following substitution rules is applied

[𝑓 , 𝑢] [𝑓 , 𝑤]
[𝑓 , 𝑢+𝑤]

(fold)
[𝑓 , 𝑢+𝑤]

[𝑓 , 𝑢] [𝑓 , 𝑤]
(unfold)

[𝑓 , 0]
(0-fold)

[𝑓 , 0]
(0-unfold)
4

where 𝑓 ∈ 𝔽𝑞[𝑋], and 𝑤, 𝑢 ∈ℤ.

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

Notice that, unlike the initial weighted polynomials in 𝐹 which have weights in ℕ, in a fold-unfold equivalence we also allow
weights in ℤ. Negative weights can only be created using the unfold rule. The fold-unfold equivalence is analogous to the fold-unfold
equivalence used in [21] in the context of weighted clauses and weighted Resolution.

Example 3.3. For any polynomial 𝑓 , {[𝑓 , 0]} ≈ {[𝑓 , 1], [𝑓 , −1]} ≈ ∅ and {[𝑓 , 2]} ≈ {[𝑓 , 1], [𝑓 , 1]}.

It is immediate to see that the fold-unfold rules are strongly sound.

The second type of basic substitution rule is the 𝐻 -equivalence.

Definition 3.4 (𝐻 -equivalence, ≡𝐻). Given 𝑓, 𝑔 ∈ 𝔽𝑞[𝑋] and a finite set 𝐻 ⊆ 𝔽𝑞[𝑋], we say that 𝑓 and 𝑔 are 𝐻 -equivalent (𝑓 ≡𝔽𝑞 ,𝐻 𝑔)
if for every 𝐻 -compatible assignment 𝛼 ∶𝑋 → 𝔽𝑞 , 𝑓 (𝛼) = 𝑔(𝛼). When the field 𝔽𝑞 and 𝐻 are clear from the context we write simply
≡.

This gives the following substitution rule

[𝑓 , 𝑤]
[𝑔 , 𝑤]

(≡𝐻)

where 𝑓, 𝑔 ∈ 𝔽𝑞[𝑋] and 𝑓 ≡𝐻 𝑔.

The motivation behind this rule and the notion of 𝐻 -equivalence is that in the MaxSAT calculi we are always interested in satisfying
the hard polynomials in 𝐻 , therefore two distinct polynomials that always evaluate the same under 𝐻 -compatible assignments are
interchangeable. By definition, if 𝑓 ≡𝐻 𝑔 then the cost is preserved on every 𝐻 -compatible 𝛼, hence the rule is strongly sound on
𝐻 -compatible 𝛼s.

Example 3.5. For every 𝐻 ⊆ 𝔽𝑞[𝑋] and every 𝑓 ∈ 𝔽𝑞[𝑋], 𝑓𝑞 ≡𝐻 𝑓 . This is because for every 𝑎 ∈ 𝔽𝑞 , 𝑎𝑞 = 𝑎, and therefore on any
assignment the polynomials 𝑓𝑞 and 𝑓 give the same value.

Example 3.6. For 𝐻 = {𝑥 + �̄�+ 1, 𝑦 + �̄�+ 1} ⊆ 𝔽2[𝑥, 𝑦, �̄�, �̄�], we have

𝑥𝑦+ �̄��̄�+ 𝑥+ 𝑦 ≡𝐻 𝑥𝑦+ (1 + 𝑥)(1 + 𝑦) + 𝑥+ 𝑦 = 1 .

Depending on 𝐻 , to efficiently check whether 𝑓 ≡𝐻 𝑔 might be computationally expensive. This is not the case for the hard
constraints 𝐻 we consider in this paper, the Boolean axioms and the Boolean axioms with twin variables. We conclude this section
showing how to check efficiently the 𝐻 -equivalence in these two cases.

If 𝐻 = {𝑥2 − 𝑥 ∶ 𝑥 ∈ 𝑋} ⊆ 𝔽𝑞[𝑋], the only 𝐻 -compatible assignments are of the form 𝛼 ∶ 𝑋 → {0, 1}, that is they are Boolean
assignments. Notice that, if 𝑞 = 2, the Boolean assignments are the only type of assignments possible and this is the same as using
𝐻 = ∅. In the case of Boolean assignments, to check efficiently whether 𝑓 ≡𝐻 𝑔 we can just compute the multilinearization of both
𝑓 and 𝑔 and check if they are equal. The multilinearization of a polynomial 𝑓 is the unique multilinear polynomial mul(𝑓) obtained
from 𝑓 dropping all the exponents down to 1 and then simplifying using the simplification rules of the field.

Example 3.7. 𝑓 = 𝑥3𝑦 + 𝑥𝑦2 + 𝑧 and 𝑔 = 𝑧 as polynomials over 𝔽2[𝑋] are 𝐻 -equivalent, because mul(𝑓) =mul(𝑔) = 𝑧.

The other case we consider for the hard polynomials 𝐻 are the Boolean axioms with twin variables. That is we consider polynomials
over 𝔽𝑞[𝑋 ∪ {�̄� ∶ 𝑥 ∈𝑋}] and 𝐻 = {𝑥2 − 𝑥, 𝑥 + �̄�− 1 ∶ 𝑥 ∈𝑋} ⊆ 𝔽𝑞[𝑋 ∪ {�̄� ∶ 𝑥 ∈𝑋}]. These are the type of variables used to encode
CNF formulas and the polynomials in 𝐻 are the part of the encoding used to ensure the variables to be Boolean and the semantic
meaning of �̄� to be 1 − 𝑥. In this case too it is possible to check efficiently whether 𝑓 ≡𝐻 𝑔 by the algorithm in [34, section 4.3 and
Theorem 4.4].

4. Polynomial calculus for MaxSAT (special case 𝔽𝟐)

We first define Polynomial Calculus for MaxSAT in the special case of polynomials with coefficients in 𝔽2 (the general case is in
Section 7).

The initial instance consists of a multi-sets of weighted polynomials, i.e. pairs [𝑓 , 𝑤] with 𝑓 ∈ 𝔽2[𝑋] and 𝑤 ∈ ℕ, and a finite
set of hard polynomials 𝐻 ⊆ 𝔽2[𝑋]. We define ℤ-weighted Polynomial Calculus (𝗐𝖯𝖢𝔽2 ,ℤ), an inference system that handles weighted
polynomials with weights in ℤ, and ℕ-weighted Polynomial Calculus (𝗐𝖯𝖢𝔽2 ,ℕ), an inference system that handles weighted polynomials
with weights in ℕ. Both systems use the same set of inference rules. The formal definition of 𝗐𝖯𝖢𝔽2 ,ℤ/𝗐𝖯𝖢𝔽2 ,ℕ is Definition 4.1, but
we discuss first the inference rules of the system. They are two types: the structural rules from the previous section (the fold, unfold

and the 𝐻 -equivalence), and sum and prod:

[𝑓 , 𝑤] [𝑓 , 𝑤] [𝑔 , 𝑤]
5

[𝑓𝑔 , 𝑤] [𝑓 (𝑔 + 1) , 𝑤]
(prod)

[𝑓 + 𝑔 , 𝑤] [𝑓𝑔 , 2𝑤]
(sum) (4)

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

[𝑥+ 𝑦+ 1 , 1]
𝐴1

[𝑥+ 𝑧+ 1 , 1]
𝐴2

[𝑥+ 𝑡+ 1 , 1]
𝐴3

[𝑦+ 𝑧+ 1 , 1]
𝐴4

[𝑦+ 𝑡+ 1 , 1]
𝐴5

[𝑧+ 𝑡+ 1 , 1]
𝐴6

[𝐴1(𝑧+ 𝑡) , 1] [𝐴1(𝑧+ 𝑡+ 1) , 1] [𝑧+ 𝑡 , 1] [𝐴2𝐴3 , 2] [𝐴4𝐴5 , 2] [𝑧+ 𝑡 , 1] [𝑧+ 𝑡+ 1 , 1]

prod sum sum

∙ [𝑧+ 𝑡 , 1] [𝐴1𝐴6 , 1] [𝐴2𝐴3 , 1] [𝐴2𝐴3 , 1] [𝐴4𝐴5 , 1] [𝐴4𝐴5 , 1] [1 , 1]

≈ ≈ sum

∙ [𝑧+ 𝑡 , 1] [𝐴1𝐴2𝐴3𝐴6 , 2] [𝑦+ 𝑦𝑧+ 𝑦𝑡+ 𝑧𝑡 , 1] ∙ [𝐴4𝐴5 , 1] ∙ [1 , 1]

sum

∙ ∙ [𝑧+ 𝑡 , 1] [𝑧+ 𝑡+ 1 , 1] ∙ ∙ [1 , 1]

sum

∙ ∙ [1 , 1] ∙ ∙ [1 , 1]

sum

[𝐴1(𝑧+ 𝑡) , 1] [𝐴1𝐴2𝐴3𝐴6 , 2] [1 , 2] [𝐴2𝐴3 , 1] [𝐴4𝐴5 , 1]

≈

Fig. 1. A 𝗐𝖯𝖢𝔽2 ,ℕ derivation of [1 , 2] from the axioms of max-cut on a clique of 4 vertices: [𝑥1 + 𝑥2 + 1 , 1], [𝑥1 + 𝑥3 + 1 , 1], [𝑥1 + 𝑥4 + 1 , 1], [𝑥2 + 𝑥3 + 1 , 1],
[𝑥2 + 𝑥4 + 1 , 1], [𝑥3 + 𝑥4 + 1 , 1]. To improve the readability of the derivation we draw in grey the weighted polynomials that are just copied from one multiset to
the next. The ∙s are placeholders for the corresponding weighted polynomials.

for all 𝑓, 𝑔 ∈ 𝔽2[𝑋] and 𝑤 ∈ℤ.1

Notice that the previous rules are strongly sound. For the prod rule, for any assignment 𝛼, if 𝑓 (𝛼) = 0 then both the conclusions
are 0, but if 𝑓 (𝛼) = 1, then exactly one of the conclusions is 1. For the sum rule, the argument by cases is analogous. The case that
justifies the weight of 2𝑤 for the polynomial 𝑓𝑔 in the conclusion is when 𝑓 (𝛼) = 1 and 𝑔(𝛼) = 1. In this case 𝑓 (𝛼) + 𝑔(𝛼) = 0 and
𝑓 (𝛼)𝑔(𝛼) = 1, hence the weight of the conclusion 𝑓𝑔 should equal the sum of the weights of both premises, which is two.

Formally the definition of 𝗐𝖯𝖢𝔽2 ,ℤ and 𝗐𝖯𝖢𝔽2 ,ℕ are the following.

Definition 4.1 (𝗐𝖯𝖢𝔽2 ,ℤ). Given a multi-set of weighted polynomials 𝐹 = {[𝑓1 , 𝑤1], … , [𝑓𝑚 , 𝑤𝑚]} with 𝑓𝑖 ∈ 𝔽2[𝑋] and a finite set
of hard constraints 𝐻 ⊆ 𝔽2[𝑋], a 𝗐𝖯𝖢𝔽2 ,ℤ derivation of a weighted polynomial [𝑓 , 𝑤] from 𝐹 and 𝐻 is a sequence of multi-sets
𝐿0, … , 𝐿𝓁 s.t.

1. 𝐿0 = 𝐹 ,

2. [𝑓 , 𝑤] ∈𝐿𝓁 and all the other weighted polynomials [𝑓 ′ , 𝑤′] ∈𝐿𝓁 have 𝑤′ ∈ℕ, and

3. for each 𝑖 > 0 either 𝐿𝑖 ≈𝐿𝑖−1 or 𝐿𝑖 is the result of an application of the prod/sum/≡𝐻 rule as a substitution rule on 𝐿𝑖−1.

The size of a 𝗐𝖯𝖢𝔽2 ,ℤ derivation 𝐿0, … , 𝐿𝓁 is the total number of occurrences of symbols in 𝐿0, … , 𝐿𝓁 .

Definition 4.2 (𝗐𝖯𝖢𝔽2 ,ℕ). The system 𝗐𝖯𝖢𝔽2 ,ℕ is the restriction of 𝗐𝖯𝖢𝔽2 ,ℤ where all the weights appearing in the derivation are
natural numbers.

To clarify the definition, we give an example of derivation in 𝗐𝖯𝖢𝔽2 ,ℕ.

Example 4.3 (Example 2.3 cont.). In Fig. 1 we show a 𝗐𝖯𝖢𝔽2 ,ℕ-derivation of [1 , 2] from the set of polynomials we saw in Example 2.3

in the case of 𝐺 being the clique on 4 vertices. That is the weighted polynomials [𝑥 + 𝑦 + 1 , 1], [𝑥 + 𝑧 + 1 , 1], [𝑥 + 𝑡 + 1 , 1],
[𝑦 + 𝑧 + 1 , 1], [𝑦 + 𝑡 + 1 , 1], [𝑧 + 𝑡 + 1 , 1]. In this derivation, the polynomials that are just copied from one multiset to the next
are substituted with a ∙. From one multiset to the next we applied multiple rules (and the fold-unfold equivalence) in parallel. The
horizontal lines are just a visual help to visualize the multisets. Notice that we have 𝐻 -equivalences (for 𝐻 = ∅) applied implicitly.
For instance, some sum only have one consequence since the other is equivalent to 0. This example shows that to obtain [1 , 2] it is
important to use both consequences of a sum.

We prove now the soundness of 𝗐𝖯𝖢𝔽2 ,ℤ.
6

1 In the preliminary version of this work [1] the prod rule was called split in analogy with the split rule of weighted Resolution.

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

Theorem 4.4 (soundness). Given 𝐹 = {[𝑓1 , 𝑤1], … , [𝑓𝑚 , 𝑤𝑚]} where 𝑓𝑖 ∈ 𝔽2[𝑋] and a set of polynomials 𝐻 ⊆ 𝔽2[𝑋], if there is a
𝗐𝖯𝖢𝔽2 ,ℤ derivation of [1 , 𝑤] from 𝐹 (and 𝐻 as hard constraints), then cost𝐻 (𝐹) ≥𝑤.

Proof. Let 𝐿0, 𝐿1, 𝐿2, … , 𝐿𝑠 be a 𝗐𝖯𝖢𝔽2 ,ℤ derivation of [1 , 𝑤], i.e. 𝐿𝑠 contains [1 , 𝑤], 𝐿0 = 𝐹 and each 𝐿𝑖+1 is obtained from
𝐿𝑖 applying the prod, the sum substitution rules, the fold-unfold equivalence or the 𝐻 -equivalence. We have that cost𝐻 (𝐿𝑠) ≥ 𝑤

since [1 , 𝑤] ∈𝐿𝑠 and all the other weighted polynomials in 𝐿𝑠 have non-negative weights. Hence, to prove the statement is enough
to show that for each 𝑖, cost𝐻 (𝐿𝑖+1) = cost𝐻 (𝐿𝑖). We prove something slightly stronger, that for each 𝐻 -consistent 𝛼∶ 𝑋 → {0, 1},
cost(𝛼, 𝐿𝑖+1) = cost(𝛼, 𝐿𝑖). This follows immediately from the comments we already made on the soundness of the various substitution
rules. □

We conclude this section with a lemma on the prod and sum rules in 𝗐𝖯𝖢𝔽2 ,ℤ.

Lemma 4.5. Using weights in ℤ, and the structural substitution rules, the sum rule can simulate the prod rule and vice versa.

Proof. To simulate the prod rule using the sum rule using weights in ℤ we can do the following:

[𝑓 , 𝑤]
≈

[𝑓 , 𝑤] [𝑓𝑔 , 𝑤] [𝑓𝑔 , −𝑤] [𝑓 (𝑔 + 1) , 𝑤] [𝑓 (𝑔 + 1) , −𝑤]
sum

[𝑓 , 𝑤] [𝑓𝑔 , 𝑤] [𝑓 (𝑔 + 1) , 𝑤] [𝑓𝑔 + 𝑓 (𝑔 + 1) , −𝑤] [𝑓 2𝑔(𝑔 + 1) , −2𝑤]
≈& ≡

[𝑓𝑔 , 𝑤] [𝑓 (𝑔 + 1) , 𝑤]

Some steps are merged for improved clarity. In a similar way, we can also simulate the sum using the prod rule using weights in
ℤ:

[𝑓 , 𝑤] [𝑔 , 𝑤]
≈

[𝑓 , 𝑤] [𝑔 , 𝑤] [𝑓 + 𝑔 , 𝑤] [𝑓 + 𝑔 , −𝑤]
prod

[𝑓 , 𝑤] [𝑔 , 𝑤] [𝑓 + 𝑔 , 𝑤] [(𝑓 + 𝑔)𝑓 , −𝑤] [(𝑓 + 𝑔)(𝑓 + 1) , −𝑤]
≡

[𝑓 , 𝑤] [𝑔 , 𝑤] [𝑓 + 𝑔 , 𝑤] [𝑓 (𝑓 + 𝑔) , −𝑤] [𝑔(𝑓 + 1) , −𝑤]
prod

[𝑓 , 𝑤] [𝑔𝑓 , 𝑤] [𝑔(𝑓 + 1) , 𝑤] [𝑓 + 𝑔 , 𝑤] [𝑓 (𝑓 + 𝑔) , −𝑤] [𝑔(𝑓 + 1) , −𝑤]
≈

[𝑓 , 𝑤] [𝑔𝑓 , 𝑤] [𝑓 + 𝑔 , 𝑤] [𝑓 (𝑓 + 𝑔) , −𝑤]
prod

[𝑓 (𝑓 + 𝑔) , 𝑤] [𝑓 (𝑓 + 𝑔 + 1) , 𝑤] [𝑔𝑓 , 𝑤] [𝑓 + 𝑔 , 𝑤] [𝑓 (𝑓 + 𝑔) , −𝑤]
≈

[𝑓 (𝑓 + 𝑔 + 1) , 𝑤] [𝑔𝑓 , 𝑤] [𝑓 + 𝑔 , 𝑤]
≡

[𝑓𝑔 , 2𝑤] [𝑓 + 𝑔 , 𝑤] □

5. Completeness

We show the completeness of 𝗐𝖯𝖢𝔽2 ,ℕ, that is the converse of Theorem 4.4. In principle we consider three cases 𝐻 = ∅, or 𝐻 the
Boolean axioms, i.e. 𝐻 = {𝑥2−𝑥 ∶ 𝑥 ∈𝑋}, or the case of twin variables {𝑥1, … , 𝑥𝑛, �̄�1, … , �̄�𝑛}, that is 𝐻 = {𝑥2−2, 𝑥𝑖+ �̄�𝑖−1 ∶ 𝑖 ∈ [𝑛]}.
Since we are working with polynomials over 𝔽2, the case of Boolean axioms is the same as 𝐻 = ∅, and the case of twin variables is
the same as 𝐻 = {𝑥𝑖 + �̄�𝑖 − 1 ∶ 𝑖 ∈ [𝑛]}. We show the completeness for both sets 𝐻 .

Theorem 5.1 (completeness for Boolean axioms). Given 𝐹 a set of weighted polynomials over 𝔽2[𝑋], there is a 𝗐𝖯𝖢𝔽2 ,ℕ derivation of
[1 , cost𝐻 (𝐹)] from 𝐹 and the set of Boolean axioms as hard constraints 𝐻 .

Before we prove Theorem 5.1, we define some concepts and prove some relevant lemmas. Our proof generalizes the saturation

process from [20] and gives an algorithm to find 𝗐𝖯𝖢𝔽2 ,ℕ-derivations of [1 , cost𝐻 (𝐹)]. We give an example of the construction in
Section 6. Clearly the completeness for 𝐻 = ∅ implies the completeness for 𝐻 = {𝑥𝑖 + �̄�𝑖 − 1 ∶ 𝑖 ∈ [𝑛]}. For instance, just removing
the twin variables, that is substituting each variable �̄�𝑖 with 1 − 𝑥𝑖. This might result in exponentially larger derivations, therefore
we show a saturation process that adapts naturally to twin variables without the need to remove them.

The intuition of the proof is the following. First we pick a variable 𝑥 and we perform prod and sum inferences as long as we
obtain new polynomials without the variable 𝑥. We show this process is finite and we will call it saturation. This way we create two
multisets of weighted polynomials. One with polynomials that depend on a variable 𝑥, and another with polynomials that do not
depend on 𝑥. We will then pick another variable to saturate multiset of weighted polynomials that do not depend on the first variable
7

𝑥. We will do the same with the rest of the variables always using the set of weighted polynomials that do not contain the variables we

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

already saturated by. In the last saturation step we get a weighted polynomial [1 , 𝑤] and a satisfiable set of weighted polynomials.
This is due to the fact that the saturation procedure maintains a good property: given a multiset of clauses saturated w.r.t. a variable
𝑥, if there exists an assignment satisfying all the polynomials not depending on 𝑥, then it can be extended (by assigning 𝑥) to satisfy
all the polynomials. The weight 𝑤 will correspond to the cost of the initial polynomials.

For the saturation process we need to formalize the notion of when a polynomial 𝑓 depends or not on a variable 𝑥. Clearly, 𝑓𝑥↦0
and 𝑓𝑥↦1 do not contain 𝑥 and therefore do not depend on it, but, 𝑓 could contain the variable 𝑥 but not depend on it by being
equivalent to a polynomial not containing 𝑥.

Definition 5.2 (dependence). Let 𝐻 ⊆ 𝔽2[𝑋] be a finite set. We say that a polynomial 𝑓 does not depend on a variable 𝑥 w.r.t. 𝐻 if
there exist a polynomial 𝑔 not containing 𝑥 (and also �̄� in the case of twin variables) such that 𝑓 ≡𝐻 𝑔.

Example 5.3. The polynomial 𝑓 = 𝑥𝑦 + �̄��̄�+ 𝑥 + 𝑦 is equivalent to the polynomial 1 modulo 𝐻 = {𝑥 + �̄�− 1, 𝑦 + �̄�− 1}, so although
it seems to “depend” on 𝑥 and 𝑦, indeed it does not depend on them w.r.t. 𝐻 .

Notice that in the definition of dependence and the next characterization, the set of polynomials 𝐻 is completely arbitrary.

Proposition 5.4. Let 𝑓 be a polynomial in 𝔽2[𝑋], 𝑥 a variable and 𝐻 ⊆ 𝔽2[𝑋] be a finite set. The following are equivalent

1. 𝑓 does not depend on 𝑥 w.r.t. 𝐻 ;

2. 𝑓 ≡𝐻 𝑓𝑥↦0 ≡𝐻 𝑓𝑥↦1;

3. 𝑓 ≡𝐻 𝑓𝑥↦0𝑓𝑥↦1.

Proof. Since 𝐻 is fixed thorough this proof we omit it, but implicitly every ≡ is with respect to the fixed 𝐻 . We prove that item 1
implies item 2, item 2 implies item 3, and item 3 implies item 1.

Item 1 implies item 2: If 𝑓 does not depend on 𝑥, then by definition there exist 𝑔 not containing 𝑥 such that 𝑓 ≡ 𝑔. Restricting 𝑓 ≡ 𝑔

by 𝑥 = 0 we get 𝑓𝑥↦0 ≡ 𝑔𝑥↦0, and since 𝑔 does not contain 𝑥, 𝑔 ≡ 𝑔𝑥↦0. So 𝑓 ≡ 𝑓𝑥↦0. Restricting by 𝑥 = 1 we get 𝑓 ≡ 𝑓𝑥↦1.

Item 2 implies item 3: If 𝑓 ≡ 𝑓𝑥↦0 ≡ 𝑓𝑥↦1, then 𝑓𝑥↦0𝑓𝑥↦1 ≡ 𝑓 2 ≡ 𝑓 .

Item 3 implies item 1: The polynomial 𝑓𝑥↦0𝑓𝑥↦1 does not contain 𝑥, therefore item 3 implies that 𝑓 does not depend on 𝑥. □

Notice that by Proposition 5.4, to check whether a polynomial 𝑓 depends or not on a variable 𝑥 w.r.t. 𝐻 it is enough to check
whether 𝑓 ≡𝐻 𝑓𝑥↦0𝑓𝑥↦1. Section 3 discusses effective ways to check this in the case 𝐻 = ∅ and 𝐻 = {𝑥 + �̄�− 1 ∶ 𝑥 ∈𝑋}.

Once we have the notion of a polynomial depending on 𝑥, the main concept used to show the completeness of 𝗐𝖯𝖢𝔽2 ,ℕ is the
notion of set of polynomials fixable w.r.t. a variable. This notion is related to the notion of saturation from [19] but is potentially
more general.

Definition 5.5 (𝑥-fixable set). Let 𝐻 ⊆ 𝔽2[𝑋] be a finite set, 𝑥 ∈𝑋 and 𝑆 a set of weighted polynomials. The set 𝑆 is 𝑥-fixable if every
𝐻 -compatible assignment 𝛼∶ 𝑋 → 𝔽2 can be modified in 𝑥 to a 𝐻 -compatible assignment satisfying all weighted polynomials in 𝑆
that depend on 𝑥.

Notice that, if 𝑆 is 𝑥-fixable then the subset of polynomials in 𝑆 depending on 𝑥 is satisfiable, but the converse is not true.

Example 5.6. {[𝑥 + 𝑦 , 1], [𝑥 + 𝑧 , 1]} is clearly satisfiable but it is not 𝑥-fixable since we cannot extend the assignment 𝑦 = 0, 𝑧 = 1
to satisfy both polynomials.

Next, we give a procedure to construct a 𝑥-fixable set of polynomials from a given one using the rules of 𝗐𝖯𝖢𝔽2 ,ℕ (Lemma 5.11).
We focus on 𝐻 being the Boolean axioms.

Informally, the procedure to obtain an 𝑥-fixable set consists of applying the prod rule to a polynomial or the sum of two polyno-

mials, as long as the application of these rules generates polynomials that do not contain the variable 𝑥, and are not equivalent to 0.
The procedure is applied as long as it is possible, and we will see that it finishes in a finite number of steps and when it terminates
the generated set must be 𝑥-fixable.

There are several ways to accomplish this. We use the prod rule only in the following special form

[𝑓 , 𝑤]
[𝑓𝑓𝑥↦0𝑓𝑥↦1 , 𝑤] [𝑓 (𝑓𝑥↦0𝑓𝑥↦1 + 1) , 𝑤]

, (5)

where 𝑥 is some variable and 𝑓𝑥↦0 is the polynomial resulting from the restriction of 𝑓 mapping 𝑥 to 0, and analogously for 𝑓𝑥↦1.
In the case of twin variables, for 𝑓𝑥↦0 we also map �̄� to 1, to be consistent with the Boolean axioms, and analogously for 𝑓𝑥↦1.
8

Lemma 5.7. For 𝑓 ∈ 𝔽2[𝑋] and every finite 𝐻 ⊆ 𝔽2[𝑋], 𝑓𝑓𝑥↦0𝑓𝑥↦1 ≡𝐻 𝑓𝑥↦0𝑓𝑥↦1.

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

Proof. Recall that for polynomials 𝑓, 𝑔 ∈ 𝔽2[𝑋], we defined 𝑓 ≡ 𝑔 if for every 𝐻 -compatible assignment 𝛼, 𝑓 (𝛼) = 𝑔(𝛼). Recall
also that for every value 𝑎 ∈ 𝔽2, 𝑎2 = 𝑎. Setting 𝑥 = 0 we get 𝑓𝑥↦0𝑓𝑥↦0𝑓𝑥↦1 ≡ (𝑓𝑥↦0)2𝑓𝑥↦1 ≡ 𝑓𝑥↦0𝑓𝑥↦1. Setting 𝑥 = 1 we get
𝑓𝑥↦1𝑓𝑥↦0𝑓𝑥↦1 ≡ (𝑓𝑥↦1)2𝑓𝑥↦0 ≡ 𝑓𝑥↦0𝑓𝑥↦1. Therefore 𝑓𝑓𝑥↦0𝑓𝑥↦1 ≡ 𝑓𝑥↦0𝑓𝑥↦1. □

Therefore, by Lemma 5.7, restricting ourselves to prod of type (5) is the same as restricting ourselves to substitutions of the form

[𝑓 , 𝑤]
[𝑓𝑥↦0𝑓𝑥↦1 , 𝑤], [𝑓 + 𝑓𝑥↦0𝑓𝑥↦1 , 𝑤]

. (6)

If 𝑓 depends on 𝑥 and 𝑓𝑥↦0𝑓𝑥↦1 ≢ 0, performing the substitution rules from above we obtain a polynomial that does not depend
on 𝑥, and it is not equivalent to 𝑓 or to 0. This property will be crucial in proving the completeness and in giving a finite procedure
to obtain [1 , cost𝐻 (𝐹)].

For the sum we do something similar. We sum and then apply the special form of prod in (6):

[𝑓 , 𝑤] [𝑔 , 𝑤]
sum

[𝑓 + 𝑔 , 𝑤] [𝑓𝑔 , 2𝑤]
by (6)

[(𝑓 + 𝑔)𝑥↦0(𝑓 + 𝑔)𝑥↦1 , 𝑤] [(𝑓 + 𝑔)𝑥↦0(𝑓 + 𝑔)𝑥↦1 + 𝑓 + 𝑔 , 𝑤] [𝑓𝑔 , 2𝑤]

If 𝑓 and 𝑔 depend on 𝑥 and (𝑓 + 𝑔)𝑥↦0(𝑓 + 𝑔)𝑥↦1 ≢ 0, performing the substitution above we obtain a polynomial that does not
depend on 𝑥, and it is not equivalent to 0.

As we mentioned, there are alternative ways to introduce new polynomials not depending on 𝑥. Our choice has two noticeable
properties:

• it only uses a special form of the prod rule, the one in (6), and

• it keeps the number and the degree of the polynomials introduced at each step lower than other alternative choices.

For instance, an alternative—perhaps more intuitive but less efficient—way could have been the following. Given multilinear poly-

nomials 𝑓 = 𝑥𝑓1 + 𝑓0 and 𝑔 = 𝑥𝑔1 + 𝑔0 depending on 𝑥, instead of sum and then apply the substitution inference (6), we could have
done:

[𝑥𝑓1 + 𝑓0 , 𝑤] [𝑥𝑔1 + 𝑔0 , 𝑤]
prod

[(𝑥𝑓1 + 𝑓0)𝑔1 , 𝑤] [(𝑥𝑓1 + 𝑓0)(𝑔1 + 1) , 𝑤] [𝑥𝑔1 + 𝑔0 , 𝑤]
prod

[(𝑥𝑓1 + 𝑓0)𝑔1 , 𝑤] [(𝑥𝑓1 + 𝑓0)(𝑔1 + 1) , 𝑤] [(𝑥𝑔1 + 𝑔0)𝑓1 , 𝑤] [(𝑥𝑔1 + 𝑔0)(𝑓1 + 1) , 𝑤]
sum

[𝑓0𝑔1 + 𝑓1𝑔0 , 𝑤] [(𝑥𝑓1 + 𝑓0)(𝑔1 + 1) , 𝑤] [(𝑥𝑔1 + 𝑔0)(𝑓1 + 1) , 𝑤] [𝑓𝑔𝑓1𝑔1 , 2𝑤]

This way, we could also obtain a polynomial without 𝑥, the polynomial 𝑓0𝑔1 +𝑓1𝑔0. This comes at the cost of introducing a larger
number of polynomials and of higher degree compared to the construction we use for the sum of two polynomials.

Now we are ready to define when a set of polynomials 𝑆 is 𝑥-saturated. Informally this means that we are not able to perform
substitution inferences of the form (6) or the type we use for the sum to get new polynomials without 𝑥.

Definition 5.8 (𝑥-saturated set). Let 𝑆 a set of polynomials in 𝔽2[𝑋], 𝑥 ∈𝑋 and 𝐻 = ∅ or 𝐻 the Boolean axioms with twin variables.
The set 𝑆 is 𝑥-saturated w.r.t. 𝐻 if

• for all 𝑓 ∈ 𝑆 depending on 𝑥, 𝑓𝑥↦0𝑓𝑥↦1 ≡𝐻 0, and

• for all 𝑓, 𝑔 ∈ 𝑆 depending on 𝑥, (𝑓 + 𝑔)𝑥↦0(𝑓 + 𝑔)𝑥↦1 ≡𝐻 0.

Notice that this notion can be seen as a generalization of the saturation for MaxSAT-Resolution [20] where a set of clauses is
saturated w.r.t. 𝑥 if all the cuts involving 𝑥 are substituted by clauses without 𝑥 which are tautologies.

Example 5.9. The set of clauses 𝑆 = {𝑦, 𝑥 ∨ 𝑦, ¬𝑥 ∨¬𝑦} is saturated for 𝑥. There is only one possible cut on 𝑥 which will produce the
tautology 𝑦 ∨ ¬𝑦. This example, translated to polynomials with twin variables, is the set 𝑆′ = {�̄�, 𝑥𝑦, �̄��̄�}, which is 𝑥-saturated since
(𝑥𝑦)𝑥↦0(𝑥𝑦)𝑥↦1 = 0, (�̄��̄�)𝑥↦0(�̄��̄�)𝑥↦1 = 0 and (𝑥𝑦 + �̄��̄�)𝑥↦0(𝑥𝑦 + �̄��̄�)𝑥↦1 = 𝑦�̄� ≡𝐻 0.

The saturation for MaxSAT-Resolution corresponds to the special case of Definition 5.8 where all polynomials in 𝑆 are monomials
with twin variables.

Lemma 5.10. When 𝐻 = ∅ or 𝐻 are Boolean axioms with the twin variables, if 𝑆 is 𝑥-saturated w.r.t. 𝐻 , then 𝑆 is 𝑥-fixable w.r.t. 𝐻 .

Proof. Suppose, towards a contradiction, that 𝑆 is not 𝑥-fixable. That is there is an assignment 𝛼 such that both 𝛼 modified mapping
𝑥 ↦ 0, and 𝛼 modified mapping 𝑥 ↦ 1, falsify some polynomials in 𝑆 depending on 𝑥. Let 𝛼0 and 𝛼1 be such assignments. In the case
9

of twin variables 𝛼0 also sets �̄�↦ 1 and 𝛼1 also sets �̄�↦ 0.

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

Let the polynomials falsified by 𝛼0 and 𝛼1 resp. be 𝑓 and 𝑓 ′. That is

𝑓 (𝛼0) ≠ 0 and 𝑓 ′(𝛼1) ≠ 0 .

Since 𝑆 is 𝑥-saturated, 𝑓𝑥↦0𝑓𝑥↦1 ≡ 0 and 𝑓 ′
𝑥↦0𝑓

′
𝑥↦1 ≡ 0. Hence it must be that

𝑓 (𝛼1) = 0 and 𝑓 ′(𝛼0) = 0 .

Again by the assumption on 𝑆 being 𝑥-saturated,

(𝑓 + 𝑓 ′)𝑥↦0(𝑓 + 𝑓 ′)𝑥↦1 ≡ 0 ,

That is

(𝑓 + 𝑓 ′)(𝛼0) ⋅ (𝑓 + 𝑓 ′)(𝛼1) = 0 .

On the other hand, this last equality is not possible since

(𝑓 + 𝑓 ′)(𝛼0) = 𝑓 (𝛼0) + 𝑓 ′(𝛼0) ≠ 0

and similarly (𝑓 + 𝑓 ′)(𝛼1) ≠ 0. □

Lemma 5.11. In the context of 𝐻 the Boolean axioms, for every set of weighted polynomials 𝑆 and every variable 𝑥, there is a 𝗐𝖯𝖢𝔽2 ,ℕ
derivation from 𝑆 of a set of polynomials 𝑆′ which is 𝑥-saturated.

Proof. For a polynomial 𝑓 , recall that 𝑓𝑥↦0 is the evaluation of 𝑓 in 𝑥 = 0 and, in the case of twin variables, the restriction also sets
�̄� = 1 (resp. for 𝑓𝑥↦1).

Suppose we have a set of weighted polynomials 𝑆 and a variable 𝑥. We construct a sequence of weighted polynomials 𝑆0 , 𝑆1, …
to find the set 𝑆′. We start with 𝑆0 = 𝑆 , then we want 𝑆𝑖+1 to be derivable from 𝑆𝑖 using the rules of 𝗐𝖯𝖢𝔽2 ,ℕ, and moreover, in 𝑆𝑖+1
we added some new polynomial non-dependent on 𝑥.

There are two possible types of inference we could use to go from 𝑆𝑖 to 𝑆𝑖+1.

First type. For each 𝑖 ≥ 0, if there is an [𝑓 , 𝑤] ∈ 𝑆𝑖 depending on 𝑥 and s.t. 𝑓𝑥↦0𝑓𝑥↦1 ≢ 0, choose any [𝑓 , 𝑤] and let

𝑆𝑖+1 =
(
𝑆𝑖 ⧵ {[𝑓 , 𝑤]}

)
∪ {[𝑓𝑥↦0𝑓𝑥↦1 , 𝑤], [𝑓𝑥↦0𝑓𝑥↦1 + 𝑓 , 𝑤]} .

The derivation of 𝑆𝑖+1 from 𝑆𝑖, by substituting [𝑓 , 𝑤] with the weighted polynomials [𝑓𝑥↦0𝑓𝑥↦1 , 𝑤] and [𝑓𝑥↦0𝑓𝑥↦1 + 𝑓 , 𝑤],
is justified by:

[𝑓 , 𝑤]
prod

[𝑓𝑓𝑥↦0𝑓𝑥↦1 , 𝑤] [𝑓 (𝑓𝑥↦0𝑓𝑥↦1 + 1) , 𝑤]
≡

[𝑓𝑥↦0𝑓𝑥↦1 , 𝑤] [𝑓𝑥↦0𝑓𝑥↦1 + 𝑓 , 𝑤]

where the last ≡ holds since 𝑓𝑓𝑥↦0𝑓𝑥↦1 ≡ 𝑓𝑥↦0𝑓𝑥↦1 (Lemma 5.7). Notice that, with this substitution, we have obtained the weighted
polynomial [𝑓𝑥↦0𝑓𝑥↦1 , 𝑤] where the variable 𝑥 does not appear (and hence clearly not depending on 𝑥) and it is not equivalent to
0 since the condition to obtain 𝑆𝑖+1 is that 𝑓𝑥↦0𝑓𝑥↦1 ≢ 0. We used the assumption that 𝑓 depends on 𝑥 to ensure the polynomial
𝑓𝑥↦0𝑓𝑥↦1 in the conclusions is new and it is not equivalent to the polynomial 𝑓 in the premises.

Notice that on the weighted polynomial derived still possibly depending on 𝑥, [𝑓𝑥↦0𝑓𝑥↦1 +𝑓 , 𝑤] we cannot apply a prod, since

(𝑓𝑥↦0𝑓𝑥↦1 + 𝑓)𝑥↦0(𝑓𝑥↦0𝑓𝑥↦1 + 𝑓)𝑥↦1 = (𝑓𝑥↦0𝑓𝑥↦1 + 𝑓𝑥↦0)(𝑓𝑥↦0𝑓𝑥↦1 + 𝑓𝑥↦1)

≡ 4𝑓𝑥↦0𝑓𝑥↦1

= 0

Therefore, eventually we cannot apply prod anymore and we need to start summing polynomials.

Second type. If there are weighted polynomials [𝑓 , 𝑤], [𝑔 , 𝑤′] ∈ 𝑆𝑖 depending on 𝑥, with

(𝑓𝑥↦0 + 𝑔𝑥↦0)(𝑓𝑥↦1 + 𝑔𝑥↦1) ≢ 0 ,

and 𝑤′ ≥𝑤 > 0, non-deterministically choose two of them. First substitute [𝑔 , 𝑤′] by [𝑔 , 𝑤] and [𝑔 , 𝑤′ −𝑤], and then let

𝑆𝑖+1 =
(
𝑆𝑖 ⧵ {[𝑓 , 𝑤], [𝑔 , 𝑤]}

)
∪ {[(𝑓 + 𝑔)𝑥↦0(𝑓 + 𝑔)𝑥↦1 , 𝑤], [𝑓𝑔 , 2𝑤],

[(𝑓 + 𝑔)𝑥↦0(𝑓 + 𝑔)𝑥↦1 + 𝑓 + 𝑔 , 𝑤]} .

We can obtain 𝑆𝑖+1 from 𝑆𝑖 using first the sum rule to infer [𝑓 + 𝑔 , 𝑤] and [𝑓𝑔 , 2𝑤] and then use the prod rule on [𝑓 + 𝑔 , 𝑤] as
10

we did in the previous case on a single polynomial.

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

[𝑓 , 𝑤] [𝑔 , 𝑤]
sum

[𝑓 + 𝑔 , 𝑤] [𝑓𝑔 , 2𝑤]
prod & ≡

[(𝑓 + 𝑔)𝑥↦0(𝑓 + 𝑔)𝑥↦1 , 𝑤] [(𝑓 + 𝑔)𝑥↦0(𝑓 + 𝑔)𝑥↦1 + 𝑓 + 𝑔 , 𝑤] [𝑓𝑔 , 2𝑤]

Doing this substitution we obtain a polynomial where the variable 𝑥 does not appear and it is not equivalent to 0 since the condition
to obtain 𝑆𝑖+1 is that (𝑓𝑥↦0 + 𝑔𝑥↦0)(𝑓𝑥↦1 + 𝑔𝑥↦1) ≢ 0.

Notice that the polynomials introduced still containing 𝑥 could be summed with other ones, or in some cases we could even apply
a prod to [𝑓𝑔 , 2𝑤]. As before we cannot apply the first type of inference to [(𝑓 + 𝑔)𝑥↦0(𝑓 + 𝑔)𝑥↦1 + 𝑓 + 𝑔 , 𝑤], since this would
give a polynomial equivalent to 0.

If we cannot transform 𝑆𝑖 into 𝑆𝑖+1 in either of the two ways above we stop the process.

This sequence of transformations must be finite and the last element 𝑆𝓁 will be 𝑥-saturated by construction. The process must be
finite since otherwise the sequence given by

𝜎(𝑖) =
∑

𝛼∶ 𝑋→𝔽2
𝐻-compatible

cost(𝛼,𝑆+
𝑖
)

for 𝑆+
𝑖

the part of 𝑆𝑖 depending on 𝑥, would give a sequence of strictly decreasing natural numbers. Indeed, all the 𝜎(𝑖)s are natural
numbers because we are using the rules of 𝗐𝖯𝖢𝔽2 ,ℕ, so, no negative weight could appear in any 𝑆𝑖 and cost(𝛼, 𝑆+

𝑖
) ≥ 0. To show that

𝜎(𝑖 + 1) < 𝜎(𝑖) it is sufficient to notice that, by the soundness of 𝗐𝖯𝖢𝔽2 ,ℕ, for every 𝐻 -compatible 𝛼∶ 𝑋→ 𝔽2,

cost(𝛼,𝑆𝑖+1) = cost(𝛼,𝑆𝑖) ,

which implies that

cost(𝛼,𝑆+
𝑖+1) + cost(𝛼,{[ℎ , 𝑤]}) = cost(𝛼,𝑆+

𝑖
) ,

for some polynomial ℎ ≢ 0, not depending the variable 𝑥 and with 𝑤 > 0. Hence

𝜎(𝑖+ 1) +
∑

𝛼∶ 𝑋→𝔽2
𝐻-compatible

cost(𝛼,{[ℎ , 𝑤]}) = 𝜎(𝑖) ,

and ∑
𝛼∶ 𝑋→𝔽2

𝐻-compatible

cost(𝛼,{[ℎ,𝑤]}) > 0

because ℎ ≢ 0 and 𝑤 > 0. Therefore, 𝜎(𝑖 + 1) < 𝜎(𝑖). And the sequence must be finite. □

We now show how to obtain the completeness (Theorem 5.1), essentially iterating the process from the previous lemma on all
variables one by one.

Proof of Theorem 5.1. Let 𝑋 = {𝑥1, … , 𝑥𝑛}. By Lemma 5.11, from 𝐹 we can derive in 𝗐𝖯𝖢𝔽2 ,ℕ a set 𝑆1 𝑥1-saturated. By Lemma 5.10

𝑆1 is 𝑥1-fixable. Let 𝑆1 = 𝑆+
1 ∪𝑆−

1 , where 𝑆+
1 is the part of 𝑆1 depending on 𝑥1 and 𝑆−

1 the part of 𝑆1 not depending on 𝑥1.

Again, by Lemma 5.11, from 𝑆−
1 we can derive in 𝗐𝖯𝖢𝔽2 ,ℕ a set 𝑆2 𝑥2-saturated. By Lemma 5.10 𝑆2 is 𝑥2-fixable. This gives a

decomposition 𝑆2 = 𝑆+
2 ∪𝑆−

2 , where 𝑆−
2 are the weighted polynomials in 𝑆2 not depending on 𝑥2 (and 𝑥1). Continuing in this way by

all the variables of 𝑋 one by one we arrive at a set 𝑆𝑛, where the weighted polynomials in 𝑆−
𝑛 are just constants, i.e. 𝑆−

𝑛 ≈ {[1 , 𝑤]}
for some 𝑤 ∈ ℕ.

To show that 𝑤 = cost𝐻 (𝐹) it is enough to show that
⋃

𝑗∈[𝑛] 𝑆
+
𝑗

is satisfiable by a 𝐻 -compatible assignment. Let 𝛼∶ 𝑋 → 𝔽2 be
an arbitrary 𝐻 -compatible assignment. Since 𝑆𝑛 is 𝑥𝑛-fixable there is a way to modify 𝛼 in 𝑥𝑛 to get a 𝐻 -compatible assignment
satisfying all 𝑆+

𝑛 . Let this assignment be 𝛼𝑛. Suppose we obtained a 𝐻 -compatible assignment 𝛼𝑖 satisfying
⋃

𝑗≥𝑖 𝑆
+
𝑗

, since 𝑆𝑖−1 is
𝑥𝑖−1-fixable, there is a way to modify 𝛼𝑖 in 𝑥𝑖−1 to satisfy all 𝑆+

𝑖−1. Let this assignment be 𝛼𝑖−1. Since the polynomials in
⋃

𝑗≥𝑖 𝑆
+
𝑗

only
contained the variables 𝑥𝑖… , 𝑥𝑛, the assignment 𝛼𝑖−1 continues to satisfy

⋃
𝑗≥𝑖 𝑆

+
𝑗

. We continue this way until we get an assignment
𝛼1 satisfying all

⋃
𝑗∈[𝑛] 𝑆

+
𝑗

. Thus proving that it must have been that 𝑤 = cost𝐻 (𝐹). □

An implementation in Python of the algorithm showing the completeness is available as supplemental material.

We conclude this section with an alternative proof of completeness that does not make use of the prod rule. This proof is only
valid for 𝔽2 and, unlike the previous completeness proof, it is not generalized in Section 7. We also show that the number of sum
11

applications needed for the completeness is quadratic in the sum of the weights of the original polynomials.

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

Given two polynomials 𝑓 and 𝑔, applying twice the sum rule we can infer:

[𝑓 , 𝑤] [𝑔 , 𝑤]
sum

[𝑓 + 𝑔 , 𝑤] [𝑓 𝑔 , 2𝑤]
≈

[𝑓 + 𝑔 , 𝑤] [𝑓 𝑔 , 𝑤] [𝑓 𝑔 , 𝑤]
sum

[𝑓 + 𝑔 + 𝑓 𝑔 , 𝑤] [𝑓 𝑔 , 𝑤]

(7)

where in the second application of sum we also infer (𝑓 + 𝑔) 𝑓 𝑔, which is omitted since it is always zero.

When polynomials encode Boolean formulas, the polynomial 𝑓 𝑔 is satisfied by 𝛼 if 𝑓 or 𝑔 are satisfied by 𝛼, and 𝑓 + 𝑔 + 𝑓 𝑔 is
satisfied if 𝑓 and 𝑔 are satisfied. Hence, 𝑓 𝑔 encode 𝑓 ∨ 𝑔 and 𝑓 + 𝑔 + 𝑓 𝑔 encode 𝑓 ∧ 𝑔. Therefore, this sequence of two applications
of the sum rule proves

𝑓, 𝑔 ⊢ 𝑓 ∨ 𝑔, 𝑓 ∧ 𝑔 .

Notice also that (on the contrary to sum and prod rules), the concatenation of two sum rules in eq. (7), and the structural
inference rules preserve or decrease (when the polynomial zero is generated) the sum of the weights of the clauses. This allows us to
bound the number of rule applications in the following theorem. We stress that bounding the number of rules application does not
imply a non-trivial upper bound size of the 𝗐𝖯𝖢𝔽2 ,ℕ derivation. The polynomials in the derivation might have exponential number
of terms.

Theorem 5.12 (completeness of sum). Given 𝐹 a set of weighted polynomials over 𝔽2[𝑋] and the set of Boolean axioms as hard constraints
𝐻 , there is a 𝗐𝖯𝖢𝔽2 ,ℕ derivation of [1 , cost𝐻 (𝐹)] from 𝐹 that uses only the sum rule and the structural rules.

Moreover, the number of rule applications is bounded by 2 (
∑

[𝑓 ,𝑤]∈𝐹 𝑤)2.

Proof. The proof is by induction on the value of cost𝐻 (𝐹). If this cost is zero, the empty derivation suffices to infer the desired
polynomial.

When cost𝐻 (𝐹) > 0, we start by deriving the conjunction of all the polynomials in 𝐹 . In 𝔽2 we have 𝑓 +𝑔+𝑓 𝑔 ≡ (𝑓 +1)(𝑔+1) +1,
which can be interpreted as a kind of de Morgan equivalence 𝑓 ∧ 𝑔 ≡ 𝑓 ∨ 𝑔. Therefore, after 2(|𝐹 | − 1) applications of the sum rule
we can get the conjunction of all polynomials in 𝐹 , that using the de Morgan laws we could write as:

[1 +
∏

[𝑓 ,𝑤]∈𝐹
(𝑓 + 1) , min

[𝑓 ,𝑤]∈𝐹
𝑤] . (8)

This weighted polynomial comes together with a set of polynomials 𝐹 ′ satisfying

cost𝐻 (𝐹 ′) = cost𝐻 (𝐹) − min
[𝑓 ,𝑤]∈𝐹

𝑤 ,

by the soundness of sum, and∑
[𝑓 ,𝑤]∈𝐹 ′

𝑤 ≤ min
[𝑓 ,𝑤]∈𝐹

𝑤+
∑

[𝑓 ,𝑤]∈𝐹 ′
𝑤 ,

by the preservation of the sum of weights mentioned above.

Since cost𝐻 (𝐹) > 0, for every 𝛼, there exists at least one [𝑓 , 𝑤] ∈ 𝐹 such that 𝑓 (𝛼) = 1. Hence, for every 𝛼, polynomial (8) gets
value one. Therefore, this polynomial is equivalent to the polynomial one. By induction, from 𝐹 ′ we can derive [1 , cost𝐻 (𝐹 ′)] with
at most 2 (

∑
[𝑓 ,𝑤]∈𝐹 ′ 𝑤)2 applications of the sum rule. Concatenating both derivations, we get [1 , cost𝐻 (𝐹)] from 𝐹 in at most

2 (|𝐹 | − 1) + 2 (
∑

[𝑓 ,𝑤]∈𝐹 ′ 𝑤)2 sum steps, i.e. in 2 (
∑

[𝑓 ,𝑤]∈𝐹 𝑤)2 steps because |𝐹 | ≤∑
[𝑓 ,𝑤]∈𝐹 𝑤. □

6. Tseitin formulas

We exemplify the algorithm for the completeness on Tseitin formulas, although also Example 4.3 was found using a variation of
the algorithm for the completeness.

First, we recall what are Tseitin formulas. For this section, consider fixed a graph 𝐺 = (𝑉 , 𝐸) with |𝑉 | = 2𝑛 + 1 and Boolean
variables 𝑥𝑣,𝑤 for each {𝑣, 𝑤} ∈𝐸. For 𝑣 ∈ 𝑉 , let 𝑁(𝑣) = {𝑤 ∈ 𝑉 ∶ {𝑣, 𝑤} ∈𝐸}. The Tseitin formula on 𝐺 is a CNF formula expressing
that in each vertex 𝑣 ∈ 𝑉 the parity of the variables 𝑥𝑒 for the edges incident to 𝑣 is 1, that is Tseitin(𝐺) is the CNF⋃

𝑣∈𝑉

{ ⨁
𝑤∈𝑁(𝑣)

𝑥𝑣,𝑤 = 1 (mod 2)
}
, (9)

where
⨁

𝑤∈𝑁(𝑣) 𝑥𝑣,𝑤 = 1 (mod 2) is encoded as a set of clauses. For instance, if 𝑁(𝑣) = {𝑤1, 𝑤2, 𝑤3}, then
⨁

𝑤∈𝑁(𝑣) 𝑥𝑣,𝑤 +1 (mod 2)
12

is

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

{𝑥𝑣,𝑤1
, 𝑥𝑣,𝑤2

, 𝑥𝑣,𝑤3
}, {¬𝑥𝑣,𝑤1

,¬𝑥𝑣,𝑤2
, 𝑥𝑣,𝑤3

},

{𝑥𝑣,𝑤1
,¬𝑥𝑣,𝑤2

,¬𝑥𝑣,𝑤3
}, {¬𝑥𝑣,𝑤1

, 𝑥𝑣,𝑤2
,¬𝑥𝑣,𝑤3

} . (10)

Since 𝑉 has an odd size, Tseitin(𝐺) is unsatisfiable.

Consider first the natural encoding of eq. (9) as polynomials. That is consider the set of variables 𝑋 = {𝑥𝑣,𝑤 ∶ {𝑣, 𝑤} ∈𝐸} and 𝐿𝑣

be the polynomial
∑

𝑤∈𝑁(𝑣) 𝑥𝑣,𝑤 + 1 in 𝔽2[𝑋].
It is well known that 𝖯𝖢𝔽2 is able to refute {𝐿𝑣 ∶ 𝑣 ∈ 𝑉 } in linear size. In 𝗐𝖯𝖢𝔽2 ,ℕ we prove more.

Proposition 6.1. There is a linear size derivation in 𝗐𝖯𝖢𝔽2 ,ℕ of [1 , 𝑐] from {[𝐿𝑣 , 1] ∶ 𝑣 ∈ 𝑉 }, where 𝑐 is the number of connected
components of odd size in 𝐺. In particular, if 𝐺 is connected, 𝗐𝖯𝖢𝔽2 ,ℕ proves that {[𝐿𝑣 , 1] ∶ 𝑣 ∈ 𝑉 } is minimally unsatisfiable, i.e. it is
possible to satisfy all polynomials in it except one.

Proof. We show how to infer [1 , 1] from {[𝐿𝑣 , 1] ∶ 𝑣 ∈ 𝑉 } via the saturation process, when 𝐺 is connected. For the saturation
process, the order in which we saturate the variables is not important.

At each intermediate saturation step 𝓁 there is a set of weighted polynomials 𝓁 that we have to saturate. The set 𝓁 has the form
{[𝐿𝑆1

, 1], … , [𝐿𝑆𝑚
, 1]}, where 𝑆1, … , 𝑆𝑚 form a partition of 𝑉 and 𝐿𝑆𝑖

=
∑

𝑣∈𝑆𝑖 𝐿𝑣. Moreover, we already saturated w.r.t. all the
variables 𝑥𝑣,𝑤 with 𝑣, 𝑤 in the same 𝑆𝑖.

At the beginning of the saturation process, we have the partition of 𝑉 consisting of all the singletons: {{𝑣} ∶ 𝑣 ∈ 𝑉 }.

Suppose then we are at an intermediate step 𝓁 of the saturation. We have a set 𝓁 = {[𝐿𝑆1
, 1], … , [𝐿𝑆𝑚

, 1]} and we want to
saturate w.r.t. 𝑥𝑣,𝑤. By the inductive assumption, {𝑣, 𝑤} is not an internal edge of any of the sets 𝑆𝑖s. Hence there are exactly two
distinct sets 𝑆𝑖 and 𝑆𝑗 with 𝑣 ∈ 𝑆𝑖 and 𝑤 ∈ 𝑆𝑗 . That is, to saturate 𝓁 w.r.t. 𝑥𝑣,𝑤 is enough to saturate ′ = {[𝐿𝑆𝑖

, 1], [𝐿𝑆𝑗
, 1]}.

We follow the procedure from Lemma 5.11.

Fact 1. For every linear polynomial 𝐿 depending on 𝑥,

𝐿𝑥↦0𝐿𝑥↦1 =𝐿𝑥↦0(𝐿𝑥↦0 + 1) ≡ 0 .

By Fact 1, the only possibility is to sum 𝐿𝑆𝑖
and 𝐿𝑆𝑗

. That is from ′ we obtain

 ′′ = {[𝐿𝑆𝑖
+𝐿𝑆𝑗

, 1], [𝐿𝑆𝑖
𝐿𝑆𝑗

, 2]} .

Now, 𝐿𝑆𝑖
+ 𝐿𝑆𝑗

≡ 𝐿𝑆𝑖∪𝑆𝑗 does not contain variables 𝑥𝑣′ ,𝑤′ with 𝑣′, 𝑤′ ∈ 𝑆𝑖 ∪ 𝑆𝑗 . In particular it does not contain 𝑥𝑣,𝑤. To
continue the saturation process, the only possibility would be to do a prod on 𝐿𝑆𝑖

𝐿𝑆𝑗
, but this produces the polynomial

𝐿𝑆𝑖,𝑥=0𝐿𝑆𝑗 ,𝑥=0𝐿𝑆𝑖,𝑥=1𝐿𝑆𝑗 ,𝑥=1 ≡ 0 by Fact 1. Therefore ′′ is saturated w.r.t. 𝑥𝑣,𝑤. And so is the multi-set

{[𝐿𝑆𝑘
, 1] ∶ 𝑘 ≠ 𝑖, 𝑗} ∪ {[𝐿𝑆𝑖

+𝐿𝑆𝑗
, 1], [𝐿𝑆𝑖

𝐿𝑆𝑗
, 2]} .

The part of this set not depending on 𝑥𝑣,𝑤 is

𝓁+1 = {[𝐿𝑆𝑘
, 1] ∶ 𝑘 ≠ 𝑖, 𝑗} ∪ {[𝐿𝑆𝑖

+𝐿𝑆𝑗
, 1]} .

Notice that [𝐿𝑆𝑖
𝐿𝑆𝑗

, 2] is not in 𝓁+1 since it depends on 𝑥𝑣,𝑤. The set 𝓁+1 is the one we want to saturate at the next step for some
other variable. During the saturation process we obtain coarser and coarser partitions of 𝑉 and, at the end of the whole process, we
obtain {[𝐿𝑉 , 1]}. To conclude we just need to observe that 𝐿𝑉 ≡ |𝑉 | ≡ 1. □

To show that 𝗐𝖯𝖢𝔽2 ,ℕ and weighted Resolution are incomparable, we need to consider Tseitin(𝐺) encoded as a set of polynomials
using the twin variables encoding from Section 2.2. Assume all the initial polynomials of this encoding to have weight 1. From this
system of polynomials is still easy to derive [1 , 𝑐] in 𝗐𝖯𝖢𝔽2 ,ℕ where 𝑐 is the number of connected components of odd size in 𝐺. Such
derivations can be found using the saturation process, provided we use the natural heuristic of preferentially taking the sum of two
weighted polynomials [𝑓 , 𝑤] and [𝑔 , 𝑤] when 𝑓𝑔 ≡ 0. The intuitive reason behind this heuristic is that in such a sum the number
of polynomials in conclusion decreases and we do not introduce a polynomial of higher degree. Under this heuristic it is immediate to
see that the saturation process will essentially reconstruct the polynomials {[𝐿𝑣 , 1] ∶ 𝑣 ∈ 𝑉 (𝐺)}. Indeed, take for instance the twin
variables encoding of the set of clauses in eq. (10), that is

𝑆 = {[�̄�𝑣,𝑤1
�̄�𝑣,𝑤2

�̄�𝑣,𝑤3
, 1], [𝑥𝑣,𝑤1

𝑥𝑣,𝑤2
�̄�𝑣,𝑤3

, 1],

[�̄�𝑣,𝑤1
𝑥𝑣,𝑤2

𝑥𝑣,𝑤3
, 1], [𝑥𝑣,𝑤1

�̄�𝑣,𝑤2
𝑥𝑣,𝑤3

, 1]} .

We have that the product of any two of the polynomials is divisible by the polynomial 𝑥𝑣,𝑤𝑖
�̄�𝑣,𝑤𝑖

≡ 0 for some 𝑖. Therefore applying
the sum rule on 𝑆 , eventually we obtain

[�̄�𝑣,𝑤1
�̄�𝑣,𝑤2

�̄�𝑣,𝑤3
+ 𝑥𝑣,𝑤1

𝑥𝑣,𝑤2
�̄�𝑣,𝑤3

+ �̄�𝑣,𝑤1
𝑥𝑣,𝑤2

𝑥𝑣,𝑤3
+ 𝑥𝑣,𝑤1

�̄�𝑣,𝑤2
𝑥𝑣,𝑤3

, 1]
13

which is equivalent under the ≡ relation to [𝐿𝑣 , 1].

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

7. Polynomial calculus for MaxSAT (general case)

In this section, we adapt the definition of 𝗐𝖯𝖢𝔽2 ,ℕ and 𝗐𝖯𝖢𝔽2 ,ℤ from 𝔽2 to an arbitrary finite field 𝔽𝑞 .
The general forms of the prod and sum rules are:

[𝑓 , 𝑤]
[𝑓𝑔 , 𝑤] [𝑓 (𝑔𝑞−1 − 1) , 𝑤]

(prod𝑞)

[𝑓 , 𝑤] [𝑔 , 𝑤]
[𝑓 + 𝑔 , 𝑤] [𝑓𝑔 , 𝑤] [𝑓

(
(𝑓 + 𝑔)𝑞−1 − 1

)
, 𝑤]

(sum𝑞)

for all 𝑓, 𝑔 ∈ 𝔽𝑞[𝑋] and 𝑤 ∈ ℤ. The prod𝑞 rule is strongly sound since for every assignment 𝛼∶ 𝑋 → 𝔽𝑞 if 𝑓 (𝛼) = 0 the cost of the
premise is 0 and so is the cost of the conclusion. If 𝑓 (𝛼) ≠ 0, then either 𝑔(𝛼) = 0 or 𝑔(𝛼) ≠ 0, but in this latter case then 𝑔𝑞−1(𝛼) = 1.
The soundness of the sum𝑞 rule is analogous.

Notice that the prod and sum rules for 𝔽2[𝑋] are special cases of prod𝑞 and sum𝑞 (modulo the structural rules, the fold-unfold
and the ≡). Indeed for 𝑞 = 2,

𝑓 (𝑔 − 1) = 𝑓 (𝑔 + 1) ,

and

𝑓 ((𝑓 + 𝑔) − 1) ≡ 𝑓𝑔 .

Using the prod𝑞 and sum𝑞 , it is immediate to generalize the definition of 𝗐𝖯𝖢𝔽2 ,ℕ and 𝗐𝖯𝖢𝔽2 ,ℤ from weighted polynomials with
coefficients in 𝔽2 to weighted polynomials with coefficients in 𝔽𝑞 .

Definition 7.1 (𝗐𝖯𝖢𝔽𝑞 ,ℕ and 𝗐𝖯𝖢𝔽𝑞 ,ℤ). The systems are defined as in Definition 4.1 except that all the substitution rules now refer to
polynomials in 𝔽𝑞[𝑋] and instead of the prod/sum we use the prod𝑞 and sum𝑞 . We call the resulting systems 𝗐𝖯𝖢𝔽𝑞 ,ℕ and 𝗐𝖯𝖢𝔽𝑞 ,ℤ.

Similar to the case of 𝔽2, we have that the sum𝑞 rule is redundant in 𝗐𝖯𝖢𝔽𝑞 ,ℤ:

Lemma 7.2. Using weights in ℤ and the structural rules, the prod𝑞 rule can simulate the sum𝑞 rule.

Proof.

[𝑓 , 𝑤] [𝑔 , 𝑤]
≈

[𝑓 , 𝑤] [𝑔 , 𝑤] [𝑓 + 𝑔 , 𝑤] [𝑓 + 𝑔 , −𝑤]
prod𝑞

[𝑓 , 𝑤] [𝑔 , 𝑤] [𝑓 + 𝑔 , 𝑤] [𝑓 (𝑓 + 𝑔) , −𝑤] [(𝑓𝑞−1 − 1)(𝑓 + 𝑔) , −𝑤]
≡

[𝑓 , 𝑤] [𝑔 , 𝑤] [𝑓 + 𝑔 , 𝑤] [𝑓 (𝑓 + 𝑔) , −𝑤] [𝑔(𝑓𝑞−1 − 1) , −𝑤]
prod𝑞

[𝑓 , 𝑤] [𝑔𝑓 , 𝑤] [𝑔(𝑓𝑞−1 − 1) , 𝑤] [𝑓 + 𝑔 , 𝑤] [𝑓 (𝑓 + 𝑔) , −𝑤] [𝑔(𝑓𝑞−1 − 1) , −𝑤]
≈

[𝑓 , 𝑤] [𝑔𝑓 , 𝑤] [𝑓 + 𝑔 , 𝑤] [𝑓 (𝑓 + 𝑔) , −𝑤]
prod𝑞

[𝑓 (𝑓 + 𝑔) , 𝑤] [𝑓 ((𝑓 + 𝑔)𝑞−1 − 1) , 𝑤] [𝑔𝑓 , 𝑤] [𝑓 + 𝑔 , 𝑤] [𝑓 (𝑓 + 𝑔) , −𝑤]
≈

[𝑓 ((𝑓 + 𝑔)𝑞−1 − 1) , 𝑤] [𝑔𝑓 , 𝑤] [𝑓 + 𝑔 , 𝑤] □

As for the case of 𝔽2 we prove the soundness and completeness of 𝗐𝖯𝖢𝔽𝑞 ,ℕ and 𝗐𝖯𝖢𝔽𝑞 ,ℤ.

Theorem 7.3 (soundness). Given 𝐹 = {[𝑓1 , 𝑤1], … , [𝑓𝑚 , 𝑤𝑚]} where 𝑓𝑖 ∈ 𝔽𝑞[𝑋] and a set of polynomials 𝐻 ⊆ 𝔽𝑞[𝑋], if there is a
𝗐𝖯𝖢𝔽𝑞 ,ℤ derivation of [1 , 𝑤] from 𝐹 (and 𝐻 as hard constraints), then cost𝐻 (𝐹) ≥𝑤.

Proof. The argument is a simple generalization of the proof of Theorem 4.4. Let 𝐿0, 𝐿1, 𝐿2, … , 𝐿𝑠 be a 𝗐𝖯𝖢𝔽𝑞 ,ℤ derivation of [1 , 𝑤],
i.e. 𝐿𝑠 contains [1 , 𝑤], 𝐿0 = 𝐹 and each 𝐿𝑖+1 is obtained from 𝐿𝑖 applying the prod𝑞 , the sum𝑞 substitution rules, the fold-unfold
equivalence or the 𝐻 -equivalence. We have that cost𝐻 (𝐿𝑠) ≥𝑤 since [1 , 𝑤] ∈𝐿𝑠 and all the other weighted polynomials in 𝐿𝑠 have
non-negative weights. Hence, to prove the statement is enough to show that for each 𝑖, cost𝐻 (𝐿𝑖+1) = cost𝐻 (𝐿𝑖). We prove something
slightly stronger, that for each 𝐻 -consistent 𝛼∶ 𝑋→ 𝔽𝑞 , cost(𝛼, 𝐿𝑖+1) = cost(𝛼, 𝐿𝑖). This follows immediately from the comments we
already made on the soundness of the various substitution rules. □

We show the completeness in two cases. The case of Boolean axioms, that is 𝑋 = {𝑥1, … , 𝑥𝑛} with 𝐻 = {𝑥2
𝑖
− 𝑥𝑖 ∶ 𝑖 ∈ [𝑛]}, and
14

the case of Boolean axioms with twin variables 𝑋 = {𝑥1, … , 𝑥𝑛, �̄�1, … , �̄�𝑛} and 𝐻 = {𝑥2
𝑖
− 𝑥𝑖, 𝑥𝑖 + �̄�𝑖 − 1 ∶ 𝑖 ∈ [𝑛]}.

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

Theorem 7.4 (completeness for Boolean variables). Given 𝐹 a multiset of weighted polynomials in 𝔽𝑞[𝑋], there is a 𝗐𝖯𝖢𝔽𝑞 ,ℕ derivation of
[1 , cost𝐻 (𝐹)] from 𝐹 , and the set of Boolean axioms as hard constraints.

The argument is a generalization of the argument we saw in Section 5.

As for the special case of 𝔽2 we first define formally when a polynomial depends on a variable 𝑥.

Definition 7.5 (dependence, general case). Let 𝐻 ⊆ 𝔽𝑞[𝑋] be a finite set. We say that a polynomial 𝑓 does not depend on a variable 𝑥
w.r.t. 𝐻 if there exists a polynomial 𝑔 not containing 𝑥 (and also �̄� in the case of twin variables) such that 𝑓 ≡𝐻 𝑔.

We have a characterization of the notion of dependence similar to Proposition 5.4.

Proposition 7.6. Let 𝑓 be a polynomial in 𝔽𝑞[𝑋], 𝑥 a variable and 𝐻 ⊆ 𝔽𝑞[𝑋] be a finite set. The following are equivalent

1. 𝑓 does not depend on 𝑥 w.r.t. 𝐻 ;

2. 𝑓 ≡𝐻 𝑓𝑥↦0 ≡𝐻 𝑓𝑥↦1;

3. 𝑓 ≡𝐻 𝑓𝑞−2𝑓𝑥↦0𝑓𝑥↦1.

Proof. Since 𝐻 is fixed thorough this proof we omit it, but implicitly every ≡ is with respect to the fixed 𝐻 . We prove that item 1
implies item 2, item 2 implies item 3, and item 3 implies item 1.

Item 1 implies item 2: If 𝑓 does not depend on 𝑥, then by definition there exist 𝑔 not containing 𝑥 such that 𝑓 ≡ 𝑔, hence restricting
by 𝑥 = 0 and 𝑥 = 1 we get 𝑓 ≡ 𝑓𝑥↦0 ≡ 𝑓𝑥↦1.

Item 2 implies item 3: If 𝑓 ≡ 𝑓𝑥↦0 ≡ 𝑓𝑥↦1, then 𝑓𝑞−2𝑓𝑥↦0𝑓𝑥↦1 ≡ 𝑓𝑞 ≡ 𝑓 .

Item 3 implies item 1: If 𝑓𝑞−2𝑓𝑥↦0𝑓𝑥↦1 ≡ 𝑓 we can evaluate in 𝑥 = 0 and 𝑥 = 1 to get

𝑓
𝑞−1
𝑥↦0𝑓𝑥↦1 ≡ 𝑓𝑥↦0 and 𝑓

𝑞−1
𝑥↦1𝑓𝑥↦0 ≡ 𝑓𝑥↦1 .

Multiplying the first equation by 𝑓𝑥↦0 and the second by 𝑓𝑥↦1, we get

𝑓𝑥↦0𝑓𝑥↦1 ≡ 𝑓 2
𝑥↦0 and 𝑓𝑥↦0𝑓𝑥↦1 ≡ 𝑓 2

𝑥↦1 .

Hence summing we get (𝑓𝑥↦0 − 𝑓𝑥↦1)2 ≡ 0. Which implies 𝑓𝑥↦0 ≡ 𝑓𝑥↦1. Moreover

𝑓 ≡ 𝑥𝑓𝑥↦1 + (1 − 𝑥)𝑓𝑥↦0 ≡ 𝑥𝑓𝑥↦1 + (1 − 𝑥)𝑓𝑥↦1 ≡ 𝑓𝑥↦1.

Hence 𝑓 ≡ 𝑓𝑥↦0 ≡ 𝑓𝑥↦1. And in particular 𝑓 is equivalent to a polynomial without 𝑥. □

Notice that, similarly to the case of 𝔽2 , by Proposition 7.6, to check whether a polynomial 𝑓 depends or not on a variable 𝑥 it is
enough to check whether 𝑓 ≡𝐻 𝑓𝑥↦0 ≡𝐻 𝑓𝑥↦1. Section 3 discusses effective ways to check this in the cases when 𝐻 = {𝑥2

𝑖
− 𝑥𝑖 ∶ 𝑖 ∈

[𝑛]} and the twin variables 𝐻 = {𝑥2
𝑖
− 𝑥𝑖, 𝑥𝑖 + �̄�1 − 1 ∶ 𝑖 ∈ [𝑛]}.

The notion of 𝑥-fixable set also generalizes immediately from 𝔽2 to 𝔽𝑞 .

Definition 7.7 (𝑥-fixable set, general case). Let 𝐻 ⊆ 𝔽𝑞[𝑋] be a finite set, 𝑥 ∈ 𝑋 and 𝑆 a set of weighted polynomials. The set 𝑆 is
𝑥-fixable if every 𝐻 -compatible assignment 𝛼∶ 𝑋 → 𝔽𝑞 can be modified in 𝑥 to a 𝐻 -compatible assignment satisfying all weighted
polynomials in 𝑆 that depend on 𝑥.

The notion of saturated set is analogous to the case of 𝔽2 .

Definition 7.8 (𝑥-saturated set, general case). Let 𝑆 a set of polynomials in 𝔽𝑞[𝑋], 𝑥 ∈𝑋 and 𝐻 = {𝑥2 − 𝑥 ∶ 𝑥 ∈𝑋} or 𝐻 the Boolean
axioms with twin variables. The set 𝑆 is 𝑥-saturated w.r.t. 𝐻 if

• for all 𝑓 ∈ 𝑆 depending on 𝑥, 𝑓𝑥↦0𝑓𝑥↦1 ≡𝐻 0, and

• for all 𝑓, 𝑔 ∈ 𝑆 depending on 𝑥, (𝑓 + 𝑔)𝑥↦0(𝑓 + 𝑔)𝑥↦1 ≡𝐻 0.

As for 𝔽2 we have that a set being saturated w.r.t. 𝑥 implies it being 𝑥-fixable.

Lemma 7.9. When 𝐻 the Boolean axioms or 𝐻 are Boolean axioms with the twin variables, if 𝑆 is 𝑥-saturated w.r.t. 𝐻 , then 𝑆 is 𝑥-fixable
w.r.t. 𝐻 .
15

Proof. The argument is identical to the proof of Lemma 5.10. □

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

The following lemma is an adaptation of Lemma 5.11.

Lemma 7.10. In the context of 𝐻 the Boolean axioms, for every set of weighted polynomials 𝑆 and every variable 𝑥, there is a 𝗐𝖯𝖢𝔽𝑞 ,ℕ
derivation from 𝑆 of a set of polynomials 𝑆′ which is saturated w.r.t. 𝑥.

Proof. The proof is analogous to the argument for Lemma 5.11.

For a polynomial 𝑓 , recall that 𝑓𝑥↦0 is the evaluation of 𝑓 in 𝑥 = 0 and, in the case of twin variables, the restriction also sets
�̄� = 1 (resp. for 𝑓𝑥↦1).

Suppose we have a set of weighted polynomials 𝑆 and a variable 𝑥. We construct a sequence of weighted polynomials 𝑆0 , 𝑆1, …
to find the set 𝑆′. We start with 𝑆0 = 𝑆 , then we want 𝑆𝑖+1 to be derivable from 𝑆𝑖 using the rules of 𝗐𝖯𝖢𝔽𝑞 ,ℕ, and moreover, in 𝑆𝑖+1
we added some new polynomial non-dependent on 𝑥. The way to obtain 𝑆𝑖+1 from 𝑆𝑖 is the following. For each 𝑖 ≥ 0, if there is an
[𝑓 , 𝑤] ∈ 𝑆𝑖 depending on 𝑥 and s.t. 𝑓𝑥↦0𝑓𝑥↦1 ≢ 0, non-deterministically choose one of such [𝑓 , 𝑤] and let

𝑆𝑖+1 =
(
𝑆𝑖 ⧵ {[𝑓 , 𝑤]}

)
∪ {[𝑓𝑥↦0𝑓𝑥↦1 , 𝑤], [𝑓𝑓𝑞−1

𝑥↦0𝑓
𝑞−1
𝑥↦1 − 𝑓 , 𝑤]} .

The derivation of 𝑆𝑖+1 from 𝑆𝑖, by substituting [𝑓 , 𝑤] with the weighted polynomials [𝑓𝑥↦0𝑓𝑥↦1 , 𝑤] and [𝑓 (𝑓𝑥↦0𝑓𝑥↦1)𝑞−1 −
𝑓 , 𝑤], is justified by:

[𝑓 , 𝑤]
prod𝑞

[𝑓𝑓𝑞−2𝑓𝑥↦0𝑓𝑥↦1 , 𝑤] [𝑓 ((𝑓𝑞−2𝑓𝑥↦0𝑓𝑥↦1)𝑞−1 − 1) , 𝑤]
≡

[𝑓𝑓𝑞−2𝑓𝑥↦0𝑓𝑥↦1 , 𝑤] [𝑓𝑞(𝑓𝑞−2𝑓𝑥↦0𝑓𝑥↦1)𝑞−1 − 𝑓 , 𝑤]
≡

[𝑓𝑞−1𝑓𝑥↦0𝑓𝑥↦1 , 𝑤] [𝑓 (𝑓𝑞−1𝑓𝑥↦0𝑓𝑥↦1)𝑞−1 − 𝑓 , 𝑤]
≡

[𝑓𝑥↦0𝑓𝑥↦1 , 𝑤] [𝑓 (𝑓𝑥↦0𝑓𝑥↦1)𝑞−1 − 𝑓 , 𝑤]

where the last ≡ holds since 𝑓𝑞−1𝑓𝑥↦0𝑓𝑥↦1 ≡ 𝑓𝑥↦0𝑓𝑥↦1. Notice that, with this substitution, we have obtained the weighted polyno-

mial [𝑓𝑥↦0𝑓𝑥↦1 , 𝑤] where the variable 𝑥 does not appear (and hence clearly not depending on 𝑥) and it is not equivalent to 0 since
the condition to obtain 𝑆𝑖+1 is that 𝑓𝑥↦0𝑓𝑥↦1 ≢ 0. We used the assumption that 𝑓 depends on 𝑥 to ensure the polynomial 𝑓𝑥↦0𝑓𝑥↦1
in the conclusions is new and it is not equivalent to the polynomial 𝑓 in the premises.

If there are [𝑓 , 𝑤], [𝑔 , 𝑤′] ∈ 𝑆𝑖 depending on 𝑥, with 𝑓 ≢ 𝑔,

(𝑓𝑥↦0 + 𝑔𝑥↦0)(𝑓𝑥↦1 + 𝑔𝑥↦1) ≢ 0 ,

and 𝑤′ ≥𝑤 > 0, non-deterministically choose two of them. First substitute [𝑔 , 𝑤′] by [𝑔 , 𝑤] and [𝑔 , 𝑤′ −𝑤], and then let

𝑆𝑖+1 =
(
𝑆𝑖 ⧵ {[𝑓 , 𝑤], [𝑔 , 𝑤]}

)
∪ { [(𝑓 + 𝑔)𝑥↦0(𝑓 + 𝑔)𝑥↦1 , 𝑤],

[(𝑓 + 𝑔)(𝑓 + 𝑔)𝑞−1
𝑥↦0(𝑓 + 𝑔)𝑞−1

𝑥↦1 − 𝑓 − 𝑔 , 𝑤]

[𝑓𝑔 , 𝑤],

[𝑓 (𝑓 + 𝑔)𝑞−1 − 𝑓 , 𝑤] } .

We can obtain 𝑆𝑖+1 from 𝑆𝑖 using first the sum𝑞 rule and then use the prod𝑞 rule on [𝑓 + 𝑔 , 𝑤] as we did in the previous case on a
single polynomial.

[𝑓 , 𝑤] [𝑔 , 𝑤]
sum𝑞

[𝑓 + 𝑔 , 𝑤] [𝑓𝑔 , 𝑤] [𝑓 (𝑓 + 𝑔)𝑞−1 − 𝑓 , 𝑤]
prod𝑞

[(𝑓 + 𝑔)𝑥↦0(𝑓 + 𝑔)𝑥↦1 , 𝑤] [(𝑓 + 𝑔)(𝑓 + 𝑔)𝑞−1
𝑥↦0(𝑓 + 𝑔)𝑞−1

𝑥↦1 − 𝑓 − 𝑔 , 𝑤] & ≡

[𝑓𝑔 , 𝑤] [𝑓 (𝑓 + 𝑔)𝑞−1 − 𝑓 , 𝑤]

(11)

Doing this substitution we obtain a polynomial where the variable 𝑥 does not appear and it is not equivalent to 0 since the condition
to obtain 𝑆𝑖+1 is that (𝑓𝑥↦0 + 𝑔𝑥↦0)(𝑓𝑥↦1 + 𝑔𝑥↦1) ≢ 0.

If we cannot transform 𝑆𝑖 into 𝑆𝑖+1 in either of the two ways we stop the process. With the same argument of Lemma 5.11 this
sequence of transformations must be finite and the last element 𝑆𝓁 will be saturated w.r.t. 𝑥. □
16

We can now prove Theorem 7.4.

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

Proof of Theorem 7.4. Let 𝑋 = {𝑥1, … , 𝑥𝑛}. First saturate 𝐹 w.r.t. 𝑥1. By Lemma 7.10, from 𝐹 in 𝗐𝖯𝖢𝔽2 ,ℕ we can derive a set 𝑆1
saturated w.r.t. 𝑥1. By Lemma 7.9 𝑆1 is 𝑥1-fixable. Let 𝑆1 = 𝑆+

1 ∪ 𝑆−
1 , where 𝑆+

1 is the part of 𝑆1 depending on 𝑥1 and 𝑆−
1 the part

of 𝑆1 not depending on 𝑥1.

Saturate 𝑆−
1 w.r.t. 𝑥2. Again, by Lemma 7.10, from 𝑆−

1 we can derive in 𝗐𝖯𝖢𝔽2 ,ℕ an set 𝑆2 saturated w.r.t. 𝑥2. By Lemma 7.9 𝑆2
is 𝑥2-fixable. This gives a decomposition 𝑆2 = 𝑆+

2 ∪𝑆−
2 , where 𝑆−

2 are the weighted polynomials in 𝑆2 not depending on 𝑥2 (and 𝑥1).
Continuing in this way by all the variables of 𝑋 one by one we arrive at a set 𝑆𝑛, where the weighted polynomials in 𝑆−

𝑛 are just
constants, i.e.

𝑆−
𝑛 ≈ {[𝑐𝑗 , 𝑤𝑗] ∶ 𝑗 ∈ 𝐽}

for some 𝑤𝑗 s in ℕ and non-zero constants 𝑐𝑗 . Now notice that for non-zero constant 𝑐 and a weight 𝑤, the rule

[𝑐 , 𝑤]
[1 , 𝑤]

is a special case of the prod𝑞 rule together with an application of ≈, indeed

[𝑐 , 𝑤]
prod𝑞

[𝑐 ⋅ 𝑐−1 , 𝑤] [𝑐((𝑐−1)𝑞−1 − 1) , 𝑤]
≈

[1 , 𝑤]

since (𝑐−1)𝑞−1 = 1 because by assumption 𝑐 ≠ 0.

That is from 𝑆𝓁 we can derive using the special case of the prod𝑞 above {[1 , ∑𝑗∈𝐽 𝑤𝑗]}
To show that

∑
𝑗∈𝐽 𝑤𝑗 = cost𝐻 (𝐹) it is enough to show that

⋃
𝑗∈[𝑛] 𝑆

+
𝑗

is satisfiable by a 𝐻 -compatible assignment. The argument
to prove this is identical to the one for the completeness in the case of 𝔽2 . □

Notice, that as in the case of 𝔽2 we proved something stronger, that 𝗐𝖯𝖢𝔽𝑞 ,ℕ is complete also if we restrict the prod𝑞 rule to be
of the form

[𝑓 , 𝑤]
[𝑓𝑥↦0𝑓𝑥↦1 , 𝑤] [𝑓𝑓𝑞−1

𝑥↦0𝑓
𝑞−1
𝑥↦1 − 𝑓 , 𝑤]

(12)

and

[𝑐 , 𝑤]
[1 , 𝑤]

for arbitrary non-zero constant 𝑐.
We conclude this section with an example of application of the saturation process for polynomials over 𝔽3. The example we give

is a special case of a type of covering principle.

Given 𝑞 a power of a prime and a hyper-graph = (𝑉 , 𝐸) we consider the principle asserting that admits an edge cover 𝐶
where for each 𝑣 ∈ 𝑉 , |{𝑒 ∈ 𝐶 ∶ 𝑣 ∈ 𝑒}| = 1 (mod 𝑞). Depending on this might be satisfiable or unsatisfiable, and in the case it is
unsatisfiable we are interested in seeing the maximum number of constraints we can simultaneously satisfy.

To encode this principle we use Boolean variables 𝑥𝑒 for each hyperedge 𝑒 ∈ 𝐸 whose meaning is the truth value of “the edge 𝑒
belongs to the edge cover 𝐶”. The principle is then encoded as the following set of weighted polynomials over 𝔽𝑞[{𝑥𝑒 ∶ 𝑒 ∈𝐸}]:

𝑞() =

{
[
∑
𝑒∋𝑣

𝑥𝑒 − 1 , 1] ∶ 𝑣 ∈ 𝑉

}
together with the set of hard constraints 𝐻 = {𝑥2𝑒 − 𝑥𝑒 ∶ 𝑒 ∈𝐸}.

From this general construction we consider the example of 3() for the hypergraph with vertices [9] and hyper-edges

{{1,2,3}, {3,4,5}, {5,6,7}, {7,8,9}} .

That is

3() = {[𝑥− 1 , 1], [𝑥− 1 , 1], [𝑥+ 𝑦− 1 , 1],

[𝑦− 1 , 1], [𝑦+ 𝑧− 1 , 1],

[𝑧− 1 , 1], [𝑧+ 𝑣− 1 , 1],

[𝑣− 1 , 1], [𝑣− 1 , 1]} ,

where we use 𝑥, 𝑦, 𝑧, 𝑣 to denote the four hyper-edges of , that is 𝑥 is an alias for 𝑥{1,2,3}, 𝑦 for 𝑥{3,4,5}, 𝑧 for 𝑥{5,6,7}, and 𝑣 for
17

𝑥{7,8,9}.

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

We use the saturation process from the proof of Theorem 7.4 to show that cost𝐻 (3()) is 2, when 𝐻 is the set of the Boolean
axioms.

The saturation order we choose is 𝑥, 𝑦, 𝑧, 𝑣. The multiset 3() is not saturated w.r.t. 𝑥. Simple calculations show that the only
possibility is to use the sum3 and then prod3 rule on [𝑥 −1 , 1] and [𝑥 + 𝑦 −1 , 1] following the general scheme of eq. (11). Labeling
𝑥 − 1 as 𝑓 , and 𝑥 + 𝑦 − 1 as 𝑔, (𝑓 + 𝑔)𝑥↦0(𝑓 + 𝑔)𝑥↦1 = −𝑦. Then

(𝑓 + 𝑔)2
𝑥↦0(𝑓 + 𝑔)2

𝑥↦1 = 𝑦

(𝑓 + 𝑔)(𝑓 + 𝑔)2
𝑥↦0(𝑓 + 𝑔)2

𝑥↦1 − 𝑓 − 𝑔 = −𝑥𝑦+ 𝑥+ 𝑦− 1

𝑓𝑔 = 𝑥𝑦− 𝑥− 𝑦+ 1

𝑓 (𝑓 + 𝑔)2 − 𝑓 = 0 .

Given the previous equalities, we obtain the multiset

𝑆1 = {[−𝑦 , 1], [−𝑥𝑦+ 𝑥+ 𝑦− 1 , 1], [𝑥𝑦− 𝑥− 𝑦+ 1 , 1],

[𝑥− 1 , 1],

[𝑦− 1 , 1], [𝑦+ 𝑧− 1 , 1],

[𝑧− 1 , 1], [𝑧+ 𝑣− 1 , 1],

[𝑣− 1 , 1], [𝑣− 1 , 1]} .

This multiset 𝑆1 is saturated w.r.t. 𝑥, given that

(−𝑥𝑦+ 𝑥+ 𝑦− 1)𝑥↦1 = 0

(−𝑥𝑦+ 𝑥+ 𝑦− 1) + (𝑥𝑦− 𝑥− 𝑦+ 1) = 0

((𝑥− 1) + (−𝑥𝑦+ 𝑥+ 𝑦− 1))𝑥↦1 = 0

((𝑥− 1) + (𝑥𝑦− 𝑥− 𝑦+ 1))𝑥↦1 = 0 .

To proceed with the saturation process then we only need consider the part of 𝑆1 not dependent on 𝑥, that is

𝑆′
1 = {[−𝑦 , 1],

[𝑦− 1 , 1], [𝑦+ 𝑧− 1 , 1],

[𝑧− 1 , 1], [𝑧+ 𝑣− 1 , 1],

[𝑣− 1 , 1], [𝑣− 1 , 1]} .

We now saturate 𝑆′
1 w.r.t. 𝑦. The multiset 𝑆′

1 is not already saturated w.r.t. 𝑦, indeed we could use the sum3 and then prod3 rule on
[−𝑦 , 1] and [𝑦 −1 , 1], or alternatively on [𝑦 −1 , 1] and [𝑦 + 𝑧 −1 , 1], or alternatively on [−𝑦 , 1] and [𝑦 + 𝑧 −1 , 1]. We choose to
use the sum3 and then prod3 rule on [−𝑦 , 1] and [𝑦 − 1 , 1] again following the general scheme of eq. (11). Since −𝑦 + 𝑦 − 1 = −1,
we already have a contradiction. After the prod3 this gives the wighted polynomial [1 , 1]. Also,

−1 ⋅ (−1)2
𝑦↦0(−1)

2
𝑦↦1 − (−1) = 0

−𝑦(𝑦− 1) = 0

(−𝑦)(−1)2 − (−𝑦) = 0 ,

this gives the multiset

𝑆2 = {[1 , 1],

[𝑦+ 𝑧− 1 , 1],

[𝑧− 1 , 1], [𝑧+ 𝑣− 1 , 1],

[𝑣− 1 , 1], [𝑣− 1 , 1]} .

The multiset 𝑆2 is saturated w.r.t. 𝑦 because we cannot have a prod3 on 𝑦 + 𝑧 − 1 to get a polynomial without 𝑦. To proceed with
the saturation process then we only need consider the part of 𝑆2 not dependent on 𝑦, that is

𝑆′
2 = {[1 , 1],
18

[𝑧− 1 , 1], [𝑧+ 𝑣− 1 , 1],

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

[𝑣− 1 , 1], [𝑣− 1 , 1]} .

The multiset 𝑆′
2 is not saturated w.r.t. 𝑧 indeed we can use the sum3 and then prod3 rule on [𝑧 − 1 , 1] and [𝑧 + 𝑣 − 1 , 1]. Notice

that this situation is analogous to the case of the polynomials 𝑥 − 1 and 𝑥 + 𝑦 −1 that we had when saturating w.r.t. 𝑥. Therefore the
result will be equivalent. So we obtain the multiset

𝑆3 = {[1 , 1],

[−𝑣 , 1], [−𝑧𝑣+ 𝑧+ 𝑣− 1 , 1], [𝑧𝑣− 𝑧− 𝑣+ 1 , 1],

[𝑣− 1 , 1], [𝑣− 1 , 1]} .

The multiset 𝑆3 is saturated w.r.t. 𝑧. To proceed with the saturation process then we only need to consider the part of 𝑆3 not dependent
on 𝑧, that is

𝑆′
3 = {[1 , 1],

[−𝑣 , 1],

[𝑣− 1 , 1], [𝑣− 1 , 1]} .

The multiset 𝑆′
3 is not saturated w.r.t. 𝑣 indeed we can use the sum3 and then prod3 rule on [𝑣 − 1 , 1] and [−𝑣 , 1] which is

analogous to the situation of the saturation of the variable 𝑦. This gives the multiset

𝑆4 = {[1 , 2],

[𝑣− 1 , 1]} .

The multiset 𝑆4 is saturated w.r.t. 𝑣 and this concludes the saturation process in the iterative way used in Theorem 7.4. That is, we
just showed that cost𝐻 (3()) = 2, for the given hypergraph and given as hard constraints the Boolean axioms.

8. Connections of weighted polynomial calculus with other MaxSAT systems

The system 𝗐𝖯𝖢𝔽2 ,ℕ with twin variables is at least as strong as ℕ-weighted Resolution and 𝗐𝖯𝖢𝔽2 ,ℤ is at least as strong as ℤ-

weighted Resolution (aka Sherali-Adams and Circular Resolution [26,21]). Moreover, all the four systems can be separated either
using Tseitin formulas or the Pigeonhole principle, as shown in Fig. 2.

Proposition 8.1. The system 𝗐𝖯𝖢𝔽2 ,ℕ (with twin variables) is exponentially stronger than ℕ-weighted Resolution and 𝗐𝖯𝖢𝔽2 ,ℤ (with twin
variables) is exponentially stronger than ℤ-weighted Resolution.

Proof. It is well known that 𝖯𝖢 (with the twin variable encoding, see Section 2.2) p-simulates Resolution [28]. The same simulation,
with the weights properly added to the polynomials, gives that 𝗐𝖯𝖢𝔽2 ,ℕ with twin variables p-simulates ℕ-weighted Resolution. The
same happens for weights in ℤ, giving that 𝗐𝖯𝖢𝔽2 ,ℤ with twin variables p-simulates ℤ-weighted Resolution, which is equivalent to
Sherali-Adams and Circular Resolution.

Moreover 𝖯𝖢 is exponentially stronger than Resolution, given that Tseitin formulas are easy for 𝖯𝖢 (over 𝔽2) while exponentially
hard for Resolution [30] and Sherali-Adams [35]. Therefore, Tseitin formulas also exponentially separate 𝗐𝖯𝖢𝔽2 ,ℤ from ℤ-weighted
Resolution (Sherali-Adams) and 𝗐𝖯𝖢𝔽2 ,ℕ from ℕ-weighted Resolution. □

Proposition 8.2. The system 𝗐𝖯𝖢𝔽2 ,ℤ is exponentially stronger than 𝗐𝖯𝖢𝔽2 ,ℕ and ℤ-weighted Resolution is exponentially stronger than
ℕ-weighted Resolution.

Proof. The simulations are trivial since proofs using weights in ℕ are just special cases of weights in ℤ. On the other hand the
Pigeonhole principle is easy in ℤ-weighted Resolution [26] and exponentially hard for 𝖯𝖢 [36], and therefore for 𝗐𝖯𝖢𝔽2 ,ℕ. The
Pigeonhole principle can be proved polynomially in 𝗐𝖯𝖢𝔽2 ,ℤ since this system polynomially simulates ℤ-weighted Resolution. □

Indeed both Proposition 8.1 and 8.2 follow from the fact that the systems 𝗐𝖯𝖢𝔽2 ,ℕ (with twin variables) and ℤ-weighted Resolution
are incomparable: in the first system Tseitin is easy to prove while the Pigeonhole principle is hard, and it is the opposite for the
latter system. Both the Pigeonhole principle and Tseitin have short proofs in 𝗐𝖯𝖢𝔽2 ,ℤ.

The relationships between 𝗐𝖯𝖢𝔽2 ,ℕ/𝗐𝖯𝖢𝔽2 ,ℤ and the aforementioned systems are summarized in Fig. 2.

We recall that Fig. 2 can also be read in the context of propositional proof systems (for SAT). Indeed, all the MaxSAT systems
in Fig. 2 can be seen as propositional proof systems, if the weights of the initial clauses/polynomials are not part of the input but
part of the proof and to refute we just want to derive one instance of the empty clause or the polynomial 1. In this setting weighted
Resolution is the same as Resolution and 𝗐𝖯𝖢𝔽2 ,ℕ is the same as 𝖯𝖢 over 𝔽2.

Analogous simulations as the ones in Fig. 2 hold also for 𝗐𝖯𝖢𝔽𝑞 ,ℕ∕𝗐𝖯𝖢𝔽𝑞 ,ℤ using a Tseitin principle modulo 𝑞 instead of the usual
19

one.

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

MaxSAT-Resolution

ℕ-weighted Resolution

ℤ-weighted Resolution

aka Sherali-Adams

𝗐𝖯𝖢𝔽2 ,ℕ
(twin variables)

𝗐𝖯𝖢𝔽2 ,ℤ
(twin variables)

=
?

≠
≠

≠ ≠

(PHP)

(Tseitin)

Fig. 2. 𝑃 →𝑄 means that 𝑃 is at least as strong as 𝑄. A dashed line means the two systems are incomparable.

9. Conclusions

We generalized Polynomial Calculus to the context of MaxSAT for polynomials with coefficients in a finite field. This involves
extending the rules of Polynomial Calculus to have additional conclusions and applying the rules by replacing premises with conclu-

sions, to make the system sound for MaxSAT. We showed its completeness via a saturation process. The resulting proof system may
be used for SAT or for MaxSAT. The system 𝗐𝖯𝖢𝔽2 ,ℕ is stronger than MaxSAT Resolution, and 𝗐𝖯𝖢𝔽2 ,ℤ is stronger than ℤ-weighted
Resolution (aka Sherali-Adams).

The proposed calculus might be useful in the context of parity or mod 𝑝 reasoning when we want to optimize the minimum
number of unsatisfiable clauses or polynomials. Natural areas of parity/XOR reasoning are logical cryptanalysis, circuit verification,
and bounded model checking. As an example, we show how our saturation algorithm is able to prove efficiently that Tseitin formulas
are minimally unsatisfiable, in contrast to what happens in the case of Resolution and Sherali-Adams. Another possible direction of
application might be in the context of graph-coloring where elements of the field 𝔽𝑝 are used to directly encode the colors.

We conclude with a couple of open problems:

1. Polynomial Calculus is degree-automatable, in the sense that bounded degree proofs can be found efficiently (in time 𝑛𝑂(𝑑) ,
where 𝑑 is the degree). It is open whether 𝗐𝖯𝖢𝔽2 ,ℤ is degree-automatable as-well.

2. It is also open whether there is a suitable notion of polynomial calculus for MaxSAT using polynomials over infinite fields, or
even over generic finite rings.

CRediT authorship contribution statement

Ilario Bonacina: Conceptualization, Investigation, Writing – original draft, Writing – review & editing. Maria Luisa Bonet:

Conceptualization, Investigation, Writing – original draft, Writing – review & editing. Jordi Levy: Conceptualization, Investigation,
Software, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

This work was supported by the grant numbers PID2019-109137GB-C21, PID2019-109137GB-C22, IJC2018-035334-I, PID2022-

138506NB-C21, and PID2022-138506NB-C22 funded by AEI. This work was partially done while Maria Luisa Bonet and Jordi Levy
were visiting the Simons Institute for the Theory of Computing during the Spring of 2023.

Appendix A. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .artint .2024 .104208.

References

[1] I. Bonacina, M.L. Bonet, J. Levy, Polynomial calculus for MaxSAT, in: Proc. of the 26th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT’23),
20

2023, pp. 5:1–5:17.

https://doi.org/10.1016/j.artint.2024.104208
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib3989371E18EF72FF7662E98F6CCC37E2s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib3989371E18EF72FF7662E98F6CCC37E2s1

Artificial Intelligence 337 (2024) 104208I. Bonacina, M.L. Bonet and J. Levy

[2] K. Pipatsrisawat, A. Darwiche, On the power of clause-learning SAT solvers as resolution engines, Artif. Intell. 175 (2) (2011) 512–525, https://doi .org /10 .1016 /
j .artint .2010 .10 .002.

[3] A. Atserias, J.K. Fichte, M. Thurley, Clause-learning algorithms with many restarts and bounded-width resolution, in: Lecture Notes in Computer Science, Springer,
Berlin, Heidelberg, 2009, pp. 114–127.

[4] A. Biere, M. Heule, H. van Maaren, T. Walsh (Eds.), Handbook of Satisfiability - Second Edition, Frontiers in Artificial Intelligence and Applications, vol. 336,
IOS Press, 2021.

[5] A. Ignatiev, A. Morgado, J. Marques-Silva, On tackling the limits of resolution in SAT solving, in: Proc. of the 20th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT’17), 2017, pp. 164–183.

[6] M.L. Bonet, S. Buss, A. Ignatiev, A. Morgado, J. Marques-Silva, Propositional proof systems based on maximum satisfiability, Artif. Intell. 300 (2021) 103552,
https://doi .org /10 .1016 /j .artint .2021 .103552.

[7] C. Ansótegui, J. Levy, Reducing SAT to Max2SAT, in: Proc. of the 30th International Joint Conference on Artificial Intelligence (IJCAI’21), 2021, pp. 1367–1373.

[8] B. Buchberger, A theoretical basis for the reduction of polynomials to canonical forms, SIGSAM Bull. 10 (3) (1976) 19–29, https://doi .org /10 .1145 /1088216 .
1088219.

[9] M. Brickenstein, A. Dreyer, PolyBoRi: a framework for Groebner-basis computations with Boolean polynomials, J. Symb. Comput. 44 (9) (2009) 1326–1345,
https://doi .org /10 .1016 /j .jsc .2008 .02 .017, Effective Methods in Algebraic Geometry.

[10] J.C. Faugère, A new efficient algorithm for computing Gröbner bases without reduction to zero (F5), in: Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation, ISSAC ’02, Association for Computing Machinery, New York, NY, USA, 2002, pp. 75–83.

[11] J.A. De Loera, J. Lee, S. Margulies, S. Onn, Expressing combinatorial problems by systems of polynomial equations and Hilbert’s Nullstellensatz, Comb. Probab.
Comput. 18 (4) (2009) 551–582, https://doi .org /10 .1017 /S0963548309009894.

[12] J.A. De Loera, J. Lee, P.N. Malkin, S. Margulies, Computing infeasibility certificates for combinatorial problems through Hilbert’s Nullstellensatz, J. Symb.
Comput. 46 (11) (2011) 1260–1283, https://doi .org /10 .1016 /j .jsc .2011 .08 .007.

[13] J.A. De Loera, S. Margulies, M. Pernpeintner, E. Riedl, D. Rolnick, G. Spencer, D. Stasi, J. Swenson, Graph-coloring ideals: Nullstellensatz certificates, Gröbner
bases for chordal graphs, and hardness of Gröbner bases, in: Proceedings of the 2015 ACM on International Symposium on Symbolic and Algebraic Computation,
ACM, 2015, pp. 133–140.

[14] D. Kaufmann, A. Biere, M. Kauers, From DRUP to PAC and back, in: 2020 Design, Automation & Test in Europe Conference & Exhibition, DATE 2020, Grenoble,
France, March 9-13, 2020, 2020, pp. 654–657.

[15] D. Kaufmann, A. Biere, Nullstellensatz-proofs for multiplier verification, in: Computer Algebra in Scientific Computing - 22nd International Workshop, CASC
2020, Linz, Austria, September 14-18, 2020, Proceedings, 2020, pp. 368–389.

[16] D. Kaufmann, A. Biere, M. Kauers, Verifying large multipliers by combining SAT and computer algebra, in: 2019 Formal Methods in Computer Aided Design,
FMCAD 2019, San Jose, CA, USA, October 22-25, 2019, 2019, pp. 28–36.

[17] D. Kaufmann, P. Beame, A. Biere, J. Nordström, Adding dual variables to algebraic reasoning for gate-level multiplier verification, in: Proceedings of the 25th
Design, Automation and Test in Europe Conference (DATE’22), 2022, pp. 1431–1436.

[18] M. Clegg, J. Edmonds, R. Impagliazzo, Using the Groebner basis algorithm to find proofs of unsatisfiability, in: G.L. Miller (Ed.), Proceedings of the Twenty-Eighth
Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996, ACM, 1996, pp. 174–183.

[19] M.L. Bonet, J. Levy, F. Manyà, A complete calculus for Max-SAT, in: Proc. of the 9th Int. Conf. on Theory and Applications of Satisfiability Testing (SAT’06),
2006, pp. 240–251.

[20] M.L. Bonet, J. Levy, F. Manyà, Resolution for max-SAT, Artif. Intell. 171 (8–9) (2007) 606–618, https://doi .org /10 .1016 /j .artint .2007 .03 .001.

[21] M.L. Bonet, J. Levy, Equivalence between systems stronger than resolution, in: L. Pulina, M. Seidl (Eds.), Theory and Applications of Satisfiability Testing – SAT
2020, Springer International Publishing, Cham, 2020, pp. 166–181.

[22] I. Bonacina, M.L. Bonet, J. Levy, Weighted, circular and semi-algebraic proofs, J. Artif. Intell. Res. 79 (2024) 447–482, https://doi .org /10 .1613 /JAIR .1 .15075.

[23] J. Larrosa, E. Rollón, Augmenting the power of (partial) MaxSAT resolution with extension, in: Proc. of the 34th Nat. Conf. on Artificial Intelligence (AAAI’20),
2020, pp. 1561–1568.

[24] J. Larrosa, E. Rollon, Towards a better understanding of (partial weighted) maxsat proof systems, in: Proc. of the 23rd Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT’20), 2020, pp. 218–232.

[25] E. Rollon, J. Larrosa, Proof complexity for the maximum satisfiability problem and its use in SAT refutations, J. Log. Comput. 32 (7) (2022) 1401–1435, https://

doi .org /10 .1093 /logcom /exac004.

[26] A. Atserias, M. Lauria, Circular (yet sound) proofs, in: M. Janota, I. Lynce (Eds.), Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd International
Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings, in: Lecture Notes in Computer Science, vol. 11628, Springer, 2019, pp. 1–18.

[27] C. Ansótegui, M.L. Bonet, J. Levy, F. Manyà, The logic behind weighted CSP, in: M.M. Veloso (Ed.), IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, Hyderabad, India, 2007, pp. 32–37.

[28] S. Buss, D. Grigoriev, R. Impagliazzo, T. Pitassi, Linear gaps between degrees for the polynomial calculus modulo distinct primes, J. Comput. Syst. Sci. 62 (2)
(2001) 267–289, https://doi .org /10 .1006 /jcss .2000 .1726.

[29] S.A. Cook, R.A. Reckhow, The relative efficiency of propositional proof systems, J. Symb. Log. 44 (1) (1979) 36–50, https://doi .org /10 .2307 /2273702.

[30] A. Urquhart, Hard examples for resolution, J. ACM 34 (1) (1987) 209–219, https://doi .org /10 .1145 /7531 .8928.

[31] S.F. de Rezende, M. Lauria, J. Nordström, D. Sokolov, The power of negative reasoning, in: V. Kabanets (Ed.), 36th Computational Complexity Conference (CCC
2021), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 200, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2021,
pp. 40:1–40:24.

[32] D. Sokolov, (Semi)algebraic proofs over {±1} variables, in: Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, ACM, 2020,
pp. 78–90.

[33] S. Mouli, Polynomial calculus sizes over the Boolean and Fourier bases are incomparable, arXiv :2403 .03933, 2024.

[34] Y. Filmus, E.A. Hirsch, A. Riazanov, A. Smal, M. Vinyals, Proving unsatisfiability with hitting formulas, in: V. Guruswami (Ed.), 15th Innovations in Theoretical
Computer Science Conference (ITCS 2024), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 287, Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 2024, pp. 48:1–48:20.

[35] D. Grigoriev, Linear lower bound on degrees of positivstellensatz calculus proofs for the parity, Theor. Comput. Sci. 259 (1–2) (2001) 613–622, https://doi .org /
10 .1016 /S0304 -3975(00)00157 -2.
21

[36] A. Razborov, Lower bounds for the polynomial calculus, Comput. Complex. 7 (4) (1998) 291–324, https://doi .org /10 .1007 /s000370050013.

https://doi.org/10.1016/j.artint.2010.10.002
https://doi.org/10.1016/j.artint.2010.10.002
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibCB52499B48CD7210FE57C17E5721F70Fs1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibCB52499B48CD7210FE57C17E5721F70Fs1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibE11EE27B7CB0748646D9B6B0D7BE10B8s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibE11EE27B7CB0748646D9B6B0D7BE10B8s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib1060537077A83427208509503C6DD11Bs1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib1060537077A83427208509503C6DD11Bs1
https://doi.org/10.1016/j.artint.2021.103552
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib352BF344E13156DA52118EB710F98077s1
https://doi.org/10.1145/1088216.1088219
https://doi.org/10.1145/1088216.1088219
https://doi.org/10.1016/j.jsc.2008.02.017
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib3B3CC5532308A084619866D3B5EEE722s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib3B3CC5532308A084619866D3B5EEE722s1
https://doi.org/10.1017/S0963548309009894
https://doi.org/10.1016/j.jsc.2011.08.007
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibB0AC7E8240EE3AF28532C6D6556223B9s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibB0AC7E8240EE3AF28532C6D6556223B9s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibB0AC7E8240EE3AF28532C6D6556223B9s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib7BFFEC13D9604A2B2030522F86E6B95Bs1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib7BFFEC13D9604A2B2030522F86E6B95Bs1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibB1363D8E4AC3C23C6D8D4062C43F117Cs1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibB1363D8E4AC3C23C6D8D4062C43F117Cs1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib81F9C22A2F2761FBE581A89432917AEFs1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib81F9C22A2F2761FBE581A89432917AEFs1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibEF748BD3C004660E84FAF76B6D9DFC52s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibEF748BD3C004660E84FAF76B6D9DFC52s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib4EF605384068D3AA8BD03F77EB85A18Es1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib4EF605384068D3AA8BD03F77EB85A18Es1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib80D0D15D7CFDFB20CDC7B2A3E011FA6Es1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib80D0D15D7CFDFB20CDC7B2A3E011FA6Es1
https://doi.org/10.1016/j.artint.2007.03.001
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib629FC6C146669CC5AD04FAF3A58D98AAs1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib629FC6C146669CC5AD04FAF3A58D98AAs1
https://doi.org/10.1613/JAIR.1.15075
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibAFF22A73125AA2CCFD28489C039F6AD6s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibAFF22A73125AA2CCFD28489C039F6AD6s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib04D6BF924EABD7C5BBB92DE74C98D629s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib04D6BF924EABD7C5BBB92DE74C98D629s1
https://doi.org/10.1093/logcom/exac004
https://doi.org/10.1093/logcom/exac004
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibDC05CF4CD98B8E8B4FDDDD67B0F65CA4s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibDC05CF4CD98B8E8B4FDDDD67B0F65CA4s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibB366130458333D79B24F977AACD54B91s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibB366130458333D79B24F977AACD54B91s1
https://doi.org/10.1006/jcss.2000.1726
https://doi.org/10.2307/2273702
https://doi.org/10.1145/7531.8928
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib0C4553EC9F59973377411F695D37195Fs1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib0C4553EC9F59973377411F695D37195Fs1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib0C4553EC9F59973377411F695D37195Fs1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibA09D3E607059308023E4D5701CEDACF5s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibA09D3E607059308023E4D5701CEDACF5s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bibF1428E77BCFB7AA845B0044FA6E9F435s1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib2B365C6F3E8829D4F76624F239C9D64Ds1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib2B365C6F3E8829D4F76624F239C9D64Ds1
http://refhub.elsevier.com/S0004-3702(24)00144-9/bib2B365C6F3E8829D4F76624F239C9D64Ds1
https://doi.org/10.1016/S0304-3975(00)00157-2
https://doi.org/10.1016/S0304-3975(00)00157-2
https://doi.org/10.1007/s000370050013

	Polynomial calculus for optimization
	1 Introduction
	2 Preliminaries
	2.1 Propositional formulas and MaxSAT
	2.2 Polynomials over finite fields
	2.3 Polynomial calculus
	2.4 MaxSAT on sets of polynomials

	3 Structural inference rules for MaxSAT calculi
	4 Polynomial calculus for MaxSAT (special case F2)
	5 Completeness
	6 Tseitin formulas
	7 Polynomial calculus for MaxSAT (general case)
	8 Connections of weighted polynomial calculus with other MaxSAT systems
	9 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References

