
IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 1

Autonomic Information Auditing through Electronic Institutions

Technical Report IIIA-TR-2009-07

Héctor G. Ceballos1, Pablo Noriega2, Francisco Cantú1

ceballos@itesm.mx, pablo@iiia.csic.es, fcantu@itesm.mx

Tecnológico de Monterrey1, IIIA-CSIC2

This report presents the development of an Electronic Institution for auditing

information in a research and graduate programs corporate memory. Electronic

Institutions are used for formalizing processes performed by human experts and

professors providing a platform for gradual automation. New features like a

Directory Facilitator and a protocol for instantiating new agents and inviting them

to certain scene are implemented. Such features provide self-configuration

capabilities to the system.

July 20th, 2009

mailto:ceballos@itesm.mx
mailto:pablo@iiia.csic.es
mailto:fcantu@itesm.mx

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 2

Contents
A Research and Graduate Program Corporate Memory ... 3

Publications auditing ... 3

Other Practical issues on the current process ... 5

Autonomic Information Auditing .. 5

Electronic Institutions for Autonomic Information Auditing ... 7

First Modelling Phase (EI specification) ... 7

Agents Java Code Generation .. 11

Testing the Specification ... 11

Synchronizing Specification and Implementation ... 12

Second Modeling Phase .. 12

The invitation mechanism ... 16

Designing the new functionality .. 17

Implementing the new functionality ... 19

Discussion .. 20

Conclusions .. 21

Future Work... 21

Acknowledgements ... 23

References ... 23

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 3

A Research and Graduate Program Corporate Memory
The Tecnologico de Monterrey counts with a research and graduate programs corporate memory that

consolidates information gathered from institutional transactional systems, information reported by researchers

and information gathered from web sites [Cantu et al, 2005]. Meanwhile information proceeding from

transactional systems is validated by institutional processes, information feed manually is susceptible of errors

like misclassifications, duplicity or missing data. Given that this information is used for calculating institutional

indicators used on institutional making decision, consistency and trustworthy is an important issue.

Information feed by professors is associated to catalogs representing organizational units, internal and external

people and institutions, accountant information, research and graduate programs, etc., resembling a Research

Social Network for our institution. On this way, new information feed by one professor may affect the personal

record of another person (a coauthored publication for example). Such changes are notified to related or

interested people, allowing them to complement or correct information.

These notifications allows to have auditing checkpoints where expert auditors can revise the information feed

by professors and perform the necessary changes in order to maintain the repository consistency. This process

is made periodically and results of the auditing are notified to the information responsible. The user can reply to

the correction and provide additional information for validating the original information.

Next is presented a simplified example of an auditing process on publications information and some issues that

motivated the current work.

Publications auditing
The publications repository registers the scientific production of professors organizing it in an institutional

taxonomy consisting of about 20 different categories organized at different levels. Every category receives a

different weight on every evaluation system. For simplicity we present a simplified taxonomy constituted by:

articles in journals, articles in proceedings and thesis. This taxonomy is illustrated in Figure 1.

Figure 1. Simplified publications taxonomy

Information stored in the repository is actually the metadata of the publication; hence we have common data

elements as shown in Figure 2.

There is additional information and constraints for each type of publication. For example, a journal article is

published in a journal, meanwhile that a proceedings article is published in the proceedings of a conference. It is

important to maintain a differentiated catalogue of journals and conferences that allows not only quantifying

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 4

but qualifying professors’ scientific production. This qualification is made through the Thomson’s Journal

Citation Report (JCR) impact factor of the journals on which the article appears.

A thesis for example, is published with the support of an education institution and distinguishes itself of other

publications because its author is a student instead of a professor. Professors appear as advisors in a separated

field.

Figure 2. Common metadata for all the publications.

There are some common inconsistencies that expert auditors have already detected and modeled. One of them

is the duplicity of the publication in the repository and consists on the existence of two publications in the

repository having such a degree of similarity that make the auditor suspect that both are in fact the same

publication registered twice.

Other common problem is the inconsistency between the status of the publication and the year of publication.

Given that the repository allows that the professor register its production in progress, indicating a tentative

publication date and a current status, it is possible that both data become inconsistent with the pass of time.

Publication status and the transitions between them are shown in Figure 3.

Figure 3. Publication status evolution

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 5

Other problem is posed by homonymy in participants’ names, which can produce association errors that cause

losses on credit assignment. This is hardly detected by an expert auditor.

As can be seen, some of the previous problems cannot be detected online. The first requires a comparison

against the entire content of the repository; meanwhile the second requires evaluating the rule periodically.

Both verifications are done offline. This auditing can be automated if the outcome of the automatic auditing is

revised by a human expert and the results are notified to the responsible professor for a second opinion.

Professors cannot be bothered too often for validating the information. The expert auditor is allowed to gather

information from other systems in order to reduce the necessity of asking the professor. On the other hand, the

confidence on the information stored depends on the revision of the direct responsible. As can be seen, both

objectives are contradictory.

The expert auditor uses web sites (Google) to verify provided information and for gathering missing data or

additional information not requested by the system. Auditing rules might be wrong or be too broad. Along time

and due to his own experience, the expert updates his auditing rules adding new criteria. This causes that

auditors consider different criteria for the same auditing rule.

Another issue is information incompleteness in the repository, i.e. the existence of publications that have not

been reported by professors but that have been published in some conference or journal. We are not attacking

this problem right now.

Other Practical issues on the current process
 Manual data extraction of the Thomson’s JCR impact factors.

 Taxonomy is not enough for classifying information. Main categories are used for validating the minimal

information that must be captured. Nevertheless, categories used for visualization and generation of

reports and indicators depend on the type of analysis, which usually doesn’t have a direct

correspondence with the former. For instance, all the scientific production published in foreign

countries.

Autonomic Information Auditing
In order to provide a software solution capable of growing and adapting to the organizational environment of

our institution is presented the approach of Autonomic Information Auditing. The objective is having an

infrastructure on which expert knowledge is transferred to autonomous agents supervised by human experts.

On this way, human intervention is reduced progressively but is available for cases on which the agent cannot

make a decision based on current information. Causal discovery is guided by a human expert.

Periodic auditing of the information contained in the publications repository must discover the type of

inconsistencies described above. If the solution is evident, i.e. there is a correction rule that can be applied

confidently, the correction can be made automatically. The professor is notified of the change in order to allow

him/her reply to it.

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 6

If the solution requires human supervision, i.e. there are many possible solutions and there is no a single one

that had demonstrated to be right in most of the cases, then a human expert is notified in order to select the

right option or correct manually the record. If the solution is not evident then the professor is requested for

making the correction. This process is illustrated on Figure 4.

Figure 4. Core of the auditing process.

As can be seen the decision is not always the same, depends on the information of the case evaluated and the

confidence on the possible solutions. Beyond that, we rely on the response of experts and professors for

warrant the consistency of the repository, which depends on the consistency of the each publication contained

on it.

Automation of the auditing process requires implementing a back-end platform on charge of monitoring,

auditing and correcting information feed by professors. Our proposal includes implementing a MultiAgents

System for performing the offline auditing. The proposed architecture is illustrated in Figure 5 along the systems

and classes of agents necessary for the task.

Expert auditors are on charge of defining the inconsistency and correction rules. These rules must be expressed

in a format gentle for experts and that agents can understand and execute. The confidence on the efficiency of

the rules must be expressed probabilistically and be modeled through agents’ observations (experience).

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 7

Figure 5. Multiagents System Architecture for publications auditing

The LogMonitor (LM) agent monitors changes in the repository. The RepositoryGuardian (RG) agent is

responsible of instantiating service agents required for the auditing process, as well as keep track of the entire

process and learn from it. Auditor (Aud) agents evaluate auditing rules on demand; they are responsible for

gathering the necessary information for auditing the record and request a correction whenever one is available.

Corrector (Corr) agents apply the correction rules if they are trustworthy. User agents communicate the

information to its designated user through email messages and waits for their response. Additionally, actions

derived of notifications are tracked by the LogMonitor agent in the information system, closing the loop.

The RepositoryGuardian agent must assure that the LogMonitor agent is working and that there is an Auditor

agent for each kind of inconsistency reported in the ontology by the administrator. Similarly to Auditors,

Corrector agents must be available for every possible correction applicable to the recognized types of

inconsistencies. User agents are instantiated on demand.

Electronic Institutions for Autonomic Information Auditing
Electronic Institutions formalism [Sierra and Noriega, 1997] and tools [Esteva et al, 2002] developed at IIIA

provide a valuable framework for modeling and development of the Multiagents System proposed in previous

section. In this section is described the iterative process of modeling, implementing and testing the MAS. Some

ideas or approaches are evaluated and through them the formalism is better understand.

First Modelling Phase (EI specification)
As first step, having valid illocutions in scenes as the only way for exchanging information between agents

motivated the introduction of a new type of agent: the PubCarrier. This agent is responsible for transporting the

information of the publication through the different scenes in the process allowing capture an entire picture of

the auditing process as an observed case. Otherwise, we would think of having an agent accessing the

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 8

repository at any moment, from any part of the process. With this addition we started to model the process in

Islander.

The first approach consisted on modeling the auditing process through multiple scenes and controlling the

entrance and exit of agents along the process. Each scene has a part of the auditing protocol where the type of

agents is restricted. See Figure 6.

Figure 6. Auditing process codified as performative structure.

The second approach consisted on modeling the process like a single scene where any internal or external agent

could enter and exit at different points. The scene has the entire auditing protocol. See Figure 7. The

performative structure contained a single scene. On this approach experts and authors are considered as

external entities and the communication with them is represented in the automata.

Figure 7. Auditing process codified in one scene (for one inconsistency).

In the third approach, Expert and Author agents encapsulate the communication with external users, which is

the purpose for which were User agents were proposed in Electronic Institutions. See Figure 8. The participation

of human agents is represented by User agents: Experts or Authors. An institutional message is sent to the

human through a web interface (synchronously) or through an email (asynchronously), controlled by the user

agent. The user agent is responsible for monitoring human response and passing it to the Institution through a

message. Details on the implementation of these procedures are hidden for the Institution.

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 9

Figure 8. Simplified auditing codified in one scene (for one inconsistency).

Given that the auditing scene only checks/correct a single inconsistency, the performative structure must

consider the flow for sending the request for auditing to every auditor agent. On this way, there is generated a

scene per each publication-inconsistency. See Figure 9.

Figure 9. Performative Structure for auditing new publications in the repository.

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 10

It was added a scene where the LogMonitor agent detects new publications in the repository. The

RepositoryGuardian agent needs to instantiate a PublicationCarrier agent for each new publication. The

PublicationCarrier creates auditing scenes for each available Auditor agent and finally summarize the result of

the auditing.

Even when the instantiation of agents is not represented in the EI, we can assume that the instantiated agent

gets into the institution on the same way that other agents do, through the starting point in the performative

structure. On the other way it should allow that an agent that didn’t entered in the scene could get out of it, i.e.

an agent is created on the scene.

Another instantiation of agents is made in the Auditing Protocol, where the Auditor agent can instantiate an

Expert or Author agent, depending on what is more convenient. If some of these agents already exist, the agent

should be informed by the institution that its presence is required in the scene.

Finally, the Audited scene allows that the information gathered by the PubCarrier be concentrated by the

RepGuardian. Before reaching this point I thought of extracting the information from the scene object in order

to structure a single case of the auditing process. But beyond the privacy violation on which I could incur, as

Bruno explained me, the process should be concentrated in a single scene, which would limit the flexibility and

growth of the process, as it will be shown later. Figure 10 shows the initial proposal for the NewPublication and

Audited protocols.

(a)

(b)

Figure 10. Protocols for (a) detecting new publications and (b) reporting the auditing result.

The specification through the third approach was completed and validated with the tool provided by Islander.

Products obtained up to this point were: a performative structure (main workflow), three scenes/protocols with

valid illocutions, a dialogical framework (agents classes), and an ontology for the contents of the illocutions.

The validation tool for the EI provided by Islander was of great value. It allowed me to learn through examples,

indicating when something was missing, invalid formats for illocutions contents, cuts in the flow of agents, etc. If

the validation only had thrown the classic Valid or Invalid output, without a partial error message, the design

process would had been tortuous.

Additionally, the Auction House example provided lot of practical examples.

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 11

Agents Java Code Generation
Once we have a valid regulatory framework we can continue with the development of agents. The ABuilder tool

provided a way of implementing them. ABuilder creates the Java code for event-driven agents that interact with

the governor agent, as well as the ontological framework used on illocutions. ABuilder generates java classes

for: the agent, the performative structure, and for each scene on which participates (according to the

specification), and adds TODO labels indicating that the developer must incorporate logic at that point.

The resulting code was migrated to an Eclipse project facilitating the compilation and execution. Note:

additional to the configuration instructions given in the web page, the Eclipse project must include the current

source code in the Java Build Path (see project properties). The execution of Islander and Ameli can be

configured in Eclipse using the class es.csic.iiia.eide.MainLauncher and passing as parameter islander or ameli,

respectively, and indicating the XML specification configuration file. Both files are generated by ABuilder during

the generation of the performance project.

Testing the Specification
After a rapid inspection of the generated code I ran the experiment through the ABuilder interface, see Figure

11. The population of agents can be configured and randomized through the design of the experiment. For

example, once a variable is defined on the agent, a random numbers generator can be used for filling its value

on each instantiated agent. Nevertheless, the generated agent class doesn’t stores such values in properties

automatically; this must be done by the developer through the AgentInstanceConfiguration object passed as

parameter in the agent constructor.

Figure 11. Agents populations of an ABuilder experiment.

The experiment is launched in AMELI and its execution was analyzed from the scenes and agent perspective

through the traces of the messages exchanged during the experiment’s execution, see Figure 14. Iconography

identifies the different types of events occurring on scenes. As soon as I started to see them I became familiar

with them. Colors on agents’ names and on performative structure elements denote if there is currently some

activity on them.

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 12

Figure 14. AMELI execution.

As result of the execution of the experiment I could observe how scenes were instantiated and where agents get

stocked. Adjusting the action selection in the code generated allowed me to simulate the different paths an

agent could follow. After some experiments I noticed that some arrangements should be done.

Synchronizing Specification and Implementation
Ideally, EI’s specification should consider all the cases and code generation should be done only once. For this

reason, an iterative specification-development process becomes cumbersome as long as code generation

overrides agent’s customizations. For example, some specification changes that require deep understanding of

the EIDE framework for being done simultaneously are: adding new vocabulary in the ontology or adding arcs or

nodes in the performative structure or protocols.

Further, with a better understanding of the generated classes, I learned which files to overwrite from the new

specification. For example, the ontology class, the dialogical framework class, abstract classes representing the

performative structure and scenes, as well as the scene classes for each agent. The definition of abstract classes

by ABuilder allowed to apply changes along all the agent classes participating on the given performative

structure or scene.

Second Modeling Phase
Knowing that a single agent can be simultaneously in different scenes motivated changes on the scenes: making

some static (NewPub and Audited), and modifying them for allow that some agents would remain fixed on them

(RepGuardian for instance). The new performative structure is shown in Figure 15, the new version of

NewPubProtocol is shown in Figure 16, and the new version of AuditedPubProtocol is shown in Figure 17.

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 13

Figure 15. Performative Structure afte agent’s implementation.

Another lesson learned was the correct use of transitions. In principle I used only ANDs, but through

experiments noticed that transitions are not only used for synchronization, but for indicating which ways

can/must follow the agent. For instance, in Figure 15, the upper transition was changed to OR to allow the

RepGuardian enter to NewPub or Audited, but not necessarily both. On the same way, the XOR transition

between Auditing and Audited forced the PubCarrier to move only towards one of the both scenes. Agent’s

decision is codified in the respective performative structure class.

Figure 16. NewPubProtocol after agents’ implementation.

The new version of the NewPubProtocol is static, allowing PubCarrier agents entering and exiting the scene

meanwhile the RepGuardian and the LogMonitor agents remain on it. Besides, the protocol structure allows

controlling the application flow restricting the valid illocutions. For example, even when the LogMonitor agent

might be detecting new publications, it is only allowed to communicate one to the RepGuardian agent when a

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 14

PubCarrier agent has been dispatched. On this way we can control the information flow in terms of agents

events like: an agent entered in the scene or message received.

This scene restrict to having a single RepGuardian agent. This constraint enables identifying easily an agent by its

role. For instance, the PubCarrier agent can be sure that it is addressing the same RepGuardian all the time, on

this scene.

Figure 17. AuditedPubProtocol after agents’ implementation.

The AuditedPubProtocol became static too. The cycle in the end node allows to the RepGuardian agent remain

in the scene indefinitely. PubCarrier agents can enter and exit in that node. Checking the specification noticed

an error in this scene but neglect it and generated the code. The code was generated successfully and ran the

experiment. Later was told by Bruno that an ending node cannot have illocutions on it. Nevertheless, the

decision for exiting the scene is controlled by the agent (with the method exit in the scene performance), so this

validation didn’t make too much sense to me.

Agents’ implementation for LogMonitor and RepGuardian was completed first as long as they did participate in

static scenes only. NewPubProtocol and AuditedProtocol were complete.

Now the auditing scene was revised. Given that the creator and “owner” of the auditing scene would be the

PubCarrier, we should allow that Auditor agents would leave it once they had made their evaluation; see Figure

18.

Facing the question of how many publications a PubCarrier would manage simultaneously I prepared this agent

creating subclasses of it. On this way it would be possible to compare the performance of the system for

PubCarriers capable of auditing several publications at the same time. For now I only prepared the

SimplePubCarrier subclass, which can only carry a single publication. Nevertheless, it were introduced general

methods in the PubCarrierAgent class for allowing to implement new versions of this class. For example,

methods like canAcceptPub() or getNextPubToAuditWith(Auditor) are overridden in SimplePubCarrier using

fields proper of the agent implementation. The PubCarrierAgent can be declared as abstract in order to avoid its

instantiation. The new class is defined in the ABuilder project for allowing the instantiation of the class

SimplePubCarrier instead of PubCarrier.

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 15

Figure 18. AuditingProtocol during agents’ implementation.

At this point Pablo suggested separating the auditing scene in two: one for the auditing and another for the

correction. This change would allow implementing different types of auditing protocols; some of them could

involve multiple the participation of multiple agents. At the same time, cycles would allow the PubCarrier to

pass through multiple auditing scenes, one for each type of known inconsistency. See Figure 19.

Figure 19. Main performative structure with simultaneous Auditing and Correction scenes.

This modification enabled concurrency during auditing and correction, which was included in the specification

marking the Auditing and Correction scenes as lists. The incoming edges of auditors and correctors were

changed from ONE to SOME. The institution controlled that auditors and correctors entered to only one scene

at the time. Nevertheless, PubCarriers agents created all the scenes as soon as they were allowed. On this way,

it can be multiple scenes of auditing and correction, meanwhile auditors and correctors agents can choose to

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 16

which to enter or change from one to another. Another improvement was introducing the AudWaiting scene on

which Auditor and Corrector agents can wait until finding some suitable Auditing or Correction scene.

This change impacted the implementation of agents by splitting the original Auditing protocol in two. The

change affected all the agents participating in this scene (Auditor, Corrector, Author, Expert, PubCarrier). But

the radical change was passing from a single inconsistency checking and correction to a process that allows

correcting simultaneously several inconsistencies with the participation of agents at different stages, which

optimize assignment of resources.

In the agent implementation this change required to store in the agent class information that was originally

managed on the scene through messages. The PubCarrier’s event-based plan now is divided in two parts

motivating the implementation of methods in the agent class for continuing the auditing process. PubCarrier

decisions for following some path or another uses these new functions; for instance, a method like

getNextInconsistencyToCheck() would allow to decide if it needs to create another auditing scene or if it must

terminate.

The invitation mechanism
Given that not all Auditor, Corrector, Author and Expert agents need to participate in all the scenes, we require

a mechanism for “inviting” to certain agents to specific scenes. This mechanism is represented by the following

functionality:

1. A Directory Facilitator (DF) for knowing which agents are present and their capabilities.

2. Instantiation of agents on demand, whenever there is none available for a specific need.

3. Requesting agents for certain scene according to a given agent description.

4. A protocol for inviting agents to join to some scene.

This mechanism was thought in a server-client schema, where the same agent that has control of the DF is

responsible for processing invitations and instantiating new agents. Another option would be implementing all

this functionality as a service that agents would access through the existing interfaces (see EInstitution class).

The advantage of our approach is that it would allow a negotiation phase during the invitation, enabling a

ContractNet protocol implementation for instance.

In the next sections is explained the implementation of this mechanism and the problems found during its

implementation.

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 17

Designing the new functionality
The new functionality was modeled through two roles: CAIDAg for the server side, and SIIPAg for the client side.

It was designed a second performative structure containing the new functionality, see Figure 20.

Figure 20. CAID services Performative Structure

In order to add this functionality to every agent, it was added an upper performative structure indicating that

every agent simultaneously access both scenes: auditing and CAID; see Figure 21. Observe that the agent

identifier indicates feasible changes on role. The OR transition indicates that a SIIPAg can adopt any of the other

roles in the other side of the transition: Auditor, Expert, etc.

Figure 21. Main performative structure.

ABuilder’s code generation provided an implementation of every agent. SIIPAg implemented the client version

of the CAID functionality, the RepGuardian implemented both functionality as long as it participates explicitly in

Auditing and CAID performative structures, and finally the rest of the agents were only implement with the

functionality described in the Auditing PS.

This functionality is implemented through a new EInstitutionService called AgentInstantiator and four static

scenes where every agent participates until its disposal, see Figure 20. These static scenes are:

 LogInProtocol: Every new agent informs to the CAIDAg of its entrance in the system, as well as its

essential role and a list of actual accidents. See Figure 22. Additionally, the CAIDAg should notify the

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 18

invitation that motivated its instantiation in order to validate that the agent is capable of achieving the

task (this isn’t included in the Figure 22).

 LogOutProtocol: The agent notifies the CAIDAg when is leaving the institution. The CAIDAg updates its

list of available agents and releases slots for instantiating new agents. See Figure 23.

 AgsRequestProtocol: An agent that requires the presence of some agent on its current scene, before

entering or once it has entered on it, requests to the CAIDAg for the agent through an agent description.

The agent description may include a role, a name and a set of potential or actual properties. If there is

no agent available with the given description and the CAIDAg have free slots then instantiate the

required agents. Simultaneously, the CAIDAg invites the required agents through the invitation protocol.

See Figure 24.

 NotificationsProtocol: Similarly to a chat room, this protocol allows the CAIDAg to invite other agents to

participate in a given scene with a given role. The invited agent can accept or refuse the invitation. See

Figure 25.

Figure 22. CAID Functionality: LogIn protocol.

Figure 23. CAID Functionality: LogOut protocol.

Figure 24. CAID Functionality: AgentsRequest protocol.

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 19

Figure 25. CAID Functionality: Notifications protocol.

As can be seen in the diagrams, protocols designed for CAID functionality contain a main node on which agents

can perform certain illocutions. Even when these are not protocols properly, this was a way of implementing

exchange of messages between all the agents in the system, for inviting them to a scene for instance. The single

state protocol allows agents to issue any valid illocution as soon as they can. The work of organizing and give

coherence to the protocol relies on the logic of a single agent representing the server side. Otherwise, agents

would need to wait for saying a valid illocution when it was allowed to, and very complex or extended protocols

would delay request from other agents.

Implementing the new functionality
In order to incorporate the client side of the CAID functionality in an agent, the SIIPAg was declared as

superclass of every class, except the RepGuardian. The CAIDAg agent was declared as superclass of the

RepGuardian. Both classes, SIIPAg and CAIDAg where declared abstract. Methods used for merging both

performative structures giving a different treatment to every agent class where declared abstract too, forcing

the implementation in subclasses. For instance, the original role of the agent is obtained through the

getEssentialRole() method.

Initially, there were defined some parameters for controlling this functionality:

 The maximum number of agents that can be instantiated by role.

 The maximum number of invitations that can accept each agent type, or 0 if it doesn’t accept

invitations.

Additionally it was codified in methods a default behavior that can be overridden on each agent

implementation. On this customization it can be included a condition for accepting an invitation. For example,

the Auditor might not accept invitations if it is currently auditing some publication.

Additionally, it was implemented the mechanism for assuring that agents exiting of the Auditing performative

structure would automatically exit of the main PS and from the CAID PS. The mechanism included a method for

forcing the termination of all the agents in the system, in the last two performative structures.

An issue was that once that the agent split itself and enter in both sub performative structures, it was necessary

to control manually that the agent wait until be logged in and participating in the notification and agent request

protocols. Evidently it was necessary to integrate in other way both functionalities. Figure 26 shows the new

main performative structure. On it, scenes originally defined in the CAID PS were organized around the auditing

scene.

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 20

Figure 26. Integration of CAID functionality around original function (Auditing).

The new main performative structure generated by ABuilder was easily integrated to the current

implementation. It was necessary to incorporate a StayAndGo access of the SIIPAg in the Notifications and

AgRequest for allowing the simultaneous participation in Auditing and both previous protocols. See state

Invitation in Figure 27. The StayAndGo method in the agent implementation produced a “splitting” of the agent.

Figure 27. Stay and go for SIIPAg in the invitations protocol.

Another important issue was on synchronization. Given that agents participate simultaneously in several scenes

the access to common objects produce synchronization problems. This kind of problem can be solved through

the implementation of synchronization locks.

Discussion
As it was shown in our application, not all the processes occur on line and directing the participation of agents

towards certain scenes simplify the design of the system. The mechanism of invitation, extended to

ContractNet, would enable a good tradeoff between simplicity in the specification and optimal resource

allocation. The proposed extension could be implemented as an institutional agent in order to assure the correct

functioning of the institution.

Not all the scenes should follow a structure based on graphs. A simple chat room with valid illocutions would be

useful to in some applications (see Figures 24 and 25). The conversation control would be done internally by the

participants. The disadvantage of having a rigorous protocol on which each agent must wait to issue an

illocution poses the necessity of having a queue of illocutions to say on every scene. This problem was tackled

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 21

extending the ScenePerf class with two methods: addMessageToSend(content, agent), and

sendPendingMessages(agent). See class mx.mty.itesm.caid.ExtendedScenePerf.

The agent architecture provided by ABuilder doesn’t allow carrying out a plan that requires access to different

scenes. The work of controlling the flow among scenes according to a plan is left to the agent developer.

Information processed in one scene is lost in the transition to another scene and a plan inter-scenes is

unfeasible with scene information. For example, once the PubCarrier agent sends to auditing a publication and

is informed of an inconsistency, it can choose to enter in the correction scene. If it does, how does it know which

was the publication and the inconsistency it was to correct? In order to overcome this limitation, information

needs to be uploaded to the agent, as it was done through an API of public methods developed in agent classes.

Entering and exiting from scenes would be part of the plan.

The institution acquires information through the post-conditions of illocutions and transitions, and validates

these through this gathered information. In principle, I thought that properties declared in the agent

specification were public, not only used for agent’s initialization, as I was told later by Bruno. If properties

declared in the agent specification were considered public, and access methods were provided in the agent

implementation, it would be feasible to use publicly internal agent’s properties for validating transitions. For

instance, if an agent is doing some task and its status is Busy, it would be constrained some illocution in some

other scene. In terms of privacy, the institution would be constraining the access of an agent to having free

access to certain information. In real life, a foreign visitor is obligated to show his passport to enter a country.

ABuilder tool generates an agent template that considers changes in roles. For instance, the RepGuardian agent

enters in the institution as CAIDAg and then adopts the RepGuardian role in Auditing scenes. The agent

template contains code for the agent on each scene for each role it can play. The agent was codified with the

name of CAIDAgAgent. Nevertheless, as I explained before, the original role was RepGuardian, not CAIDAg. My

point is that the role doesn’t identify the type of agent. In my opinion the agent class should be expressed

explicitly and the type of roles an individual of an agent class should be associated explicitly too. Even though,

our approach proposes that the publicly available definition of the agent would be enough for determining the

kind of roles an agent can play, whenever scenes specify the attributes (including actions) an agent should have.

Conclusions
This experience allowed constructing a Multiagent System capable of supporting the auditing process

presented. The autonomic aspect of instantiating additional agents was implemented in a first approach; it

needs to be formalized in depth and complemented with ContractNet or other resource allocation algorithm.

The motivation and scope of Electronic Institutions presented to me by Pablo Noriega, Marc Steva and Juan

Antonio Rodríguez was extremely useful as long as showed me the facilities the approach proposes rather than

the limitations that imposes to the agent developer, which is the first impression must people have.

Future Work
Finally I present some research directions that might be interesting on my particular project and for Electronic

Institutions in general.

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 22

For Automic Information Auditing:

 Incorporate a distributed probabilistic model for agents’ decision.

o The model is built from a global perspective describing the entire process workflow.

o On this model are included utility nodes that take values depending on the rest of the model;

these nodes are called finality nodes, as long as they represent final causes of the system.

o Agents exchange causal information in order to update their model or inform changes on its

effectiveness performing some task.

o The CAID Agent is used for collecting a global vision of the model and to optimize it through the

addition or disposal of agents.

 Implementing a new type of inconsistency evaluation based on SNA for detecting homonymy

associations errors.

o Considering two graphs: one for homonymy strength and another weighted for joint authorship.

o Given three authors A1, A2, and A3, such that homonym(A1, A2), authorship(A1, A3) is high and

authorship(A2,A3) is low, would indicate that A2 was associated to a publication by mistake.

 Applications in Knowledge Management (KM). The EI specification could be used for designing,
validating and updating manual for institutional roles in a real organization.

o The list of scenes would indicate the services a person playing a given role can offer.
o Valid illocutions, the minimal information it must be provided to the other part.
o States description could contain the description of the task that must perform before issuing an

illocution. An atomic or composite action. Maybe a flow diagram.
o At a given state, it could be useful having links to other protocols that could be started in order

to fulfill the current action. I know this is such a privacy invasion, but this is proposed for
internal agents only.

 The response of authors and experts can be modeled in terms of Reputation.
o An auditor can be more accurate on his diagnose than another, for certain inconsistency.
o Professors that neglects system’s request can be sanctioned. Would this sanction improve

repository consistency?

For Electronic Institutions:

 Create a Protégé plugin for importing and exporting ontologies to the Islander format.

 Using Description Logic formalisms for specifying an Electronic Institution.

o It would be necessary to have a mechanism for proving partially the consistency of the

elements, instead of only saying if the specification is valid or not.

 Implementing a Directory Facilitator (DF) through a Description Logics system that loads the Institution

ontology and enables the following operations:

o Keep track of registered agents through an agent definition containing an essential role and its

actual accidents (DF).

o Calculating potential accidents from its essential role definition.

o Express or calculate which institutional roles can play an agent with a given essential role.

o Load enumerates and constants from the ontology.

o Express agents’ descriptions through SPARQL queries for identifying current agents.

IIIA-TR-2009-07 Ceballos, Noriega, Cantú

IIIA-CSIC 23

o Use this agent description for generating all the possible agent definitions that would satisfy the

description.

 Using agent definition for determining the kind of roles an agent can play in the Institution.

o Scenes should be annotated with minimal requisites about participants’ capabilities.

o The public definition of agents should include potential attributes, including actions.

 Implement a ContractNet protocol [Smith 1980] for negotiating invitations to agents when there is more

than one candidate. Currently we only have direct contracts.

o It would be used the original approach that hasn’t a cost associated to the bid. Instead, the

contractor assigns contracts according a plan that consider the information provided by the

participants.

o Information that could be exchanged on this format would be the causal effect (likelihood) of

achieving certain goal for the given case. For instance, choosing the Auditor agent that can

assess with the highest rate a given inconsistency type.

Acknowledgements
This stay was sponsored by CONACyT and Tecnologico de Monterrey. We’d like to thank to the IIIA for they

support on this work; in particular to Marc Steva, Juan Antonio Rodríguez and Bruno Rosell for their

explanations on Electronic Institutions theory and tools.

References
[Cantu et al, 2005] Francisco J. Cantú, Héctor G. Ceballos, Silvia P. Mora, Miguel A. Escoffié. A Knowledge-based

information system for managing research programs and value creation in a university environment. Americas

Conference on Information Systems - AMCIS. Internacional. USA. pp: 781-791. August 2005.

[Sierra and Noriega, 1997] Carles Sierra and Pablo Noriega. A formal framework for accountable agent
interactions. In Fifth Bar-Ilan Sympossium on Foundations of Artificial Intelligence, pages 23-24, Ramat-Gan,
Israel, June 1997.

[Esteva et al, 2002] Marc Esteva, David de la Cruz, and Carles Sierra. ISLANDER: an electronic institutions editor.
In First International Conference on Autonomous Agents and Multiagent systems, pages 1045-1052, Bologna,
July 2002. ACM Press.

[Smith 1980] Reid G. Smith. The Contract Net Protocol: High-Level Communication and Control in a Distributed
Problem Solver. IEEE Transactions on Computers , 1104 Vol. C-29, No. 12, December 1980.

