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a b s t r a c t

Among the wide variety of malicious behavior commonly observed in modern social platforms, one
of the most notorious is the diffusion of fake news, given its potential to influence the opinions of
millions of people who can be voters, consumers, or simply citizens going about their daily lives. In
this paper, we implement and carry out an empirical evaluation of a version of the recently-proposed
NetDER architecture for hybrid AI decision-support systems with the capability of leveraging the
availability of machine learning modules, logical reasoning about unknown objects, and forecasts based
on diffusion processes. NetDER is a general architecture for reasoning about different kinds of malicious
behavior such as dissemination of fake news, hate speech, and malware, detection of botnet operations,
prevention of cyber attacks including those targeting software products or blockchain transactions,
among others. Here, we focus on the case of fake news dissemination on social platforms by three
different kinds of users: non-malicious, malicious, and botnet members. In particular, we focus on
three tasks: (i) determining who is responsible for posting a fake news article, (ii) detecting malicious
users, and (iii) detecting which users belong to a botnet designed to disseminate fake news. Given
the difficulty of obtaining adequate data with ground truth, we also develop a testbed that combines
real-world fake news datasets with synthetically generated networks of users and fully-detailed traces
of their behavior throughout a series of time points. We designed our testbed to be customizable
for different problem sizes and settings, and make its code publicly available to be used in similar
evaluation efforts. Finally, we report on the results of a thorough experimental evaluation of three
variants of our model and six environmental settings over the three tasks. Our results clearly show
the effects that the quality of knowledge engineering tasks, the quality of the underlying machine
learning classifier used to detect fake news, and the specific environmental conditions have on smart
policing efforts in social platforms.

© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

One of the biggest problems that our overly-communicated
ociety is suffering is information disorder, which can lead to
isinformation and polarization of opinions and ideas, and even
romote violent behavior. The diffusion of fake news on the Web
as the potential to influence the opinions of millions of people
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who can be voters, consumers, or simply citizens going about
their daily lives. Many initiatives are being carried out with the
goal of fighting such phenomena, ranging from the deployment
of policies and protocols to prevent the creation of such content,
to technological research and development for identifying and
tracking fake news. Since we believe that in this effort it is crucial
to understand the complex socio-technological ecosystem of in-
formation diffusion, in this work we propose the implementation
and evaluation of a decision-support system with the capability
of reasoning about unknown information related to objects and
actors, and the diffusion processes that affect them.

Our proposal is based on the NetDER architecture [1], which
takes its name from ‘‘Network Diffusion and Existential Rules’’.
he main idea behind this model is to afford the creation of
ybrid artificial intelligence models that combine the use of data
nalytics and machine learning-based tools, ontological knowl-
dge, and diffusion processes, leveraging the advantages from
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reasoning in complex and explainable ways while having the
ability to represent, forecast, and make sense of complex diffusion
processes in social networks. The NetDER architecture is designed
o tackle several suspicious/malicious behavior problems, which
ometimes can be related or may arise in completely different
ontexts. For example, on the one hand, NetDER could be instan-
iated to solve two specific related problems such as detecting
ake news posts on social media and determining if social bots are
sed for this purpose (works such as [2] suggest the relationship
etween these problems; we present more details about such
ssues in Section 3). On the other hand, in a completely different
ontext, NetDER could also be used to detect malicious behavior
n blockchain transactions—in this domain, efforts have been
arried out that use machine learning algorithms trained with
raph properties obtained from the Ethereum blockchain [3];
n [4], Bitcoin users are labeled in a semi-automatic way based
n information regarding their identity and actions, which is
utomatically scraped. Such works show that it is possible to
dentify suspicious or malicious behavior patterns in blockchain
ransactions; our proposed framework would allow the com-
ination of such data-intensive processing with expert domain
nowledge and perhaps other pertinent behavior information
rom users in Darknet forums or other social platform sources
hat can help improve the resulting model and make it more
obust and explainable.

As we will see in Section 5, most works focused on solving
his kind of problems are based on ad hoc methods, and ad-
ress only specific variants of malicious behavior; NetDER, on
he other hand, is designed to develop more general tools that
an potentially combine different approaches to solve a wide
ariety of related problems. The model, as shown in Fig. 1, in-
olves a data ingestion module that handles issues such as data
leaning, schema matching, inconsistency, incompleteness, data
nalytics, etc., as well as other higher-level issues such as trust
nd uncertainty management; this module is fed by a variety of
ata sources (assumed to be updating at independent rates). The
rchitecture also has the following two main modules:

• Ontological Reasoning Module (ORM): Stores the knowledge
base (comprised of facts, rules, and constraints) both for
background (domain) knowledge as well as for the net-
work. It provides inference services for query answering; the
network diffusion module plays a supporting role, offering
network queries as a service to this module.

• Network Diffusion Module (NDM): Models the dynamic as-
pects of networks in the form of diffusion processes, com-
puting inferences based on the network knowledge base
stored in the ORM. The main services implemented here
are therefore the simulation of such processes and checking
conditions over the network for the ORM, which can be
leveraged in forecasting if certain situations of interest will
occur.

Finally, the Query Answering Module (QAM) is in charge of imple-
enting the main reasoning task, which is called NetDER Query

Answering Process. This module is in charge of coordinating the
execution of both ORM and NDM modules in order to produce
results (i.e., answers to specific queries that users issue to the
system).

In the next section, we will discuss a simple use case illustrat-
ing the application of this general architecture in a social media
setting. But first, we briefly focus on a simple illustration of how
the NDM can be used in this same setting to help the reader
to grasp the intuition behind this framework; Fig. 2 shows how
diffusion models are leveraged to forecast the spread of exposure
 f
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to malicious content throughout a social network.4 The example
shows how two different diffusion processes, starting both at
the same state (the situation at the current time point) model
the future spread of such content after two time steps, arriving
at different estimates of the percentage of users that will be
exposed to the malicious content. As we will see later on, having a
diffusion model that is capable of accurately forecasting how the
world will actually evolve is paramount to achieving high levels
of precision and recall in the main query answering tasks that the
tool is designed to carry out. Nevertheless, a tool such as NetDER
can be used to simulate different diffusion hypotheses and use the
results in defining effective de-risking and contingency policies
for live scenarios; the events surrounding the 2020 US presiden-
tial election and its lasting effects leading to political unrest are
a clear example of the usefulness that these kinds of tools may
have if used adequately.

A simple use case

To understand in more detail the roles and components of
each module, consider the following example, which is a simpli-
fication of the setting developed for the experimental analyses in
Sections 3 and 4.

Suppose we have a social platform where a set of users share
information by posting news articles (creating new posts or re-
posting existing ones). The NDM in this case will have a formal
representation of the social platform in the form of a complex
graph that includes a set of nodes and edges, and a diffusion
process to simulate how the news articles flow among the users.
The nodes and edges can have several labels, each with a different
weight, representing uncertain knowledge such as the likelihood
or confidence that a certain property holds. There are also global
labels to represent the general state of the network—their values
therefore depend on those of the local labels. Naturally, confi-
dence in the knowledge represented by these labels is dynamic,
and one way to capture this dynamism is using logical rules.

In our example, each node (user) has associated a label that
corresponds to that user’s ‘‘preferred news category’’, which could
be something like sports, culture, politics, etc. The users’ prefer-
ences about news topics may be dynamic, and change as posts
circulate in the network. A simple rule in the diffusion model to
update the preferred category label of a user (whose preferences
are affected by what they see in their feeds) could state that for
each user u at current time t:

Diffusion Rule: ‘‘if the majority of u’s neighbors, who have
published at time t, have C as their preferred category, then the
preferred category for u at time t + 1 will be C as well’’.

For example, if u’s neighbors are u1 and u2, who both posted
about ‘‘sports’’ (her preferred category) at time t , and u3 who
posted about ‘‘politics’’ (her preferred category) at time t , then
this diffusion rule predicts that uwill prefer to post about ‘‘sports’’
at time t + 1. Note that time is represented explicitly, and the
values of labels depend on the specific time points or intervals
considered.

The whole diffusion process is defined by a set of rules like the
one we mentioned above that update information in nodes and
edges. One can check the state of the labels in the network by
means of a process that applies the rules in a saturated manner
(until no new information is added, or a maximum number of
time points – or horizon – is reached). Returning to Fig. 2, we
can see that the malicious content spreads faster in β than in α,

4 Intuitively, one can also picture the animations commonly seen in weather
orecasts to understand the usefulness of this feature.
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Fig. 1. Architecture sketch for the NetDER framework [1].
Fig. 2. Illustration of the evolution of a network’s state using two different diffusion models: α (top) and β (bottom); users that have been exposed to malicious
ontent (such as fake news) are represented with skulls, while the rest are depicted with hearts. The figure shows the forecasts made by the two models, starting
t T0 (now) and continuing for two time steps; α forecasts that 46% of users will be exposed after this time, while β is less optimistic.
hough both cases actually depict simulations and the actual
volution will be closer to one or the other. Hence, as with well-
nown simulations such as weather forecasts, models that better
it with reality provide greater possibilities to curb user exposure
o malicious content.

On the ORM side, the knowledge base will contain:
i) The set of facts or statements that represent the structural
nformation of the network—that is, statements such as u and v
234
are users, u and v are friends, the preferred category of u at time t
is believed to be C, etc.
(ii) A set of facts about the domain, which in this case could
be information about the news articles, who posts what, the
categories to which each news article belongs, if a news article
is considered to be fake news and the confidence level with
which that holds, etc. Some of these facts may be input from
the ingestion module, which processes the raw information about
objects of interest and performs statistics or more complex data
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analytics over them, such as detecting the category of a news
article, deciding if a news article could be considered to be fake
news and with what confidence, or if a user can be considered to
be an early poster of a specific news article.
(iii) A set of rules that allow to make inferences leveraging the
information in (i) and (ii). For instance, suppose we are interested
in identifying users that are responsible for the dissemination of
fake news. A rule that would allow to flag such users might state:

Ontological Inference Rule: ‘‘if user u is found to be an early
poster of an article that is believed to be fake news with high con-
fidence, then it is possible that u is responsible for disseminating
fake news’’.

Such rules are expected to be defined by an expert in the domain
with experience in detecting and analyzing malicious behavior.
Alternatively, explicit policies such as those for coordinated inau-
hentic behavior defined by Facebook5 can be used as baselines
to define rules. It is also possible to learn rules from existing
data and reports via data mining and machine learning tools. One
of the advantages of deriving results using this kind of rules is
that it naturally supports their explainability—as we discuss in
Section 5, most tools for addressing malicious behavior in social
platforms are based on the direct application of machine learning
techniques, which tend to result in black boxes.

The framework allows for complex inferences that involve
incomplete and dynamically changing knowledge. The reasoning
mechanism that NetDER offers is performed by means of a query
answering process, which is implemented by the Query Answer-
ing Module (cf. Fig. 1), that emerges from the collaboration of
both modules—they inform each other, potentially generating
new inferences as a consequence. In the case of our example,
we could ask the system to provide the list of all users that are
suspected of being responsible for disseminating fake news. In
this case, the ORM will query the NDM asking for the current
state of the specific labels of nodes and edges that can yield
pertinent results. The network module will run its simulation
(diffusion process) up to the horizon (maximum number of time
points) and return the values for the labels, which may update the
information maintained in the ORM. After this, the ORM will run
its own inference process (this mechanism is designed in [1] as an
adaptation of the well-known chase procedure used in rule-based
ontologies [5]), firing applicable rules until an answer is obtained.
This query answering mechanism is called one-shot in [1]; there
are other possible interactions among the modules that would
yield different semantics (and computational costs). Details on
syntax and semantics for query answering in the NetDER frame-
work can be found in [1] and [6]. In the following sections,
we show how the different components of the architecture are
instantiated with data and information to reason about fake news
articles, malicious users, and botnet structures.

Contributions and Organization. The contributions of this work
are the following: first, we develop the BadBot testbed that
generates hybrid real-world/synthetic datasets with ground truth
designed to feed evaluations of the performance of tools specifi-
cally designed to address tasks related to detection of malicious
behavior in social platforms. Second, we discuss in detail how
to instantiate all modules and components of NetDER so that
the malicious behavior detection tasks are solved through a set
of pertinent queries posed to the system. Third, using BadBot
we create a series of scenarios that allow the evaluation of the
performance of NetDER over these tasks. Finally, we report on the
results of an extensive empirical evaluation of the derived models

5 https://www.facebook.com/communitystandards/inauthentic_behavior
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over these scenarios in order to show the practical applicability
of the approach.

The BadBot testbed is thoroughly defined in Section 2, includ-
ing the description of the particular tasks we are interested in
addressing. Sections 3 and 4 – the core of the paper – describe
how BadBot and NetDER are instantiated, discuss particulars
f how performance evaluation is carried out, and present the
esults of an extensive empirical evaluation of three models in
ix settings. Finally, Sections 5 and 6 provide insights on related
ork and conclusions, respectively.

. BadBot: A testbed for diffusion of malicious posts by single
actors and botnets

We now present the details of a testbed6 designed to generate
atasets with all the information necessary to evaluate the per-
ormance of three different tasks centered around the detection
f malicious behavior in social platforms:

1. Determine who is responsible for the initial posting of a
malicious post; this task is referred to as Responsible.

2. Determine who is a malicious actor—in this setting, mali-
cious refers to actors who purposefully disseminate mali-
cious posts; this task is called Malicious.

3. Determine who is a member of a botnet designed to dis-
seminate malicious posts—here, botnets are coordinated
sets of nodes that post the same content (which can be
either malicious or not) at the same time. This task is called
Member.

Note that our general methodology can be adopted to create
similar testbeds designed to evaluate other sets of tasks. This is,
to the best of our knowledge, the first effort in creating a testbed
for the evaluation of tasks for detecting more than one kind of
malicious behavior at once, which is necessary for the evaluation
of a decision support system like NetDER. We call our testbed
‘‘BadBot’’, short for Bad actors and Bots. We have the following
basic components:

• post-dataset: A dataset of posts tagged with ground truth
in order to distinguish genuine content from malicious one
(for instance, real news from fake, or benign links and those
related to malware). Each post has an assigned category; for
instance, if posts are news articles they can be in category
Sports, Arts, World, Politics, etc.

• G = (V , E): A graph of nodes and edges to represent a
social network structure, where each node represents a user
and each edge a relation (such as follow, friendship, fan,
etc.). Each node in V has a flag stating whether or not it is
malicious in nature. Furthermore, each node has associated
a probability distribution of post categories, indicating its
preferences.

• A series of time points starting at 0 and ending at tsim.
Depending on the instantiation of the testbed, each time
point may represent different granularities of time, such as
an hour, a day, a week, etc.—the values of the parameters in
Fig. 3 should thus be adjusted accordingly.

Trace generation methodology. The testbed’s main purpose is to
generate full traces of actions occurring at different times, accord-
ing to a set of parameters that characterize a desired setting, as
described in Fig. 3. The process of generating traces is as follows
(cf. Section 3 for an example of how it is implemented in the
context of our experimental evaluation):

6 The source code for BadBot is made publicly available at https://github.
com/jnparedes/BadBot.

https://www.facebook.com/communitystandards/inauthentic_behavior
https://github.com/jnparedes/BadBot
https://github.com/jnparedes/BadBot
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(1) Setup:
(a) If new − graph = true, create graph G = (V , E) with
|V | = numnodes and |E| = numedges.
(b) For each node in |V |, set its malicious flag according to
propmal.
(c) For each malicious node in |V |, set its botnet flag ac-
cording to probmemb.
(d) Initialize trace as an empty data structure mapping from
time points and nodes to posts.

(2) For timei ranging from 0 to tsim:
(a) Each non-malicious, malicious, and botnet node decides,
according to probnm_post , probm_post , and probb_post , respec-
tively, if they will create a new post or not.
If they do, they choose between malicious or benign ac-
cording to probnm_mal, probm_mal, and probb_mal, respectively;
and then make a selection within post-dataset according to
the outcome and their category preference.
(b) If a new post is not created, non-malicious, malicious,
and botnet nodes decide, according to probnm_share,
probm_share, and probb_share, respectively, if they will share
something posted by their connections, chosen among
those having the same category as the dominant category
of the posts made by neighbors.
The dominant category is determined by first calculating
the most frequent category posted by each neighbor, and
then taking the most frequent among those categories.
(c) Record in trace all the information created, including
posts and their authors, made at timei.

(3) Output trace.

In Section 3.1, we will describe how we instantiated the Bad-
ot testbed in the general setting of diffusion of fake news.

. Designing an experimental evaluation

In this section, we start by describing in detail how the BadBot
estbed and NetDER architecture are instantiated to carry out our
mpirical evaluation (Sections 3.1 and 3.2), then discuss particu-
ars of how performance evaluations are carried out (Section 3.3),
efore presenting the results in Section 4.

.1. Basic setup: Instantiation of the BadBot testbed

The application domain is instantiated based on our testbed,
hoosing values for the different parameters and data with the
 P
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goal of creating a realistic environment. The set of posts is com-
prised of news articles based on a selection of 10,000 items
from [7]; since that dataset does not include categories, we ran-
domly assign one out of five possible artificial categories to each
article (categ1, categ2, categ3, categ4, or categ5). In order to pro-
ide structure to the random assignment of categories to fake
ews articles, we choose categ1 with probability 0.7, and the
est of the categories with probability 0.3/4 = 0.075, while for
on-fake news the assignment is done via a uniform probability
istribution. This structure aims to represent, for instance, that
ake news articles are more likely to be associated with a topic
elated to the opinion that is targeted for manipulation, such as
specific political party in the context of an election.
The social network graph G = (V , E) is randomly generated

ased on the R-MAT algorithm [8,9],7 which is designed to create
nstances that imitate the structure that is observed in real-
orld data. For our evaluation, we set numnodes = 150 and
umedges = 495 to build each instance, which we found to strike
good balance between size, density, and computational cost
f performing many runs. For the length of each trace, we set
sim = 15, which based on a 12-hour granularity corresponds to
bout a week of posting activity. Finally, other fixed parameters
re set as follows:

numbotnet = 1
probnm_post = 0.05
probm_post = 0.5
probb_post = 0.5
probnm_mal = 0.1

probm_mal = 0.6
probb_mal = 0.6
probnm_share = 0.2
probm_share = 0
probb_share = 0

hese values were chosen with the following properties in mind,
hich reflect one possible setting that we considered to be well-
alanced with respect to the size of the network in terms of
odes and edges, the number of time points in the traces, and the
ettings produced by the parameters that are varied, as discussed
elow. Malicious and botnet users are much more active than
on-malicious ones; we designed it in this manner assuming that
he former post new content only (they do not share) – since
robm_share = 0 and probb_share = 0, respectively – and want to
isseminate as much fake news articles as possible. With these

7 We used the implementation available at: https://github.com/farkhor/
aRMAT.

https://github.com/farkhor/PaRMAT
https://github.com/farkhor/PaRMAT
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Fig. 4. Parameter values (left) and corresponding shorthand labels (right) for settings used in the evaluation; fixed parameters are set as described in Section 3.1.
ettings, the probability of a malicious actor posting a fake news
rticle at each time point is probm_post ∗ probm_mal = 0.3 (the

probability for botnet actors is also the same value probb_post ∗

probb_mal = 0.3), while for a non-malicious one it is probnm_post ∗

probnm_mal = 0.005 (though the latter might still unintentionally
share a fake news article from their feeds).

Additionally, a set of other parameters were varied in order to
widen the scope of the evaluation, creating six different settings,
which we call A–F; see Fig. 4 (left) for details (the ‘‘Variant of
r1’’ column is explained in the next subsection). Likewise, Fig. 4
(right) provides shorthand labels for each setting according to the
following set of distinctive properties:

• Time: This setting refers to the number of time steps of
the diffusion process (temporal duration of the simulation,
which is denoted with tmax). We consider two possible
lengths of this simulation horizon: Short (tmax = 2) and Long
(tmax = 5).

• Detection level: This property refers to the threshold for
the global network condition in rule r1, which corresponds
to how sensitive the rule will be to the trending label. We
consider three possible detection levels: Boldest (threshold
0.3, rule r1.1), Bold (threshold 0.5, rule r1.2), and Cautious
(threshold 0.7, rule r1.3).

• #Bots: Refers to the number of members in a botnet. In this
case, we consider two possible values: FewBots (probmemb =

0.1) and MoreBots (probmemb = 0.25).
• #Malicious: Analogous to the previous property, this setting

refers to the number of malicious users in the network. Here,
we also consider two possible values: FewMal (propmal =

0.1) and MoreMal (propmal = 0.2).

To arrive at a descriptor for a setting, we simply concatenate each
label; for example, the shorthand for setting A is ‘‘Short--Bold-
-MoreBots--MoreMal’’. This naming scheme is designed to help
identify the effect of parameter variations and thus make com-
parisons between the results obtained for each setting (presented
in Section 4).

In Section 3.3, we detail how BadBot is effectively used to
generate the traces to be fed to NetDER within the experimental
setting.

3.2. Instantiation of NetDER

We now provide the details of how the general NetDER ar-
chitecture is implemented for our evaluation. The data ingestion
module is tasked with creating the data at each time for the
ontological database and the network database, based on the
current state of the trace generated by the testbed. We have the
following schema for the ontological database:

• news(N): N is a news article (from dataset [7], as described
above);

• category(N, C): N corresponds to category C;
• fn_level(N, L): N is judged to be a fake news article with

confidence level L—this is a wrapper for an external machine
learning-based classifier (in our evaluation, we used the tool
available at [10]);
237
• early_poster(U,N): user U was one of the first to post article
N;

• close(U1,U2): users U1 and U2 posted the same article at the
same time.

The structure of the network is obtained directly from the Bad-
Bot traces; we have node local labels pref_category(categ1)–pref_
category(categ5) to represent the confidence that each category is
the preferred one for each node; these labels are updated at each
time point according to users’ posting activities.

Fig. 5 gives a detailed overview of how the main parts of the
NetDER architecture are instantiated for our empirical evaluation.
We now provide details and intuitive descriptions of each part;
the rules were written manually by domain experts, which in our
case is a simple task given that we have access to the full details
of how the testbed works. So, for the diffusion rules, having a
good model means that we will have accurate simulations of how
fake news spreads. However, note that the resulting models are
not perfect given the complexity and stochastic nature of the
environment.

Ontology Module Rules (top vignette in Fig. 5): Set of logical
rules that drive the generation of hypotheses that will result in
query answers (see below).8

The underlined predicate fn_level is a wrapper for a call to
an external machine learning classifier that, given a news article,
returns a level of confidence with which the article is believed to
be fake news. Though in this evaluation we use the tool provided
in [10], it can be replaced by any classifier (or set of classifiers) if
desired; below we describe a variant of these rules that assumes
a perfect classifier in order to see the effect that this component
has on overall performance.

• r1 has three variants according to different thresholds. Intu-
itively, the rule states that given a news article that the classifier
detects as fake with confidence level L, create a hypothesis that
the article is fake news. The rule only applies when the article’s
category is trending in the network (the intuition being that
trending categories are more likely to yield fake news). The three
variants correspond to different thresholds for the confidence and
trending levels. r2 is a simplification of r1 that does not consider
trending categories.

• r3 generates hypotheses regarding who is responsible for
disseminating fake news based on who is identified as an early
poster. r6 is a simpler variant that applies for any poster, not just
early ones.

• r4 states that if a user is responsible for at least two different
fake news articles, then (s)he is malicious. r7 is a simpler variant
that only requires responsibility for one article.

• r5 generates hypotheses for the existence of a botnet and
its membership whenever two users post the same content at
the same time. r8 is a variant that replaces posting at the same
time with a connection between the users (designed to be a low-
quality version of r5, since this is not how botnets work in the
testbed).

8 Rules r1–r8 are tuple-generating dependencies (TGDs), while r9 is an equality-
generating dependency (EGD). We refer the interested reader to [1] for more
details.
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Fig. 5. Main details of the instantiation of the NetDER architecture for the evaluation. See Section 3.2 for an intuitive description of each component.
f

• Finally, r9 simply states that there exists a single botnet.

Diffusion Module Rules (second vignette in Fig. 5): Rule diff _rule1
s local, which actually represents a set of five rules (one for
ach news category in our evaluation). Such local rules estimate
hich category is the preferred one for each node by updating the
ref _category(C) labels—the intervals in this case can take only
 i
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two values: [0, 1] means uncertain likelihood of being preferred,
and [1, 1] complete certainty. This is done via the if 1 influence
unction,9 which takes the set of neighbors who posted an article
of category C and, if that set represents more than half of the

9 Note that ‘‘if 1 ’’ appears in the body of the rule without parameters—this
s simply a reference to the function that should be used.
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neighbors who posted something, then the label for category C is
updated to [1, 1], meaning that category C is likely to be preferred
by the node in the following time point.

The global rule diff _rule2 – also a set of five rules – simply
akes an average of the pref _category(C) intervals (given the
simplification described above, effectively their lower bounds)
and assigns these values to the ‘‘trending’’ label obtained from
pref _category(C).

KB Variants (third vignette in Fig. 5): We prepared three different
knowledge bases with the objective of showing how the quality of
the knowledge engineering effort affects the overall performance
of the system:

• KBα is comprised of the first five rules, which were designed
to more closely mirror the way the world works (i.e., the way the
data is generated by the BadBot testbed).

• KBβ replaces r3–r5 with r6–r8, which were designed to be
weaker versions.

• KBα∗ is a copy of KBα except that the fn_level predicate is a
erfect classifier (i.e., it does not suffer from false positives nor
alse negatives). The goal of having this variant is to gauge the
mpact of the machine learning component of the system, which
s an external module in this evaluation.

ueries (bottom vignette in Fig. 5): we have six different queries.
The first three correspond, respectively, to the three main de-
tection tasks we wish to carry out: Responsible, Malicious, and
Member. The second group of queries are geared toward detect-
ing which articles correspond to fake news; this is a secondary
baseline task that we briefly discuss in Section 4.

Note that such queries rely on the hypotheses generated
by the ontology module rules (hyp_is_resp, hyp_malicious, and
yp_botnet). In the case of botnets, since we are interested in the

members, we use an existential quantifier for the botnet itself and
rely on the member predicate to obtain the results.

.3. Ground truth and evaluation of performance

One of the main motivations behind the design and use of a
estbed like BadBot is the need to have access to ground truth,
since this is the basis for calculating metrics that allow to com-
pare how well different tools perform. In particular, we need to
be able to determine without uncertainty whether an answer to
a query is a true positive (TP, the output item is part of the actual
answer10), false positive (FP, the output item is not part of the
actual answer), true negative (TN, the item is not output and is
not part of the actual answer), or false negative (FN, the item is
not output but is part of the actual answer). We now clarify the
most important details regarding ground truth:

• A news article corresponds to fake news if the dataset clas-
sifies it as such.

• A user is malicious if BadBot marked it as such when gen-
erating the trace.

• A user u is responsible for a news article n if n is fake news,
u posted n, and u is malicious,

• A user u is member of a botnet b if u was marked as such
when generating the trace.

Note that ground truth is defined in terms of a given BadBot
trace. The performance of a given NetDER KB on a query an-
swering task is therefore defined in terms of the basic outcomes
described above. Since it is possible that the same answer may
appear in two (or more) time points, we count each answer only
once (as TP, FP, TN, or FN). However, when an answer is counted

10 By ‘‘actual answer’’ we refer to the set of answers provided by a perfect
uery answering mechanism having access to ground truth.
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as FN, it may become TP in a later time point, but again this
is done only once for each answer. In summary, we consider
answers that are not given to be false negatives, but the correct
answer may come up when new information arrives and thus
become TP.

The following algorithm describes the general workflow that
we used in our experiments:

1. Set new_graph = true
2. Repeat #runs times:

(a) Generate a trace using BadBot with given parameters;
(b) For each time point from 0 to tsim:
i. Issue query using the one shot NetDER strategy (execute
chase → execute diffusion process → answer query);
ii. Compute FPs, FNs, TPs, and TNs with respect to the
ground truth and answers obtained in the previous step;
(c) Calculate results for the trace;
(d) Set new_graph = false

3. Calculate results for the experiment.

This general algorithm is used to obtain all results reported in
the next section, using the same traces to evaluate the three KB
variants and focusing on three performance metrics:

• Precision and Recall: Defined as usual as TP/(TP + FP) (frac-
tion of obtained answers that are relevant to the query) and
TP/(TP + FN) (fraction of relevant answers that are in fact
obtained), respectively.
Though typically the F1 measure is also reported along with
precision and recall (computed as the harmonic mean of the
two), in our setting there are many instances in which it is
undefined due to divisions by zero; there are ways to work
around this issue, but none of them resulted in a satisfactory
outcome since in general the results were artificially high.
Given that the actual numeric results are not the focus of our
evaluation – instead, we wish to show the effects of making
changes to the environment and models – we chose not to
report this metric.

• Time to detect: Number of time points in the trace between
the first occurrence of an event and its incorporation into
a query’s answer. For instance, the posting of a fake news
article by a malicious node and the addition of the cor-
responding hyp_is_resp atom. This metric captures a lower
bound to reaction time by applications of the tool in smart
policing efforts.

In the next section, we focus on analyzing the results of our
experiments.

4. Results: Performance of three models in six settings

We first discuss the results for the three main tasks we tackle,
and then finish by briefly mentioning the results for the auxiliary
fake news detection task.

As context for these results, we point out that the main ob-
jectives in carrying out the experimental evaluation were: (i) to
show that a variety of different settings can be captured in the
testbed, and (ii) that different engineering decisions during model
construction and the quality of ML classifiers that may be avail-
able have an impact on performance metrics for the three studied
problems. In particular, settings A–F should not be interpreted as
mapped to more or less realistic scenarios, but rather as varia-
tions showing how different aspects of the domain and problems
impact performance. We will come back to these issues in the
closing discussions in Section 6.
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Fig. 6. Plots for average precision and recall (higher is better, error bars represent standard deviation) yielded for KBα , KBβ , and KBα∗ for the three queries in Settings
–F. (Results for 100 runs; cf. Fig. 8 for statistical significance results).
.1. Main tasks

Fig. 6 shows the results for precision and recall, and Fig. 7
hose for time to detect; all plots correspond to averages and
tandard deviations obtained over 100 runs, where everything in
he testbed is reset at the start of each run except for the graph
tructure (this is done in an effort to keep experimental variation
anageable). The size of the error bars associated with many of

he results obtained indicate that there is a non-trivial amount of
ariation in the environment, which is to be expected in complex
roblems like the ones being tackled. However, the number of
uns performed allowed us to obtain highly statistically signifi-
ant results in the vast majority of the cases, as can be seen in
ig. 8.
In the rest of this section, we will analyze these results from

ifferent perspectives. We begin with broad comparisons among
he KB variants across all settings.

Bα∗ vs. Rest. As it might be expected, having access to a perfect
classifier (one that does not suffer from false positives nor false
negatives) yields notable performance improvements in compar-
ison with the ‘‘regular’’ variants. However, some less-expected
results were also obtained:
240
• Responsible: Near-perfect precision, recall, and detection
times across all settings.

• Malicious: Near-perfect precision across all settings, but
recall around 0.5, indicating the presence of false negatives.
Perhaps rule r4 is too restrictive, and some malicious nodes
are missed because of the requirement to have two different
hyp_is_resp atoms. Using only one (as done by r7) might be a
better option considering that the fake news predictor does
not make any mistakes.
Regarding detection times, we observe worse performance
for Settings E and F, which correspond to those with longer
simulation horizons. This is because the longer simulation
influences fake news detection in KBα and KBβ but has
no influence in KBα∗ since the perfect classifier works in
isolation. Then, KBα and KBβ generate greater amounts of
answers for Settings E and F, which leads to better chances
for faster detections.

• Member: Better recall and detection times than the rest.
However, only better precision in two settings, which at
first seems counterintuitive. However, considering the in-
teraction of factors, our analysis is that – depending on the
setting – the threshold of the global label in rule r1 is too
high, or tmax is too low. Since all members of the botnet post

the same content at the same time, the categories of their
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Fig. 7. Plots for average detection times (lower is better, error bars represent standard deviation) yielded for KBα , KBβ , and KBα∗ for the three queries in Settings
A–F (Results for 100 runs; cf. Fig. 8 for statistical significance results).
posts are the most likely to push the bound of the global la-
bel over the threshold, even when the simulation (diffusion
process) is short. On the other hand, the simulation has no
influence in KBα∗ .

KBα vs. KBβ . The α variant was designed to better mimic the
way traces are generated by BadBot, while β uses weaker ver-
sions of several rules. This leads to worse precision but better
recall, which corresponds to more false positives but fewer false
negatives, as well as better detection times, across all evaluated
settings.

We now move on to more specific comparisons, focusing on
the parameter variations that gave rise to the different settings.
We focus primarily on the performance of KBα in order to provide
more specific conclusions.
241
Setting A vs. Setting E. These two settings differ only in length of
simulation horizon (tmax):

• Responsible and Malicious: Longer simulations yield better
precision and recall, as well as shorter detection times.

• Member: For this task, the reverse is true, a shorter simula-
tion performs better. This is likely related to our analysis for
KBα∗ vs. the rest, in which a shorter simulation can result in
the categories of botnet members’ posts becoming the most
frequent.

Setting B vs. Setting F. These two settings also differ only in length
of the simulations (tmax); compared with the previous pair, these
two settings use a variant of rule r1 with a higher threshold,
which means that it is applied less frequently.
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Fig. 8. Results for two-tailed two-sample unequal variance Student’s t-tests for all pairs of comparable performance results plotted in Fig. 6 (top) and Fig. 7 (bottom).
For each result, we use ‘‘∗∗’’ to denote highly significant (p < 0.01), ‘‘∗’’ to denote significant (p < 0.05), an explicit p-value for 0.05 ≤ p < 0.1, and ‘‘ns’’ to denote
not significant (p ≥ 0.1).
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• Responsible and Malicious: Same relationship as in the
previous pair, but much less marked for Malicious.

• Member: Precision is similar (notably, both yielded near-
perfect results), and recall is slightly better for the longer
simulation setting.

Detection times exhibited no significant differences between
these two settings.

Setting A vs. Setting B. The only difference here is the variant of
rule r1, as mentioned above (B has a higher threshold):

• Responsible and Malicious: Higher precision and recall for
the lower-threshold variant. Regarding time to detect, the
same is true for Responsible, but for Malicious the higher-
threshold variant performs better.

• Member: Setting B clearly outperforms A in this task; how-
ever, regarding detection times, setting A performs slightly
better.

Setting C vs. Setting D. These two settings differ in that C has
ore botnet members, but less malicious users than D:

• Responsible and Malicious: Setting D generally outper-
forms C in both tasks, especially with respect to recall.
Regarding detection times, the difference only lies in Ma-
licious, for which D performs far better.

• Member: The reverse is true for this task, in which C per-
forms better (mostly in terms of precision). Detection times
are also slightly better in setting C.
242
ther notable observations. Overall, we can see that Member is
he most difficult task, yielding precision and recall below 0.5
n all settings even when given access to a perfect fake news
etector. We can mention two reasons for this. First, the rule that
s specific to this task is not the best since it focuses on pairs of
sers; other alternatives should be explored, perhaps considering
arger groups. Second, the information obtained from the simu-
ation (diffusion process) is useful for this particular query, and
Bα∗ does not use it; incorporating rules that analyze the most-
pread topics might lead to better performance. Another general
bservation we can make is that when an excellent predictor is
vailable, it may be more useful to adopt more relaxed rules.
As a final remark, we should say that depending on the appli-

ation domain, the importance of false positives versus shorter
etection times may vary greatly, and this should be taken into
ccount. In general, we observed that KBα∗ has fewer false pos-
tives than KBβ , but the latter has shorter detection times. For
xample, if we are trying to identify people with criminal records
t the border, a low false positive rate is required; on the other
and, if the task is to predict a cyber attack then there is typically
imited time before it occurs and false positives may be addressed
y manual inspection of suspicious cases, though alert fatigue
ay become an issue.

.2. Fake news detection task

Here, we seek to identify which posted articles correspond to
ake news. Even though this is primarily done via the fn_level
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rapper predicate (which, as mentioned, simply invokes an ex-
ernal machine learning-based classifier), we implemented four
ifferent NetDER rules (the three variants of r1, plus r2), as well as
hree different queries (QfnA, QfnB, and QfnC ) designed to show how
he variation of different thresholds and aspects of the logical
erivation impact the results. Since this is a secondary task, we
nclude the full results in the appendix (cf. Fig. A.9). In brief,
uery QfnA – which is based on a low-threshold NetDER rule plus
nother rule that leverages access to a network diffusion process
obtains a result between the two more extreme and simpler
lternatives (QfnB and QfnC simply access the classifier’s result and
pply a lower and higher threshold, respectively).
Recall that the goal of this effort is not to obtain the highest

ossible performance metrics for fake news detection (or any other
ask), but rather show how different aspects of the system affect
erformance. Above we saw how three different variants of the
etDER system – including one with access to a perfect ‘‘oracle’’
lassifier – performed in the more complex detection tasks.

. Related work

In this section, we will first briefly touch upon the literature
elated to data and knowledge management, centering on the
asic issues that arise when implementing a powerful model like
etDER instead of going into detail, which is outside the scope of
his work. Then, we dedicate a larger discussion to related work
n addressing malicious behavior in social platforms.

.1. Data and knowledge management

The classical problems of data integration and data exchange
n databases [11,12] and belief merging in the more general
etting of Knowledge Representation and Reasoning [13,14] are at
he core of the tasks that must be carried out by the data ingestion
odule, which must decide how to incorporate new data that
rrives and may be in conflict with data already in place. The
ssue of trust in data sources must also be addressed; a powerful
ool that can be applied here is argumentative reasoning, as
one in [15], which evaluates reasons for and against different
laims so that the best use is made of available information.
ther, perhaps more basic, problems occur in settings where data
ntegration is carried out without considering adequate integrity
onstraints (or, even when not explicitly integrated, are queried
nder a single virtual schema). Such problems are commonly
nown an inconsistency (where the data violates certain con-
traints) and incoherence (where the constraints themselves are
mpossible to satisfy). See [16] for a treatment of inconsistency
n Datalog+/– knowledge bases (the underlying language used in
etDER rules), and [17,18] for recent works on incoherence.
Finally, in a more application-driven approach, [19] introduces

formalism designed to represent multiple social platforms in a
ingle so-called Network Knowledge Base. Their goal is to model

ow information flows through networks; preliminary empirical c
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evaluations with simple variants of this model have shown that it
can be applied in the prediction of user reactions to Twitter feed
content [20]. This approach could also be used in the NetDER data
ingestion module as part of the implementation of the data model
underlying the network diffusion module.

5.2. Malicious behavior in social platforms

This topic has been tackled by many researchers in different
disciplines and – more recently – the large industry players
behind the most popular social platforms. In particular, two com-
panies that have taken action in this realm are Facebook (behind
the social network of the same name, as well as Instagram and
WhatsApp) [21] and Twitter [22]. It is becoming more increas-
ingly apparent that industry actors – not only heavy hitters but
also fringe players – need to explicitly address these issues [23],
and that this deserves the same gravitas as other topics within
the cybsersecurity realm [24,25].

On the academic research side, there are many lines of work
that address a variety of basic problems, typically in an isolated
manner. Recently, we have developed an approach to a problem
we called adversarial deduplication [26], a variant of the classical
databases problem of deduplicaction/entity resolution in which
the typical ‘‘innocent mistake’’ assumption does not necessarily
hold. Instead, actors use multiple identities to avoid being rec-
ognized by law enforcement, which leads to a more challenging
scenario. Other related efforts are [27] and [28].

The research line leading up to the present paper continued
in [29], where we proposed the use of probabilistic existential
ules to generate hypotheses regarding duplicate actors, lever-
ging the value invention capability. This makes it possible to
dentify actors with specific kinds of behavior, and later refine
he hypotheses when new information becomes available. The
ull NetDER architecture used here was presented in [1] in a
eneral systems view manner, and then fully developed from a
heoretical point of view in [6]. As mentioned in several parts of
he present paper, the availability of datasets with ground truth is
ften a barrier to evaluating tools such as these in practice, which
otivated the development of the BadBot testbed. One of the
verarching goals of this line of work is to enhance logic-based
ormalisms with knowledge obtained from the use of machine
earning tools, functioning in a human-in-the-loop fashion.

ock puppets. An interesting problem related to the ones ad-
ressed here is that of detecting sock puppets, a kind of malicious
ehavior in social media in which identities are created under
alse pretenses; there have recently been many efforts dedicated
o this problem (see, for instance, [30,31]). The problem can
e seen as a special case of the ones addressed here, and the
orks mentioned – which for instance combine ML classifiers
ith community detection algorithms, leveraging features based
n posting activity, text analysis, and social network structure –

ould be implemented within the NetDER model.
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Fake news and bots. The issue of fake news is not a new phe-
omenon, but became popular in 2016 with the US and UK
lections that led to the election of Donald Trump and Brexit,
espectively. The basic detection problem refers to determining
he veracity of news in the context of possible intentional de-
eption [32,33]. Most research in this area focuses on linguistic
nalyses via natural language processing techniques, or network
nd behavior analysis. To the best of our knowledge, there are
o other works that explicitly model the propagation of posts as
iffusion processes.
Detecting bots in the context of social platforms is a basic task

hat touches upon most of the problems discussed above [34–36].
n particular, there are studies that suggest that fake news and
ocial bots are closely related [2]. Examples of tools for automatic
etection include [37,38]. An interesting work is that of [39],
hich focuses on Twitter bots and considers a large number
f features, including information diffusion patterns. A problem
elated to bots is the so-called Sybil attack, in which systems
ased on peer-to-peer connections is attacked using false iden-
ities, seeking to bypass reputation-based trust mechanisms. At-
acks are often performed both using bots and human-controlled
ccounts [40,41].

ybersecurity in general. As mentioned above, there are many re-
ated problems in the (vastly) more general cybersecurity domain.
ost efforts apply machine learning tools and techniques, for

nstance, to detect offering of products in hacker markets [42],
redicting exploits [43] and enterprise cyber attacks [44], and
dentify at-risk software [45]. The latter is an example of the kind
f development we propose, in which a combination of logic-
ased formalisms and information from classifiers, is effectively
sed to solve a given set of tasks.
Finally, there are many other application domains that would

enefit from knowledge-based human-in-the-loop tools like the
ne developed and evaluated in this paper. Two examples that
how this potential are automated health care [46] and detection
f corruption in government agencies [47]. There is clearly much
ork to be done in this direction, but preliminary results are
romising.

. Conclusions and future work

In this work, we set out to implement and test a version of the
ecently proposed NetDER architecture for automatic generation
f hypotheses; in particular, we were interested in developing
nd evaluating tools for detecting malicious behavior in social
latforms. This has been generally recognized to be a formidable
ask not only because it is a multi-faceted problem, but also
ecause it is nearly impossible to obtain open datasets with
dequate ground truth in order to evaluate performance. We first
eveloped a general testbed (making its source code publicly
vailable) specifically designed to generate full traces of posting
ctivity involving fake news, malicious actors, and botnets, and
hen carried out an extensive empirical evaluation of three vari-
nts of our model over six environmental settings in order to
how the effects that the quality of knowledge engineering tasks,
he quality of the underlying machine learning classifier used to
etect fake news, and specific environmental conditions have on
mart policing efforts in social platforms.
Even though the results we obtained show the feasibility of

eveloping such tools, there are several limitations associated
ith our efforts (inherent to limitations of space and computa-
ional resources) that point to the need for further developments
nd evaluations. In particular, we would like to run experiments
onsidering two main aspects: (i) a larger set of environmental
ettings—i.e., a wider variation of BadBot parameters, especially

or graph size and the parameters that remained fixed in this
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paper; and (ii) more model variants—i.e., a wider variation of
rules, especially for the diffusion process. Another aspect that
needs to be further investigated is the impact of adding more
tasks, and how models can be adapted to yield the best possible
results depending on estimations of environmental features, such
as user types, threat models, etc. Yet another necessary next step
is to focus on reality-based scenarios, which involves choosing a
specific social network, time period, set of users, and content of
interest. This sort of study is of interest to move past the initial
proof-of-concept approach taken in this paper, and additional
challenges – like dealing with lack of directly-accessible complete
data annotated with ground truth – will arise.

Finally, an important avenue of current and future work is
developing different ways of deriving explanations for the query
answers derived from our model. The logic-based rules defined
in both the ontology reasoning and network diffusion modules
already provide a solid starting point for doing this. We envi-
sion tagging results with summaries of how they were derived,
and allowing human-in-the-loop interactions so that analysts are
able to provide feedback to the system; this will also provide
valuable information on the performance of the system, which
can eventually learn from its mistakes (false positives and false
negatives). As discussed briefly at the end of Section 4.1, striking
an adequate balance between timely results and alert fatigue will
depend primarily on the application domain.
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ppendix. Further details

In this section we provide further details not included in the
ain text: precision and recall results for the fnA, fnB, and fnC

asks (Fig. A.9, and full numeric results for precision/recall and
etection time for the three main tasks (Figs. A.10 and A.11,
hich correspond to the bar graphs in Figs. 6 and 7, respectively).
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Fig. A.10. Precision and recall results in numeric format for the Responsible (top), Malicious (middle), and Member (bottom) tasks (cf. Fig. 6). Averages and standard
deviations calculated over 100 runs.
Fig. A.11. Average time to detect results in numeric format for the Responsible,
alicious, and Member tasks (cf. Fig. 7) Averages and standard deviations
alculated over 100 runs.
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