
Towards a Realistic Bid Generator for Mixed
Multi-Unit Combinatorial Auctions

Meritxell Vinyals1, Andrea Giovannucci1, Jesús Cerquides2, Pedro Meseguer1,
and Juan Antonio Rodriguez-Aguilar1

1 IIIA, Artificial Intelligence Research Institute
CSIC, Spanish National Research Council

Campus UAB, 08193 Bellaterra, Spain
{meritxell|andrea|pedro|jar}@iiia.csic.es

2 WAI, Dep. Matemàtica Aplicada i Anàlisi
Universitat de Barcelona

Gran Via 585, 08191 Barcelona, Spain
cerquide@maia.ub.es

Abstract. Mixed Multi-Unit Combinatorial Auctions extend and gen-
eralise all the preceding types of combinatorial auctions. In this paper,
we try to make headway on the practical application of MMUCAs by:
(1) providing an algorithm to generate artificial data that is representa-
tive of the sort of scenarios a winner determination algorithm is likely to
encounter; and (2) subsequently assessing the performance of an Integer
Programming implementation of MMUCA on CPLEX.

1 Introduction

A combinatorial auction (CA) is an auction where bidders can buy (or sell) en-
tire bundles of goods in a single transaction ([1]). Selling goods in bundles has
the great advantage of eliminating the risk for a bidder of not being able to
obtain complementary goods at a reasonable price in a follow-up auction (think
of a combinatorial auction for a pair of shoes, as opposed to two consecutive
single-item auctions for each of the individual shoes). The study of the mathe-
matical, game-theoretical and algorithmic properties of combinatorial auctions
has recently become a popular research topic in AI. This is due not only to their
relevance to important application areas such as electronic commerce or supply
chain management, but also to the range of deep research questions raised by
this auction model.

Central to CAs are the issues of winner determination(WD) and bidding.
Winner determination is the problem, faced by the auctioneer, of choosing which
goods to award to which bidder so as to maximise its revenue. The WD problem
for standard CAs is known to be NP-complete, with respect to the number
of goods [6]. NP-hardness can, for instance, be shown by reduction from the
well-known Set Packing problem. Bidding is the process of transmitting one’s
valuation function over the set of goods on offer to the auctioneer through some
bidding language[5]. Under an OR-language, if a particular bidder submits several

Table 1. (a) Components of a car engine. (b) Market transformations for a car’s engine.

atomic bids (a bundle together with a proposed price), then the auctioneer may
accept any set of bids from that bidder for which the bundles do not overlap,
and charge the sum of the specified prices. If we use an XOR-language instead,
that means that only one of the atomic bids can be accepted. The advantage of
an XOR-language is that it allows to express not only complementarity between
goods (value of a bundle being greater than the values of its parts), likewise
an OR-language, but also substitutability (value of a bundle being less than the
sum of its parts). Although an XOR bidding language is known to be fully
expressive [5, 3], for some types of CAs its usage makes that even finding a
feasible solution is NP-complete [7].

In [3] we introduce a generalisation of the standard model of CA. This new
auction model integrates direct and reverse auctions, i.e. the auctioneer can buy
and sell goods within a single auction. It also incorporates the idea of trans-
formability relationships between goods by allowing agents not only to bid for
goods but also for transformation services, i.e. an agent may submit a bid of-
fering to transform a certain set of goods into another set of goods. We call the
resulting auction model mixed multi-unit combinatorial auctions (MMUCA). To
illustrate the operation of MMUCA, consider as an example the assembly of a
car’s engine, whose structure is depicted in Fig. (a) in table 1. Notice that each
part in the diagram, in turn, is produced form further components or raw ma-
terials. For instance, a cylinder ring (part 8) is produced by transforming some
amount of stainless steel with the aid of an appropriate machine. Therefore,
there are several production levels involved in the making of a car’s engine. A
MMUCA allows to run an auction where bidders can bid over bundles of parts,
bundles of transformations, or any combination of parts and transformations.
Notice that the result of an MMUCA WD algorithm would be an ordered se-
quence of bids making explicit how bidders coordinate to progressively trasform
goods till producing engines as final products. Therefore, an MMUCA would
allow to assemble a supply chain from bids.

Despite its potential for application, and unlike CAs, little is known about
the practical application of MMUCAs since no empirical results have been re-

ported on any WD algorithms. These results are unlikely to come up unless,
and along the lines of the research effort carried out in CAs [4], researchers are
provided with algorithms or test suites to generate artificial data that is repre-
sentative of the auction scenarios a WD algorithm is likely to encounter. Hence,
WD algorithms could be accurately tested, compared, and improved. In this
paper, we try to contribute to the practical application of MMUCAs along two
directions. Firstly, we provide an algorithm to generate artificial data sets that
are representative of the sort of scenarios a WD algorithm is likely to encounter.
Secondly, we employ such algorithm to generate artificial data and subsequently
assess the performance of an Integer Programming (IP) implementation of a WD
solver for MMUCA on CPLEX.

The paper is structured as follows. In section 2 we provide some background
on MMUCAs. Next, in section 3 we analyse the required features of an artificial
data set generator for MMUCAs whose algorithm is detailed in section 4. In
sections 5 and 6, we analyse some early, empirical results of an IP formulation
of the WDP, draw some conclusions and outline paths to future research.

2 Background

Next, we introduce MMUCA by summarising the work in [3, 2]. Let G be the
finite set of all types of goods. A transformation is a pair of multisets over G:
(I,O) ∈ NG × NG. An agent offering the transformation (I,O) declares that it
can deliver O after having received I. In our setting, bidders can offer any num-
ber of such transformations, including several copies of the same transformation.
That is, agents negotiate over multisets of transformations D ∈ N(NG×NG). For
example, {({ }, {a}), ({b}, {c})} means that the agent in question is able to de-
liver a (no input required) and that it is able to deliver c if provided with b.

In an MMUCA, agents negotiate over bundles of transformations. Hence, a
valuation v : N(NG×NG) → R is a (typically partial) mapping from multisets of
transformations to the real numbers. Intuitively, v(D) = p means that the agent
equipped with valuation v is willing to make a payment of p in return for being
allocated all the transformations in D (in case p is a negative number, this means
that the agent will accept the deal if it receives an amount of |p|). For instance,
valuation v({({line, ring , head , 6 · screws, screwdriver}, {cylinder , screwdriver})}) =
−10 means that some agent can assemble a cylinder for $10 when provided with
a cylinder line, a cylinder ring, a cylinder head, six screws, and a screwdriver,
and returns the screwdriver once done3.

An atomic bid bid({(I1,O1), . . . , (In,On)}, p) specifies a bundle (as a finite
multiset) of finite transformations and a price. For instance, following the exam-
ple above, bid({({line, ring , head , 6 · screws, screwdriver}, {cylinder , screwdriver})},−10)
stands for an atomic bid to assemble a cylinder for $10. Therefore, atomic bids
are the basic expressions of the bidding language that a bidder can employ to
transmit his valuations to the auctioneer. More complex bids can be obtained

3 We use 6 · screws as a shorthand to represent six identical elements in the multiset.

by composing atomic bids with the aid of an XOR-language. Thus, an XOR-
combination of bids expresses that the bidder is prepared to accept at most
one of them. Notice that the XOR language is fully expressive since it allows
to express both substitutability and complementarity. On the one hand, substi-
tutability is readily achieved by combining atomic bids into XOR combinations;
whereas complementarity is achieved by putting together transformations into
the very same bundle in an atomic bid (the valuation of the bundle allows to
express either super-additivity, sub-additivity, or simply the addition of the val-
uations of the goods involved).

The input to the MMUCA WDP consists of a complex bid expression for
each bidder, a multiset Uin of goods the auctioneer holds to begin with, and a
multiset Uout of goods the auctioneer expects to end up with. A valid solution to
the WDP will be a sequence of transformations satisfying that: (1) the multiset of
transformations in the sequence has to respect the bids submitted by the bidders;
and (2) the set of goods held by the auctioneer in the end is a superset of Uout.
Namely, the first requirement involves that a valid solution must guarantee that
for every transformation in the sequence the preceding transformations provide
its input goods, otherwise the transformation cannot be employed (e.g. in figure
(a) in Table 1 a transformation to assemble an engine cannot be employed unless
other transformation provide its parts). Furthermore, the second requirement
demands that the auctioneer ends up the auction with the goods he requested
(e.g. if the auctioneer requests 2 engines, a sequence of transformations leading
to the production of 1 engine would not be enough).

For the formal definition of the WDP, we restrict ourselves to bids in the
XOR-language, which is known to be fully expressive (as proved by Cerquides
et al. [3]). Therefore, solving the WDP for MMUCAs with XOR-bids amounts
to maximise the following objective function:

∑

b∈B

xb · pb

subject to requirements (1) and (2) informally defined above4. Here B stands
for the set of all atomic bids, xb stands for a binary decision variable indicating
whether bid b is selected or not, and pb stands for the price of bid b. As noticed
in [3], the number of decision variables of an IP to solve a MMUCA WDP is of
the order of |T |2, where |T | is the overall number of transformations within all
bids. As the reader may notice, this represents a serious computational cost as
the number of transformations grow.

Bids in MMUCAs are composed of transformations. Each transformation
expressses either an offer to buy, to sell, or to transform some good(s) into
(an)other good(s). Since transformations are the building blocks composing bids,
we must firstly characterise the types of transformations a bid generator may
need to construct in order to produce bids. Our analysis of transformations has
led to a classification into three types, namely:
4 The interested reader should refer to [3] for a thorough account of how these require-

ments map into a set of side constraints for the optimisation problem.

1. Output transformations are those with no input good(s). Thus, an O-
transformation represents a bidder’s offer to sell some good(s). Besides, an
O-transformation is equivalent to a bid in a reverse CA.

2. Input transformations are those with no output good(s). Thus, an I-
transformation represents a bidder’s offer to buy some good(s) . Notice that
an I-transformation is equivalent to a bid in a direct CA.

3. Input-Output transformations are those whose input and output good(s)
are not empty. An IO-transformation stands for a bidder’s offer to deliver
some good(s) after receiving some other good(s): I can deliver O after having
received I. They can model a wide range of different processes in real-world
situations (e.g. assembly, transformation, or exchange).

Figure (b) in Table 1 presents samples of each transformation type. In the
figure, horizontal, black bars stand for transformations, circles stand for goods,
and directed arrows from goods into or from transformations represent the goods
input into or produced out of a transformation. Thus, for instance, we differenti-
ate an I-transformation to consume a piston, an O-transformation to give away
a piston, and an IO-transformation giving away a piston after receiving a piston
ring and a piston line. Notice that any bid in a MMUCA results as a combina-
tion of transformations of the above-listed types. Therefore, a bid generator for
MMUCA must support the generation of transformations of all these types.

3 Bid Generator Requirements

In order to test and compare MMUCA WD algorithms, researchers must be
provided with algorithms or test suites to generate artificial data that is repre-
sentative of the auction scenarios a WD algorithm is likely to encounter. Hence,
WD algorithms can be accurately tested, compared, and improved. Unfortu-
nately, we cannot benefit from any previous results in the literature since they
do not take into account the notion of transformation introduced in [3, 2]. In
this section we make explicit the requirements for a bid generation technique
considering that in MMUCA agents trade transformations instead of goods.

A naive approach to artificial bid generation would be to create bids totally
at random. It is easy to see that this approach would generate unrealistic bids,
from which it would be hard to draw conclusions. Let us consider a random bid
b = {I,O, p}. If goods appearing in sets I and O are selected randomly, there
is little chance that they will represent a realistic transformation. Also, if p is
chosen randomly, it will not be related with the actual values of the goods in the
sets I and O and consequently the transformation would be either too profitable
or too expensive for the auctioneer, unrealistically easing the problem.

If individual bids randomly generated may be unrealistic, sets of random bids
also present similar drawbacks. Let us consider two bids b1 and b2 by different
bidders. In a real MMUCA, there is a high chance that two bids involve the
same goods (or the same type of goods; both are offering close transformations
with small variations in price). However, if b1 and b2 are generated totally at

random, there is little chance that they will contain similar goods or that their
prices are related.

These two simple examples clearly show that totally random bid generation
originates unrealistic scenarios. Testing WD algorithms on these scenarios is ba-
sically useless, because any extracted conclusion cannot be used in real settings.
The bid generator has to satisfy a number of requirements to make the artificial
bids close to the bids that are likely to appear in a real-world auction.

Since MMUCAs generalise CAs, as discussed in [3], our approach is to de-
part from artificial data sets generators for CAs, keeping the requirements sum-
marised in [4], namely: (1) There is a finite set of goods ; (2) Certain goods are
more likely to appear together than others; (3) The number of goods in a bundle
is often related to which goods compose the bundle; (4) Valuations are related
to which goods appear in the bundle, (5) Valuations are related to which goods
appear in the bundle; (6) Valuations can be configured to be subadditive, addi-
tive or superadditive in the number of goods requested; and (6) Sets of XOR’ed
bids are constructed on a per-bidder basis.

Notice though that the requirements above must be reformulated, and even-
tually extended, in terms of transformations since a bidder in a MMUCA bids
over a bundle of transformations, whereas a bidder in a CA bids over a bundle
of goods. Hence, in what follows we discuss the CA requirements listed above re-
formulated for MMUCA and some new requirements derived from trading with
transformations:

– There is a finite set of transformations A CA generator bundles goods
from a given set of goods to construct bids. What is the set of transforma-
tions from which a MMUCA generator constructs bids? In order to provide a
proper answer we must take inspiration on realistic scenarios faced by buyers
and providers. If so, within a given market we expect several producers to of-
fer the very same or similar services (transformations) at different prices, as
well as several consumers to require the very same or similar services (trans-
formations) valued at different prices. In other words, within a given market
we can identify a collection of common services that companies request and
offer. For instance, in the example in Fig. (a) in table 1, several providers
may offer to assemble a cylinder through the very same transformation: t =
({6 ·screws, 1 ·cylinder line, 1 ·cylinder rig, 1 ·cylinder head}, {cylinder}).
Eventually, a provider may either offer to perform such transformation sev-
eral times (e.g. as many times as cylinders are required), or to bundle it with
other transformations, or the two. Hereafter, we shall consider the common
goods and services in a given market to be represented as a collection of tran-
formations that we shall refer to as market transformations. Therefore, mar-
ket transformations represent the ”goods” providers and buyers can request
and bid for. Hence, bids for MMUCAs shall be composed as combinations
of market transformations. In our generator, the set of market transforma-
tions is always finite and includes at least two market transformations for
every good in G, ensuring that every good is individually available to buy

and/or sell. As an example, Fig. (b) in table 1 depicts a sample of market
transformations if intending to build the car engine in Fig. (a) in table 1.

– Certain transformations are more likely to appear together than
others. In any market services and goods are related to each other. For
example, the production process for a good can also generate some other
products that can be sold with it or used in another industrial process. Also,
some services or products are usually bought together by the final customer.
In order to deal with this requirement, our generator uses a simple Markov
model, that modifies the probabilities of the next transformation to include
to the bundle depending on the last transformation that added.

– The number of transformations in a bundle is often related to
which goods compose the bundle. Since bids are composed as combi-
nations of market transformations, we must introduce the notion of trans-
formation multiplicity as the counterpart of good multiplicity (the number
of units of a given good within an offer or a request). Say that in a CA a
bidder submits a bid for the goods in multi-set {engine, engine, piston}. It
is clear that the multiplicity in this bundle of good engine is two, whereas
the multiplicity of good piston is one. But things become more complicated
when we consider transformations because the multiplicity of a given trans-
formation must be defined in terms of another transformation, which in turn
is composed of multiple input and output goods. Intuitively, we say that a
transformation is a multiple of another one if both share the same input and
output goods and the former has more input and output goods than the lat-
ter but keeping the same ratio between input and output goods. For instance,
given transformations t = ({6 · screws, 1 · cylinder line, 1 · cylinder ring, 1 ·
cylinder head}, {cylinder}) and t′ = ({12·screws, 2·cylinder line, 2·cylinder ring,
2 · cylinder head}, {2 · cylinder}) we way that t′ has multiplicity two with
respect to t. Thus, in our generator we fulfill the requirement that the num-
ber of transformations in a bundle is often related to which goods compose
the bundle by providing each market transformation with a probability dis-
tribution over the set of multiplicities in which it is likely to appear.

– Valuations are related to which transformations appear in the bun-
dle; furthermore transformation valuations keep consistency with
respect to bidder valuations for goods involved in each transforma-
tion. A further issue has to do with the way bidders value transformations
and bundles of transformations. Notice that performing a transformation to
assemble the engine in Fig. (a) in table 1 results in a new product that has
more market value than its parts. Therefore, a car maker values the trans-
formation according to his expected benefits, namely the difference between
the expected market value of the engine and the cost of its parts. There-
fore, if the parts cost $850 and the expected market value of the engine is
$1000, the car maker should be willing to offer to pay less than $150 for the
transformation. On the other hand, any provider is expected to request less
than $150 in order to perform the transformation. In general, buyers and
providers in a MMUCA should value a transformation on the basis of the
difference between the expected market value of its output goods and the

cost of its input goods. Notice though that we are not assuming here that
such difference must be always positive. Likewise bidder should value bun-
dles of transformations considering the prices of transformations included in
it.

– Appropiate valuations can be configured to be subadditive, addi-
tive or superadditive in the number of transformations requested
This requirement tries to capture the multiplicity-based (volume-based) dis-
counts policies that are applied in real world. Significant discounts are ap-
plied in real markets when goods and services are traded at certain number
of units. For example in Fig. (a) in table 1, we observe that screws are usu-
ally traded in higher quantities than full engines. Thus, not surprisingly the
same (percentage) discount may apply to an offer for 100 screws than to an
offer for 5 engines. Hence, an offer to produce more than 5 engines, though
more unlikely, should reflect higher discounts.

– Sets of XOR’ed bids are constructed on per-bidder basis When a
bidder submits different bids in an XOR bid he declares they are mutually
exclusive offers, expressing substitutability. For example, the following of-
fer bid1({({engine}{})}, 100) xor bid2({({2 · engine}{})}, 190) stands for
a bidder that offers to buy two engines or one engine but in any case
three engines. On the other hand when a bidder expresses complemen-
tarity he translates the OR bids as XOR bids. For example if a bidder
wants to buy one engine or one cylinder he submits the following XOR-
bid: bid1({({engine}{})}, 100) xor bid2({({cylinder}{})}, 30) xor bid3({(
{cylinder , engine}{})}, 140). As you can observe in both cases bids submit-
ted in the same XOR bid are likely to have similarities and , consequently,
combining bids into XOR bids randomly does not capture this property.

– Unrequested goods by the auctioneer may become involved in the
auction. Finally, we add a last requirement stems from the fact that, unlike
auctioneers in CAs, not all goods involved in a MMUCA must be requested
by the auctioneer. Back to our example of a car maker in need of engines
as depicted in Fig. (a) in table 1, it can run a MMUCA only requesting
engines. Thereafter, bidders may offer already-assembled engines, or other
goods (e.g. parts like crankcases, crankshafts, or screws) that jointly with
transformations over such goods help produce the requested goods.

Requirements summary. Following the analysis above, we can reformulate
the requirements for an artificial data set generator for CAs to obtain the re-
quirements for an artificial data set generator for MMUCAs:

1. There is a finite set of transformations
2. Certain transformations are more likely to appear together than others
3. The number of transformations in a bundle is often related to which trans-

formations compose the bundle
4. Valuations are related to which transformations appear in the bundle; fur-

thermore, transformation valuations keep consistency with respect to bidders
valuations for goods involved in each transformation

5. Valuations can be configured to be subadditive, additive or superadditive in
the number of transformations requested

6. Sets of XOR’ed bids are constructed on a per-bidder basis
7. Unrequested goods by the auctioneer may become involved in the auction

These requirements are the extended versions for MMUCAs of the requirements
for CAs detailed at the beggining of this section.

4 An Algorithm for Artificial Data Set Generation

In what follows we describe a bid generation algorithm that automates the gener-
ation of artificial data sets for MMUCA while capturing the requirements above.
The algorithm’s purpose is to generate MMUCA WDP (each one composed of
a collection of XOR bids and the set of goods available to and requested by the
auctioneer) that can be subsequently fed into an MMUCA WD algorithm.
The algorithm starts by generating the set of goods involved in MMUCA. Next,
it generates the goods the auctioneer requests. After that, it creates a subset of
atomic transformations, which are the market transformations to employ for bid
generation. Thereafter, it generates bids as linear combinations of market trans-
formations, which are subsequently priced according to a pricing policy. The
resulting bids are further composed into XOR (mutually exclusive) bids because
the XOR language is a fully expressive language allowing bidders to express all
their preferences in a single XOR bid [3]5. Hence, our algorithm assumes that
each bidder formulates a single XOR bid, being the number of bidders equal to
the number of XOR bids.

Good Generation. This process requires the number of different goods
(ngoods) involved in an auction along with the maximum price any good can
take on (maxPrice). Based on these values, it assesses for each good g: (1) its
average market price (µg) drawn from a uniform distribution U [1,maxPrice]
where maxPrice stands for the maximum market price any good can take on;
and (2) the distribution to assess its multiplicity, or more precisely, the success
probability (ggeometric) of a geometric probability distribution from which the
good multiplicity can be drawn.

Requested Goods Generation. This process assesses the number of units
of each good the auctioneer requests, namely the multiset Uout. Since the auc-
tioneer must not request all goods, this process selects a subset of the goods
in G to be part of Uout. Firstly, it determines whether a good g is requested
by the auctioneer by comparing the value drawn from a uniform distribution
U [0, 1] with pgood requested, the probability of adding a new good to Uout . Once
included a given good g, the number of units requested for g is drawn from a
geometric distribution with the success probability ggeometric obtained by the
good generation process. Notice that by selecting a subset of the goods we fulfil

5 Here we only provide the bid generation algorithm. The interested reader must refer
to [8] for a description of all algorithms required by the artificial data set generator.

the requirement 7 listed in section 3 unrequested goods by the auctioneer may be
involved in the auction.

Market Transformations Generation. This process generates a finite
set of transformations to be employed as the building blocks to subsequently
compose bids and consequently fullfilling the requirement 1 listed in section
3. For each good, this procedure constructs two market transformations (one I-
transformation and one O-transformation). Each transformation involves a single
good with multiplicity one. For instance, ({engine}, {}) and ({}, {engine}) stand
respectively for the I-transformation and O-transformation for good engine. Af-
ter that, the algorithm generates a limited number of market IO-transformations
(nIO market transformations). In order to generate each market IO-transformation,
this procedure chooses the goods to include in its input and output set employ-
ing the probabilities of adding some good to the input and output set respec-
tively (pgood in input and pgood in output). Once included a good to either the
input or output set, its multiplicity is calculated from a geometric distribution
parametrised by ggeometric.

Finally, there is the matter of attaching to each market transformation a
probability distribution to draw its multiplicity. We assume that the bid gener-
ation process, detailed by algorithm 1, is to employ a geometric distribution for
each market transformation to calculate its multiplicity. Hence, the generation
of market transformations assesses the success probability to be employed by
such geometric distributions, namely the probability of adding an extra unit of
a transformation already included in a bundle bid. Thus, each transformation t
is assigned a success probability tgeometric. However, we cannot randomly gen-
erate success probabilities because transformations are defined over multisets of
goods, and therefore we must keep consistency with respect to the success prob-
abilities assigned to each good by the good generation process. Therefore, we
propose to set the success probability for each transformation as follows. Given
a transformation t = (I,O), for each good involved in the transformation, g,
we assess its probability of having multiplicity |mI(g) −mO(g)|, where mI(g)
(respectively mO(g)) stands for the number of occurrences of g in I (respectively
O). We set the success probability of t to the minimum of these probabilities as
follows: tgeometric = ming∈Gg|mI(g)−mO(g)|

geometric .
Bid Generation. The bid generation algorithm (algorithm 1) generates bids

that are subsequently combined into XOR bids, each one encoding the offer or
request of a bidder. This process makes explicit which transformations and how
many of them to offer/request in a bundle, how to price the bundle, and which
bids to combine in an XOR bid.

Which transformations are requested in a bundle and in what number of
units. Firstly, for each XOR bid (XORBid) the algorithm composes each bid
(Bid) by combining the market transformations (MT S) returned by the mar-
ket transformation generation process. The number of market transformations
(nTransfBid) to compose each bid is obtained from a normal distribution
N (µadd new transformation, σadd new transformation) (line 12). Market transformations
are chosen from the set of market transformations (MT S) and their multiplicity

in the bundle bid is obtained from a geometric distribution with success prob-
ability tgeometric (line 15-16). By assessing the number of units to include in a
bundle using a probabilistic distribution that depends on each transformation
we fulfil the requirement 3: the number of transformations in a bundle is often
related to which transformations compose the bundle. We also consider that given
an existing bundle not all transformations are equally likely to be requested be-
cause certain transformations (for which some complementarities exist) will be
more likely to appear together than others as stated by requirement 2 in section
3. To ease these complementarities we assume the Markov property that the
probability of adding a new market transformation to an existing bundle only
depends on the last transformation added and not on the whole bundle. The
markov model is a matrix #MT S × #MT S with the following properties: An
state MT i is defined as an state where the last market transformation added

Algorithm 1 Bid Generation(MTS, nXOR bids, µ, σprices, µadd new XOR clause,
σadd new transformation, µadd new transformation, σadd new transformation, α)

1: for g = 1 to ngoods do
2: for b = 1 to nXOR bids do
3: pprices bid[b, g] ← µ[g] · N(1, σprices)
4: end for
5: end for
6: Bids ← { }
7: for b = 1 to nXOR bids do
8: XORBid ← EmptyXORBid()
9: nXORClauses ← N (µadd new XOR clause, σadd new XOR clause)
10: for x = 1 to nXORClauses do
11: Bid ← EmptyCombinatorialBid()
12: nTransfBid ← N (µadd new transformation, σadd new transformation)
13: if x == 1 then
14: for t = 1 to nTransfBid do
15: MT ← Select a transformation using Markov model from MTS with state MT
16: multiplicity ← Geometric(MT.tgeometric)
17: T.inputs ← MT.inputs · multiplicity
18: T.outputs ← MT.outputs · multiplicity
19: T.price ←

P
g∈T.outputs

pprices bid[b, g]−
P

g∈T.inputs
pprices bid[b, g]

20: poffer ← (T.tgeometric)
multiplicity

21: discount ← α 1−e
1−poffer

1−e

22: Bid.t ← Bid.t ∪ T
23: Bid.price ← Bid.price + T.price · (1− discount)
24: end for
25: else
26: model ←Randomly generate a number betwen 1 and x-1
27: Bid ← XORBid(model)
28: if nTransfBid ≥ length(XORBid(model).t) then
29: Bid ← removeRandomTransition(Bid)
30: Bid ← recalculatePrices(Bid)
31: end if
32: if nTransfBid ≤ length(XORBid(model).t) then
33: Bid ← addRandomTransition(Bid)
34: Bid ← recalculatePrices(Bid)
35: end if
36: end if
37: XORBid ← XORBid ∪ {Bid}
38: end for
39: Bids ← Bids ∪ {XORBid}
40: end for
41: return Bids

to the bundle is MT i and
Pj=#MTS
MT i∈MTS,j=1 P (MT i|MT j) = 1 . First market

transformation is chosen randomly, next transformations are chosen using the
probability distribution of the row i in the matrix (i: current state).

How to price the bundle. Next, the algorithm prices the transformation ac-
cording to its multiplicity (lines 17-21). To fulfil valuations requirements listed in
section 3, a pricing policy must provide the means to price a good, a transforma-
tion, multiple units of the very same transformation, and a bundle of transfor-
mations in a realistic manner. As to pricing goods, in order to vary prices among
bidders, our algorithm generates a price for bidder b for good g, represented as
pprices bid[b, g], from a normal distribution N (µ[g],σprices), where µ[g] stands for
good g’s average price in the market and σprices for the variance among bidders’
prices (lines 2-4). Thereafter, a transformation’s price for bidder b is assessed
in terms of the difference from his valuation of its output goods with respect
to his valuation of its input goods (line 19). Accordingly transformation valua-
tions keep consistency with respect to bidder valuations for goods involved in each
transformation as stated by requirement 5 in section 3. Each bid valuation is
obtained by adding the prices of its transformations (line 23). Hence valuations
are related to which transformations compose the bundle as stated by require-
ment 6 although varying among different bidders.
Furthermore we propose to introduce superadditivity by applying multiplicity-
based discounts to transformations addressing the requirement that valuations
can be configured to be subadditive, additive o superadditive in the number of
transformations requested. In other words, as a general rule the more unlikely for
a transformation to be traded at certain units (multiplicity), the higher the dis-
count to apply to its overall price. In this way we try to capture in a realistic man-
ner the way multiplicity-based (volume-based) discounts are applied in the real
world. Therefore, given transformation t, we firstly assess the probability poffer

of the transformation to be traded with multiplicity m from a geometric distribu-
tion with success probability tgeometric as follows: poffer = tgeometric

multiplicity

(line 20). Secondly, we compute the discount to apply (discount) as follows:
discount = α 1−e

1−poffer

1−e . Indeed, in this way we manage to apply higher dis-
counts to more unlikely offers within the range [0,α]. Notice too that setting α
to zero leads to no discounts, and thus to no superadditivity.

Which bids to combine in an XOR bid. Finally, after creating each bid,
the algorithm adds it to the XOR bid under construction (line 37). The num-
ber of bids that compose an XOR bid is obtained from a normal distribution
N (µadd new XOR clause, σadd new XOR clause) (line 9). We consider here the require-
ment 7 listed in section 3 and since different bids in XOR-relationships stand
for different alternatives or options for the bidder we propose to generate similar
bids for the same XORBid. First bid of each XORBid is generated randomly
(lines 13-24) whereas the rest of bids are created applying some modifications
over one existing bid in the bundle (lines 25-36). The number of modifications
depends on the difference between the number of transformations assigned to
the new bid and the existent one: while it is less we remove randomly one trans-
formation; while it is greater we add randomly new transformations and if it is

equal we apply once both operations. In all cases we finally recalculate the prices
following the proposed price policy. Hence the requirement that sets of XOR’ed
bids are constructed on a per-bidder basis is fulfilled.

5 Experimental results

In this section we shall illustrate the computational cost of solving the WDP for
MMUCA. At this aim, we present our first experimental results for MMUCA by
assessing the performance of an IP implementation on CPLEX.

As explained at the end of section 2, the number of decision variables of
an IP to solve a MMUCA WDP depends on the overall number of transforma-
tions. Thus, the number of transformations must be considered as one dimension
when measuring the time complexity of a WD algorithm for MMUCA. However,
transformations are subsequently combined in several ways in order to finally
compose bids in the XOR bidding language. Thus, transformations can be bun-
dled into bids (adding AND-constraints), which in turn may be put together into
XOR bids (adding XOR-constraints) giving as a result problems with different
levels of constriction. Here we list the significant changes that involve the in-
troduction of different constraints in a MMUCA problem : (1) the introduction
of AND-relationships reduces the resulting number of bids ; (2) the introduc-
tion of XOR-relationships reduces the resulting number of XOR-bids ; (3) the
introduction of XOR-relationship reduces the length of the solution sequence
and, consequently, the number of decision variables of the IP since the maxi-
mum length of a solution sequence is the sum of the number of transformations
contained in the largest bid of each XOR bid.

Hence, we believe that the size of bids (transformation bundles) as well as
the size of XOR bids must be regarded as further dimensions when measuring
the time complexity of a WD algorithm. Considering the dimensions mentioned
so far, we propose a first experiment to evaluate an implementation of the IP
formulated in [3] when solving artificial data sets in scenarios with: (1) XOR-bids
composed of a single bid with a single transformation (neither AND nor XOR
constraints); (2) XOR-bids composed of a single bid with two transformations
(AND constraints) (3) XOR-bids composed of two bids with one single trans-
formation (XOR constraints); and (4) XOR-bids composed of two bids with two
transformations (both AND and XOR constraints).

Considering the above-described experimental scenarios, we have run our
experiments as follows. Firstly, we have generated 50 WDP instances for each
configuration using a MATLAB implementation of the artificial data set gener-
ator detailed in section 4 whose source code is publicly available at
http://www.iiia.csic.es/~meritxell/material/MMUCA_problem_generator.zip . We have solved
each WDP with an IP implementation of MMUCA on CPLEX 10.1 and recorded
the resulting solving times. Notice though that we have set to 3600 seconds the
time deadline to solve each WDP. We have only considered feasible WDP in-
stances to calculate solving times since the time required by CPLEX to prove
infeasibility is (usually) significantly lower than time required to find an optimal

solution. Our tests have been run on a Dell Precision 490 with double proces-
sor Dual-Core Xeon 5060 running at 3.2 GHz with 2Gb RAM on Linux 2.6.

Fig.5 Solving time with respect to number of
transformations.

Scen. XOR
bid
size

Bid
size

Num.
Transf

Sol.
Length

Num.
Bids

Num.
XOR-
bids

40 40 40 40
80 80 80 80

1 ** 1 1 120 120 120 120
160 160 160 160
200 200 200 200
40 40 20 20
80 80 40 40

2 ** 1 2 120 120 60 60
160 160 80 80
200 200 100 100
40 20 40 20
80 40 80 20

3 ** 2 1 120 60 120 60
160 80 160 80
200 100 200 100
40 20 20 10
80 40 40 20

4 ** 2 2 120 60 60 30
160 80 80 40
200 100 100 50

Parameters characterising our experimental scenarios.

** Rest of parameters fixed as:ngoods = 4,nIO market transformations = 10, maxP rice = 100,σprices =
0.05,pgood requested = 0.3, pgood in input = 0.3,pgood in output = 0.1

Fig. 5 depicts the median of the solving times resulting when varying the
number of transformations for the above-described scenarios. The star(*) sym-
bol stands for the median value exceeding the time limit (3600s). If that is the
case, we cannot know the exact median value, but only that it exceeded the
time limit. Observe that indeed the MMUCA computational cost increases as
the number of transformations grows. Solving times exponentially increase for
all scenarios. However, significant differences appear among different scenarios.
Observing results of scenario 2 and 3 it stands out that CPLEX solving times
increase with the introduction of restrictions with respect to a unconstrained
problem (scenario 1). In these scenarios, the space search reduction provided
by the addition of the constraints does not compensate CPLEX for consider-
ing these restrictions. We also observe that considering XOR-relationships sig-
nificantly increases the complexity of the problem with respect to considering
AND-relationships. However, as we observe in scenario 4, the introduction of
constraints can involve important reductions in solving times.

We hypothesize that the introduction of a larger number of constraints (in
this scenario we introduce AND-constraints and XOR-constraints) leads to a
larger reduction of the search space with respect to scenario 2 and 3. In this case,
although CPLEX has to operate with two types of constraints, the reduction
of the search space compensates for the introduction of more complexity and
produces better results. Nonetheless, it stands out the need for more research in
order to accurately understand and explain the significant variations obtained
in these experiments through the different scenarios above.

6 Conclusions and future work

In this work, we have attempted at making headway in the practical application
of MMUCAs along two directions. Firstly, we have provided an algorithm to
generate artificial data sets for MMUCA that are representative of the sort of
scenarios a WD algorithm is likely to encounter. A distinguishing feature of the
algorithm is that it pursues to capture in a realistic manner how bidders trade
transformations. Our algorithm reformulates and extends in terms of transfor-
mations the requirements for an artificial data set generator for CAs. Secondly,
we provide the first empirical tests for MMUCAs by assessing the performance
of a CPLEX IP implementation. These tests assess the computational cost of
solving the WDP as transformations grow for different bid expressions in the
XOR bidding language. Our results indicate that the scalability of an IP imple-
mentation of MMUCA is seriously compromised by the exponential growth of
computational cost as the number of transformations increases. Hence, we ar-
gue in favour of special-purpose optimal and local algorithms that improve the
current performance of an IP implementation.

Acknowledgements

This work has been partially funded by the projects TIN2006-15662-C02-01 and TIN2006-

5-0I-099. The work of Meritxell Vinyals is supported by the Ministry of Education of

Spain (FPU grant AP2006-04636).

References

1. P. Cramton, Y. Shoham, and R. Steinberg, editors. Combinatorial Auctions. MIT
Press, 2006.

2. A. Giovannucci, J. A. Rodŕıguez-Aguilar, J. Cerquides, and U. Endriss. On the win-
ner determination problem in mixed multi-unit combinatorial auctions. In Proceed-
ings of the Sixth International Conference on Autonomous Agents and Multiagent
Systems, Honolulu, Hawaii, USA, May 14-18 2007. In press.

3. J.Cerquides, U.Endriss, A.Giovannucci, and J.A Rodŕıguez-Aguilar. Bidding lan-
guages and winnder determination for mixed multi-unit combinatorial auctions. In
Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJ-
CAI 2007), pages 1221–1226, India, January 2007.

4. K.Leyton-Brown and Y. Shoham. A Test Suite for Combinatorial Auctions, chap-
ter 18. MIT Press, 2006.

5. N. Nisan. Bidding languages for combinatorial auctions. In P. Cramton et al.,
editors, Combinatorial Auctions. MIT Press, 2006.

6. Michael H. Rothkopf, Aleksandar Pekec, and Ronald M. Harstad. Computationally
manageable combinational auctions. Management Science, 44(8):1131–1147, 1998.

7. T. Sandholm, S. Suri, A. Gilpin, and D. Levine. Winner determination in combinato-
rial auction generalizations. In 2nd International Joint Conference on Autonomous
Agents and Multiagent Systems, Bologan, Italy, July 2002.

8. M. Vinyals, J. Cerquides, and J. A. Rodriguez-Aguilar. On the empirical evaluation
of mixed multi-unit combinatorial auctions. Technical Report RR-IIIA-2007-01,
IIIA-CSIC, February 2007.

