Justification-based Selection of Training
Examples for Case Base Reduction

Santiago Ontanén and Enric Plaza

IITA, Artificial Intelligence Research Institute
CSIC, Spanish Council for Scientific Research
Campus UAB, 08193 Bellaterra, Catalonia (Spain).
{santi,enric}@iiia.csic.es, http://www.iiia.csic.es

Abstract. Maintaining compact and competent case bases has become
a main topic of Case Based Reasoning (CBR) research. The main goal is
to obtain a compact case base (with a reduced number of cases) without
losing accuracy. In this work we present JUST, a technique to reduce the
size of a case base while maintaining the classification accuracy of the
CBR system. JUST uses justifications in order to select a subset of cases
from the original case base that will form the new reduced case base. A
justification is an explanation that the CBR system generates to justify
the solution found for a given problem. Moreover, we present empirical
evaluation in various data sets showing that JUST is an effective case
base reduction technique that maintains the classification accuracy of
the case base.

Keywords: CBR, Case Base Management, Case Base Reduction.

1 Introduction

Maintaining compact and competent case bases has become a main topic of Case
Based Reasoning (CBR) research. The main goal is to obtain a compact case
base (with a reduced number of cases) without losing problem solving accuracy.
In modern CBR systems, with large case bases, it has been found that adding
new cases into the case base is not always beneficial. Smyth and Cunningham
[7] analyze this problem and find that although similarity-based methods (such
as the ones typically used in CBR) do not usually suffer from overfitting when
adding new cases into the case base, the efficiency of the system can degrade.
The efficiency of the system can be divided in two factors: the retrieval time and
the reuse time. While reuse time diminishes as the case base grows, retrieval time
increases. Therefore, by adding new cases into an already saturated cases base,
the same problem solving performance is achieved, but with a reduced efficiency.

There has been significant research in case base maintenance recently. Aha
et al. [2, 1] propose several algorithms for reducing case bases (CBL2, CBL3 and
CBL4) based on the rule “if I can correctly solve a P with a case base C, then
it is not interesting to add P to C”. Related to CBL2 is also the Condensed
Nearest Neighbor algorithms [4, 9, 5].

Another line of case base maintenance policies are those of Smyth and Keane
[8]. They define several competence metrics based on finding “competence groups’
inside a case base that they later use to define case base maintenance policies by
deleting from the case base those cases with minimum competence. Later, Zhu
and Yang [10] propose an alternative version of the Smyth and Keane strategy
based on case addition instead of case deletion.

Salamé and Golobardes [6] propose two deletion policies for CBR systems
based on the rough set theory: Accuracy-Classification Case Memory ACCM
and Negative Accuracy-Classification Case Memory NACCM. Both ACCM and
NACCM are able to keep classification accuracy at a very high level (sometimes
even improving the accuracy of the complete case base), but the reduction of
cases obtained is not as large as algorithms such as CBL2.

In this paper we present a novel approach to case base maintenance based
on the concept of justifications. A justification is an explanation that the CBR
system generates to justify the solution found for a given problem. The analysis
of justifications is able to find the weak points (or the “competence holes”) of a
case base. We will present a technique called JUST (JUstification-based Selection
of Training examples) to reduce the size of a case base while maintaining the
classification accuracy of the CBR system. Suppose that we have a CBR system
with a case base C consisting of n cases. JUST will construct a reduced case base
C"™ by selecting cases from C. JUST follows the case addition strategy presented
by Zhu and Yang [10] (in the sense that it also constructs a new case base by
selecting cases from C') but using justifications in order to select which cases to
select from C' instead of a competence measure.

The structure of the paper is as follows. First, in Section 2, we formally
present the idea of justifications. Then, Section 3 presents the JUST technique.
After that, we present an empirical evaluation of JUST and the paper closes
with the conclusions section.

9y

2 Justifications

Let C = {c1,...,cn} be the case base of a CBR system, composed of n cases.
Each case ¢; = (P, S) is a tuple containing a problem P and a solution S. We
will use the dot notation to refer to the elements inside a tuple, i.e. we will
note ¢;.S to make reference to the solution in case ¢;. Usually, when a classifier
solves a problem P, the output is only a solution class (or at most a ranked list of
solution classes with an associated probability). However, some machine learning
methods can provide more information than just the solution class. Specifically,
some methods can output a justification.

Definition: A justification J built by a CBR method to solve a problem P that
has been classified into a solution class S, is a description containing the relevant
information of P for having predicted S} as the solution for P.

In our work, we use LID [3], a lazy learning method for CBR systems capable
of building symbolic justifications. LID uses the feature term formalism to rep-

External
S
R features
* EXtemal_—"Gemmules t - No
features
o Spiculate | | Spiculate
skeleton skeleton Megascleres

® Megasclerest—| * ?mooth —+——| Tylostyle
orm
o Uniform
BTy

Fig. 1. Simbolic justification returned by LID.

resent cases. Feature Terms (or ¢-terms) are a generalization of the first order
terms. The main difference is that in first order terms (e.g. person(zy, z2, x3))
the parameters of the terms are identified by position, while in a feature term
the parameters (called features) are identified by name (e.g. person[name =
x1, father = x9, mother = x3]). Another difference is that feature terms have a
sort, for instance, the previous example belongs to the sort person. These sorts
can have subsorts (e.g. man and woman are subsorts of person). Feature terms
have an informational order relation (C) among them called subsumption, where
1 C 9’ means all the information contained in % is also contained in v’. We say
that v subsumes ¢’ (or that ¢’ satisfies v); we can also say that ¢ is a general-
ization of ¢’. When a feature term has only a sort and no features, it is called a

leaf.

Figure 1 shows a symbolic justification J returned by LID, represented as a
feature term. Each box in the figure represents a node. On the top of a box the
sort of the node is shown, and on the lower part, the features with a known value
are shown. The arrows mean that the feature on the left part of the arrow takes
the node at the right as value; nodes No and Tylostile are leaf nodes. LID has
returned the justification J for classifying a problem P in a specific solution class
S such that J C P. In addition, there is a subset of cases cq,....c, retrieved
from the case base such that Ve; € {c1,....c;},J C ¢;.P. These are the cases
that endorse Sy, as a solution for P, since all (or the majority) of them have
solution Sj. Moreover, J is a symbolic similarity description since it contains
what is shared between P and c,...,¢, and that is relevant (not all that is
shared). Notice that albeit J is a generalization of all the cases c¢q,...,¢, and
of the problem P LID is still a lazy learning method. The difference between
induction and lazy learning is that induction builds a global approximation of
the concept to be learnt, while lazy learning builds local approximations around
the problem P to be solved. From this viewpoint, a justification J for a problem
P is the local approximation built by LID, and the form of J is a symbolic
description that generalizes cq, ..., ¢, and P.

3 Justification-based Selection of Training Examples

This section presents the JUST (Justification-based Selection of Training exam-
ples) technique. JUST is a case base reduction technique whose goal is to reduce
the number of cases in a given case base without reducing the classification
accuracy obtained with that case base.

JUST is an iterative technique that selects cases from case base C' and adds
them to another (reduced) case base C", until certain termination criterion is
met. The termination criterion could be any property of the new case base C",
but we will focus on these two: finding a case base C" with at most M cases,
finding a case base C" with a certain accuracy level a. Before explaining JUST,
we need to introduce some concepts:

Definition: An exam E = {P,...,P,} is a set of problems (i.e. unlabeled
examples) for which the system knows the solution and that JUST has still not
added into C", i.e. E C {¢;.Plc; e C Ne; € C™}

The way JUST builds exams is by maintaining a set C" of cases that are
present in C' and that are not in C”. The problems in any subset of cases from
C" are a valid exam. The idea of the exams is to build a set of problems with
which to evaluate the performance of the new case base C". Moreoever, when
the system solves a problem, a Justified Endorsing Record is built:

Definition: A Justified Endorsing Record (JER) J¥ = (P, S,J) is a tuple
containing the problem Py, the solution class S predicted for the problem Py,
and the justification J for S being a solution for P.

We will note Jp = {J¥|J*.P = P,, € E} the set of JERs build by the system
using the reduced case base C" for each problem P, € E. Moreover, since we
know that the correct solution for P is S, we can define the set of incorrect
JERs J; = {J*|J* € Jp A J*.S £ Si.} (i.e. the JERs for the problems in E for
which the system has predicted an incorrect solution using the case base C”.

A case ¢; is a counterezample of an incorrect JER (J* € J3) if ¢;.P is
subsumed by the incorrect justification J*.J and ¢;.S is a different solution
class than the predicted one, i.e. J*.J C ¢;.P and ¢;.S # J*.S. Moreover, we
can define also a valid counterexample as a counterexample ¢; that predicts the
correct solution for Py, i.e. ¢;.5 = Sj.

Definition: The refutation set Ry» of an incorrect JER J* is defined as the set
of cases from C™ that are valid counterexamples of J*. Formally: Ryx = {c; €
C%J*.J C ¢;.P Ac;.S = Si}, where Sy is the correct solution class for the
problem J*.P = P,

The examples in a refutation set Rj» are the examples that can potentially
prevent the system from making similar errors in the future and therefore they
are candidate examples to be added to C". The collection of the refutation sets
for all the incorrect JERs J5 will be noted as R = {Rx|J* € J5}. Finally, we
define the belying set as follows:

Function JUST (C,7T,m)
t=0;Cy; =0; C§ =C;
Do
E; = select-exam(C}', m);
Jg, = build-JERs(F:);
I, ={I¥I* €I, NI*.5 # Sk}
R, = build-refutation-sets(J, , C¢');
B = build-belying-set(Ry);
Cit1=C{UByt=1t+1;
While(not 7);
Return(CY);
End-Function

Fig. 2. The JUST algorithm, where C is the initial case base, 7 is the termination
criterion and m is the exam size.

Definition: The belying set B is the minimum set of counterexamples that belies
all the incorrect justifications built by the CBR system over an exam F using the
case base C". Formally, the belying set is the collection of cases B C C* such that
VRyr € R: BNRyr # 0 and that AB'|VRy € R : B'NRy. # OAB’' C B. Notice
that a) the belying set contains at least one counterexample that belies each
one of the incorrect justifications and b) the belying set contains the minimum
number of counterexamples that belie all incorrect justifications. For instance, if
two refutation sets for two JERs J*¥ and J j share a counterexample ¢;, including
¢; into B is enough to belie both incorrect justifications.

After introducing these definitions we can now present the JUST method.
Figure 2 shows the JUST iterative algorithm. At each iteration ¢, JUST will select
some cases from C to be added to the new reduced case base. We will define
three sets of cases at each iteration ¢: C} is the reduced case base created by
JUST (containing all the cases selected in the previous iterations), C}* = C — Cf
are the cases from C that are not in C} and finally B, is the set of cases selected
by JUST from C' to be added to C{ in the iteration t.

The JUST method works as follows: Initially, t = 0, Cj = () and C§ = C.
At each iteration ¢, JUST builds an exam E; C C}* of size m. The size m of
the exams is a parameter of JUST, in Section 4 we will analyze the effect of
varying the parameter m. The CBR system solves all the problems in E; using
the case base C and builds the set of JERs Jg,. Then, the set J5 containing
all the incorrect JERs in Jg, is built. Notice that JUST can determine whether
a JER J* € Jp, is correct or not because the solution for each problem in E;
is known (since they are problems extracted from cases of Cf*). Next, JUST
builds a refutation set for each incorrect JER in Jg , obtaining the collection
of refutation sets R;. Finally, the belying set B; is built; B; is the set of cases
that JUST will add to C} in the iteration ¢: therefore, C{,, = C{ U B;. If the
termination criterion 7 is still not met, a new iteration starts.

There is a special situation for JUST when the belying set B; is empty and
the termination criterion is not met: then JUST selects a single random case
from C} and adds it to Cy. This is done to ensure convergence, avoiding an
unbounded number of iterations. This way, the maximum number of iterations
of JUST is exactly n (the number of cases in C), since at each iteration, at least
one case is added to Cf.

When the termination criterion is met (at an iteration ¢) the case base Cy is
considered the target case base C", and C7 is returned. If the set C}* is empty,
this means that all the cases from C' have been selected, and that C" contains
all the cases from C, and the process is also terminated.

3.1 Termination Criterion

In our experiments we have used two different termination criteria 7. If the
termination criterion is to obtain a case base C” of a given size M, JUST will
finish once C} has reached the size M. In fact, JUST will output C}_; when it
detects at iteration ¢ that size(C}) > M.

When the termination criterion is to obtain a case base C" with a minimum
accuracy level a, JUST uses the answers of the exams as an estimation of the
current classification accuracy. However, depending on the size of the exam, this
estimation may not be very reliable. If the size of the exam is large, the accuracy
obtained on that exam is a good estimation of the classification accuracy of the
CBR system; thus, when the accuracy obtained by the system in a large exam
is above «a, the JUST process can terminate. In our experiments, « takes values
around 90%. Moreover, if the size of the exam is small, JUST needs more than
one exam to have a good estimate of the accuracy.

The number of exams needed to have a good estimation can be determined
assuming that the correctness of an answer can be modeled as a binomial distri-
bution. Using the binomial distribution, for estimating accuracy values around
a = 90%, 60 answers are enough to have a 66% certainty of having an error
smaller than the 4% in the estimation of the accuracy. For instance, for an exam
size m = 20, 3 exams are enough for being 66% sure that the accuracy of the
CBR system does not differ more than a 4% from the estimated one. Thus, if
the average accuracy o’ of 3 consecutive exams of size m = 20 is higher than «,
JUST can terminate with a 66% certainty that the accuracy of the CBR system
is in a £4% margin around o’. For an exam size of m = 10, 6 consecutive ex-
ams are needed for the same result. Summarizing, the termination policy is the
following: if the average accuracy in the last 60/m exams is above a, JUST will
stop.

3.2 JUST in a nutshell

The idea behind JUST is quite simple: at each iteration, the system tests which
are the weak points (or competence holes) of the new reduced case base C" by
solving an exam. The justification J given for an incorrectly answered problem
P in an exam is an incorrect local approximation of the neighborhood of P.

Moreover, since a justification J is also a symbolic description, it can be used to
find a case (a counter example) that satisfies that description and that proves
that J is incorrect (i.e. the case has a solution different from the predicted by
J). Adding that case into the reduced case base prevents the incorrect local
approximation to be generated again, thus improving problem solving in that
area of the problem space.

In fact, JUST selects the minimum set of cases that are counterexamples of
all the incorrect justifications (the belying set) in order to minimize the number
of cases of the reduced case base. Therefore, JUST iteratively constructs a case
base that is more competent at each iteration, and this increase of competence
is done trying to minimize the number of cases needed. Of course, all the process
strongly depends on the ability of JUST to detect the weak points in the case
base C". Therefore, we expect that the larger the exam size, the better JUST
will work. In the extreme, all the remaining cases in C}* can be used as the exam
in iteration ¢ to obtain the smallest case base that JUST can obtain.

4 Experimental results

This section presents the experimental results comparing the performance achieved
by a CBR system after using the JUST case base reduction technique with the
performance of the system without reducing the case base.

The lazy learning method we use is LID [3], a CBR method that is able to
generate justifications and that can work both with propositional and relational
data. We have used three different datasets to test out approach: soybean, a well
known propositional dataset, zoo, another propositional data set from the UCI
machine learning repository, and marine sponges, a complex relational data set
[3]. Sponges have a complex structure, making them amenable to build complex
justifications. The soybean data set consists of 307 examples, each one with 35
attributes (some of them with missing values), and there are 19 possible solution
classes. the zoo data set consists of 101 examples, each one with 17 attributes
and 7 solution classes. The sponges data set consists of 280 examples, each one
with between 10 and 50 attributes (depending on its structure), and there are 3
solution classes.

The presented results are an average of 5 10-fold cross validation runs. Each
10-fold cross validation run involves 10 experimental runs. In an experimental
run, a 10% of the cases are separated from the rest and will be used as the
test set. The other 90% of the cases is used as the system case base, then the
accuracy is measured after applying the case base reduction technique.

We have made experiments comparing the JUST technique with two base
strategies: a base CBR system that does not use any case base reduction tech-
nique, and a CBR system that uses the CB2 [1] case base reduction technique.
The idea of CB2 is simple: as with JUST we have two case bases C' and C7,
individual cases are randomly selected from C, if the system can solve them
using the cases in C", then they are discarded, otherwise they are added to C".
The process is iterated until all the cases in C' have been selected. Therefore, we

Sponges Soybean Zoo
Accuracy[CB size Accuracy[CB size Accuracy[CB size
JUST (m=20)|| 88.12% |32.34% | 88.59% |55.00% | 95.44% | 38.86%

CB2 82.14% | 22.71% | 81.00% | 28.62% | 95.24% | 18.59%
Complete CB|| 88.21% |100.00%| 88.50% [100.00%| 95.45% [100.00%
Table 1. Comparison of the classification accuracy and case base size of JUST agains
CB2 and with the complete case base.

will use no termination criteria for CB2 (as the ones used in JUST) but let it
execute till the end.

Table 1 shows the results obtained by three CBR systems, one using the
JUST case base reduction technique, another using the CB2 case base reduction
technique and the third one using the complete case base for the three datasets
(sponges, soybean and zoo). We have used JUST with an exam size of m =
20, and a termination criterion of reaching an accuracy of about 90% for the
sponges and soybean data sets, and of about 96% in the zoo data set (we have
chosen those parameters as slightly greater values than the accuracy values of
the complete case bases).

The table shows that JUST has been able to reduce the size of the case
bases to the 32.34% of the total number of cases in the sponges case base, to
the 55.00% in the soybean case base and to the 38.86% in the zoo case base.
This reduction is achieved without losing classification accuracy: notice that the
accuracy for JUST in the sponges data set is 88.12% while the accuracy without
case reduction is 88.21%, the difference being not statistically significant. For
the soybean data set, JUST has achieved a classification accuracy of 88.59%
while the CBR system without case reduction achieves a 88.50% of classification
accuracy; again the difference is not statistically significant. In the zoo data
set, the accuracy achieved by JUST is 95.44%, and the accuracy achieved with
the complete case base is 95.45%. Moreover, the termination criterion of JUST
requested case bases with a 90% of classification accuracy in soybean and sponges
and 96% in the zoo data set. Notice that JUST has stopped before reaching that
accuracy in all the case bases. The reason is that the termination criterion used
in our experiments has a margin of error of +4% (see Section 3.1). A termination
criterion with a lower margin of error could be used if need be.

Comparing JUST with CB2 in Table 1, notice that CB2 obtains reduced case
bases that are even smaller than the achieved by JUST: 22.71% in the sponges
data set, 28.62% in the soybean data set and 18.59% in the zoo data set versus
32.34%, 55.00% and 38.86% achieved with JUST. However, CB2 reduces the case
base without preserving the classification accuracy in two of the three data sets;
CB2 has been able to keep the degree of accuracy of the complete case base
only in the zoo data set, in the other two data sets, the accuracy achieved by
CB2 is appreciably lower than that of the complete case base: 82.14% in the
sponges data set and 81.00% in the soybean data set. JUST, however, maintains
the accuracy of the complete case base, namely 88.12% and 88.59% respectively.

90

85
-O-m=all
—--m=20
80 ~A-m=10
f/ B-m=5
m=1
75 /
70 — T T T T T T T T T

0 10 20 30 40 50 60 70 80 90 100
Reduced CB Size

Fig. 3. Comparison of the accuracy evolution in the reduced case bases for several
exam sizes in the sponges dataset using JUST.

-O—-m=all
--m=20
—A-m=10
B-m=5

m=1

40 50 60 70 80 90 100
Reduced CB Size

Fig. 4. Comparison of the accuracy evolution in the reduced case bases for several
exam sizes in the soybean dataset using JUST.

CB2 has problems in two data sets because cases are discarded in a very eager
way. JUST, however, has a broader view of the problem and never discards any
case until termination is decided. Thus, JUST is able to discard a considerable
number of cases while maintaining the accuracy levels of the complete case base.

In order to test the effects of the size of the exams in JUST we have exper-
imented with several exam sizes: 1, 5, 10, 20 and unlimited (when exam size is
unlimited, the whole set of cases C}* is used as the exam). Figures 3 and 4 show
the accuracy results for JUST in the sponges and soybean data sets for several
exam sizes. The unlimited exam size is shown in the figures as m = all. This
experiments are performed using the case base size termination criterion (see
Section 3.1) for sizes 10%, 20%, ..., and up to 100% percentage of the complete
case base. Figures 3 and 4 plot the accuracy achieved by JUST varying the de-
sired size of the reduced case base. For each exam size, a different plot is shown.

We have made experiments with the three data sets but, for lack of space, we
only present here results concerning marine sponges and soybean data set.

Figure 3 shows that as the exam size increases, JUST is able to reach higher
accuracies with smaller case bases. For instance, reaching an accuracy higher
than 85% with an exam size m = 1, JUST needs a case base of the 40% of the
size of the complete case base, while with the exam size is m = 5, only a 30% of
the original cases are needed. In the extreme, when the exam size is unlimited
(i.e. all the cases in C}* are used as the exam at each iteration), only a 20% of the
cases are needed. This is because when the exam size is larger, JUST can obtain
more information of the weak points in the reduced case base C}, and therefore
make a more accurate choice of which cases to select to add to the reduced case
base C}. Moreover, notice that when the termination criterion is to obtain a case
base with more than the 70% of the cases in the complete case base, there is
no difference in the classification accuracy by varying the exam size. Notice also
that in some experiments JUST has been able to obtain case bases that reach
higher accuracy than the complete case base. For instance, when the exam size
is unlimited, the accuracy achieved with a case base with the 50% of the cases
of the complete sponges case base is 89.00% while the accuracy of the complete
case base is 88.21%.

Figure 4 shows the experiments using the soybean data set. Notice that as
the exam size increases, as before, the accuracy achieved by JUST also increases.
However, the accuracy achieved by JUST in the soybean data set with an un-
limited exam size is much higher than the accuracy with smaller exam sizes.
For instance, with a case base containing the 40% of the cases in the complete
case base, JUST with an unlimited exam size achieves an accuracy of 90.88%
while the complete case base accuracy is 88.50%. This means that the exam size
needed by JUST in the soybean data set to achieve a good performance is larger
than the exam size needed in the sponges data set. The reason seems to be that
the soybean data set has 19 solution classes and the sponges data set only 3. The
larger the number of classes, the larger the exams should be in order to obtain
representative information of the weak points of the reduced case base.

The overall conclusion is that the larger the exam size, the higher the per-
formance of JUST, i.e. as we increase the exam size, we will obtain reduced case
bases that are smaller and more accurate. However, as we increase the exam
size, we also increase the computational cost of JUST. Let us analyze JUST in
computational cost as the number of retrievals performed during the case base
reduction process. The cost of JUST can be divided in two costs: the cost of
solving the exams, and the cost of building the belying sets. Let T" be the num-
ber of iterations that JUST has executed, n the number of cases in the complete
case base C, and m the exam size. The cost of solving the exams is at most
T x min(m, n) retrievals, and the cost of building the belying set is also at most
T x min(m,n). Therefore, the complexity of JUST is of order T' x min(m,n).
As explained in Section 3, the maximum number of iterations is n, the number
of cases in the complete case base C. Therefore, the worst case complexity is
n x min(m,n), i.e. O(n?).

We have also performed an empirical evaluation of the JUST complexity
varying the exam size in the soybean data set, as the following table shows:

m 1 5 10 20 all
retrievals||256.8(713.0|1458.0{1158.0|1627.7
iterations||256.8(142.6| 45.8 | 57.9 | 8.2

The termination criterion used to perform those experiments is to reach an
accuracy of the 90%. We see that the number of retrievals increases as the exam
size increases (as predicted by the theoretical complexity of n x min(m,n)).
However, the practical complexity is much lower than the theoretical complexity,
specially for large exam sizes, where the number of iterations is much smaller
than the theoretical maximum n. This results point out that JUST can be used
with large exam sizes without having to pay a high computational cost. Notice
that the practical cost for an unlimited exam size, is 1627.7 retrievals in average,
while the theoretical bound is n? = 276 x 276 = 76,176 retrievals, since in the
soybean data set the complete case base C has 276 cases (the other 10% is
reserved as the test set). We can conclude that if the computational cost is not
a problem in our CBR system an unlimited exam size should be used in order to
obtain the maximum benefit from JUST. Moreover, although the cost of JUST
with large exam sizes is not prohibitive (as we have seen in our experiments),
smaller exam sizes may be used in order to reduce the computational cost if need
be.

5 Conclusions and Future Work

In this paper we have presented JUST, a case base reduction technique based
in the notion of justifications. In our experiments we have used LID as a CBR
method that is able to generate justifications, but our work is not restricted to
LID. Many other CBR methods can be adapted to generate justifications, for
instance CBR systems using case indexing based on decision trees can return
the portion of the decision tree used to solve a problem as the justification. We
have seen that a justification J can be considered a local approximation of the
neighborhood of the problem to solve, i.e. as a generalization of all the retrieved
cases to solve a problem. Therefore, as future work, we plan to apply JUST to
other CBR methods, such as nearest neighbor, that cannot provide justifications.
How to adapt a nearest neighbor classifier is not obvious. However, we can see
the set of retrieved cases as a local approximation to solve a problem P. From
that local approximation an ad-hoc justification can be built by computing some
generalization(s) of all or some of the retrieved cases. These generalizations could
then be used by JUST to compute the belying sets. An interesting question here
is whether this approach will work for any type of lazy classification method.
We have also seen that JUST is a parametric case base reduction method. By
varying the exam size m, we can modify the behavior of JUST: with small exam
sizes we can obtain moderate case base reductions at a low cost, and with large

exam sizes we can obtain large case base reductions, but at a higher computa-
tional cost. This is clearly an advantage with respect to other case base reduction
methods that are not parametric, since JUST can be adapted to several CBR
systems that have different size and computational time restrictions. Moreover,
JUST can accept another parameter: the termination criterion. By changing the
termination criterion, we can request JUST to obtain reduced case bases that
satisfy any desired conditions.

Finally, we have seen in the experiments section that there are reduced case
bases that achieve higher accuracies than the complete case base. For instance,
in Figure 4, the optimal point (with an unlimited exam size) is to build a reduced
case base with the 40% of the original cases (since this is where the maximum
accuracy was reached). Instead than by looking at the plot as we have done now,
it remains as future work to automatically find the optimal accuracy point.

Acknowledgements The authors thank Eva Armengol and Josep-Lluis Arcos of the
IITA-CSIC for the development of the LID and of the Noos agent platform respectively.
Support for this work came from CIRIT FI/FAP 2001 grant and project SAMAP
(MCYT-FEDER) T1C2002-04146-C05-01.

References

[1] David W. Aha. Case-based learning algorithms. In DARPA Case-Based Reasoning
Workshop, pages 147-158, 1991.

[2] David W. Aha, Dennis Kibler, and Marc K. Albert. Instance-based learning
algorithms. Machine Learning, 6(1):37-66, 1991.

[3] E. Armengol and E. Plaza. Lazy induction of descriptions for relational case-based
learning. In Luc de Raedt and Peter Flach, editors, EMCL 2001, number 2167 in
Lecture Notes in Artificial Intelligence, pages 13—24. Springer-Verlag, 2001.

[4] P. Hart. The condensed nearest neighbor rule. IEEE Transactions on Information
Theory, 14:515-516, 1967.

[5] David B. Leake and David C. Wilson. Remembering why to remember:
Performance-guided case-base maintenance. In EWCBR, pages 161-172, 2000.

[6] Elisabet Golobardes Maria Salamé. Hybrid deletion policies for case base main-
tenance. In FLAIRS 2003, pages 1150-155, 2003.

[7] B. Smyth. The utility problem analysed: A case-based reasoning persepctive. In
Third European Workshop on Case-Based Reasoning EWCBR-96, Lecture Notes
in Artificial Intelligence, pages 234—248. Springer Verlag, 1996.

[8] Barry Smyth and Mark T. Keane. Remenbering to forget: A competence-
preserving case delection policy for case-based reasoning systems. In Proceedings
of IJCAI-95, pages 377-382, 1995.

[9] Barry Smyth and Elizabeth McKenna. Building compact competent case-bases.
Lecture Notes in Computer Science, 1650:329-342, 1999.

[10] Jun Zhu and Qiang Yang. Remembering to add: Competence-preserving case-
addition policies for case base maintenance. In IJCAI, pages 234-241, 1999.

