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a b s t r a c t

Norms explicitly represent prohibitions, permissions and obligations associated with software agents,
changing as agents act and interact in pursuit of their goals. Norms provide means of regulating open
and heterogeneous multi-agent systems; however, in order to truly reflect the nature of multi-agent sys-
tems, norms should be managed in a distributed fashion. A centralized account of norms creates a single
point-of-failure and bottlenecks, and as a result fault-tolerance and scalability are jeopardized. The
decentralized management of norms is, nevertheless, a challenging issue and we observe a lack of truly
distributed computational realizations of normative models. To remedy this, we propose normative struc-
tures, which allow the propagation of changes in the norms associated with agents, as a result of their
actions. Due to the dynamic nature of multi-agent systems and the potential concurrency of agents’
actions, conflicts may arise, whereby an action is simultaneously prohibited and obliged (or prohibited
and permitted). We thus present a run-time algorithm to detect and resolve conflicts during the enact-
ment of a multi-agent system, and show how this algorithm can be put to use within a distributed setup.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

A fundamental feature of regulated open multi-agent systems
(MAS) in which heterogeneous and autonomous agents interact,
is that participating agents are meant to comply with the conven-
tions of the system. Explicit representations of the prohibitions,
permissions and obligations associated with software agents –
their normative positions (also named deontic states by some
authors) – have been used for modeling such conventions, provid-
ing a means to regulate the observable behavior of agents (Dignum,
1999; Wooldridge, 2002). Agents’ normative positions change as
agents act and interact in pursuit of their goals.

However, norm-compliance, albeit essential, may be difficult to
guarantee in practice because agents acquire and discharge obliga-
tions, permissions and prohibitions towards other agents in a
dynamic fashion. Moreover, even if we assume full norm compli-
ance, this will not necessarily prevent undesirable situations
unforeseen at design time. One such undesirable situation is when
normative conflicts arise, whereby actions are simultaneously
prohibited and obliged (or prohibited and permitted) (Cholvy &
Cuppens, 1995; Elhag, Breuker, & Brouwer, 2000; Sartor, 1992;
ll rights reserved.
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von Wright, 1963). Normative conflicts are undesirable because
whatever an agent does (or refrains from doing) violates a norm
(Vasconcelos, Kollingbaum, & Norman, 2007, 2009). Such scenarios
are particularly complex when agents interact in several concur-
rent activities and obligations, permissions and prohibitions need
to propagate dynamically from one activity to another (or to many
others).

We address the problem of regulating the operation of open
multi-agent systems in which multiple, concurrent/distributed,
interrelated activities take place; the activities are where heteroge-
neous and autonomous software agents interact. In these circum-
stances, a centralized representation and/or control of normative
positions generates bottlenecks and single points-of-failure that
compromise scalability and graceful degradation1 of the multi-
agent system’s functionalities. The study of computational models
that tackle the distributed management of norms is a little-explored
issue which our work looks into.

We introduce normative structures as a means to observe and
manage the evolution of normative positions in each activity and
to manage the propagation of normative positions between
1 In centralized models we have an ‘‘all or nothing’’ scenario, in which the system
will either work if the centralized information repository is accessible, otherwise
nothing works. In a decentralized set-up, the information and/or control is distributed
so the system will experience a gradual cessation (or graceful degradation (Cristian,
1991)) of its functionalities, as less information becomes available.
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distributed activities. We propose an algorithm that exploits the
distributed nature of normative structures to deal, at run time,
with the emergence of conflicts as agents interact – the algorithm
detects and resolves normative conflicts as they arise during the
execution of a MAS. We provide guarantees to our algorithm,
namely, correctness, termination and worst-case complexity.

To make the problem amenable to analysis, we make the
following assumptions:

� We assume that MAS are open inasmuch as agents’ internal
states are inaccessible to the system and agents may enter
and leave the MAS as long as they comply with norms. We also
assume that agents have the abilities to comply with norms,
and will perform ‘‘legitimate’’ actions. We only consider agent
actions consisting of speech acts (Searle, 1969) (or actions
which may be represented as speech acts, as in, for instance,
truthfully informing the concerned parties about actions
performed).
� We assume that MAS regulations belong to two types. The first

type is embedded in constitutive and procedural norms that are
regimented and outside the control of participating agents.2 The
second type corresponds to non-regimented functional norms.
Following (Boella, Pigozzi, & Van der Torre, 2009), we do not
assume any governance mechanism aside from the regimentation
imposed by the MAS itself, thus agents may choose to violate a
non-regimented norm. Hence, we do not assume full norm com-
pliance by the agents – we deal with any normative conflicts that
may arise not only from violation of a norm but from the norma-
tive inconsistencies inherent in the system and brought about by
agent interactions. Additionally, we do not assume that there are
meta-level or second-level rules that govern the change of exist-
ing rules, hence we will not address the problem of norm change
as such.
� We make assumptions about the structuring of agent interac-

tions: agents interact in repetitive activities regulated by their
own particular conventions (procedural and functional). Several
of these activities may be simultaneously happening at any
given time, with possibly many instances of one same activity.
An agent may participate in one activity with other agents
and in another activity with possibly different agents. More-
over, an agent may participate simultaneously in more than
one activity and may move from one activity to another (or
many others). The actions an agent performs in one activity
may cause updates in the agents’ normative positions, and this
may affect the actions agents perform in the future, in that or in
other activities.

Some of these assumptions refer to more operational aspects of
the problem, and we will elaborate upon them in the rest of the pa-
per. In Sections 6 and 7 we discuss further assumptions and how to
relax them. It is worth mentioning that, like most work in this field
to a certain extent (and we shall discuss this in more detail in the
next section), ours responds to two main drives, namely, (i) the
need to deal with the essential deontic aspects of norms and,
therefore, their (inferential) consequences on agent behavior; as
well as, (ii) the interest in building realistic MAS and hence the
need to examine algorithmic questions and computational archi-
tectures that may support regulated and open MASs. Our contribu-
tions address the second drive.

In the present work we focus on functional norms, expressed in
a rule-based formalism that establishes under which conditions
agents become or cease to be subject to normative positions, that
2 Those regimented procedural rules are expressed either as protocols that
organize procedural prescriptions in each activity, or as conventions that regulate
when agents may move from one activity to another.
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is, obligations, prohibitions and permissions towards specific
actions, represented as atomic deontic formulae. We have shown
(Garcı́a-Camino, Rodrı́guez-Aguilar, Sierra, & Vasconcelos, 2009)
that our representation is expressive enough to capture many
useful normative concepts in the literature. Although the formal-
ism of (Garcı́a-Camino et al., 2009) is more sophisticated than
the one we use in the present paper, the simplification does not
affect our contributions in the present paper; in Section 7 we
explain how we deal with richer languages.

The structure of this paper is as follows. In the remainder of this
section we introduce a scenario to serve as a running example
throughout the article. In Section 2 we present basic concepts
and formally define normative structures. In Section 3 we define
normative conflicts. Section 4 presents an algorithm for conflict
resolution. Section 5 elaborates on an architecture that allows
the distributed management of normative positions and solves
conflicts via the algorithm presented in Section 4. Finally, we sur-
vey related work in Section 6, and draw conclusions and comment
on future work in Section 7.

1.1. Scenario

To illustrate and motivate our exposition we use a supply-chain
scenario in which companies and individuals come together in an
(electronic) marketplace to conduct business. The overall transac-
tion procedure may be organized as six activities, represented as
oval nodes in the diagram of Fig. 1. They involve different partici-
pants whose behavior is coordinated through protocols (that is,
pre-defined sequences of messages with a shared content lan-
guage). In this scenario agents can play one of four roles: accoun-
tant (represented as acc), client, supplier (represented as supp)
and warehouse manager (represented as wm). The triangles repre-
sent transitions among activities, that is, ‘‘meeting points’’ where
agents synchronize their movements out of an activity3 and into
another activity (or choice of other activities) (Arcos, Esteva, Noriega,
Rodrı́guez-Aguilar, & Sierra, 2005). The lines and arrows connecting
activities and transitions indicate the order in which activities can be
undertaken.

After registering at the marketplace, clients and suppliers get
together in the negotiation activity where they agree on the terms
of their transaction, i.e. prices, amounts of goods to be delivered,
deadlines and other details. In the contract activity, the order be-
comes established and an invoice is prepared. The client will then
participate in a payment activity, verifying his credit-worthiness
and instructing his bank to transfer the correct amount of money.
The supplier in the meantime will arrange for the goods to be
delivered (e.g., via a warehouse manager) in the delivery activity.
Finally, agents can leave the marketplace conforming to a predeter-
mined exit protocol. The marketplace accountant participates in
most of the activities as a trusted provider of auditing services.
In the remainder of this article we shall build on this scenario to
exemplify the notion of normative structure and to illustrate our
approach to conflict detection and resolution in a distributed
setting.

2. Normative structures

As argued above, we consider that the specification of an open
and regulated MAS encompasses the specification of a coordination
level and a normative level. This allows the designer to separate
concerns. On the one hand, the designer can concentrate on
3 Activities are also called scenes in the electronic institution literature, as in e.g.,
(Esteva, Vasconcelos, Sierra, & Rodrı́guez-Aguilar, 2004; Garcı́a-Camino, Noriega, &
Rodrı́guez-Aguilar, 2007; García-Camino, Rodríguez-Aguilar, Sierra, & Vasconcelos,
2006).
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Fig. 1. Activities of a virtual marketplace.

4 The time stamp of illocution schema can be obtained in various ways, with
varying degrees of sophistication, accuracy and usefulness. We discuss these in
Section 7.
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modeling interactions within activities along with the dependen-
cies between activities when specifying the coordination level. As
a result, the designer can produce a specification like the one in
Fig. 1. Agents in a MAS will then be able to interact according to
the protocols of the activities specified at the coordination level;
such activities can be naturally enacted in a distributed fashion.
As an activity evolves, normative positions may change due to
agents’ actions. For instance, when a seller agrees on a contract,
it is expected to deliver certain goods. Furthermore, actions in
one activity may have an effect on the enactment of other activi-
ties. Using the running example, one can consider negotiation, con-
tract-signing and delivery as different (but related) activities. A
contract may be created during the negotiation activity, it may
be agreed during the contract-signing activity, and it may be (par-
tially) fulfilled during the delivery activity. Therefore, the specifica-
tion of the triggering and removal of normative positions becomes
essential at the normative level. Hereafter, we focus on offering the
MAS designer a formalism that eases the specification of the acti-
vation and removal of normative positions.

Actions and/or normative positions in some activity cause
changes in the normative positions of agents in other activities.
We are concerned with the propagation of normative positions
within a network of distributed activities as a consequence of agents’
actions. We refer to the normative state of an activity as the set of
normative positions that are in force at a particular moment during
the enactment of the activity. Furthermore, a normative transition
defines how a change in a normative state affects the normative state
of other activities. As for effects of actions, a normative structure
includes both of these notions (normative states and normative
transitions) to establish the existing relationships among different
activities. In order to define our norm language and specify how
normative positions are propagated, we have been inspired by
multi-context systems (Giunchiglia & Serafini, 1994).

In this section, we present a simple language capturing these
aspects and introduce the notions of normative states, normative
transition and normative structure formally. We give the intended
semantics of these concepts and show an example of how a MAS
can be regulated via normative positions.

2.1. Basic concepts

In this subsection we introduce the basic concepts needed to
define a normative structure. The building blocks of our language
are terms and atomic formulae:

Definition 1. A term, denoted generically as s, is a constant, a
variable or a functional expression fn(s0, . . . ,sn), where f is an n-ary
function symbol and all si, for 0 6 i 6 n, are terms.

Constants, generically denoted as a, b, c (possibly with sub-
scripts), are strings starting with a lowercase letter, with or with-
out subscripts, as in, e.g., seller3, copper. Variables, generically
denoted as v, w, x, y, z (possibly with subscripts), are strings start-
ing with an uppercase letter, with or without subscripts, as in, e.g.,
Role2, Price. We build atomic formulae using terms as parameters:

Definition 2. An atomic formula is any construct pm(s0, . . . ,sm),
where pm is an m-ary predicate symbol and all si, for 0 6 i 6m, are
terms.
Please cite this article in press as: Vasconcelos, W. W., et al. Distributed norm
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We make use of first-order substitutions (Apt, 1997; Fitting,
1990), formally defined as:

Definition 3. A substitution r = {x0/s0, . . . ,xn/sn} is a finite and
possibly empty set of pairs xi/si, 0 6 i 6 n, xi being a variable and si

a term as defined above.
We define the application of a substitution in accordance with

(Fitting, 1990) – a substitution r is a unifier of two terms s1, s2,
iff s1 � r = s2 � r, ‘‘�’’ being defined as:

Definition 4. The application of a substitution r to a term or
atomic formula is as follows:

1. c � r = c for a constant c;
2. x � r = s � r if x/s 2 r; otherwise x � r = x;
3. fn(s0, . . . ,sn) � r = fn(s0 � r, . . . ,sn � r).
4. pm(s0, . . . ,sm) � r = pm(s0 � r, . . . ,sm � r).

We focus on an expressive class of MASs in which interaction is
carried out by means of illocutionary speech acts exchanged
among participating agents. We initially define illocution schemata:

Definition 5. An illocution schema I is any atomic formula p(s1, s2,
s3, s4, s5, s6) where

� p is an element of a set of illocutionary particles (e.g., inform,
request, etc.);
� s1, s3 are variables or agent identifiers;
� s2, s4 are variables or role identifiers;
� s5 is a variable or an arbitrary term representing the contents of

a message, built from a shared language;
� s6 is a variable or a t 2 N representing a time stamp.

The intuitive meaning of p(Ag, R, Ag0, R0, m, t) is that agent Ag
playing role R has sent message m to agent Ag0 playing role R0 at
time t.4 We differentiate a subclass of illocution schemata which
do not contain any variables, that is, they are ground atomic formu-
lae. We name this subclass the illocutions and these are generically
denoted as I. An example of an illocution is inform(ag4, supp, ag3, cli-
ent, offer(wire, 12), 10). Illocution schemata are useful in the descrip-
tion of a protocol, when the precise values of a message to be
exchanged should be left unspecified. During the enactment of the
protocol, however, agents will produce the actual values which will
give rise to a ground illocution.

We now define normative positions:

Definition 6. Normative positions, generically referred to as N, are
of the form per(I), prh(I) or obl(I), representing, respectively, a
permission, a prohibition or an obligation on an illocution schema
I.

Normative position per(p(Ag, R, Ag0, R0, m, t)) intuitively means
that agent Ag playing role R is permitted to send message m to
agent Ag0 playing role R0 until time t. A normative position prh(p(Ag,
R, Ag0, R0, m, t)) means that agent Ag playing role R is prohibited from
management for multi-agent systems. Expert Systems with Applications
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sending message m to agent Ag0 playing role R0 until time t; simi-
larly, obl(p(Ag,R,Ag0,R0,m, t)) means that agent Ag playing role R is
obliged to send message m to agent Ag0 playing role R0 until time t.

2.2. Normative states, transitions and structures

Using the concepts introduced previously, we now provide for-
mal definitions for normative states, transitions and structures. We
first define normative state as follows:

Definition 7. A normative state Ds of an activity s is a finite set of
pairs hI; ti (illocutions) or hN, ti (normative positions), t 2 N,
representing, respectively, that I was uttered at instant t and
normative position N was established at t.

Normative states record both the events (what was uttered and
when) and the normative positions occurring in an activity. In a
pair hp(ag,r,ag0,r0,s, t0), ti 2 D, it is always the case that t = t0, that
is, the time the illocution was uttered and their time as recorded
in D are always the same.5 In a pair hobl(p(ag, r,ag0, r0,s, t0)), ti 2 D, t
may be different from t0, as t0 is time by when the illocution ought
to be uttered and t is the time when the normative position was
generated; however, t0 P t, that is, the time t0 of the illocution must
be at or after the time of the norm establishment t. The same applies
to per and prh.

A sample normative state of the delivery activity of our scenario
(referred as dlvry), denoted as Ddlvry, is:

hinformðbob; seller; kev ;wm;deliverðwire;200Þ;20Þ;20i
hoblðinformðkev;wm; bob; client;deliverðcopper;50Þ;30ÞÞ;20i
hprhðinformðkev ;wm; ann; client;deliverðiron;25Þ;30ÞÞ;20i

8><
>:

9>=
>;

In the normative state above, agent bob taking up the seller role has
delivered 200 kg of wire at time 20 to agent kev taking up the ware-
house manager role wm.6 Agent kev has an obligation (established at
time 20) to deliver 50 kg of copper to bib by time 30; kev is further-
more prohibited from delivering 25 kg of iron to ann, another client,
until time 30.

The meaning of normative positions in a normative state is as fol-
lows: a pair hper(inform(ag,r,ag0,r0,s,T),T0i 2 D means that agent ag
under role r is permitted to send an inform message with contents
s to agent ag0 under role r0 from the time T0 when the normative posi-
tion was established up until the time stamp T, T0 6 T. Similarly,
hobl(inform(ag,r,ag0,r0,s,T),T0i 2 D means that ag (under role r) is ob-
liged to send the inform message to ag0 between the time T0 of the
norm establishment until T, and hprh(inform(ag,r,ag0,r0,s,T),T0i 2 D
means that ag (under role r) is prohibited from sending the inform
message to ag0 between T0 and T.

A more useful way to capture the meaning of normative posi-
tions is by describing norm violations, that is, those circumstances
when one can infer that an agent behaved in a non-norm compli-
ant fashion (Aldewereld, Vázquez-Salceda, Dignum, & Meyer,
2005). Given a normative state D and the current time tnow we
can define the conditions for the violation of an obligation as ‘‘if
there is an obligation of the form hobl(p(s1,s2,s3,s4,s5, tu)), tei 2 D,
te 6 tu 6 tnow, and there is no illocution of the form hp s01; s02;

�
s03; s04; s05; t0uÞ; t0ui 2 D, such that pðs1; s2; s3; s4; s5Þ � r ¼ p s01; s02;

�
s03; s04; s05Þ � r, for some substitution r, and t0u 6 tu, then a violation
of the obligation has occurred – the obliged utterance was not uttered
by tu, the obligation ‘deadline’’’. Similarly, we address a prohibition
violation: we specify the conditions establishing when the prohib-
ited utterance was proffered within the prohibition ‘period’. One
5 Hereafter we drop the index of a normative state that refers to its activity unless
it is required to distinguish between normative states of different activities.

6 Following the terminology from (Searle, 1995) and the computational model of an
activity from (Garcı́a-Camino et al., 2009), we design our MAS in order to incorporate
that informing about a delivery ‘‘counts as’’ a factual delivery.
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way to define the violation of permissions is via the description
of those situations when an utterance which is not explicitly per-
mitted has been proffered; this is rather strict, but it may be re-
quired in highly regulated agent encounters. Alternative
formulations can be given to the norm violations above, such as
the ones defined in (Garcı́a-Camino et al., 2009).

Normative states evolve over time: as agents interact, their
utterances are recorded; these utterances may cause normative
positions to appear or disappear. Activities are connected to one
another via normative transitions that specify how utterances
and normative positions in one activity (represented in its norma-
tive state) affect other activities. Illocutions uttered in one activity
may have an effect in other activities. Normative transitions define
the conditions under which a normative position is updated. These
conditions are either utterances and/or norms associated with a
given activity, which cause the addition or removal of a normative
position, possibly in a distinct activity. We capture dynamic
aspects of norms (and their relationships across distinct activities)
via normative transitions:

Definition 8. A normative transition NT is defined as:

NT ::¼ LHVRH

LH ::¼ ðid : DÞjLH; LH

D ::¼ NjI

N ::¼ perðIÞjprhðIÞjoblðIÞ

RH ::¼ �ðid : NÞj � ðid : NÞ

where I is an illocution schema, N is a normative position, id is the
identifier of an activity and RH is the addition or removal of a nor-
mative position.

We endow our language of Definition 8 above with the usual
operational semantics of rule-based languages, as formalized in
(Garcı́a-Camino et al., 2009), and which we informally describe be-
low. Our language adds (via operator ‘‘�’’) or removes (via operator
‘‘�’’) normative positions to/from normative states, capturing dy-
namic aspects of norms: as agents interact, normative positions
are assigned and revoked (that is, removed). For instance, if an
agent bids in an auction, then an obligation is put in place for
the agent to pay for the item; agents that have not registered with
a third party to obtain a letter of credit are forbidden to bid; an
obligation to pay is removed if the agent to whom the obligation
refers performs the payment. We show in Fig. 2 sample normative
transitions. Normative transition nt0 is not part of our running
example, but we included it to illustrate the situation when an
obligation is in place and it is fulfilled – the obligation is then re-
moved from the normative state. We discuss the other examples
in Section 2.3. Based on the notion of normative transition, we
can offer a straightforward definition of normative structure:

Definition 9. A normative structure is a pair hS,NTi, where S is a
finite set of normative states and NT is a finite set of normative
transitions.

In other words, specifying a normative structure amounts to
specifying a rule-based program (a collection of rules) that makes
explicit how normative positions flow between the normative
states of activities and how they are removed as agents interact.
Therefore, the triggering of normative transitions changes norma-
tive states by adding and removing normative positions.

Here we give the intuitive semantics of normative transitions
by describing how they change normative states. Given a norma-
tive transition, we refer to the activities on the left-hand side of
the rule as incoming activities and the activities on the right-hand
side of the rule as outgoing activities. Each transition is triggered
once for each substitution that unifies the left-hand side LH of
management for multi-agent systems. Expert Systems with Applications
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the transition with a set of elements from possibly several norma-
tive states of its incoming activities. An utterance or a normative
position on the left-hand side of a transition holds if, and only if,
it unifies with an utterance or normative position appearing in
the normative state of an incoming activity. Every time a transition
is triggered, the update specified on the right-hand side of that
transition is carried out, thus adding to or removing from the nor-
mative state of an activity a normative position.

Conflicts may arise after the addition of normative positions: if
a conflict arises, we make use of an algorithm to decide whether to
ignore the new normative position or to ‘‘adjust’’ old normative
positions to avoid conflicts. We explain this in more detail in Sec-
tions 3 and 4.

2.3. Example

We now discuss normative transitions nt1, . . . ,nt4 of Fig. 2 for
our scenario of Section 1.1. Normative transition nt1 illustrates
how one single normative state can be modified; nt2 makes refer-
ence to more than one normative state in its left-hand side. Finally,
nt3 and nt4 illustrate a ‘‘normative flow’’ whereby the appearance
of a new obligation in one normative state generates other obliga-
tions in different normative states.

In our scenario, during the negotiation activity (represented as
ngtn), a request of a buyer B to a seller S to sell an amount A of item
It at price P leads to the introduction of a normative position in the
same normative state. The normative position is a permission for S
to accept the request of B. This is formalized by normative transi-
tion nt1. Notice that the request to sell issued by buyer B within the
negotiation activity would change the negotiation normative state,
allowing the firing of nt1.

In the negotiation activity (ngtn), if a seller S accepts the offer of
a buyer B to sell an amount A of item It at price P and furthermore,
if in the payment activity (represented as pmnt) the same buyer has
paid P to seller S, then that introduces to the delivery activity an
obligation on the seller agent to deliver the sold item It.7 This is
captured by normative transition nt2. The illocutions uttered within
the negotiation and payment activities would change the negotiation
normative state and payment normative state respectively, trigger-
ing the obligation in the delivery normative state.

During the delivery activity (dlvry), the creation of an obligation
on seller s1 to deliver copper leads to the propagation to the distri-
bution activity (dstr) of an obligation on distributor d1 to deliver
7 We assume that this payment was made for item It. An appropriate labeling
during the procurement process is needed but omitted here for simplicity.

Please cite this article in press as: Vasconcelos, W. W., et al. Distributed norm
(2011), doi:10.1016/j.eswa.2011.11.108
that amount of copper to s1. We represent thisas nt3. Finally, during
the distribution activity, the creation of an obligation on the distrib-
utor d1 to deliver some copper allows the propagation to the
manufacture activity (mnfc) of an obligation on m1 playing a man-
ufacturer role M to deliver that amount of copper to d1. This is cap-
tured by nt4.
3. Normative conflicts

In this article, normative positions refer to illocutions (as op-
posed to arbitrary actions). Normative conflicts arise when an illo-
cution is simultaneously obliged and prohibited. The terms deontic
conflict and deontic inconsistency have been used interchangeably
in the literature to refer to situations in which actions are simulta-
neously associated with different modalities (von Wright, 1963).
However, in this article we adopt the view of (Elhag et al., 2000)
in which the authors suggest that a deontic inconsistency arises
when an action is simultaneously permitted and prohibited – since
a permission may not be acted upon, no conflict actually occurs.
The situation when an action is simultaneously obliged and pro-
hibited is, however, a normative conflict, as both obligations and
prohibitions influence agents’ behaviors in a conflicting fashion.

We use unification of first-order terms (Apt, 1997; Fitting, 1990)
as a means to detect and resolve conflicts between normative posi-
tions. Unification is a fundamental problem in automated theorem
proving and many algorithms have been proposed (Fitting, 1990).
Unification is based on the concept of substitution (viz. Def. 3
and 4), that is, the set of values for variables in a computation.
We shall use unification in the following way:

Definition 10. unify(s1,s2,r) holds iff s1 � r = s2 � r, for some r;
unifyðpnðs0; . . . ; snÞ; pnðs00; . . . ; s0nÞ;rÞ holds iff unify si; s0i;r

� �
holds,

0 6 i 6 n, and some r.
We assume that unify is based on a suitable implementation of a

unification algorithm that (i) always terminates (possibly failing, if
a unifier cannot be found), (ii) is correct and (iii) is of linear
computational complexity. The unify relationship checks, on the
one hand, that substitution r is a unifier, but can also be used to
find r. By extending the definition of unify for handling normative
positions, we can use unification for detecting a conflict between
two normative positions:

Definition 11. A conflict arises between two normative positions
N and N0 under a substitution r, denoted as conflict(N,N0,r), if and
only if N = prh(I), N0 = obl(I0) and unify(I, I0,r).
management for multi-agent systems. Expert Systems with Applications
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That is, a prohibition and an obligation are in conflict if, and
only if, their illocutions unify under r. The substitution r, called
here the conflict set, unifies the agents, roles and atomic formulae.
For instance, an obligation to every agent A1 enacting any role at
any time to inform deliver(copper,X) to any agent A2 enacting any
role at any time, represented as

oblðinformðA1;R1;A2;R2;deliverðcopper;XÞ; TÞÞ

and a prohibition on an specific agent a1 enacting the specific role r1

to inform deliver(Y, dest) to another specific agent a2 enacting spe-
cifically role r2 in any time T0, represented as

prhðinformða1; r1; a2; r2;deliverðY;destÞ; T 0ÞÞ

are in conflict as their illocutions unify under

r ¼ fA1=a1;R1=r1;A2=a2;R2=r2;Y=copper;X=dest; T=T 0g

Agent a1 under role r1 is simultaneously obliged and forbidden to
deliver copper to agent a2 under role r2 at a particular destination
dest.

Inconsistencies caused by the same illocution being simulta-
neously permitted and prohibited can be formalized similarly. In
this article we focus on prohibition/obligation conflicts, but the
computational machinery introduced in Section 4 can equally be
used to detect prohibition/permission inconsistencies, if we
replace obl with per.

4. Conflict resolution

Once a conflict (as defined in Section 3) has been detected, we
propose to employ the unifier to resolve the conflict. By conflict res-
olution we mean the careful manipulation of normative positions
aiming at restricting the value their variables may have, thus elim-
inating any conflicts. In our approach, normative positions are
annotated with substitutions representing values their variables
must not have, in order to avoid any conflicts with other normative
positions.

In our example of Section 3, if the variables in prh(inform(a1,
r1,a2,r2,deliver(Y,dest),T0)) do not get the values specified in substi-
tution r = {A1/a1,R1/r1,A2/a2,R2/r2,Y/copper,X/dest,T/T0}) then there
will be no conflicts, that is, there are no conflicts as long as the pro-
hibition does not address the delivery of copper (the other pairs of
unifications do not affect the prohibition, though). However, rather
than computing the complement set of a substitution (that is, all
possible values for variables which do not unify – these can be
an infinite set) we propose to annotate the prohibition with the
unifier itself and use it to determine what the variables of that pro-
hibition cannot be in future unifications in order to avoid a conflict.
We therefore denote annotated prohibitions as prhðIÞ � R, where
R = {r1, . . . ,rn}, is a set of unifiers. Annotated normative positions
are interpreted as deontic constructs with curtailed influences
(Vasconcelos, Kollingbaum, & Norman, 2009), that is, their effect
(on agents, roles and illocutions) has been limited by the set R of
unifiers. Permissions and obligations do not get annotations: they
remain in their original format.

A prohibition may be in conflict with various obligations in a
given normative state D and we need to record (and possibly
avoid) all these conflicts. We define below an algorithm which en-
sures that a normative position will be added to a normative state
in such a way that it will not cause any conflicts. We propose a
fine-grained way of resolving normative conflicts via unification.
We detect the overlapping of the normative positions’ influences,
i.e. how they affect the behavior of the concerned agents, and we
curtail the influence of the normative position by appropriately
using the annotations when checking if the normative position ap-
plies to illocutions. Algorithm 1 depicts how we manage the inser-
Please cite this article in press as: Vasconcelos, W. W., et al. Distributed norm
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tion of a normative position N into a normative state D obtaining a
set of additions/removals of normative positions Cs. These updates
make use of prohibitions annotated with a set R = {r1, . . . ,rn} of
conflict sets ri indicating which bindings for variables have to be
avoided for conflicts not to take place.

Algorithm 1. manageNorm

Input: �(s : N), D
output: Cs

1: tc :¼ current_time();
2: case N of
3: (per(I): Cs :¼ { � (s:N)}
4: ðprhðIÞ: if $hN0, ti 2 D, t 6 tc, conflict(N,N0,r) then
5: Cs:¼;
6: else
7: Cs:¼{ � (s : N � ;)}
8: prh(I):
9: begin
10: R:¼;
11: for all hN0, ti 2 D, t 6 tc, conflict(N, N0, r) do
12; R :¼ R [ {r}
13: Cs :¼ { � (s : N � R)}
14: end
15: obl(I):
16: begin
17: Cs :¼ { � (s : N)}
18: for all hN0 � R, ti 2 D, t 6 tc, conflict(N0,N,r) do
19: if N0 ¼ prhðIÞ then
20: Cs :¼ Cs [ { � (s : N0 � R)}
21: else
22: if r R R then
23: Cs :¼ Cs [ { � (s:N0 � R), � (s:N0 �

(R [ {r}))}
24: end
25: end case
26: return Cs

The algorithm uses a case of structure to differentiate the kinds
of normative positions N to be inserted. Line 3 addresses the case
when N is a permission: in this case, the set of commands Cs con-
sists of a single command to add N (since it is a permission, it does
not have annotations). Lines 4–7 address the case when we
attempt to add a ground prohibition on I to a normative state: if
it conflicts with any obligation in D established before or at the
current time (that is, t 6 tc), then it is discarded (Line 5); otherwise
Cs will contain a command to insert the new normative position
(with an empty annotation) to the appropriate state (Line 7). Lines
8–14 describe the situation when N is a prohibition on a non-
ground illocution schema I. In this case, the algorithm initializes
an annotation R as an empty set and loops (Lines 11–12) through
the normative positions N0 established before or at the current time
(that is, t 6 tc) and which are in conflict with N. For each of such
normative positions N0, the algorithm updates R by adding the
newly found conflict set r to it. By looping through D, we are able
to check any conflicts between the new prohibition and all existing
obligations, adequately building the annotation R to be used in the
command to include the annotated normative position N � R in
Line 13.

Lines 15–24 describe how obligations are dealt with: obliga-
tions are always added, hence Cs is initialized to { � (s,N)} (Line
17). However, the new obligation may be in conflict with existing
prohibitions in D, hence the algorithm defines a loop (Lines 18–
23) through all annotated prohibitions hN, ti 2 D, whose activa-
tion time t is less than or equal to the current time tc, and which
management for multi-agent systems. Expert Systems with Applications
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are in conflict with N, under r. For each prohibition in this loop,
we must check if it concerns a ground illocution (Line 19) – in
this case, we add a command in Cs to remove the ground prohi-
bition (its annotation is the empty set). If the prohibition con-
cerns a non-ground illocution, then we must check if the
conflict set r R R: if r 2 R then the conflict does not really hap-
pen as the curtailed prohibition does not overlap with N. If there
is indeed a conflict (that is, r R R) then we must update the anno-
tation R of the prohibition to add the new conflict set r – we do
so by creating two commands in Cs, one to remove the old
normative position, viz. �(s : N0 � R) and one to add the new
updated normative position, viz. �(s : N0 � (R [ {r})) (Line 23).

The loops in our algorithm guarantee that an exhaustive (linear)
search through a normative state takes place, checking if the new
normative position is in conflict with any existing prohibitions/
obligations, possibly updating the annotations of any conflicting
prohibitions. The algorithm is correct in that, for a given normative
position and a normative state, it provides a (possibly empty) set of
updates adding new normative positions to D or changing existing
normative positions, ensuring that D remains conflict-free, that is,
after the commands in Cs are applied to a (possibly empty) con-
flict-free D, D remains conflict-free. The prohibitions in D, how-
ever, all have annotations recording how they unify with existing
obligations. The annotations can be empty, though: this is the case
when we have a ground prohibition or a prohibition which does
not unify/conflict with any obligation. Permissions do not affect
our algorithm and they are appropriately dealt with (Line 3). Any
attempt to insert a ground prohibition which conflicts, yields an
empty set of updates in normative positions (Line 4). When a
new obligation is being added then the algorithm guarantees that
all prohibitions are considered (Lines 15–24), leading to updates
for the removal of conflicting ground prohibitions or the change
of annotations of non-ground prohibitions. The algorithm always
terminates: the loops are over a finite set D and the conflict checks
always terminate. The complexity of the algorithm is linear: the set
D is only examined once for each possible case of normative posi-
tion to be added.

We illustrate how our algorithm works with an example from
the scenario of Section 2. Let us suppose that agents are participat-
ing in a negotiation activity that we will call d. For reasons of space,
let us assume that agent a1 informing agent a2 of p(I,P) counts as a1

paying the amount P for item I to a2. Furthermore, let us suppose
that agent a1 has not fulfilled a previous contract with a2 while par-
ticipating in this new negotiation activity yielding new pending
obligations. We may forbid agent a1 to obtain more obligations
with regard to agent a2 until it fulfills the currently pending ones.8

Then let us suppose we invoke the algorithm with the following
parameters:

1. The update �(s : N) to be processed is
8 It m

Please
(2011
�ðd : prhðinformða1; r1; a2; r2;pðX;YÞ; ZÞÞÞ
The update represents a prohibition on agent a1 to pay agent a2 for
any item at any price.
2. The current normative state D of activity d is
hoblðinformða1; r1; a2; r2; pð1;2Þ;3ÞÞÞ;3i;
hoblðinformða1; r1; a2; r2; pð10;20Þ;30ÞÞÞ;30i

� �
In our example, agent a1 is obliged to pay agent a2 2 Euros for item 1
and 20 Euros for item 10.

The algorithm will provide us with a set Cs of updates required
to accommodate the input update, ensuring D is kept conflict-free.
ay be the case that further correcting actions should be performed.
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Let us assume that the current time is 40, thus both normative
positions in D are active. The example is handled by the third case
(Lines 8–14): the set R is initialized to ; (Line 10) then a loop is
executed (Line 11) where each of the normative positions in D is
considered in turn, being checked for a conflict with the input up-
date. In our example, we have:

conflictðprhðinformða1; r1; a2; r2;pðX;YÞ; ZÞÞ;
oblðinformða1; r1; a2; r2; pð1;2Þ;3ÞÞ;r1Þ
conflictðprhðinformða1; r1; a2; r2;pðX;YÞ; ZÞÞ;
oblðinformða1; r1; a2; r2; pð10;20Þ;30ÞÞ;r2Þ

where r1 = {X/1,Y/2,Z/3} and r2 = {X/10,Y/20,Z/30}, hence the algo-
rithm computes R = {r1,r2}. In Line 13, the set of updates Cs is com-
puted, that is,

Cs ¼ f�ðd : prhðinformða1; r1; a2; r2;pðX;YÞ; ZÞÞ � fr1;r2gÞg

The annotation ensures that the prohibition does not have values
which overlap with those of the obligations.

Although we propose to curtail prohibitions, the same machin-
ery introduced above can be used to define the curtailment of obli-
gations or permissions instead. Different policies (that is, which
normative position should be preserved and which one should be
curtailed) are dependent on the intended deontic semantics and
requirements of the systems addressed.

5. A distributed architecture for normative structures

In this section we propose an architecture, expanded and
adapted from (Garcı́a-Camino, Rodrı́guez-Aguilar, & Vasconcelos,
2008), to address the regulation of the behavior of autonomous
agents and the management of the normative state(s) of the
MAS, including the management of normative positions and the
resolution of normative conflicts. We assume the existence of het-
erogeneous, selfish agents that interact in order to pursue their
goals – we do not have control on these agents’ internal function-
ing, nor can we anticipate it.

We propose to extend AMELI (Esteva, Rosell, Rodríguez-Aguilar,
& Arcos, 2004), an agent-based infrastructure that allows the
enactment of open multi-agent systems as electronic institutions.
Such extension allows us to inherit all the features of AMELI,
including, very importantly, its capability of regulating open mul-
ti-agent systems. The architecture of AMELI is divided into three
(logical) layers, illustrated in Fig. 3, namely:

� Autonomous agent layer – the set of external agents taking part
in the MAS.
� Social layer – an infrastructure that mediates and facilitates

agents’ interactions while enforcing institutional rules.
� Communication layer – it provides a reliable and orderly trans-

port service.

External agents intending to communicate with other external
agents need to redirect their messages through the social layer,
which is in charge of forwarding the messages (attempts of
communication) to the communication layer. In specified condi-
tions, erroneous or illicit messages (those that do not comply with
the rules of the institution) may be rejected by the social layer in
order to prevent them from arriving at their addressees.

The social layer presented in (Esteva et al., 2004) is a multi-
agent system itself and the agents belonging to it are called inter-
nal agents. We propose to extend AMELI: (i) by adding a new type
of agent to the social layer, the so-called normative managers
(represented as circles labelled NM1, . . . ,NMp in Fig. 3); and (ii) by
adding protocols to coordinate this new type of agent with the rest
of internal agents to manage normative transitions and resolve
management for multi-agent systems. Expert Systems with Applications
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conflicts. We call AMELI+ the resulting architecture. Thus, in AME-
LI+, internal (administrative) agents are of the following types:

� Governor (G) – This is an internal agent representing an external
agent. It maintains the external agent’s social state and informs
the external agent about its normative positions. Very impor-
tantly, the governor agent acts as an intermediary for message
exchanges among external agents, deciding on whether an
external agent’s attempt at sending a message to another exter-
nal agent is norm-compliant and, if so, forwarding this message
to the appropriate external agent (who will receive the message
via its governor agent). We require one governor agent per
external agent.
� Scene Manager (SM) – This is an internal agent maintaining the

state of the activity9, notifying any changes to normative manag-
ers and resolving conflicts.
� Normative Manager (NM) – This new type of internal agent

receives normative commands and may fire one or more nor-
mative transitions.

In principle, only one NM is needed to manage all the normative
transitions. However, in order to build large MAS and avoid bottle-
necks, we propose the distribution of normative transitions into
several NMs. The choice of the granularity of the normative layer,
i.e. to choose from one single NM to one NM per normative transi-
tion, is an important design decision left to MAS designers.

AMELI+ computationally realizes normative structures, as
described in Section 2, making use of the conflict resolution
algorithm in Section 4. On the one hand, NMs handle normative
transitions by coordinating their activities with SMs, who manage
their activities’ normative states. Therefore, the links connecting
normative transitions to normative states map to coordinations
between NMs and SMs. On the other hand, SMs are responsible
for solving conflicts by running the conflict resolution algorithm
in Section 4. The architecture scales up well, as the administrative
agents can run in different machines, so we have, in principle, as
many agents as we have hardware to run them on (and more hard-
ware can be added at will). Moreover, an agent-based architecture
provides additional benefits as the agents can be endowed with
arbitrary functionalities, e.g., our normative managers are able to
run the conflict detection checks and the conflict resolution algo-
rithm, and our governor agents can be endowed with sophisticated
forms of dialogue with external agents, the former warning the lat-
9 Activities are also referred to as scenes following the terminology of AMELI.
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ter about the consequence of their non-norm-compliant behavior
(as explored in (García-Camino et al., 2006)).
6. Related work

Within agent-mediated electronic commerce (He, Jennings, &
Leung, 2003; Sierra, 2004), various challenges arise when building
open (that is, components come and go during the system’s execu-
tion), heterogeneous (that is, individual components have been
implemented by different parties, using disparate architectures
and assorted programming languages and technologies), and dis-
tributed (that is, the components run in various machines, geo-
graphically distant, communicating via message-passing) systems
that will carry out sophisticated many-party interactions to pro-
vide goods and/or services.

Norms offer a useful and powerful abstraction with which to
specify and regulate such systems, excluding disruptive or antiso-
cial behavior without prescribing the design of individual agents
or restricting their autonomy (Dignum, 1999; Vasconcelos et al.,
2009). Norms provide a generic account of individual behaviors; if
all agents have norm-regulated behaviors, then we can offer guar-
antees about the system as a whole. Similarly, norms provide a
declarative statement of how agents are expected to behave, and
so offer agents a way to predict the behavior of others in response
to requests, the provision of information, etc. There is a wealth of
socio-philosophical and logic-theoretical literature on the subject
of norms (e.g., Sergot, 2001; Shoham & Tennenholtz, 1995; von
Wright, 1963), and, more recently, much attention is being paid
to more pragmatic and implementation-oriented aspects of norms,
that is, how norms can be given a computational interpretation and
how norms can be taken into account in the design and execution of
MASs (e.g., Artikis, Kamara, Pitt, & Sergot, 2005; Cranefield, 2005;
Viganò, Fornara, & Colombetti, 2006; García-Camino et al., 2006).

However, to the best of our knowledge, very few authors have
provided implementations managing and reasoning about norma-
tive positions in a distributed manner. In (Esteva et al., 2004;
Minsky, 2005), two languages are presented for the distributed
enforcement of normative positions in MASs. In (Esteva et al.,
2004) an obligation is a first-order formula whose intuitive mean-
ing is that if grounded utterances matching the given utterance
schema are uttered in an activity, and given conditional expres-
sions are satisfied, then, further grounded utterances matching
the given utterance schema satisfying the given conditional
expressions must be uttered in the corresponding activity.

In (Minsky, 2005; Minsky & Ungureanu, 2000) the authors pro-
pose law-governed interaction (LGI), a decentralized coordination
and control mechanism for distributed systems. This middleware
allows a possible large, heterogeneous and open set of actors to
interact governed by a given policy, called the interaction law. In or-
der to enforce the interaction law, a component called controller is
associated to each actor. The controller is entrusted to mediate the
interaction of its actor with others, it decides, by interpreting the
active law, how to react to messages sent and received by its actor.

However, in both approaches (Esteva et al., 2004; Minsky, 2005),
each agent has a local message interface that forwards legal mes-
sages according to a set of norms. Since these interfaces are local
to each agent, norms can only be expressed in terms of actions of that
agent. This is a serious disadvantage, e.g., when one needs to activate
an obligation to one agent due to a certain message of another one.

The work presented in (Hübner, Boissier, Kitio, & Ricci, 2009)
proposes Organizational Artifacts for multi-agent systems (ORA4-
MAS). This approach may be seen as a distributed generalization
of tuple-spaces but using objects and providing further functional-
ities. Its authors argue that instead of providing a ‘‘dialogical
environment’’ as in the architecture presented in this paper and
management for multi-agent systems. Expert Systems with Applications
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predecessors, e.g., (Esteva et al., 2004), they provide a ‘‘work envi-
ronment’’. However, as shown in (García-Camino et al., 2006), valid
dialogical actions may trigger the performance of further non-dia-
logical actions in the coordination level. More languages for the
coordination level are proposed in (García-Camino, 2009).

This paper focuses on the normative level, which connects sev-
eral activities taking place in the coordination level. Instead of pro-
posing that activities (or workspaces in the terminology of Hübner
et al., 2009) exchange information directly, we decouple as much
as we can propagation of normative positions from the norm
enforcement taking place in the activities and, as mentioned above,
our approach also includes the translation from dialogical actions
into non-dialogical ones. We admit that the languages proposed
in (García-Camino, 2009) for the coordination level do not use an
object-oriented approach but straightforward modifications would
allow expressing non-dialogical actions that would interface the
coordination level with object-oriented languages.

(Sartor, 1992) treats normative conflicts from the point of view
of legal theory and suggests a way to order the norms involved.
This idea is implemented in (Garcı́a-Camino et al., 2007) but
requires a central resource for normative position maintenance.
A mechanism for conflict resolution of normative positions that
is somewhat similar to ours has been sketched in (Kollingbaum
& Norman, 2004). However, their mechanism is presented only
informally and uses instantiation graphs – their high computa-
tional complexity only allows simple scenarios to be addressed.
Additionally, that work only considers individual norm-compliant
agents, and not an institutional (or organizational) infrastructure
for open MASs. Our approach to detecting normative conflicts
can capture the three forms of conflict/inconsistency of (Ross,
1958), viz. total-total, total-partial and intersection, respectively,
when the permission entails the prohibition, when the prohibition
entails the permission and when they simply overlap. The norma-
tive position management algorithm we presented in Section 4 is
an adaptation and extension of the work presented in (Vasconcelos
et al., 2007, 2009), also providing an investigation into deontic
modalities for representing normative concepts (Dignum, 1999;
Sergot, 2001).

7. Conclusions, discussion & future work

In this paper, we have introduced normative structures for the
management of normative positions. Ours is a useful approach be-
cause it allows the separation of normative and procedural con-
cerns. We have also proposed an algorithm for run-time conflict
resolution. The normative structures presented are computationally
realized via a distributed architecture, AMELI+, described in this pa-
per. Our original requirements, namely, to regulate the operation
of an open multi-agent system with multiple, concurrent, distrib-
uted and inter-related activities, are met by our distributed norma-
tive model.

Although we formerly introduced the notion of normative
structure in (Gaertner, Garcı́a-Camino, Noriega, Rodriguez-Aguilar,
& Vasconcelos, 2007), this paper extends early results along several
directions. Firstly, the semantics of normative positions have been
clarified. With this aim, we have resorted to formally defining the
notion of norm violation. Additionally, normative structures han-
dle the normative states of activities at the coordination level. Fi-
nally, the new algorithm for conflict resolution in Section 4
differs in several ways from its previous version, namely, (i) it ad-
dresses normative positions which are relative to activities/scenes;
(ii) it is more compact; and (iii) instead of updating the input set of
normative positions D, it uses D to create commands (or updates to
D) which when applied to D will ensure conflict freedom. The third
point is essential as the commands can be performed in a distrib-
uted fashion.
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The contributions we have presented open many possibilities
for future work. We are currently working on a generalization of
normative structures to make them operational with different
coordination models, with richer deontic content and on top of dif-
ferent computational realizations of regulated MASs. As a first step
in this direction we are taking advantage of the decoupling
between interaction protocols and declarative normative guidance
that the normative structure makes available, to provide a norma-
tive layer for electronic institutions (as defined in Arcos et al.,
2005). We expect such combination will endow electronic institu-
tions with a more flexible and expressive normative environment.

Furthermore, we want to extend our model along several direc-
tions. We would like to handle negation and arbitrary constraints
(similarly to García-Camino, 2009) as part of the norm language,
and in particular temporal aspects such as deadlines for normative
positions and their extensions. We also want to accommodate
multiple, hierarchical norm authorities based on roles, along the
lines of (Cholvy & Cuppens, 1995) and power relationships as sug-
gested in (Carabelea, Boissier, & Castelfranchi, 2004). Finally, we
want to capture in the conflict resolution algorithm different
semantics relating the deontic notions by supporting different axi-
omatizations (e.g., relative strength of prohibition versus obliga-
tion, default deontic notions, deontic inconsistencies).
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