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Abstract. We address what is still a scarcity of general mathematical foundations for ontology-based semantic integration under-
lying current knowledge engineering methodologies in decentralised and distributed environments. After recalling the first-order
ontology-based approach to semantic integration and a formalisation of ontological commitment, we propose a general theory
that uses a syntax- and interpretation-independent formulation of language, ontology, and ontological commitment in terms of in-
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1. Introduction

Knowledge engineers have long realised that, for two or more information systems (databases, agents,
peers, software components, expert systems, etc.) to be both syntactically and semantically interoperable,
they will need to commit to a shared conceptualisation of the application domain. Commonly, this is
achieved by producing an explicit specification of this conceptualisation — what has become to be known
in computer science as an ontology — and by defining each system’s local language in terms of the
ontology’s vocabulary. This sort of integration is dubbed “semantic” precisely because it assumes that the
ontology consists of some sort of structured representation O — coming thus equipped with a precise
semantics for the structure it holds — and because each system’s local language is interpreted in O (for
instance, in the technical sense of a theory interpretation as defined in (Enderton, 2002), when O is a
theory in first-order logic).

1.1. Ontologies and the Semantic Web

Because ontologies have been advocated as a way to make a shared conceptualisation explicit, thus
enabling two systems to share the same ontological commitment, they have drawn much attention and
been thoroughly exploited for knowledge sharing and semantic integration. But before ontologies became
popular, knowledge engineers hardly ever had to work with more than one ontology at a time. Even in
cases where multiple ontologies were used (see, e.g., (Borst et al., 1997)), these were mostly controlled
experiments (e.g., (Uschold et al., 1998)) in moderated environments (such as (Farquhar et al., 1997)).
Nowadays, however, the practice is somewhat different. Modern trends in knowledge management dictate
that we should expect to work more and more within distributed and open-ended environments like the
Web. That fact alone has had a significant impact on knowledge representation with ontologies.

Firstly, we observe that sourcing ontologies is far easier today than it was in the recent past. Once Se-
mantic Web technologies became more mature (like, for example, the RDF language (Lassila and Swick,
1999) or the OWL family of languages (McGuinness and van Harmelen, 2004) backed by the World
Wide Web Consortium (W3C)), a plethora of ontologies were made readily available and accessible via
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the Web.1 Even if the quality or the purpose served by these ontologies is questionable from a strict
knowledge-representation point of view, their impact on practice is undisputed.

Second, due to the nature of the environment that most ontologies operate in (the Semantic Web, for
example), it is more likely that we will need more than one ontology to achieve knowledge sharing. It is
increasingly unlikely that a single ontology will both adequately capture the domain in question and also
be consensual among all interested parties.

Third, strict knowledge engineering practice is difficult to enforce when dealing with outsourced on-
tologies. Syntactic compliance with Semantic Web standards (like OWL) is not enough to guarantee that
our inferences will make sense and that automated reasoning will be possible. It is not uncommon to find
subtle differences in meaning between any two ontologies even if they represent the same domain and are
encoded in the same formalism.

Fourth, there are a number of reasons that go beyond computational reasoning: (a) social factors, like for
example the impact that ontology-based codification of knowledge can have in a real world environment
(e.g., does it facilitate or complicate human to human knowledge sharing?); (b) contextual reasoning (how
and when should an ontology take into account or represent contextual information?); (c) social agree-
ments (are ontologies too formal for enforcing or facilitating social agreements between agents —human
or artificial?). The answers to these questions are not easy to find neither are they clearly understood.

1.2. Scarcity of Mathematical Foundations

Recently, several scientific events (Doan et al., 2004a; Kalfoglou et al., 2005; Benjamins et al., 2006)
and journal issues (Doan et al., 2004b; Noy et al., 2005; Shvaiko and Euzenat, 2007) have been solely
devoted to the topic of ontology-based semantic integration, and there exist also several comprehensive
surveys of the field, covering database schema matching (Rahm and Bernstein, 2001), information inte-
gration (Wache et al., 2001), ontology mapping (Ding and Foo, 2002; Kalfoglou and Schorlemmer, 2003b;
Shvaiko and Euzenat, 2005), and semantic integration (Noy, 2004). However, what we have frequently
observed in the works reported in these events and surveys is that the mathematical foundations underlying
most research into the problem of semantic heterogeneity have so far been only marginally approached
(Kalfoglou et al., 2004). Often solutions are presented without precise definitions of the concepts at work,
such as ‘language’, ‘ontology’, ‘semantics’, ‘ontological commitment’, or ‘semantic integration.’ This of-
ten brings forth an overly optimistic view of the capabilities of ontology-based technology for supporting
large-scale system interoperability.

There exist some notable exceptions, though: Guarino, Carrara and Giaretta, for instance, proposed a
mathematical model for ontological commitment (Guarino et al., 1994; Guarino, 1998a); Bench-Capon,
Malcolm and Shave formalised ontology and their compatibility (Bench-Capon and Malcolm, 1999;
Bench-Capon et al., 2003); and Ciocoiu and Nau provided a formal definition of ontology-based seman-
tics and translation (Ciocoiu and Nau, 2000). More recently, Menzel (Menzel, 2002, 2005) and Grüninger
(Grüninger, 2005) have also proposed basic theories of ontology and semantic integration. The common
leitmotif of all these proposals is the use of some logical system (first-order logic, order-sorted equational
logic, modal logic, etc.) to formalise the idea that two systems are semantically interoperable if, after
data is transmitted from a sender system to a receiver, all implications made by one system hold and are
provable by the other, and that there is a logical equivalence between those implications.

Still, most semantic integration technology focuses on mapping at the terminological level, while taking
the unstated assumption that the mechanism by which terminology is interpreted, is actually the same
across different communities. Current mapping techniques map ontology entities such as concept and
role descriptions using sophisticated logical inferences; but these inferences nevertheless are based on the
strong assumption of a common interpretation mechanism, such as a first-order model-theoretic semantics,
or by assuming a shared universe of interpretation.

1By using, for example, Swoogle (Ding et al., 2004).
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1.3. An Interpretation-Independent Approach

A careful look at the several formal approaches to semantic integration mentioned above reveals many
different understandings of semantics depending on the interoperability scenario under consideration.
Consequently, by choosing a particular logical system for the sake of formalising ontology-based semantic
integration one also commits to a particular understanding of semantics. Therefore, what we need in order
to successfully tackle the mathematical foundations of semantic integration is not so much a framework
that establishes one particular semantic perspective (model-theoretic, property-theoretic, proof-theoretic,
instance-based, etc.), but instead we need a framework that successfully captures semantic integration
despite the different treatments of semantics.

We believe that in order to address the semantic heterogeneity problem in all its complexity, we need
to take into account locality and difference not only at the terminological level, but also at the level of
the interpretation mechanisms of a community, and the actual scope and use of ontologies by means of
particular communities. This requires an adequate mathematical framework that is general enough to cope
with heterogeneity both in terminology and in interpretation mechanism, but that is also concrete enough
for providing insights into the actual deployment of semantic integration technology. We resort for this
reason to the extensive work that has been carried out in the field of formal software specification using
institutions (Goguen and Burstall, 1992) and propose an interpretation-independent characterisation of
ontology commitment.

It should be noted, though, that in this paper we do not want to wander into a philosophical discussion
on the notions of ‘ontology’ and ’ontological commitment.’ Others provide an in-depth analysis of these
notions (see, e.g., (Guarino, 1995; Smith, 2003)). Rather, we will build upon the understanding of these
notions by the artificial intelligence and information systems communities. For this reason we shall first
recall the first-order, model-theoretic approach to ontology-based semantic integration, and then further
extend it with a formalisation of ontological commitment due to Guarino, Carrara and Giaretta (Guarino
et al., 1994; Guarino, 1998a). This will help us introduce the technical apparatus needed to lift these
notions into the institutional framework. In this sense, this article aims at contributing towards a “general
theory of ontology translation and integration” as advocated by Goguen in (Goguen, 2005), but focusing
on an institutionalised conceptualisation of ontological commitment that is compatible with Guarino et
al.’s basic insights.

We have already advocated elsewhere for a formal, general foundation for semantic integration (Schor-
lemmer and Kalfoglou, 2003; Kalfoglou and Schorlemmer, 2004) demonstrating its applicability to var-
ious scenarios, such as ontology mapping (Kalfoglou and Schorlemmer, 2003a), ontology coordination
(Schorlemmer and Kalfoglou, 2005), ontology-alignment interaction models (Schorlemmer et al., 2007),
and situated semantic alignment (Atencia and Schorlemmer, 2007), although in neither of them we ex-
plored the interpretation-independence that institutions provide.

2. Ontology-Based Semantic Integration

We shall initially be concerned with semantic integration understood as the integration of two informa-
tion systems by virtue of the interpretation of their respective knowledge representation vocabularies into
a reference theory —an ontology— expressible in the language of first-order logic. In practice, semantic
integration is often carried out on subsets of first-order logic, such as description logics (DL), for which
reasoning has good computational properties. This is, for instance, the approach followed by Calvanese
and De Giacomo in their ontology integration system for database schemata (Calvanese and De Giacomo,
2005); W3C, too, has embraced DLs in order to develop the OWL recommendation for ontology repre-
sentation (McGuinness and van Harmelen, 2004). Another example is the focus of Giunchiglia, Marchese
and Zaihrayeu on propositional DLs in order to use fast SAT provers for matching taxonomically organ-
ised vocabularies (Giunchiglia et al., 2006). In contrast, the Process Specification Language (PSL) is an
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example of a semantic integration initiative based on full first-order logic that uses invariants to define
interpretations of local vocabulary into PSL (Grüninger and Kopena, 2005).

By vocabulary we mean a collection Σ of words and symbols used by an information system to rep-
resent and organise its local knowledge. In a formal, logic-based representation language the vocabulary
is constituted by the non-logical symbols used to form sentences and formulae and usually referred to as
parameters or signature. The language is then the set of all syntactically well-formed formulae over a
given vocabulary Σ, which we shall denote with L = Sen(Σ). We call the elements of Sen(Σ), sentences.

In declarative representation languages, knowledge is represented and organised by means of theories.
We call a theory a pair T = (Σ,Γ), where Γ ⊆ Sen(Σ). The sentences in Γ are the axioms of the
theory. Finally, in order to capture the relationship between theories, we call a theory interpretation a map
between the underlying languages of theories that respects theoremhood of axioms. That is, a function
α : Sen(Σ) → Sen(Σ′) is also a theory interpretation α : T → T ′ between theories T = (Σ,Γ) and
T ′ = (Σ′,Γ′) if, and only if, for all ϕ ∈ Sen(Σ), if ϕ is a logical consequence of Γ then α(ϕ) is a logical
consequence of Γ′, i.e., Γ |= ϕ implies Γ′ |= α(ϕ). It is a faithful theory interpretation if, in addition,
Γ′ |= α(ϕ) implies Γ |= ϕ.

Recall that, in first-order logic, theory interpretations are usually defined by first giving a translation π
of vocabulary symbols (and the symbol ∀) to first-order formulae as follows (see (Enderton, 2002)):2

– π assigns to ∀ a formula π∀ over Σ′ in which at most one variable x occurs free;
– π assigns to each n-ary relation symbol r ∈ Σ a formula πr over Σ′ in which at most n variables

occur free;

and then extending π recursively to a translation of formulae to formulae: if ϕ is an atomic formula with n-
ary relation symbol r, πϕ = πr applied to the same set of variables and constants; otherwise π¬ϕ = ¬πϕ,
πϕ→ψ = πϕ → πψ, and π∀x ϕ = ∀x (π∀ → πϕ). A theory interpretation α : (Σ,Γ) → (Σ′,Γ′) is then the
restriction of π to sentences of Sen(Σ), but only if also Γ′ |= ∃x π∀.

By the way a theory interpretation α : T → T ′ is defined for first-order logic, one can extract from
each first-order Σ′-structure S a first-order Σ-structure β(S) as follows: let the domain of β(S) be the
subset of elements of the domain of S determined by the formula π∀, and let β(S) assign to each relation
symbol r ∈ Σ the relation determined by the formula πr in S. In addition, for all ϕ ∈ Sen(Σ) and
first-order Σ′-structure S, we have that S satisfies α(ϕ) if, and only if, β(S) satisfies ϕ. Consequently,
if we write Mod(T ) for the set of all Σ-structures satisfying the axioms of T and Mod(T ′) for the set of
all Σ′-structures satisfying the axioms of T ′, β restricts to a function mapping structures in Mod(T ′) to
structures in Mod(T ) and is called a structure reduct.

Definition 1 (First-Order Semantic Integration) We say that two theories T1 and T2 are semantically
integrated with respect to T , if

– there exist theory interpretations α1 : T1 → T and α2 : T2 → T ;
– there exist structure reducts β1 : Mod(T ) →Mod(T1) and β2 : Mod(T ) →Mod(T2);
– Mod(T ) 6= ∅.

We call I = {αi : Ti → T ; βi : Mod(T ) → Mod(Ti)}i=1,2 a semantic integration of local theories
T1 and T2 with respect to reference theory T . Two languages L1 = Sen(Σ1) and L2 = Sen(Σ2) are
semantically integrated with respect to T if the theories (Σ1, ∅) and (Σ2, ∅) are.

We shall call I a faithful semantic integration if its theory interpretations are faithful. The structure
reducts βi : Mod(T ) → Mod(Ti) restrict the set of models for language Sen(Σi) to those Σi-structures
that lie in the image of βi of T -models, i.e., to those Σi-structures that are compatible with the models
of the reference theory T . Consequently, we can say that αi and βi capture together the commitment of
Sen(Σi) to a conceptualisation —to the models of reference theory T .

2This amounts to what has been called a derived signature morphism in the literature.
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Relational schema of information system A:

person(id, name) author_of(person, paper) paper(id, title, published_in) journal(id, name, impact_factor)

DL T-Box of information system B:

Researcher v ∃name.>

Article v ∃author.> u ∃title.>

Journal v ∃name.> u ∃hasArticle.> u ∃impactFactor.>

Reference theory (or ontology) T of the scientific publications domain (using a fragment of the AKT Reference
Ontology available at http://www.aktors.org/publications/ontology/):

∀x (Working Person(x) → (Tangible Thing(x) ∧ ∃y (String(y) ∧ Name(x, y))
∀x (Researcher(x) → Working Person(x))
∀x (Composite Publication(x) → (Tangible Thing(x) ∧ ∃y (String(y) ∧ Name(x, y))

∧ ∃z (Publication(z) ∧ Has Publication(x, z))))
∀x (Journal(x) → (Composite Publication(x) ∧ ∃y (Article(y) ∧ Has Article(x, y))

∧ ∃z (Real(z) ∧ Impact Factor(x, z))))
∀x∀y (Has Article(x, y) → Has Publication(x, y))
∀x (Proceedings(x) → (Composite Publication(x) ∧ ∃y (Paper(y) ∧ Has Paper(x, y))))
∀x∀y (Has Paper(x, y) → Has Publication(x, y))
∀x (Publication(x) → (Tangible Thing(x) ∧ ∃y (Researcher(y) ∧ Author(x, y)) ∧ ∃z (String(z) ∧ Title(x, z))))
∀x (Article(x) → Publication(x))
∀x (Paper(x) → Publication(x))

Maps αA and αB of sentences, defined over the recursive structure of sentences of the first-order languages of the
relational schema and the DL T-Box as follows:

αA(person(p, n)) = Researcher(p) ∧ String(n) ∧ Name(p, n)
αA(author of (p, a)) = Researcher(p) ∧Article(a) ∧Author(a, p) ∧ ∃j (Journal(j) ∧Has Article(j, a))
αA(paper(a, t, j)) = Article(a) ∧ String(t) ∧ Journal(j) ∧ Has Article(j, a) ∧ Title(a, t)
αA(journal(j, n, f)) = Journal(j) ∧ String(n) ∧ Real(f) ∧ Name(j, n) ∧ Impact Factor(j, f)

αB(Article(x)) = Publication(x)

Map αB is the identity on the remaining parameters of B’s language. It is easy to prove that αA and αB are indeed
theory interpretations.

Fig. 1. Example of a semantic integration of system A based on a relational schema and system B based on a DL T-Box with
respect to reference theory T .

Note that the above definition also comprises trivial integrations, where T is the theory over the disjoint
union of local signatures, with the disjoint union of local axioms; and it makes theories with contradicting
theorems impossible to integrate. The first problem can be solved by adding additional conditions to the
definition of semantic integration, while the second problem can be tackled by integrating subtheories of
the original theories. In this paper, though, we choose to stay with the above basic definition of semantic
integration and leave further refinements of our framework for the future.

Figure 1 shows an example of the semantic integration of two systems that use varying data models and
vocabulary: system A based on a relational schema and system B based on a DL T-Box. The semantic
integration is realised with respect to a reference theory T —an ontology specifying a conceptualisation
of the scientific publications domain. Both relational schema and DL T-Box are notational variants of
fragments of first-order logic. Semantic integration can therefore be formalised by means of first-order
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A SQL query over A’s relational schema:

SELECT person.name
FROM person, author of
WHERE author of.person = person.id

AND NOT person.name = “Ann Smith”
AND author of.paper IN (SELECT paper.id

FROM person, author of, paper, journal
WHERE author of.person = person.id

AND author of.paper = paper.id
AND paper.published in = journal.id
AND person.name = “Ann Smith”
AND journal.impact factor > 1.0)

The SQL query as sentence ϕ in first-order logic (actually, first-order logic with built-in number comparison):

∃n1 ∃p1 ∃a∃p2 ∃n2 ∃t ∃j ∃n ∃f

(person(p1, n1) ∧ n1 6= “Ann Smith” ∧ author of (p1, a)

∧ person(p2, n2) ∧ n2 = “Ann Smith” ∧ author of (p2, a)

∧ paper(a, t, j) ∧ journal(j, n, f) ∧ f > 1.0)

The interpretation αA(ϕ) of the query in T :

∃n1 ∃p1 ∃a∃p2 ∃n2 ∃t ∃j ∃n ∃f

(Researcher(p1) ∧ String(n1) ∧ Name(p1, n1) ∧ n1 6= “Ann Smith” ∧ Researcher(p1) ∧Article(a) ∧Author(a, p1)

∧ Researcher(p2) ∧ String(n2) ∧ Name(p2, n2) ∧ n2 = “Ann Smith” ∧ Researcher(p2) ∧Article(a) ∧Author(a, p2)

∧ Article(a) ∧ String(t) ∧ Journal(j) ∧Has Article(j, a) ∧ Title(a, t)

∧ Journal(j) ∧ String(n) ∧ Real(f) ∧Name(j, n) ∧ Impact Factor(j, f) ∧ f > 1.0)

Fig. 2. Interpretation of a SQL query of information system A into ontology T .

theory interpretations. Figure 2 shows the interpretation of a SQL query formulated according to A’s
relational schema of Figure 1 in the ontology T of the scientific publications domain.

At the core of any formal approach to ontology-based semantic integration lies the assumption that
interoperability should be formalised in terms of logical consequence. This is so because, by virtue of two
local languages L1 = Sen(Σ1) and L2 = Sen(Σ2) committing to the same conceptualisation specified
by T , we can check if a sentence ϕ ∈ L1 follows from a set of sentences Γ ⊆ L2 by checking if its
interpretation into T is a logical consequence of both T and the interpretation of Γ’s sentences into T .
This interoperability can be formally expressed by defining a consequence relation directly between sets
of sentences of Sen(Σ1) and sentences of Sen(Σ2):

Definition 2 (First-Order Ontology-Based Consequence) Let I = {αi : Ti → T ; βi : Mod(T ) →
Mod(Ti)}i=1,2 be a semantic integration of T1 = (Σ1,Γ1) and T2 = (Σ2,Γ2) with respect to T , and let
ϕ ∈ Sen(Σ1) and Γ ⊆ Sen(Σ2). We say that ϕ is an ontology-based consequence of Γ, written Γ |=I ϕ,
if T ∪ α2(Γ) |= α1(ϕ).

First-order ontology-based consequence corresponds to what Ciocoiu and Nau have called ontology-
based partial translation (Ciocoiu and Nau, 2000). Figure 3 summarises the syntactic and semantic links
that are established in the ontology-based approach to semantic integration.

3. Formalising Ontological Commitment

In the previous section we have recalled the theoretical basis underlying the first-order approach to
ontology-based semantic integration, namely through first-order interpretations of separate vocabularies
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β1(S) S
�oo � // β2(S)

Ti : local theories
T : reference theory (or ontology)
S : first-order structure satisfying T
αi : theory interpretations

βi(S) : first-order structures for Σi

extracted from S by virtue of αi

Fig. 3. First-order ontology-based semantic integration.

into a common ontology. But although this is currently the dominant approach to provide a formal foun-
dation to semantic integration, not everyone agrees with the role of first-order logic and model-theoretic
semantics to formalise ontological commitment. Guarino, Carrara and Giaretta, for instance, support the
view that first-order logic is not expressive enough for specifying conceptualisations, and hence for writing
down ontologies, because it cannot capture the intensionality that comes with the conceptualisation pro-
cess of a fragment of the world. They argue that in order to specify a shared conceptualisation one needs to
enrich a first-order language with modalities (Guarino et al., 1994; Guarino and Giaretta, 1995; Guarino,
1998a), otherwise one gets a very rough characterisation of the ontological commitment. Hence, in their
view, an ontology is a theory in an expressive, but computationally inefficient logical language. Similar in
spirit is Menzel’s proposal for an ontology theory that uses a property-theoretic approach, drawing from
computational linguistics, and where entailment and equivalence are not model-theoretically defined, but
axiomatised in a logical language for ontology theory (Menzel, 2002).

3.1. An Intensional Semantics

Taking Gruber’s highly cited definition of an ontology as an “explicit specification of a conceptuali-
sation” (Gruber, 1993), Guarino et al. reflect on the appropriate mathematical structure accounting for a
conceptualisation, questioning Genesereth and Nilsson’s use of extensional relations for that purpose. An
extensional relation of arity n over domain of discourse D is a subset ρ ⊆ D× n· · ·×D (i.e., ρ ∈ 2(Dn)). It
reflects the relationship in which elements of the domain of discourse stand in a particular state of affairs.
A conceptualisation, Guarino et al. argue, should account for the meaning of the relation instead, which
cannot coincide with the extension of this relation in one particular state of affairs. As an alternative, Guar-
ino et al. suggest to use intensional relations. An intensional relation of arity n over domain of discourse
D is a function ρ : W → 2(Dn) (i.e., ρ ∈ (2(Dn))W ), where W is a non-empty set of possible worlds or
states of affairs. For a particular state of affairs w, ρ(w) is the extensional relation in that particular state
of affairs.

Consequently, Guarino et al. define a conceptualisationC to be an intensional structure (W,D, {Rj}j∈N)
constituted by a non-empty set W of possible worlds or states of affairs, a non-empty set D called the
domain of discourse, and a family of intensional relations Rj ⊆ (2(Dj))W . Given a first-order signature
Σ, a first-order language Sen(Σ) commits to a conceptualisation C by means of how Σ is interpreted into
C, i.e., how predicate symbols are mapped to intensional relations. Therefore, Guarino et al. define an
ontological commitment K for L as an intensional interpretation (C, I), where I assigns to each relation
symbol in Σ an intensional relation of C.

Again, analogously to what we recalled in Section 2, a conceptualisation according to Guarino et al.
is a mathematical structure specified by means of a logical theory — a reference theory T = (Σ,Γ).
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Unlike Section 2, though, T is not a first-order theory, but a theory in the modal extension Senm(Σ) of the
first-order language Sen(Σ) (i.e., the elements of Senm(Σ) are well-formed, closed first-order formulae
over Σ that include modal operators � and ♦); and a conceptualisation is not a first-order structure, but
a structure in S5 modal logic. Guarino et al. take Kripke structures whose accessibility relation between
worlds is universal (and thus can be dropped from the definition of a conceptualisation).

The map of sentences α and map of structures β of Section 2 that restrict the set of models for first-order
language Sen(Σ) to those first-order Σ-structures compatible with a conceptualisation C need now to
be rethought taking into account that the ontological commitment involves two separate logical systems,
namely first-order logic and modal logic. Since Guarino et al. formalise ontological commitment only in
the scope of a single signature Σ, α amounts to the inclusion map of Sen(Σ) into its modal extension
Senm(Σ). The map β extracts from an intensional structure (W,D, {Rj}j∈N) the first-order structures
(D, {Rwj }j∈N) for all possible worlds w ∈W , where Rwj = {ρ(w) | ρ ∈ Rj}.

3.2. A General Pattern of Ontological Commitments

The general pattern is the same as before, with α and β capturing together the commitment of lan-
guage Sen(Σ) to a conceptualisation C — a model of reference theory T — only that the commitment
is now formalised involving a first-order language and its modal extension. By contrast, the formalisation
is carried out only in the scope of a single signature Σ. This hints at the hypothesis that formalisation of
ontology commitment should not be tied to the choice of particular logical systems, maps of sentences,
and maps of structures. As argued in Section 1 we actually believe in the convenience of formalising on-
tology commitment and semantic integration across different interpretation mechanisms: the same way
Guarino et al. find a first-order characterisation of these notions insufficient, so do others not agree with
a possible-worlds approach (Menzel, 2002; Santini, 2006). Still, the general pattern underlying the notion
of ontological commitment that we highlighted in Sections 2 and 3 can be formalised independently of
the particular choice of logical systems, maps of sentences, and maps of structures. For this we resort to
institutions.

4. Theory of Institutions

We recall the basics of the theory of institutions that are required for the mathematical formalisation
proposed in this paper. For this we shall assume some basic knowledge of category theory, particularly
the notions of category, opposite category, functor, and natural transformation (see, for instance, (Goguen,
1991) for an intuitive description to the concepts of category theory in computer science, and (Pierce,
1991; Barr and Wells, 1999) for more comprehensive introductions).

Institutions originated in the late 1970s and early 1980s for studying model-theoretic properties of log-
ics (Goguen and Burstall, 1992) and they have given semantics to powerful module systems of both im-
perative and declarative programming languages, multi-logic specification languages, databases, and on-
tologies. Most recently they have been also applied to provide abstract semantics to semantic web lan-
guages (Lucanu et al., 2006). An institution captures the essential aspects of logical systems that underlie
any formal specification of a computer program: a notion of a signature system, of well-formed sentences
over a signature, and for each signature, notions of a system of models and a satisfaction relation between
models and sentences.

Formally, an institution is a quadruple I = (Sign, Sen,Mod, |=) consisting of

– a category Sign of signatures and signature morphisms;
– a functor Sen : Sign → Set assigning to each signature Σ a set of well-formed Σ-sentences;
– a functor Mod : Signop → Set assigning to each signature Σ a set of Σ-structures;
– a function |= assigning to each Σ a binary relation |=Σ ⊆Mod(Σ)× Sen(Σ) called satisfaction;
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The system of first-order logic, for instance, constitutes an institution as follows:
Let IFOL = (SignFOL, SenFOL,ModFOL, |=FOL) such that SignFOL is the category of first-order signatures and their
morphisms, and for a signature Σ in SignFOL,

– SenFOL(Σ) is the set of all well-formed, closed first-order formulae over Σ;
– ModFOL(Σ) is the set of all structures S = (D, {Rj}j∈N) with nonempty domain of discourse D and family of

sets of relations Rj = {rS ⊆ Dj} where rS stands for the relation assigned by S to the j-ary relation symbol
r ∈ Σ; and

– |=FOL
Σ is first-order satisfaction of Σ-structures for Σ-sentences.

Analogously the system of S5 modal logic also constitutes an institution as follows:
Let IS5 = (SignS5, SenS5,ModS5, |=S5) such that SignS5 is the same category SignFOL of first-order signatures and
their morphisms, and for a signature Σ in SignS5,

– SenS5(Σ) is the set of all well-formed, closed first-order formulae over Σ including the modality operators �
and ♦;

– ModS5(Σ) is the set of all pairs (w,S), where S = (W,D, {Rj}j∈N) is an intensional structure with nonempty
set of possible worlds W , nonempty domain of discourse D, and family of sets of intensional relations
Rj = {rS ⊆ (2(Dj))W } where rS stands for the intensional relation assigned by S to the j-ary relation symbol
r ∈ Σ, and w ∈W ; and

– |=S5
Σ is first-order satisfaction of Σ-structures for Σ-sentences in possible worlds.

It is easy to check that IFOL and IS5 are both well-defined and satisfy the fundamental property of institutions.

Fig. 4. The institutions of first-order and S5 modal logic.

satisfying the following fundamental property: For all σ : Σ → Σ′, ϕ ∈ Sen(Σ) and M ′ ∈Mod(Σ′),

Mod(σ)(M ′) |=Σ ϕ iff M ′ |=Σ′ Sen(σ)(ϕ) .

Notice that Sen(σ) : Sen(Σ) → Sen(Σ′) is the function translating Σ-sentences to Σ′-sentences,
while Mod(Σ) : Mod(Σ′) → Mod(Σ) is the function translating Σ′-structures to Σ-structures. Figure 4
shows institutions for first-order and S5 modal logic.

A theory is a pair (Σ,Γ) where Σ is an object in Sign and Γ ⊆ Sen(Σ). Given a theory (Σ,Γ), let
Mod(Σ,Γ) be the subset of Mod(Σ) determined by those models M ∈ Mod(Σ) for which M |=Σ ψ,
for all ψ ∈ Γ. We write Γ |=Σ ϕ if, for all M ∈ Mod(Σ,Γ), M |=Σ ϕ. A theory morphism σ :
(Σ,Γ) → (Σ′,Γ′) is a signature morphism σ : Σ → Σ′ such that, for all ϕ ∈ Sen(Σ), Γ |=Σ ϕ implies
Γ′ |=Σ′ Sen(σ)(ϕ). Let Th be the category of theories and theory morphisms.

We extend |= to a function assigning to a theory T = (Σ,Γ) a binary relation |=T ⊆ |=Σ, such that
M |=T ϕ if and only if, M ∈ Mod(T ) and M |=Σ ϕ. We also extend the functor Sen : Sign → Set
to a functor Sen : Th → Set by composing it with the forgetful functor sign : Th → Sign that forgets
axioms.

Given institutions I = (Sign, Sen,Mod, |=) and I ′ = (Sign′, Sen′,Mod′, |=′), a map of institutions3

F : I → I ′ is a triple F = (Φ, α, β) consisting of

– a functor Φ : Sign → Th′;
– a natural transformation α : Sen⇒ Sen′ ◦ Φ;
– a natural transformation β : Mod′ ◦ Φop ⇒Mod

satisfying the following fundamental property: For all Σ ∈ Sign, ϕ ∈ Sen(Σ) and M ′ ∈Mod′(Φ(Σ)),

βΣ(M ′) |=Σ ϕ iff M ′ |=Φ(Σ) αΣ(ϕ) .

3Our definition of a map of institutions is close to Meseguer’s one — it actually is equivalent to that of a simple map of
institutions (Meseguer, 1989). It corresponds also to what Goguen and Roşu call a simple theoroidal comorphism of institutions
(Goguen and Roşu, 2002).
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Let F : IFOL → IS5 be the map of institutions F = (Φ, α, β), such that for a signature Σ in SignFOL,

– Φ(Σ) = (Σ, ∅);
– αΣ is the inclusion map of SenFOL(Σ) into SenS5(Σ); and
– given a pair (w,S) in ModS5(Φ(Σ)) with S = (W,D, {Rj}j∈N), βΣ(w,S) = (D, {Rj}j∈N), where
Rj = {rS(w) | r is an j-ary relation symbol in Σ}.

It is easy to check that this map is well defined and indeed satisfies the fundamental property of a map of
institutions.

Fig. 5. A map from the institution of first-order logic to the institution of S5 modal logic.

Figure 5 shows a map from the institution of first-order logic to the institution of S5 modal logic.4

5. Institutionalising Ontological Commitment

We now unfold a mathematical formalisation of language, ontology, and ontological commitment in
terms of institutions that accounts for the general syntax- and interpretation-independent pattern put
forward in Sections 2 and 3. For all the subsequent definitions, let I = (Sign, Sen,Mod, |=) and
I ′ = (Sign′, Sen′,Mod′, |=′) be two (not necessarily distinct) institutions.

5.1. Ontology for a Language

Under a language L one usually understands the set of all sentences that can be formed over a particular
vocabulary. The way sentences are formed, though, should not be conditioned by the choice of a particular
vocabulary, but by the institution, for instance when we are in the context of a first-order language. The
same happens with the interpretation of the language. Although the class of structures endowing a lan-
guage with a semantics is determined by a particular choice of vocabulary, the way structures are formed
should not be conditioned by this choice. This is captured by both Sen and Mod in an institution I being
functors:

Definition 3 (Language) A language L in I is a set of sentences L = Sen(Σ) over a signature Σ in
Sign. The signature Σ is often also called the vocabulary of L. By virtue of L being a language in an
institution I we can interpret it, which yields Mod(Σ), the set of (unconstrained) models of language L
whose vocabulary is Σ.

We have seen in Section 2 that under an ontology one usually understands a specification of a concep-
tualisation for interpreting a particular language vocabulary. But in Section 3 we have also seen that such
specification is not necessarily written in the context of the same institution as the one of the language
the ontology is for. Consequently, we define an ontology for a language on top of an underlying map of
institutions (which, in case of identical institutions, will be just an endomap):

Definition 4 (Ontology) An ontology O for a language L = Sen(Σ) in I is a theory O = (Σ′,Γ′) in I ′
whenever there exists a map of institutions F : I → I ′ with F = (Φ, α, β) such that Φ(Σ) = O. By virtue
of O being a theory in an institution I ′ we can interpret it, which yields Mod′(O), the class of models of
O. This class constitutes the conceptualisation to which L commits by virtue of using the ontology O.

At first sight this might seem a non-standard definition of ontology, although an ontology is still seen
as a logical theory. With this definition we want to stress that we do not view an ontology as something
that stands in isolation, but that provides interpretation for some language, and that this interpretation is
soundly founded on top of a map of institutions, as we shall see next.

4Note that this is not the standard translation of modal logic into first-order logic, since we define a map in the other direction,
from first-order logic into modal logic.
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Σ � // Φ(Σ) = O

Sen(Σ)
αΣ

// Sen′(O)

|=Σ′�
�
�

Mod(Σ)

|=Σ

�
�
�

Mod′(O)
βΣ

oo

Sen(Σ) : language L
O = Φ(Σ) : ontology for L
Mod(Σ) : unconstrained models of L
Mod′(O) : conceptualisation

FΣ = (Φ(Σ), αΣ, βΣ) : ontological commitment of L

Fig. 6. Language, ontology, and ontological commitment.

5.2. Ontological Commitment of a Language

An ontological commitment of a language establishes the link between the language and an ontology
for that language at both the syntactic and the semantic level. Thus, it interprets the language vocabulary in
terms of the ontology, and it also extracts admissible models for that language from the conceptualisation
specified by the ontology. The map of institutions underlying the fact that the ontology is for a language,
provides the technical apparatus to define this commitment:

Definition 5 (Ontological Commitment) A language L in I with vocabulary Σ commits to a conceptu-
alisation Mod′(O) specified by means of ontology O in I ′ whenever O is an ontology for L by virtue of
a map of institutions F : I → I ′ with F = (Φ, α, β), according to Definition 4. In this case the function
αΣ : Sen(Σ) → Sen′(O) defines the vocabulary of L in terms of the vocabulary of O and βΣ determines
the ontologically committed models of L, which are linked to the conceptualisation that the ontology O
specifies. Thus, for a particular language L with vocabulary Σ, the ontological commitment is captured
by means of the triple FΣ = (Φ(Σ), αΣ, βΣ) (recall that O = Φ(Σ)).

Figure 6 summarises the definitions above. It resembles the left (and also the right) part of Figure 3,
but, while previously all notions were stated in the context of the institution of first-order logic, now we
are lifting them into the syntax- and interpretation-independent framework provided by institutions. We
view the interpretation of a language vocabulary and the extraction of models from the conceptualisation
now as a whole, as the ontological commitment.

5.3. Semantic Integration

A syntax- and interpretation-independent characterisation of language, ontology and ontological com-
mitment brings forth a generalisation of the notions of ‘theory interpretation,’ and ‘semantic integration’
introduced in Section 2 for the first-order case:

Definition 6 (Theory Interpretation) Let I = (Sign, Sen,Mod, |=) and I ′ = (Sign′, Sen′,Mod′, |=′)
be two (not necessarily distinct) institutions, and let F : I → I ′ be a map of institutions with F =
(Φ, α, β). Given a signature Σ in Sign, the function αΣ : Sen(Σ) → Sen′(Φ(Σ)) is also a theory
interpretation αΣ : T → T ′ between theories T = (Σ,Γ) in Th and and T ′ = (Σ′,Γ′) in Th′ (where Σ′

is the signature of Φ(Σ)) if, and only if, for all ϕ ∈ Sen(Σ), Γ |=Σ ϕ implies Γ′ |=Φ(Σ) αΣ(ϕ). It is a
faithful theory interpretation if, in addition, Γ′ |=Φ(Σ) αΣ(ϕ) implies Γ |=Σ ϕ.
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Definition 7 (Semantic Integration) Let I1 = (Sign1, Sen1,Mod1, |=1), I2 = (Sign2, Sen2,Mod2,
|=2) and I = (Sign, Sen,Mod, |=) be three (not necessarily distinct) institutions. We say that two theo-
ries T1 = (Σ1,Γ1) and T2 = (Σ2,Γ2) in Th1 and Th2 are semantically integrated with respect to T in
Th, if

– T is an ontology for both languages Sen1(Σ1) and Sen2(Σ2), with ontological commitments F iΣi
=

(T, αiΣi
, βiΣi

)i=1,2;
– the functions α1

Σ1
and α2

Σ2
are also theory interpretations α1

Σ1
: T1 → T and α2

Σ2
: T2 → T ;

– Mod(T ) 6= ∅.

We call I = {αiΣi
:Ti → T ; βiΣi

:Mod(T ) →Modi(Ti)}i=1,2 the semantic integration of T1 and T2 with
respect to T on the basis of ontological commitments F iΣi

= (T, αiΣi
, βiΣi

)i=1,2.

As before, we shall call I a faithful semantic integration if its theory interpretations are faithful. Note
that, in the general case, theory interpretation and semantic integration occur relative to one or several
ontological commitments, which in turn are based on one or several maps of institutions. Analogously, the
notion of ‘ontology-based consequence’ can also be lifted into the institutional framework:

Definition 8 (Ontology-Based Consequence) Let I = {αiΣi
: Ti → T ; βiΣi

: Mod(T ) →
Modi(Ti)}i=1,2 be a semantic integration of T1 = (Σ1,Γ1) and T2 = (Σ2,Γ2) with respect to T , and
let ϕ ∈ Sen1(Σ1) and Γ ⊆ Sen2(Σ2). We say that ϕ is an ontology-based consequence of Γ, written
Γ |=I ϕ, if α2

Σ2
(Γ) |=T α

1
Σ1

(ϕ).

6. Eliciting Ontological Commitments

We now take four increasingly complex notions of semantic integration and ontological commitment
that use differing understandings of semantics and use our institutionalised framework to elicit and com-
pare their underlying ontological commitments. First, we take Stumme and Maedche’s ontology merging
method, FCA-Merge (Stumme and Maedche, 2001), where the semantics of a concept symbol is captured
through the instances classified by that symbol. Next, we look at Bench-Capon, Malcolm and Shave’s
formalisation of relations between ontologies based on homomorphisms of order-sorted algebras (Bench-
Capon and Malcolm, 1999; Bench-Capon et al., 2003). Further, we analyse Grüninger and Kopena’s inter-
lingua approach using the Process Specification Language (PSL), which is based on first-order structure
invariants (Grüninger and Kopena, 2005). Finally, we revisit Guarino, Carrara and Giaretta’s formalisation
of ontological commitment discussed in Section 3, which uses possible-world semantics (Guarino et al.,
1994; Guarino, 1998a). Table 1 summarises the analysis carried out below.

institution(s) ontology semantics theory interpretations

(Stumme and Maedche, 2001) formal contexts partial order instance-based order-preserving maps
(Bench-Capon and Malcolm, 1999), order-sorted, conditional conditional equational order-sorted algebras theory morphisms
(Bench-Capon et al., 2003) equational logic theory
(Grüninger and Kopena, 2005), first-order logic first-order theory first-order structures endomap of institutions
(Ciocoiu and Nau, 2000)
(Guarino et al., 1994), first-order logic and S5 modal theory possible worlds map of institutions
(Guarino, 1998a) S5 modal logic

Table 1
Increasingly complex semantic integration formalisms
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6.1. Instance-Based Ontology Merging

FCA-Merge is a method for merging two concept hierarchies C1 and C2 to compute a new hierarchy
using techniques from formal concept analysis (Ganter and Wille, 1999). Merging is done relative to a
fixed set of documents D that are used as instances to be classified with respect to concepts. This classi-
fication is done automatically by means of a linguistic analysis of the documents, classifying a particular
document to those concept symbols that occur in the document. This yields two classification relations
K1 ⊆ D×C1 and K2 ⊆ D×C2 called formal contexts. These two formal contexts are joined, yielding a
new formal context K = (K1 ]K2) ⊆ D× (C1 ]C2). (The symbols ‘]’ stands for the disjoint union of
sets.) In turn this new formal context is used to generate a so called concept lattice. This lattice can serve
as a guide for the knowledge engineer to manually construct the new concept hierarchy out of the merged
concepts C1 ] C2.

The integration is carried out in the context of a single institution IFCA = (SignFCA, SenFCA,ModFCA,
|=FCA), where SignFCA is the category of partially ordered sets and order-preserving maps representing
concept hierarchies; SenFCA is the identity functor, i.e., for a concept hierarchy C, SenFCA(C) = C (sen-
tences are the concept symbols themselves); ModFCA assigns to a concept hierarchy C a set ModFCA(C)
of instances (a set of documents); and |=FCA

C is the classification relation of instances (documents) in
ModFCA(C) to concept symbols in C that respects the concept hierarchy.

FCA-Merge is based on the assumption that two concept hierarchies C1 and C2 share the same set
of instances D, i.e., ModFCA(C1) = ModFCA(C2) = D. Taking as local theories T1 = (C1, ∅) and
T2 = (C2, ∅) and as reference theory T = (C1 ] C2, ∅), the order-embeddings σ1 : C1 → C1 ] C2 and
σ2 : C2 → C1]C2 of the concept hierarchies into the disjoint union are obviously also theory morphisms
(and hence theory interpretations) σ1 : T1 → T and σ2 : T2 → T . Consequently, they constitute a
semantic integration on the basis of ontological commitments FCi = ((C1 ] C2, ∅), σi, idD)i=1,2, where
idD is the identity map on the set of instances D.

6.2. Generic Ontology and Schema Interoperability

Bench-Capon, Malcolm and Shave were probably the first to give an explicit formalisation of on-
tologies and their relations between them using institutions. They extend the concept of abstract data
type to that of ontology, thus building upon the universal algebra tradition. As with FCA-Merge,
integration is carried out in the context of a single institution, in particular it is the institution
ICEQL = (SignCEQL, SenCEQL,ModCEQL, |=CEQL) of order-sorted conditional equational logic. Signatures
in SignCEQL are order-sorted signatures of unary function symbols. For a signature Σ, SenCEQL(Σ) is the
set of conditional equations over Σ, ModCEQL(Σ) is the set of order-sorted Σ-algebras, and |=CEQL

Σ is the
usual satisfaction relation between algebras and conditional equations.

Ontologies are formalised as theories in ThCEQL, and their interoperability is characterised by means of
a relation between two theories T1 = (Σ1,Γ1) and T2 = (Σ2,Γ2) in ThCEQL. These are formalised with
two theory morphisms χ1 : T0 → T1 and χ2 : T0 → T2 sharing their source T0 = (Σ0,Γ0). Such a
relation between two theories can be seen as an alternative formalisation of their semantic integration: for
institution ICEQL the category ThCEQL is cocomplete, which means that a relation χi : T0 → Ti (i = 1, 2)
between two theories always has a pushout5 σi : Ti → T . This pushout, obviously, constitutes a semantic
integration on the basis of ontological commitments FΣi = (T, SenCEQL(σi),ModCEQL(σi))i=1,2.

By formalising ontology interoperability with institutions, Bench-Capon et al. hint at the fact that one
is not restricted to remain confined in the context of order-sorted conditional equational logic. Kent, for
instance, has adopted institutions to represent and organise ontological structures within his Information
Flow Framework (IFF) (Kent, 2000) in order to be independent of the particular logic used in ontologies.
Furthermore, he has also proposed a formal characterisation of semantic integration in IFF in an insti-
tutionalised fashion (Kent, 2005). Still, in IFF semantic integration is described, like in Bench-Capon et

5A pushout is a generalised disjoint union where a common part is identified (see also (Mac Lane, 1998)).
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al.’s approach, in the context of a single institution — albeit still in a logic-independent fashion as no
particular institution is favoured. Analogously, Alagić and Bernstein also use institutions as a foundation
of their model theory for generic management of database schemata that is independent of a particular
data model (Alagić and Bernstein, 2002). Again, their framework is based on a single institution, which
they call schema transformation framework.

6.3. Translation through an Interlingua

Grüninger and Kopena describe an interlingua approach to semantic integration based on first-order
model-theoretic semantics. They exemplify it with the Process Specification Language (PSL), an ontology
that has been designed using invariants, i.e., properties of models that are preserved under isomorphism.
Local ontologies are mapped to PSL by running a so called “twenty-questions tool” that attempts to
identify those invariants that are or are not preserved by local models. Local class symbols are then defined
using PSL terminology according to the answers to these “twenty questions.”

Like the previous two cases of Sections 6.1 and 6.2, semantic integration involves a single institution.
Here it is the institution IFOL of first-order logic. The PSL ontology is a theory TPSL = (ΣPSL,ΓPSL) in
ThFOL. Unlike the scenarios before, however, the integration is not based on signature or theory morphisms
in SignFOL or ThFOL, respectively. A particular atomic sentence with a predicate in the signature Σ of local
ontology T may be mapped to a non-atomic first-order formula in SenFOL(ΣPSL). The “twenty-question
tool” described in (Grüninger and Kopena, 2005) assists a knowledge engineer in defining the map αΣ :
SenFOL(Σ) → SenFOL(ΣPSL). This map is then the component on Σ of the natural transformation α of an
endomap F : IFOL → IFOL between the institution of first-order logic and itself. Consequently, Grüninger
and Kopena’s “twenty questions” for local terminology Σ determine an ontological commitment FΣ =
(TPSL, αΣ, βΣ), where βΣ is the map of first-order structures determined by αΣ as described in Section
2.

Ciocoiu and Nau’s formalisation of ontology-based partial translation in (Ciocoiu and Nau, 2000)
is also an example of an ontology commitment with a first-order logic endomap as underlying map of
institutions.

6.4. Ontological Commitment, Revisited

The institutionalised notion of ‘ontological commitment’ of Definition 5 relates to Guarino, Carrara and
Giaretta’s formalisation of the same notion discussed in Section 3 through the fact that the latter arises
as a special case of the former by fixing a map of institutions from the institution of first order logic
to the institution of S5 modal logic. We use for this the internal language Lang(C) for an intensional
structure C, described next, and model the intensional interpretation K = (C, I) that formalises Guarino
et al.’s ontological commitment for a language L with a map from L to Lang(C) characterised by the
natural transformation α of the map of institutions from first-order logic to S5 modal logic. The internal
language Lang(C) for an intensional structure C = (W,D, {Rj}j∈N) is obtained by defining a signature
ΣC such that C is a ΣC-structure. The obvious way to do this is by taking the elements of Ri themselves
as relation symbols of ΣC ; Lang(C) is then SenS5(ΣC). The map I assigning to each relation symbol in
Σ an intensional relation of C can then also be seen as a signature morphism from Σ to ΣC .

Let IFOL and IS5 be the institutions of Figure 4 and let us take now the map of institutions (Φ, α, β) :
IFOL → IS5, such that for signature Σ in SignFOL

– Φ(Σ) = (ΣC , ∅);
– αΣ = SenFOL(I) is the map from SenFOL(Σ) into Lang(C); and
– given a pair (w,S) in ModS5(Φ(Σ)) with S = (W,D, {Rj}j∈N), βΣ(w,S) = (D, {Rj}j∈N),

where Rj = {rS(w) | r is an j-ary relation symbol in Σ}.
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FΣ = (Φ(Σ), αΣ, βΣ) is an ontological commitment for L = SenFOL(Σ) according to Definition 5,
and we get Guarino et al.’s ontological commitment by taking as intensional interpretationK = (C,αΣ),6

where C ∈ModS5(Φ(Σ)). If Φ(Σ) was categorical, i.e., if all models in ModS5(Φ(Σ)) were isomorphic,
then Φ(Σ) would uniquely specify the conceptualisation C (up to isomorphism). Generally, this is not the
case, and hence Φ(Σ) only approximately specifies C. Φ(Σ) is the ontology for L = SenFOL(Σ).

7. Conclusion

The search for a suitable mathematical framework on which to build a genuine engineering discipline
of semantic integration has brought various researchers to look at category theory for the necessary foun-
dations (Jannink et al., 1998; Kent, 2000; Hitzler et al., 2005; Zimmermann et al., 2006). Category the-
ory has provided deep insights in the fields of mathematical logic and computer science, and it has often
been used as a guide for finding good definitions and research directions (Goguen, 1991). Its abstractness,
however, has often been seen as not directly useful to the knowledge engineer or practitioner that needs
to address practical semantic heterogeneity problems (Menzel, 2005). But, the variety of logical systems
used in knowledge engineering, and their associated interpretation mechanisms reflecting different under-
standings of semantics, calls for a framework that is general enough to cope with heterogeneity both in
terminology and in interpretation mechanism, but that is also concrete enough for providing insights into
the actual deployment of semantic integration technology.

In this paper we have explored the suitability of institutions as an adequate category-theoretic tool for
providing both general and useful definitions to address the semantic heterogeneity problem. In Definition
5 we used institutions to define the ontological commitment of a language with respect to a particular
choice of vocabulary Σ. But the institutional framework allows us to consider the general act of an on-
tological commitment not to be conditioned by the particular choice of vocabulary. Hence, a particular
ontological commitment of a language arises as an element of a family of commitments. By virtue of
defining the ontological commitment of a language on top of a map of institutions F = (Φ, α, β), the
general act of committing is captured through the fact that Φ is a functor and that both α and β are natural
transformations.

The additional gain we get from deriving a general notion of ontological commitment from that of a
map of institutions is that we can now describe the relationship between ontological commitments for
each particular language vocabulary from the relationship between vocabularies as captured in signature
morphisms in the category Sign. This, for instance, may be useful for determining the ontological com-
mitment that arises when one uses, in a modular fashion, various ontologies for separate fragments of the
vocabulary of a same language. For first-order ontologies, Lüttich, Mossakowski, and Krieg-Brückner, ex-
ploit such algebraic approach with specifications in CASL.7 This enables them to apply the tool set HETS
(Mossakowski et al., 2007) to carry out syntax and type analysis using the connection to various provers
based on the combination and detection of various different logics and sublogics (Lüttich et al., 2004;
Lüttich and Mossakowski, 2004).

A limitation of this move, however, is that an ontological commitment is not just adding information
and selecting models but adding a “certain kind of information” and selecting “certain models.” When
choosing a particular formalisation of ontological commitment such as the one carried out by Guarino,
Carrara and Giaretta using an intensional structure, this “certain kind of information” is given an inten-
sional character, a particularity that is not retained in our abstract institutional framework. So probably our
framework as it stands now overgeneralises certain issues that might be of central importance from the
ontological point of view, and also from the more pragmatic engineering perspective. Consequently, using
the full-blown theory of institutions is probably not yet at the right level of abstraction to make it directly
suitable for knowledge engineers and practitioners. We still need a theoretical framework that fixes the

6Rigorously speaking αΣ is not a map of signature symbols to intensional relations as required; it can be seen as such, however,
if we take its restriction to atomic formulae.

7The Common Algebraic Specification Language designed by the Common Framework Initiative (CoFI) (Mosses, 2004).
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fundamental ideas of the institutional framework while hiding the category-theoretic machinery. Category
theory, and thus institutions, are unfamiliar even to most mathematicians and logicians. No one developing
semantic integration methods and tools should therefore ever be faced with institutions directly, but they
should be able to work with a rigorous theory of semantic integration that was built upon it. We only hope
that the framework described in this article serves a step further in building such a foundation.
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Zimmermann, A., Krötzsch, M., Euzenat, J., and Hitzler, P. (2006). Formalizing ontology alignment and its operations with
category theory. In Bennett, B. and Fellbaum, C., editors, Formal Ontology in Information Systems. Proceedings of the
Fourth International Conference (FOIS 2006), Baltimore, Maryland, USA, November 9–11, 2006, volume 150 of Frontiers
in Artificial Intelligence and Applications, pages 277–288. IOS Press.


