IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL.23, NO.9, SEPTEMBER 2011

1419

Reasoning about Distributed
Knowledge-Transforming Peer Interactions

Marco Schorlemmer and David Robertson

Abstract—We address the problem of how to reason about properties of knowledge transformations as they occur in distributed and
decentralized interactions between large and complex artifacts, such as databases, web services, and ontologies. Based on the
conceptual distinction between specifications of interactions and properties of knowledge transformations that follow from these
interactions, we explore a novel mixture of process calculus and property inference by connecting interaction models with knowledge
transformation rules. We aim at being generic in our exploration, hence our emphasis on abstract knowledge transformations, although
we exemplify it using a lightweight specification language for interaction modeling (for which an executable peer-to-peer environment
already exists) and provide a formal semantics for knowledge transformation rules using the theory of institutions. Consequently, our
exploration is also an example of the gain obtained by linking current state-of-the-art distributed knowledge engineering based on web
services and peer-based architectures with formal methods drawn from a long tradition in algebraic specification.

Index Terms—Distributed knowledge systems, interaction models, knowledge transformation, formal specification.

1 INTRODUCTION

IN recent years there has been an increased interest in
exploring the multiagent and peer-to-peer paradigms to
support knowledge engineering, coordination, and manage-
ment activities [40], [41]. The reason for this has been that
these paradigms seem to better fit the distributed, decen-
tralized, and intersubjective nature of knowledge manage-
ment within an organization. Traditional knowledge
management techniques and architectures, on the contrary,
were still embodying a classical, objectivist approach to
knowledge management, according to which knowledge is
an objectifiable and thus codifiable commodity [5], [8].
Bonifacio et al., for example, proposed a distributed
knowledge-management architecture that takes the locality,
subjectivity, and thus context-dependency of knowledge
into account [3], [4]. Their purpose was to favor the semantic
autonomy of organizational units for managing its local
knowledge and to enable knowledge exchange via semantic
negotiation and coordination [2]. The knowledge manage-
ment practice considered was document management and
retrieval, albeit retaining local control of terminology and of
classification of locally generated documents. Multiagent
technology was applied by associating a software agent to
each knowledge-managing organizational unit, and by
endowing each agent with the necessary semantic matching
capability in order to relate foreign with local terminology.
Today’s schools of knowledge management stress—in
addition to the subjective and context-dependent aspect of

o M. Schorlemmer is with the Artificial Intelligence Research Institute, IIIA-
CSIC, Campus UAB, E-08193 Bellaterra (Barcelona), Catalonia, Spain.
E-mail: marco@iiia.csic.es.

e D. Robertson is with the School of Informatics, The University of
Edinburgh, Informatics Forum, Crichton Street, Edinburgh EHS 9AB,
Scotland, United Kingdom. E-mail: dr@inf.ed.ac.uk.

Manuscript received 19 Oct. 2007; revised 14 Aug. 2009; accepted 10 Dec.
2009; published online 23 Dec. 2010.

Recommended for acceptance by B.C. Ooi.

For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2007-10-0521.
Digital Object Identifier no. 10.1109/TKDE.2010.265.

1041-4347/11/$26.00 © 2011 IEEE

knowledge—also the view that knowledge is not an
objectifiable commodity but that it resides in individuals.
Consequently, for information technology to contribute to
successful knowledge management it has to support the
information flow in interpersonal communication and
interaction, and favor the coordination of capabilities [8],
[10]. According to this view, interaction is a knowledge-
transforming activity, and the value resides on how to
combine capabilities by coordinating interaction in a dis-
tributed manner [8].

1.1 Distributedly Interacting Peers: Protocols and

Artifact

There is currently much interest in systems for which
knowledge-transforming interactions concern large and
complex artifacts, such as databases, ontologies, or web
pages, and where multiple distributed agent-mediated
services in a peer-based system must interact in complex
ways to create or maintain these. Interaction is usually
conducted through message passing, but since we want to
reduce the amount of bandwidth used when managing large
and complex artifacts, one makes a distinction between the
protocol used to control the interaction and the artifacts
constructed as a consequence of following the protocol.

Consider, for example, the knowledge-engineering pro-
cess of Ecolingua—an ontology for the description of
ecological data, and which is explained in detail in [9].
Here the engineers of a complex artifact (an ontology) chose
not to build it from scratch and thus interact with services
available on the Internet (such as the the Ontolingua Server
[13]) in order to

e reuse and collate a number of publicly available
ontologies of related fields into a single (initial)
ontology;

e then translate the resulting combined ontology
(originally in KIF) to a version adapted to Prolog, the
representation language of choice of the engineers;

Published by the IEEE Computer Society

1420

Ontolingua Server

Hpkb.Upper-Level

Physlcal-ouanlltles}

collation™

/7 translation into executable y
) Horn clauses

,-=~"" pruning of S
Ecolingua [«—— class hierarchy and ———}——{ Ecolingua
S~ _lrrelevant clauses __-~

Fig. 1. Ecolingua’s knowledge-transformation lifecycle.

o then abridge the resulting ontology (by deleting
over-general facts, definitions of self-subclasses,
duplicated classes, etc., and then pruning the class
hierarchy to remove irrelevant clauses) until it was
small enough to be readable by humans (the
resulting ontology after translation was, at 5.3 Mb,
too large for human reading);

e to be translated (again) into executable Prolog code
(because the first translation service only rendered
the ontological axioms originally specified in KIF as
Prolog terms).

The knowledge-transformation process is schematically
shown in Fig. 1. This example is one of the earliest
documented cases of this sort of large scale ontological
engineering but it remains paradigmatic of the problem:

e Large artifacts. The ontologies are large enough, and
the stages in processing them persistent enough, that
we would prefer not to pass them as parameters to
(very large) messages. Instead, each service respon-
sible for processing the ontology at each stage yields,
for instance, a new resource on the web containing the
appropriate ontology in its corresponding language.

e Complex interaction. The interaction is reasonably
complex if (as we later show) we generalize the
patterns involved, and the link between message
passing and the knowledge transformations in-
volved is not simple to unravel.

e No global view. The view of the ontology from any
individual component of the process is incomplete.
Each part of the process involves only a limited
segment of the entire knowledge transformation.

The distinction between interaction protocols and arti-

facts becomes more stark when we consider the assembly of
agent-mediated services into a peer-based architecture that
would naturally implement a distributed solution to this
problem in order to keep the expertise at local level. Five
different peers' are required (assuming we use different

1. We prefer to use the term peer instead of agent in this paper, since we
do not focus on the autonomy and intelligent capabilities usually ascribed
to agents in multiagent systems, but consider only their reactive behavior to
message passing as specified in interaction protocols.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23,

Kif- } [slmple-Tlme ’
| —= ==
)

NO. 9, SEPTEMBER 2011

VN I N -
v
X

/ N
£ N
abridger
v
\
\
\

/ / \
\ / .
FARN RN / S N \
AN N L AT N \
/ P . 7N .
/ \i \, -7 A7 14 R N
/ S & / N S

Peers p; to ps mediate between distributed services. The roles under-
taken by peers are depicted as lozenges inside the appropriate peer
(e.g., p1 has the roles collator and requester, while peer p3 has two
different client roles). Solid arcs show interactions between roles as
a consequence of message passing. Dashed arcs show which URIs are
accessed or created by each peer as a consequence of these interactions.

Fig. 2. Knowledge-transforming peer interaction for Ecolingua’s lifecycle.

peers for each of the main tasks): peer p; for collating the
ontologies; peer p, for supplying component ontologies
from a library; peer p; for managing the translation and
abridgement processes; peer p; for performing translation;
and peer p; for performing abridgement. The overall
assembly is given in Fig. 2 (illustrating for simplicity the
reuse of only two ontologies).

The overall interaction can be formally modeled by
protocols, which we shall call interaction models. They
specify the message passing behavior for each of the roles
that peers can play in the interaction. For our knowledge-
transforming interaction of Fig. 2, the web resources at u; to
us are constructed as a consequence of the portion of the
interaction for collating ontologies, carried out by peers in
the collator, requester, and supplier roles. The portion of the
interaction for translation is enacted twice by roles client
and franslator to construct web resources at ug and wuy.
Finally, the portion of the interaction for abridgement is also
enacted twice by roles client and abridger to construct web
resources at URIs u; and ug. Later, in Section 2, we will
specify in detail each role for each of the portions of our
knowledge-transforming interaction.

1.2 Reasoning about Knowledge Transformations

All of the web resources at the nine URIs, above, are closely
connected by several knowledge transformations, but the
connection cannot be reconstructed in depth simply by
looking at the information formally given so far (which
already is more than that conventionally available). For
instance, although we can know the sequence of creation of
the web resources and the identity of the peers creating
them, we cannot formally infer that the ontology located at
us contains all the information in the preceding ontologies,
and hence do not know the provenance of the bodies of
knowledge represented in these web resources.

There is, therefore, a need for formality in order to be able
to provide automated reasoning support about knowledge
transformations. The aim of formality in this area is twofold:
to give a concise account of what is going on, and to use this
account for practical purposes in handling and maintaining
histories of knowledge transformations. Peers with the ability
to understand these histories would be able to know the
provenance of a body of knowledge and act accordingly—for
instance, by deciding their actions depending on their degree

SCHORLEMMER AND ROBERTSON: REASONING ABOUT DISTRIBUTED KNOWLEDGE-TRANSFORMING PEER INTERACTIONS

of trust in the original source of a body of knowledge (e.g.,
based on the completeness or correctness of the knowledge
representation) and of particular properties of the specific
knowledge transformations performed on it (such as pre-
servation of completeness, subsumption of original sources
of knowledge, or retention of equivalent levels of expressive
power). Different sorts of knowledge transformations pre-
serve different properties of the representations to which they
are applied. Being able to infer such property preservation
from the history of transformations that a body of knowledge
has gone through may be useful for peers, as it can help them
decide which reasoning services to use in order to perform
deductions without requiring the inspection of the knowl-
edge represented within the web resources themselves.
Knowing whether these kinds of properties are pre-
served across knowledge transformations would be useful,
especially in distributed and decentralized environments
where bodies of knowledge are most likely to be translated
between different representation languages, mapped into
different ontologies, and further specialized or generalized
in order to be reused together, in association with other
problem solvers or in other domains. Thus, having a formal
framework with a mathematically sound and explicitly
represented semantics in which we could record transfor-
mations of bodies of knowledge and their effect on certain
key properties would allow for an enhanced automation of
services that make use of the additional information
contained in knowledge-transformation histories.

1.3 Our Approach

In this paper, we integrate well-known techniques resulting
from a long tradition in algebraic specification with current
distributed knowledge coordination techniques in new
ways, to support reasoning about knowledge transforma-
tion conducted in a peer-based distributed environment. In
particular, we connect interaction protocols and knowledge
artifacts using a novel mixture of process calculus and
property inference within a general framework that permits
deployment in a peer-based architecture. For this we
require, on one hand, a formal interaction modeling
language for the declarative specification of first-class
protocols [25], i.e., referencable, sharable, manipulable
protocols that can be inspected at runtime to distributively
determine the state of an interaction, and hence be capable to
infer knowledge artifact properties holding in this state. On
the other hand, we need a formal and generic description of
knowledge transformations at a level of abstraction that do
not describe the details of particular techniques for
transforming knowledge components, but that are concrete
enough as to say interesting things about them.

In Section 2, we describe how to use a particular
interaction modeling language to specify and coordinate
the distributed management of knowledge components
and their transformations, although other modeling lan-
guages such as those reviewed in [25] could have been
chosen. Our aim, however, is to use the most easily applied
formal language for this engineering task that we could
conceive and for which an executable peer-to-peer envir-
onment already exists, choosing thus the Lightweight
Coordination Calculus (LCC) [32]. LCC is also the executable
interaction modeling language underlying the distributed

1421

and decentralized peer-based knowledge-coordination sys-
tem [30] developed in the scope of the European Open-
Knowledge project [33].

In Section 3, we argue for a set of abstract knowledge
transformation rules that can be connected, in a generic way
via property rules, to interaction models. We do that by
looking first at an actual knowledge engineering example
carried out at Boeing, which will also help us delimiting
the scope of our abstraction. In Section 4, we show how
these can be connected to interaction models, allowing
properties to be inferred. We do not attempt, thus, to give a
catalog of knowledge transformations. In practice, the
choice of level of abstraction is an engineering decision—we
could have many different sets of knowledge transforma-
tion rules depending on the degree of specificity required
by an application domain.

Knowledge transformation rules are introduced in an
intuitive manner, but to infer properties from the history of a
distributed knowledge-management coordination process in
an automated fashion we will need a precise semantics for
knowledge components and their transformation. We give
one such semantics for abstract knowledge transformation in
the Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2010.265. Section 5 concludes the paper.

2 THE LCC LANGUAGE AND ITS USE IN
COORDINATION

LCC is an executable specification language that is used to
constrain interactions between distributed components. It is
neutral to the infrastructure used for message passing
between components, although for the purposes of this
paper we assume components are peers in some form of
peer-to-peer network.

LCC is a generic modeling language that can be used to
describe specific communication styles, such as those
compliant with FIPA. This is done by constraining an
interaction model to use specific constructs as message
content and ensuring that the message passing sequences
conform to the required semantics (the Agentlink Argu-
mentation Interchange Format [42] is a good example of the
versatility of LCC in this respect). LCC is not, of itself, a
requirements analysis or design methodology (such as one
might find in Tropos [6] or Gaia [43]). It is complementary
to these in the sense that if one develops a requirements/
design methodology in which one of the products is a
model of the multiagent interaction then LCC could be used
as an executable specification of that interaction. Compared
to most business process enactment or workflow languages
(e.g., BPEL or YAWL) or agent specification languages (e.g.,
AORML), LCC is a compact language. Its purpose is to offer
the minimum number of concepts from which other, task-
specific concepts may be built. This contrasts with other
“richer” but less compact languages that build in more
concepts from the target domains or user groups. To
demonstrate the flexibility of LCC as a means of enacting
other languages we have built translators from well-known
workflow languages (e.g., BPEL4WS) and service orchestra-
tion languages (e.g., the Scufl language used by the Taverna
system [29]) to LCC.

1422
Interaction_Model = {Clause, ...}
Clause = Peer: Dn
Peer == a(Role, Id)
Dn = Peer | Message | Dn then Dn | Dn or Dn |
Dn par Dn | null — C
Message 1= M = Peer | M = Peer — C |
M <« Peer | C «— M <« Peer
C u= Term|CAC|CVC
Role = Term
M == Term
Where null denotes an event which does not involve message passing;
Term is a structured term (e.g., a Prolog term) and Id is either a
variable or a unique identifier for a peer.

Fig. 3. Syntax of LCC interaction models.

An LCC specification describes (in the style of a process
calculus) a protocol for interaction between peers in order
to achieve a collaborative task. The nature of this task is
described through definitions of roles, with each role being
defined as a separate LCC clause. The set of these clauses
forms the LCC interaction model. An interaction model
provides a context for each message passed between peers
by describing the current state of the interaction (not of the
peer) at the time of message sending. Coordination is
achieved between peers by communicating this state along
with the appropriate messages. Since roles are indepen-
dently defined within an interaction model it is possible to
distribute the computation to peers performing roles
independently, with synchronization occurring only
through message passing. Should the application demand
it, however, LCC can also be used in more centralized,
server-based style. The model for deriving properties of
knowledge components that we present in this paper is
independent of this choice.

Fig. 3 shows the main definitions of LCC’s syntax. A
detailed discussion of LCC, its semantics and the mechan-
isms used to deploy it, lies outside the scope of this paper. For
these, the reader is referred to [32]. In this paper, though, we
explain enough of LCC to demonstrate how to represent
interactions. We return to our example and describe
interaction models for each of the three tasks of Fig. 1:
ontology collation (Fig. 4a), language translation (Fig. 4b),
and knowledge base abridgement (Fig. 4c).

An interaction model in LCC is a set of clauses, each of
which defines how a role in the interaction must be
performed. Roles are described in the head of each clause
by the type of role (and its parameters) and an identifier
for the individual peer undertaking that role. The defini-
tion of performance of a role is constructed using
combinations of the sequence operator (“then”) or choice
operator (“or”) to connect messages and changes of role.
Messages are terms, and are either outgoing to another
peer in a given role (“= ”) or incoming from another peer
in a given role (“<« ”). Message input/output or change of
role can be governed by a constraint to be solved before
(when at the right of “« ”) or after (when at the left of
“— ") message passing or role change. Constraints are
defined using the normal logical operators for conjunction,
disjunction, and negation. If they are subject to fail, the
interaction may proceed along alternative paths (e.g., those

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO.9, SEPTEMBER 2011

a(collator(L,U,Uy), X) ::
a(requester(L, N,U,U,,), X) then
a(collator(L,Up,,Uy), X) or
null «— completed(U) A Uy =U
a(requester(L, N,U,U,,), X) ::
request_onto_source(L, N) = a(supplier,S) then
merge(L,U,Uy,Up,) —
ontology_source(L, N,U,) < a(supplier,S)
a(supplier, S) ::
request_onto_source(L, N) <= a(requester(L, N,U,U,,), X) then
ontology_source(L, N,U) = a(requester(L,N,U,U,,), X) then
a(supplier, S)

Where merge(L,U,Un,Un) is satisfied when the peer can take the
union of resources at URIs U and Uy, to produce a combined resource
at URI Up, in language L.

(a)

a(client(F,Uy, L1,Us, L), X) =:
reqst_transl(F,Uy, L1, L2) = a(translator,T) then
translation(Uz) <= a(translator,T)
a(translator,T) ::
regst_transl(F, Uy, L1, Ly) <= a(client(F,Uy,L1,Ua, La), X) then
translation(Uz2) = a(client(Ui, L1,Usz, L2), X) «
translate(F,Uy, L1,Us, La)

Where translate(F,Uy, L1,Usa, L2) is satisfied when a translation
named F is applied to the resource at URI U; (which uses language
L1) to produce a new resource at URI Uz(which uses language Lz).

(b)

a(client(Uy, L,Us), X) ::
request_abridgement(Uy, L) = a(abridger, R) then
abridgement(Usz) < a(abridger, R)

a(abridger, R) ::
request_abridgement(Uy, L) < a(client(Uy, L,Usz), X) then
abridgement(Us) = a(client(Uy, L,Uz), X) «— abridge(U1, L,Us)

Where abridge(Uy, L,Us) is satisfied when a resource at URI U;
(which uses language L) has been abridged to produce a new resource
at URI Uz (which also uses language L).

(©)

Fig. 4. Knowledge-transforming interaction models in LCC. (a) An
interaction model for ontology collation. (b) An interaction model for
language translation. (c) An interaction model for knowledge-base
abridgement.

specified with operator “or”). Notice that there is no
commitment to the system of logic through which
constraints are solved—on the contrary we expect different
peers to operate different constraint solvers.

The interaction models in Fig. 4 are generic in the sense
that they give different interactions depending on how the
variables (in uppercase) in the clauses are bound at
runtime—this depending on the choices made by peers
when satisfying the constraints within these clauses. A form
of unfolding is used to record the current state of the
interaction, in which a copy of each clause is used to store
the current state of the corresponding role. Clauses may
require subroles to be undertaken as part of the completion
of a role and when this occurs the definition of the subrole
is unfolded into the clause copy that stores the current state.
Fig. 5 gives an example of an unfolded clause using the
interaction model of Fig. 4a. We can “replay” the interaction
by following the nested structure of the unfolded clause.
Note the use of the term ¢(M) to denote that a message
passing event has been completed in the interaction.

Fig. 6 gives an overview of the basic LCC interpretation
mechanism and its extension to the addition of property
information. At the top of the diagram is the LCC

SCHORLEMMER AND ROBERTSON: REASONING ABOUT DISTRIBUTED KNOWLEDGE-TRANSFORMING PEER INTERACTIONS

a(collator (kif, uy,us), p1) ::
a(requester(kif, hpkb, u1,us), p1)
c(request_onto_source(kif, hpkb) = a(supplie?‘,pg)) then
merge(kif, ui, uz, uz) «—
e (onf,ology_source(kif, hpkb, us) < a(supplier, p2)) then
a(collator (kif, uz, us), p1) ::
a(requester(kif, kifn, uz, us), p1) :
c(7'equest_ant0_sou7'ce(kif, kifn) = a(supplier, p2)) then
merge(kif, usg, ug, us) —
¢ (ontology_source(kif, kifn,uy) < a(supplier, p2))
a(collator (kif, us, us), p1) ::
c (null) — completed(us) N us = us

Peer p; performs the role of collator for a KIF ontology starting with
URI u; and ending with URI us. To do this it became a requester
that took u; and contacted peer p2 (in the role of supplier) to obtain
the URI for the HPKB ontology which p; then merged with u; to
obtain u3. A similar requesting process was used to merge u3 with uy4
(the URI for the KIF-Numbers ontology) to obtain us (which merges
u3 and u4). The interaction terminated when p; considered us to be
completed.

Fig. 5. Unfolded interaction model for ontology collation.

interpreter which takes an interaction model plus (if the
interaction is continuing rather than newly initiated) the
unfolded interaction model recording the current interac-
tion state, and updates the unfolded interaction model to
record the new state. The interpreter is run on a peer and, as
part of the peer’s own mechanism for satisfying constraints,
the peer interacts with knowledge components. As it does
so, the appropriate component names are recorded in the
unfolded interaction model (via variable matching on its
constraints). The unfolded model is accessed by an
interaction property inference system that is also given sets
of bridging and property rules, enabling a property model
for the knowledge components to be constructed. This
property inference process is the subject of the remainder of
this paper.

3 KNOWLEDGE TRANSFORMATION

We have described how peers can store the temporal
structure (the state) of interactions as an instance of an LCC
interaction model. This is part of the solution to reasoning
about interactions, since it enables peers to communicate in
a standard way what the interaction required, but it is not
the complete solution because it still does not allow to infer
properties of the artifacts constructed during a knowledge-
transforming interaction. There is no unique set of such
properties appropriate to all contexts, so it is good
engineering practice to allow specification of knowledge
transformations and their properties in a way that allows
them to be independently combined with interaction
models (so we can mix and match properties to interactions
as the application demands).

In this section, we introduce knowledge transformations
by means of a real example of knowledge engineering. It
will help us to highlight the need of formality we want to
address and to justify the level of abstraction at which we
will carry out the formalization. Then, in Section 4, we will
describe how to connect abstract knowledge transformation
rules with interaction models for property inference.

As said before, we do not attempt to give a catalog of
knowledge transformations, as these will depend on the

1423

peer

unfolded
interaction
model

__________ » knowledge
component
property

model

Lcc
interpreter

interaction
model

bridging
rules

property
rules

Fig. 6. Architectural overview for LCC interpretation with property
inference.

interaction

property
inference

particular application domain. In [35], [37], for instance,
abstract transformation rules have been used to conduct
generic knowledge-component brokering in a distributed
environment.

3.1 The Boeing Experiment

Uschold, Haely, Williamson, Clark, and Woods describe an
experiment of knowledge engineering conducted at Boeing
Applied Research and Technology in which a layout design
application of stiffened panels is enhanced with capabilities
of unit conversion and dimensional analysis by reusing and
deploying an ontology of engineering mathematics that is
publicly available at the Ontolingua Server, hosted at
Stanford University’s Knowledge Systems Laboratory [39].

The context is a layout design application that determines
the placement of “lightening holes” (for saving weight) on a
panel, whose production code has been reverse engineered
and reimplemented in Slang, the language of Specware, a
system for the specification and formal development of
software maintained at Kestrel Institute [38].

In order to enhance the application with the capabilities
to perform unit conversion and dimensional analysis,
Uschold et al., looked at the fragment of the Engineering
Math Ontology that defined the concepts of Physical
Quantity, Physical Dimension, Magnitude, Unit of Measure,
and all necessary Algebraic Operations.

Since this ontology was represented in Ontolingua, an
extension of KIF, a translation into Slang was necessary in
order to be able to use the composition capabilities of
Specware to combine the ontology with the specification of
the application. Uschold et al., report that this alone was not
sufficient in order to obtain the enhanced specification,
because, although the engineering math ontology was
designed to make it possible to perform these tasks, they
were not explicitly specified in the ontology. Therefore, and
previous to the final integration, these tasks had to be
identified with a task-specific component and combined
with the Slang specification of the ontology. Finally, the
result of the combination was integrated into the specifica-
tion of the panel layout application.

3.1.1 Transforming Knowledge Components

What the Boeing experiment illustrates is that rarely can a
knowledge component, like the Engineering Math Ontol-
ogy, be used as is, and that, in most cases, components need
to be adapted in order to be combined and integrated
satisfactorily into a knowledge-based system. In the Boeing
experiment, this adaptation was primarily a manual and
labor-intensive task that comprised:

1424

1. the selection of a fragment of the Engineering Math
Ontology;

2. the translation of the fragment into Slang;

3. the combination of the translated fragment with a
Slang specification of the new tasks for the
application;

4. the combination of ontology and tasks with the
specification of the application.

The four items above are examples of what we will call in
this paper knowledge transformations: transformations of
representations that occur at the knowledge-level, i.e.,
transformations of knowledge representations, which we
shall also call knowledge components. They also comprise three
different sorts of knowledge transformation that we find
useful to distinguish explicitly. The first sort takes a
knowledge component and modifies its specification with-
out changing the representation language in which the
specification was written. In the Boeing experiment, it
reduced to a very simple modification by removing
unnecessary definitions and keeping only a selected frag-
ment of the original specification. The second sort takes a
knowledge component and rewrites it entirely into a new
representation formalism. Unlike the previous sort of
knowledge transformation, here one does not want the
intended meaning of the specification to change, and an
equivalent knowledge-level formulation is sought after; but
obviously this will depend, among other things, upon the
expressive power of the target representation language.
According to Uschold et al., such equivalent translation from
Ontolingua to Slang is generally feasible. Finally, the third
and fourth transformations compose knowledge representa-
tions into a combined one. In the Boeing experiment, this
was done using Specware’s combination functionality,
which is based on category-theoretic colimit construction.

3.1.2 The Need for a Formal Approach

Besides the need of adaptation, and the manual effort that
this required, Uschold et al., also point at several problems
they encountered during the experiment. For instance, with
respect to the translation step carried out in their experi-
ment Uschold et al., make the following observation:
To be confident of mapping classes and subclasses to sorts
and subsorts, semantic differences would have to be carefully
checked. If inference were possible in one but not the other,
work would have to be done to identify and contain the
semantic differences responsible for such inconsistencies, in

order to produce correct translations. We have not resolved
this issue. [39, pages 184-185]

We are not going to resolve this issue here, either.
Nevertheless we argue that any solution to this problem
will have to tackle knowledge transformations formally, by
specifying with precision what kind of translations a
component has gone through. Only in this way we would
know if inferences in the original component continue to be
valid in the translated component.

Uschold et al., conclude that it would have taken
significantly longer to design the knowledge content of
the engineering math ontology from scratch in the panel
layout application. Furthermore they point out that,

if the engineering math ontology becomes to some degree a
standard, there is the longer-term potential that this and

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO.9, SEPTEMBER 2011

other applications built with it can interoperate more easily,

as they conform to the same physical-quantities vocabulary.

[39, page 192]

But this interoperation is only possible if the applications
know their provenance, namely that the engineering math
ontology was, at some point in their respective knowledge-
transformation histories, integrated by some knowledge
transformation performed upon them. Furthermore, they
also need to know if the entire ontology was used, or only a
fragment, and in the latter case, which fragment. And they
would also need to know how subsequent knowledge
transformations performed on them (translations into other
representation formalisms, combinations with other com-
ponents, generalizations, specializations) may have affected
the original axioms of the ontology.

In each of the above cases what is missing is an explicit
representation of the knowledge-transformation history of a
knowledge component, of the series of transformations that
changed the knowledge representation of the component. In
the remainder of this section, we propose to base such
explicit representation on abstract knowledge-transforma-
tion rules.

3.2 Abstract Knowledge Components and their
Transformations

By observing the sort of knowledge transformations
occurring in knowledge engineering in general, and in in
the Boeing experiment or the Ecolingua example of Fig. 1 in
particular, we start adopting the following idealization for
knowledge components:

An abstract knowledge component as a pair C' = (L, S),
consisting of:

e a knowledge representation language L;

e a specification S, which is written in L.
The language L determines the set of all sentences we can
use in order to write S and is itself modeled as a pair
L = (I,0), consisting of

e a logical system I, which fixes syntax and semantics
of sentences;

e a ontology O that provides the necessary nonlogical
vocabulary for writing down sentences.

In our example of Fig. 1, the ontologies obtained from the
Ontolingua Server constitute abstract knowledge compo-
nents whose specifications are written in the Ontfolingua
language. Ontolingua is based on KIF (providing a concrete
syntax for first-order logic) and includes the additional
nonlogical vocabulary required for specifying ontologies.

For the purposes of this paper, it will suffice to adopt an
intuitive understanding of “language,” “specification,”
“logical system,” and “ontology,” but for the formal
treatment of properties in connection to interaction models
as advocated in Section 2 we expect them to be modeled by
some mathematical structure. For instance, the language L
could be the system of first-order logic together with a
particular logical theory as ontology, and S may be a subset
of well-formed first-order sentences. In the Appendix,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2010.265, we provide one such formal foundation

SCHORLEMMER AND ROBERTSON: REASONING ABOUT DISTRIBUTED KNOWLEDGE-TRANSFORMING PEER INTERACTIONS

for abstract knowledge components in the framework of
institutions® [14].

By saying that an ontology O provides the necessary
nonlogical vocabulary for writing down sentences one
might think that we treat an ontology as nothing more
than a logical signature. A signature can certainly be seen as
an ontology, but usually an ontology also constrains the
possible meaning of the nonlogical symbols by additional
axioms stated in an ontology representation language. If
this is the case, it will be useful to consider an ontology
itself as an abstract knowledge component O = (Lo, So)
specified by Sp, written in language Lo. Here Lo = (1o, Op)
will consist of a logical system /o, which may or may not be
the same as I. As we have said, Lo could well be a
knowledge representation language specifically designed
for representing ontologies, where Iy is different from I and
where Op is the metaontology that provides the necessary
representation vocabulary.®> In these cases some sort of
“compatibility” between institutions Ip and I would be
needed,” capturing the ontological commitment of language
L to the conceptualization as specified by O. This general
ontological commitment can be modeled for instance as an
institution morphism [15], but a full treatment of this lies
outside the scope of the paper. We refer the interested
reader to [34].

In this paper it is our concern to investigate only
transformations performed on knowledge components,
assuming the above abstract characterization. Under these
circumstances, given an abstract knowledge component
C = (L, S), it is natural to distinguish between knowledge
transformations that

1. revise the specification S;
translate the language L = (I,0), which itself can
involve transformations that

a. change the ontology O;
b. change the logical system I.

In our example of Fig. 1, the deletion of extraneous clauses
and pruning of the class hierarchy and of irrelevant clauses
are sorts of “specification revisions,” while the translation
from Ontolingua into Prolog terms and from Prolog terms
into executable Horn clauses are sorts of “language transla-
tions,” and in particular they are based on changes of the
underlying logical systems. In addition, reusing knowledge
components from the Ontolingua Server and putting them
together in Ecolingua also constitutes a sort of knowledge

2. Institutions originated in the late 1970s and early 1980s for studying
model-theoretic properties of logics and they have since given semantics to
powerful module systems of both imperative and declarative programming
languages, multilogic specification languages, databases, and ontologies.
Most recently they have been also applied to provide logic-independent
semantics to semantic web languages [24]. An institution captures the
essential aspects of logical systems that underlie any formal specification of
a computer program: a notion of a signature system, of well-founded
formulas over a signature, and for each signature, notions of a system of
models and a satisfaction relation between models and formulas.

3. The ontology representation language OWL is paradigmatic of this
sort of nesting: I is RDF Schema and Oy is the vocabulary defined (in RDF
Schema) at http:/ /www.w3.0rg/2002/07/owl. An OWL ontology O then
provides the terminology for a knowledge base S to be interpreted in the
context of the logical system I of OWL, which is the SHOZN (D)
description logic.

4. Making OWL downward compatibility with RDF Schema has been
one of its major design issues.

1425

transformation, a sort of “component combination,” for
which we shall give an abstract treatment, too.

3.3 Revising the Specification
We shall distinguish two sorts of knowledge transformations
that revise the specification: those that perform a general-
ization and those that perform a specialization. Knowledge
transformations that generalize the specification of a knowl-
edge component are, for instance, belief-base contraction or
those based on machine learning systems that generalize by
rule induction on a set of examples. In the context of
ontology engineering, transformations that fall into this
category are, for instance, those that select subontologies by
computing views over an ontology [27]. Other transforma-
tional systems do the opposite, specializing and refining a
specification—for example, belief-base expansion or specia-
lization operators of knowledge-base refiners. In the context
of ontology engineering, we might think of those ontology
reasoning services that infer additional subsumption rela-
tions between classes or that classify instances to particular
classes [18], [19]. Out of this simple distinction will fall, of
course, all those transformational systems that neither
generalize nor specialize because they do some combination
of both. In these cases, and in order to keep our set of
knowledge transformation rules compact, we may consider
them as systems that perform a sequence of more elementary
transformational steps that eventually involve only general-
ization or only specialization.

The discussion above yields the distinction of our first
two abstract knowledge-transformation rules:

L
Specification Specialization (SS): <<L7:SS"’>) , if SCS,
e o - {L,S) . y
Specification Generalization (SG): L9)’ it $"38S.

In the rules above S’ C S means that specification S’ is
subsumed by specification S (analogously, for S" J S). The
precise semantics of subsumption depends on the mathe-
matical framework chosen to model knowledge compo-
nents and transformations. In the Appendix, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2010.265, we
provide one such semantics for subsumption in the
institutional framework.

3.4 Translating the Language

Since we look at a language as constituted of a logical
system and an ontology, we shall distinguish between two
kinds of language translation, depending if either the
ontology is changed—and so the vocabulary used and its
intended meaning—or the logical system—and hence the
construction of well-formed sentences and how they have
to be interpreted.

Changing the language L = (I, O) of knowledge compo-
nent C = (L, S) not only affects the language L, but also the
specification S, because we may need to translate the
specification according to the new language. We mentioned
before that we do not commit to a specific mathematical
structure used for languages and their constituent parts
(although we provide one such structure in the Appendix,

1426

which can be found on the Computer Society Digital Library
at http://doi.ieeecomputersociety.org/10.1109/TKDE.
2010.265). But if there is a change from language L to, say,
L, the structure that characterizes L' as a language
constituted of a logical system and an ontology should be
preserved. These structure-preserving transformations are
called morphisms in mathematics, and, consequently, it is
necessary to study the translation of languages in particular,
and the transformation of knowledge components in general,
by means of language morphisms. We shall denote with . —
L’ such a morphism; and we shall denote the application of
this language translation to the specification S written in L
with f[S], which will produce a specification written in L'.
We refer to the Appendix, which can be found on the
Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2010.265 for one
possible precise formalization of language morphisms.
The direction of the language morphism needs not to
coincide with that of the knowledge transformation. A
knowledge transformation due to a forward-translation of
the language is called Language Specialization and one due to a
backward-translation, Language Generalization. This is justi-
fied in the Appendix, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.

org/10.1109/TKDE.2010.265.

Hence, when a knowledge is transformed due to a
change of language, we shall distinguish between two
knowledge-transformation rules:

S'C f18]
Language Specialization (LS): <<LI;7 §,>> S ,
’ L— L
L f19138
Language Generalization (LG): %, i ;o
) L+« L

In the rules above, the annotations L R L' and L L L
mean that the application of the rules is conditioned to the
existence of a language morphism between the respective
languages. In the next two sections, we distinguish how
these arise when either the ontology or the logical system
of the language changes. This is analogous to the
distinction between what is also called semantic and
syntactic translation [11].

3.4.1 Changing the Ontology

There are multiple ways to translate the language by
changing its ontology: one may include, remove or rename
concepts and relations, alter the concept hierarchy, or
modify the set of ontological constraints, for instance.
Typically, this sort of translation may be preceded by an
ontology mapping process where two (or more) ontologies
are matched to elicit semantically related concepts and
relations [12], [21], [31]. The resulting map (or alignment)
between ontologies is then fed into the knowledge
transformation system that translates a knowledge compo-
nent between the mapped ontologies.

In order to model the change of the ontology part of a
language L = (I, O), we shall make the assumption that we
do not consider an ontology as a knowledge component with
its own language and specification part (see Section 3.2).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO.9, SEPTEMBER 2011

Instead, we will adopt a “logician’s perspective” and
consider an ontology O to be a presentation of a logical theory
O = (%,T') with signature ¥ and axioms I as if it had been
expressed in the knowledge component’s logical system 1.
This perspective is consistent with an abstract view of
ontologies as an explicit account of the intended models of a
logical language (see, for instance, [17]). If we focus only on
structure-preserving transformations, or morphisms, we
model the transformation from O to O' as an ontology
morphism that arises from a map of signature elements of the
signature ¥ to those of a signature ', whenever the axioms
inT are translated accordingly. We make this more precise in
the Appendix, which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2010.265.

Were we to look at an ontology as a knowledge
component O = (Lo, Sp) an ontology morphism could also
arise because we refine its specification Sp, or when we
change the underlying ontology representation language Lo
(together with the corresponding translation of the ontolo-
gical axioms Sp). For ease of presentation we only consider
ontology morphisms as they arise within a unique ontology
representation language.

3.4.2 Changing the Logical System

An example of a transformational system that acts upon the
logical system of a knowledge component is Ontolingua
[16], which uses KIF as an expressive interlingua through
which knowledge components that are to share knowledge
are translated back and forth. Other examples are the
translation services provided by Protégé [28] to represent
ontologies in various representation formats such as RDF(S)
or OWL, or the translator into Horn clauses implemented
by Brilhante and Robertson for our example of Fig. 1.
When changing the logical system we not only translate
the sentences specifying our knowledge component into the
syntax and grammar of the target logical language, but we
also adopt a new understanding of how the translated
sentences are to be interpreted, and how models may or
may not satisfy these sentences. Furthermore, the transla-
tion has to be coherent with the way sentences are
interpreted and satisfied by models. In the Appendix,
which can be found on the Computer Society Digital
Library at http://doi.ieeecomputersociety.org/10.1109/
TKDE.2010.265 we drawn form the exhaustive research on
abstract characterizations of logical systems by means of
institutions to model the change performed on logical
systems underlying knowledge representation languages.

3.5 Combining Knowledge Components

So far we have discussed transformations that alter knowl-
edge components by refining their specifications, or
translating them into another knowledge representation
language either by changing their ontologies or their
underlying logical system. But, ultimately, in order to
construct knowledge-intensive artifacts, knowledge engi-
neers combine different knowledge components, for exam-
ple by connecting web services, or by enhancing web
services with semantic annotations drawing from ontolo-
gies. We shall distinguish between two sorts of component
combination: union and intersection.

SCHORLEMMER AND ROBERTSON: REASONING ABOUT DISTRIBUTED KNOWLEDGE-TRANSFORMING PEER INTERACTIONS

3.5.1 Union of Components
In order to make the union of two knowledge components,
that happen to be specified in the same language, only their
specifications need to be merged. This merging itself may
be complex, but it is at a lower level of abstraction than that
of the knowledge transformation rules considered in this
section. In general, however, knowledge components will
be specified using different ontologies or using separate
underlying logical systems, and some sort of alignment
between languages will be needed.

The issue of aligning two languages L; and L, is by itself
a challenging knowledge engineering task and has been
studied extensively (see, e.g., [12], [21], [31]). Since we
model a language as a pair consisting of a logical system
together with an ontology, we shall tackle the issue of
aligning languages by distinguishing between the align-
ment of logical systems and the alignment of ontologies.

- Aligning ontologies: Assuming the specifications of the
components to be connected are based on the same
logical system, the alignment of two separate ontol-
ogies O; and O; can be modeled with the help of the
notion of bridge—an agreed understanding that we
model as a common ontology O, together with
ontology morphisms O “5 0, and Oy = 0.
Zimmermann et al., provide a detailed discussion on
abstract characterizations of ontology alignments in
terms of bridge ontologies (using category theory)
[44]. A very simple form of bridge is, for instance,
when Oy = Oy, f is the identity morphism on Oy, and
f2 is an ontology morphism from O; to O3, hence
making O, a global ontology in which the specifications
of components are merged together. Another trivial
bridge is the empty bridge, that is, no explicit
alignment between O; and O, is provided. In this
case, the global ontology O is the disjoint union of O
and O,. Typically, bridge ontologies are computed by
means of ontology mapping techniques that feed into
the merging process to provide the means to carry out
a more informed merge than just a disjoint union [1].

- Aligning logical systems: If the logical systems I; and
I, of the components differ, the connection has to be
done through a logical system I that captures both.
In the simplest case this may be one or the other, but
if neither system is expressive enough to capture all
possible statements of the other, some “combined”
logical system has to be determined in order to
connect both components. Interlinguas such as KIF,
or more recently the Common Logic international
standard [20], are examples of logical systems that
attempt to play this role.

In any case, if the connection of separate knowledge
components requires the alignment of ontologies or of
logical systems or of both, this can be described as a
connection through a global language L into which there
exist language morphisms from the components’ languages.

The abstract knowledge-transformation rule for the
union of components, stated for two knowledge compo-
nents and a bridge language L, (which may consist, for
instance, of the least expressive of both logical systems and
a bridge of ontologies) is the following:

1427

Component Union (CU):
(L1,81) (L2, 52)
(L, g1[S1] M g2[S2]),

In the rule above, {L; g Ly LR Ly} is called an alignment
of Ly and L, through bridge language L. The annotation g; 5 :
{L; il Ly LN Ly} > L means that the application of the rule
requires the existence of the above alignment together with
language morphisms ¢; : Ly — L and ¢, : Ly — L—called
injections and satisfying g¢; o fi = g» o fo—that allow us to
express the knowledge components involved in the connec-

if gi2: {L1 L L() L LQ} > L.

tion within a global language L that respects the morphisms
from the bridge language L into the respective component
languages L and Ly. And ¢;[S1] M g2[S2] is a specification that
“unifies” Sy and S5, and hence is subsumed by both g, [S;] and
g2[S2]. The choice of the operator “M” together with a precise
account of these concepts is given in the Appendix, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2010.265.

3.5.2 Intersection of Components

Dually to the need of making the union of knowledge
components, in knowledge engineering it is often necessary
to establish commonalities and differences of two knowl-
edge components, e.g., for version tracking and mainte-
nance [23], [26]. Consequently, Component Union has a
dual Component Intersection rule which is stated for two
knowledge components with respect to a reference language
L. In the particular case of knowledge component evolution
in the scope of one single language L, for instance, this
language also plays the role of reference language.

Component Intersection (CI):
<L17SI> <L27S2>
(Lo, g1 [S1] U gy ' [Sa])”

In the rule above, {L; N L L L} is called an integration
of Ly and L, with respect to reference language L. The
annotation g5 : Ly < {L; — L < Ly} means that the ap-
plication of the rule requires the existence of the above
integration together with language morphisms g¢; : Ly — L;
and ¢, : Ly — Lo—called projections and satisfying g¢; o
fi = g2 o fo—that allow us to express the knowledge compo-
nents involved in the connection in a shared language L, that
respects the morphisms from the component languages L;
and L, into the reference language L. And g;'[S1] U g, *[S2] is
a specification that “intersects” S; and S,, and hence
subsumes both ¢;![S)] and g;![S:] (or, in other words, its
image along g; subsumes S}, and its image along g, subsumes
S5). The choice of the operator “LI”, the meaning of the inverse
images ¢;' and g,' together with a precise account of
these concepts is given in the Appendix, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TKDE.2010.265.

if gi2: Lo < {Ll L L <f—2 LQ}

4 INFERRING PROPERTIES FROM INTERACTION
MOoDELS

Having defined in Section 3 a set of knowledge transforma-
tion rules, we now connect these to interaction models.

1428

Knowledge-transformation predicates:

ss(K_Comp, K_Comp)

sg(K_Comp, K_Comp)

ls(L_Morph, K_Comp, K_Comp)

lg(L_Morph, K_Comp, K_Comp) |

cu(Align, L_Moprh, L_Morph, K_Comp, K_Comp, K_Comp)
ci(Integr, L_Moprh, L_Morph, K_Comp, K_Comp, K_Comp)

Knowledge-component terms:

K_Comp = c¢(Lang, Spec)
Lang = I(Log_>Sys, Onto)
Onto == K_Comp | o(Sig, Azx)
L_Morph = m(Fun, Lang, Lang)
Align = a(L_Morph, L_Morph)
Integr := i(L_Morph, L_Morph)

Arguments in predicates and terms can also be dereferencable identi-
fiers. (This is always the case for Spec, Log_Sys, Sign, Az, and Fun.)

Fig. 7. Syntax of knowledge transformations and components.

Although both interaction models and rules are (inevitably)
application specific, the mechanism for combining them is
generic. We begin by restating knowledge transformation
rules in a more convenient syntactic form as predicates over
terms (see Fig. 7) in order to link them to the LCC language
in a more direct manner.

Terms represent the basic entities of our conceptualiza-
tion (knowledge components, languages, ontologies, etc.),
and are generated over dereferencable identifiers (such as
URIs) pointing to the actual entities, and also over concrete
constant symbols. To specify the properties on the
components involved in a knowledge transformation, we
write a property rule for each knowledge-transformations
type in Section 3. We do this by moving all syntactic
constraints into the premise of a rule and by specifying the
actual properties in the conclusion, dereferencing identifiers
that occur in the premise (see Fig. 8).

Notice that in interaction models (for example those of
Fig. 4) the only points at which peers can access or transform
knowledge components are the constraints associated with
message input and output. Therefore, it is necessary to
bridge between constraints in interaction models with sets of
knowledge transformations. Fig. 9 gives an example set of
bridging rules for the constraints in Fig. 4.

The first of these rules (bridging the constraint merge in
interaction model Fig. 4a) says that, if resources at URIs U

ss(e(L, S1), e(L, S2)) —
sg(c(L, 81), (L, S2)) —

*So C %Sy
*So 1 %51
Is(m(F, Ly, L2), c(Ly,S1), ¢(L2, S2)) —
lg(m(F, L2, L1), ¢(L1, S1), ¢(L2, S2)) —

*Sz T (xF)[xS1]
(*F)[S2] 3 %51

cu(a(m(Fi, Lo, L1), m(F2, Lo, L2)),
m(G1, L1, L), m(Ga, La, L),
(L1, 81), ¢(La, S2), ¢(L, S)) —> %S C (xG1)[*S1] A

*S C (%G2)[*S2] A

(%*G1) o (xF1) = (xG2) o (xF2)

ci(i(m(F1, Ly, L), m(Fz, L2, L)),
m(G1, Lo, L1), m(G2, Lo, L2),
c(L1, 81), e(L2, S2), c(Lo, S)) — (xG1)[*S] D =51 A

(*G2)[*S] 3 xS2 A

(xG1) o (#F1) = (xG2) o (xF2)

Where “+” is the dereference operator.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO.9, SEPTEMBER 2011

S = merge(L,U, Uy, Up,)
== {r:’u.(n.(m(z'd, L,L), m(id, L, L)), m(id, L, L), m(id, L, L),

e(L,U), e(L, Up), (L, Um)) }

S | translate(F, Uy, L1, Usz, L2)
= {ls(n:,(F,Ll,Lg).c(Ll,Ul),c(LQ.Uz))}

S = abridge(Us, L, Us)
= {sg(e(L, V1), (L, U1)) }

Where the expression S = 7" denotes that the constraint 7" holds in
state S of the interaction, and “id’ is the functor symbol for identity
morphisms.

Fig. 9. Bridging rules between interaction models and transformations.

and U, are merged to form a new one at U,, then the
knowledge component with language referenced by L and
specification at U,, is a component union of the components
of the same language and with specifications at URIs U, U,,
and U,,, respectively. This union is with respect to the
trivial alignment {xL <= xL 5 %L}, via the identity lan-
guage morphism for the language referenced by L.

The second rule (bridging the constraint translate in
interaction model Fig. 4b) says that, if the resource at U: is a
translation of the one at U; (by function at F' from the
language at L into the language at L»), then the knowledge
component with language at L, and specification at Us is a
language specialization of the component with language at
Ly and specification at U;. The specialization is with respect
to language morphisms *L; — #Ls.

The third rule (bridging the constraint abridge in
interaction model Fig. 4c) says that, if the resource at U,
(written in the language referenced by L) is an abridgement
of U;, then the component with language at L and
specification at Us is a generalization of the component of
the same language and with specification at U,.

We now have the representational elements we need: a
means of obtaining a model of the current state of
interaction (e.g., Fig. 5); bridges relating sets of knowledge
transformations to constraints in the model (e.g., Fig. 9); and
rules stating properties associated with these knowledge
transformations (e.g., Fig. 8). Finally, it is necessary to
provide a mechanism for determining when a constraint T
actually holds in a particular interaction state S (i.e., S = T).
The definition of = is given in Fig. 10. This is essentially an
interpreter that lifts out appropriate constraints that are

SET if EESAERET
(R:B)ET if BET

(A1 or A2) =T if —closed(A2) N A1 =T

(A1 or As) =T if —closed(A1) N Ao =T
(A1 then A2) =T if A ET
(A1 then A2) =T if closed(A1) N A =T

(C «— M) =T if closed(Mi) N subterm(C,T)

(Moutjnur < C) T if closed(Moutjnu) N subterm(C,T)

Where E is the expression of a (partially) unfolded interaction model
and subterm(C,T) holds when T is a goal contained in constraint C.
An expression E is decided to be closed as follows (recall that c¢(X)
denotes that an event X has been completed):

closed(c(X))

closed(A or B) «— closed(A) V closed(B)
closed(A then B) «— closed(A) A closed(B)
closed(X :: D) < closed(D)

Fig. 8. Property rules for knowledge-transformation types.

Fig. 10. Definition of “holds” predicate S |= T

SCHORLEMMER AND ROBERTSON: REASONING ABOUT DISTRIBUTED KNOWLEDGE-TRANSFORMING PEER INTERACTIONS

Uy U

collation (CU)

sug C id[*u]

sug C id[*usg)

’
etc.
ug ’

sug C (xterms2prolog) [*ug%

N
translation (LS)

1429

Uy

collation (CU)

sug T id[*us)

sus Cid [xuy)

translation (LS)

*ug C (xkif2terms)[*us)

abridgment (SG)

ur
abridgment (SG)
*ug & xuy *ur C *ug

Fig. 11. Sequence of property information in Ecolingua’s lifecycle.

buried in closed (i.e., completed) sections of (possibly
partially) unfolded interaction models (which represent the
interaction state).

For example, assuming the state S to be the set
containing the unfolded interaction model in Fig. 5, we
have that:

S E completed(us),
S |: U5 = Us.

N ': merge(kif, U, U2, U3),
S ': merge(kif, U3z, Ug, U5),

Applying the bridging rules of Fig. 9 that are applicable to
the constraints holding in S (in our case to the two on the
left) we obtain the knowledge transformations represented
by the following two ground predicates:

cula(m(id, kif, kif),m(id, kif,kif)), m(id, kif, kif),
m(id, kif, kif), c(kif,u1), c(kif,uz), c(kif, us)),
cu(a(m(id, kif,kif),m(id, kif,kif)), m(id, kif, kif),
m(lda sza sz)a C(sza Ug), (szv U4), (sza US))

These then allow us, using the rules of Fig. 8, to infer the
following properties about the referenced entities:’
wug C id[xuy],
suz T id[*us),

wus C id[*usg),
sz T id[*uy).

If we apply this same process across the interactions
described for the entire sequence of knowledge transforma-
tions of Ecolingua’s lifecycle described in Section 1, we
obtain property information for each of the nine resources
of the lifecycle, depicted in Fig. 11. The boxes in this
diagram enclose the property information (except for trivial
properties) about the resources pointed by URIs. Arcs are
labeled with the knowledge transformation (and its type in
parentheses) of the Ecolingua lifecycle (see Fig. 1). The
detailed example that we described above corresponds to
the first two boxes (at top) of the diagram.

The procedure above allows information about proper-
ties of resources at URIs to be accumulated as part of the
interactions in which those URIs are involved. By adding
further axioms defining a background theory of relation-
ships between properties and their semantics (drawn
from a theory such as the one of the Appendix, which
can be found on the Computer Society Digital Library

5. We leave out the obviously a trivial consequence id o id = id o id.

at http://doi.ieeecomputersociety.org/10.1109/TKDE.
2010.265) we can “mine” further information that is not
immediately obvious from this repository.

For example, we define below the predicate
contains(Uy, Us), which holds when the information speci-
fied at URI U is included in (i.e., can be inferred from) that
specified at URI U;:

contains(U,U),
contains(Uy, Us) — xUy C «Uy V xU; E id[+Us),
)

contains(Uy, Us) «— contains(Uy,Us) A contains(Us, Us).

Taking these along with the information in Fig. 11 we can,
for example, infer that contains(us,u;) and contains(ug, ug)
hold, but that contains(ug, u1) does not hold. In this way, we
can explore chains of relationships between URIs without
needing to look at the actual content of the URIs themselves.

5 CONCLUSION

We have addressed a need of formality for providing
automated reasoning support for knowledge transforma-
tions that occur in the context of peer interactions. Our
aim of formality in this area has been twofold: to give a
concise account of what is going on, and to use this
account for practical purposes in handling and maintain-
ing states of distributed knowledge-transforming interac-
tions. As more and more knowledge components such as
ontologies, web services, and databases are made publicly
available on the Internet, it becomes natural and necessary
to study and record the unfolding of knowledge-trans-
forming interactions. Peers with the ability to understand
these interactions and to infer from the state of an
interaction if certain key properties of knowledge compo-
nents are preserved or not—as shown in this paper—may
consequently decide their actions accordingly, without
requiring to inspect knowledge representations in the
knowledge components themselves.

Others have explored similar problems in more conven-
tional architecture settings. Perhaps the best known of these
is in the database community, where data provenance is a
key issue (see for example [7]). For this community,
provenance is a form of metadata that is used to record the
derivation history and lineage of data sets. No generic one-
size-fits-all solution has been discovered for propagating

1430

and maintaining provenance information. Instead, practical
solutions are always instances of general methods or
frameworks that are produced for a given domain or task.
The methods we provide in this paper can be understood (in
a peer-based setting) in a similar spirit. The framework we
supply is based on a process calculus and in this sense is
similar to provenance propagation efforts based on process
languages from the e-Science community (a recent survey of
these appears in [36]). Our contribution here is to show how
these efforts may be reoriented (in a general way) to peer-
based architectures.

We have focused on the connection of interaction models
with property rules, and to describe this connection in a
generic way that is independent of domain-specific parti-
cularities of knowledge-transforming services. On one
hand, this has led us to look at knowledge transformation
from a very abstract angle, grounding its semantics on the
heavy-weight formal theory of institutions. On the other
hand, the generic way in which we have defined this
connection shows that heavy-weight formal theories for rich
property inference need not be at odds with a light-weight
formal approach to interaction modeling such as the one
based on LCC.

Actually, as the web (and the semantic web) are
continuously challenging the way we see and carry out
software and knowledge engineering, we are faced with
the necessity to shift our focus to an interaction-centred,
open-ended engineering paradigm. Traditional engineer-
ing techniques need to be rethought along with their
underlying mathematical models, but this paper also
serves as an example of the gain obtained by linking
current state-of-the-art distributed knowledge engineering
based on web services and peer-based architectures to
formal methods resulting from a long tradition in algebraic
specification going back to the early 1,970s. Its abstractness
and domain-independence gains new momentum in the
context of these new challenges. However, this paper is the
first description of this form of activity that is both
practical (in the sense that the system we describe is
supported by an existing peer-based knowledge sharing
system [30]) and has a formal semantics (in the sense that
both interaction and transformation components are given
a declarative description).

ACKNOWLEDGMENTS

This work is supported under EU project OpenKnowledge
(FP6-027253), under Spain’s Consolider-Ingenio 2010 pro-
ject Agreement Technologies (CSD2007-00022), and by the
Generalitat de Catalunya (2009-SGR-1434).

REFERENCES

[1] P. Bernstein, A. Halevy, and R. Pottinger, “Model Management:
Managing Complex Information Structures,” ACM Special Interest
Group on Management of Data, vol. 29, no. 4, pp. 55-63, 2000.

[2] M. Bonifacio, P. Bouquet, and R. Cuel, “Knowledge Nodes: The
Building Blocks of a Distributed Approach to Knowledge
Management,” . Universal Computer Science, vol. 8, no. 6,
pp- 652-661, 2002.

[3] M. Bonifacio, P. Bouquet, G. Mameli, and M. Nori, “Peer-
Mediated Distributed Knowledge Management,” Proc. Int’l Symp.
Agent-Mediated Knowledge Management (AMKM '03), Revised and
Invited Papers, LNCS, vol. 2926, pp. 31-47, 2003.

4

(5]

[6]

(71

8]
B

(10]

(1]

(12]
(13]

(14]

[15]
[16]
(17]

[18]

[19]

[20]

(21]

[22]

(23]

(24]

(23]

[20]

(27]

(28]

[29]

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 23, NO.9, SEPTEMBER 2011

M. Bonifacio, P. Bouquet, and P. Traverso, “Enabling Distributed
Knowledge Management: Managerial and Technological Implica-
tions,” Informatik/Informatique, vol. 111, no. 1, pp. 24-30, 2002.

M. Bonifacio, P. Camussone, and C. Zini, “Managing the KM
Trade-Off: Knowledge Centralization versus Distribution,”
J. Universal Compter Science, vol. 10, no. 3, pp. 162-175, 2004.

P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and]J.
Mylopoulos, “Tropos: An Agent-Oriented Software Development
Methodology,” Autonomous Agents and Multi-Agent Systems, vol. 8,
no. 3, pp. 203-236, 2004.

P. Buneman, S. Kharma, and W. Tan, “Why and Where: A
Characterisation of Data Provenance,” Proc. Eighth Int’l Conf.
Database Theory (ICDT), LNCS, vol. 1973, pp. 316-330, 2001.

F. Corra da Silva and]. Agusti, Knowledge Coordination. Wiley,
2003.

F. Corra da Silva, W. Vasconcelos, D. Robertson, V. Brilhante, A.
de Melo, M. Finger, and]J. Agusti, “On the Insufficiency of
Ontologies: Problems in Knowledge Sharing and Alternative
Solutions,” Knowledge-Based Systems, vol. 15, no. 3, pp. 147-167,
2002.

K. Devlin, InfoSense: Truning Information into Knowledge. W.H.
Freeman and Company, 2001.

D. Dou, D. McDermott, and P. Qi, “Ontology Translation on the
Semantic Web,” |. Data Semantics 11, LNCS, vol. 3360, pp. 35-57,
2005.

J. Euzenat and P. Shvaiko, Ontology Matching. Springer, 2007.

A. Farquhar, R. Fikes, and J. Rice, “The Ontolingua Server: A Tool
for Collaborative Ontology Construction,” Int’l |. Human-Computer
Studies, vol. 46, no. 6, pp. 707-727, 1997.

J. Goguen and R. Burstall, “Institutions: Abstract Model Theory
for Specification and Programming,”]. ACM, vol. 39, no. 1, pp. 95-
146, 1992.

J. Goguen and G. Rosu, “Institution Morphisms,” Formal Aspects of
Computing, vol. 13, pp. 204-307, 2002.

T. Gruber, “A Translation Approach for Portable Ontology
Specifications,” Knowledge Eng., vol. 5, no. 2, pp. 199-220, 1993.
N. Guarino, “Understanding, Building and Using Ontologies,”
Int’l |. Human-Computer Studies, vol. 46, pp. 293-310, 1997.

V. Haarslev and R. Moller, “RACER System Description,” Proc.
Int’l Joint Conf. Automated Reasoning (IJAR), LNCS, vol. 2083,
pp. 701-705, 2001.

I. Horrocks, “Using an Expressive Description Logic: FaCT of
Fiction?,” Proc. Sixth Int’l Conf. Principles of Knowledge Representa-
tion and Reasoning, pp. 636-647, June 1998.

Joint Technical Committee ISO/IEC JTC 1, Subcommittee SC 32,
“Information Technology—Common Logic (CL): A Framework
for a Family of Logic-Based Languages,” Int’l Standard ISO/IEC
24707:2007(E), 2007.

Y. Kalfoglou and M. Schorlemmer, “Ontology Mapping: The State
of the Art,” The Knowledge Eng. Rev., vol. 18, no. 1, pp. 1-31, 2003.
RE. Kent, “The Information Flow Foundation for Conceptual
Knowledge Organization,” Proc. Sixth Int’l Conf. Int'l Soc. for
Knowledge Organization, July 2000.

M. Klein and N. Noy, “A Component-Based Framework for
Ontology Evolution,” Proc. IJCAI "03: Workshop Ontologies and
Distributed Systems, 2003.

D. Lucanu, Y.F. Li, and J.S. Dong, “Semantic Web Languages—
Towards an Institutional Perspective,” Algebra, Meaning, and
Computation, LNCS, vol. 4060, pp. 99-123, Springer, 2006.

T. Miller and J. McGinnis, “Amongst First-Class Protocols,” Proc.
Eighth Int’l Workshop Eng. Societies in the Agents World VIII, Revised
Selected Papers, LNCS, vol. 4995, pp. 208-223, 2008.

N. Noy and M. Musen, “Ontology Versioning in an Ontology-
Management Framework,” IEEE Intelligent Systems, vol. 19, no. 4,
pp. 6-13, July/Aug. 2004.

N. Noy and M. Musen, “Specifying Ontology Views by
Traversal,” Proc. Third Int’l Semantic Web Conf. Semantic Web
(ISWC), LNCS, vol. 3298, pp. 713-725, 2004.

N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fergerson, and M.
Musen, “Creating Semantic Web Contents with Protégé-2000,”
IEEE Intelligent Systems, vol. 16, no. 2, pp. 60-71, Mar./Apr. 2001.
T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. Glover, M.R. Pocock, A. Wipat, and P. Li, “Taverna:
A Tool for the Composition and Enactment of Bioinformatics
Workflows,” Bioinformatics, vol. 20, no. 17, pp. 3045-3054, 2004.

SCHORLEMMER AND ROBERTSON: REASONING ABOUT DISTRIBUTED KNOWLEDGE-TRANSFORMING PEER INTERACTIONS

(30]

B31]

(32]

(33]

(34]

(33]

[30]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

A. Perreau de Pinninck, D. Dupplaw, S. Kotoulas, and R. Siebes,
“The OpenKnowledge Kernel,” Int'l |. Applied Math. and Computer
Sciences, vol. 4, no. 3, pp. 162-167, 2007.

E. Rahm and P.A. Bernstein, “A Survey of Approaches to
Automatic Schema Matching,” The Int’l |. Very Large Data Bases,
vol. 10, no. 4, pp. 334-350, 2001.

D. Robertson, “Multi-Agent Coordination as Distributed Logic
Programming,” Proc. 20th Int’l Conf. Logic Programming (ICLP),
LNCS, vol. 3132, pp. 416-430, 2004.

D. Robertson, F. Giunchiglia, F. van Harmelen, M. Marchese, M.
Sabou, M. Schorlemmer, N. Shadbolt, R. Siebes, C. Sierra, C.
Walton, S. Dasmahapatra, D. Dupplaw, P. Lewis, M. Yatskevich,
S. Kotoulas, A. Perreau de Pinninck, and A. Loizou, “Open
Knowledge—Coordinating Knowledge Sharing through Peer-to-
Peer Interaction,” Proc. First Int’l Workshop Languages, Methodolo-
gies and Development Tools for Multi-Agent Systems (LADS), LNAI,
vol. 5118, pp. 1-18, 2008.

M. Schorlemmer and M. Atencia, “Semantic Alignment in the
Context of Agent Interaction,” Proc. Workshop Formal Approaches to
Multi-Agent Systems (FAMAS '07), pp. 117-134, Sept. 2007.

M. Schorlemmer, S. Potter, D. Robertson, and D. Sleeman,
“Knowledge Life-Cycle Management Over a Distributed Archi-
tecture,” Expert Update, vol. 5, no. 3, pp. 2-19, 2002.

Y. Simmhan, B. Plale, and D. Gannon, “A Survey of Data
Provenance in e-Science,” ACM Special Interest Group on Manage-
ment of Data, vol. 34, no. 3, pp. 31-36, 2005.

D. Sleeman, S. Potter, D. Robertson, and M. Schorlemmer,
“Ontology Extraction in Distributed Environments,” Knowledge
Transformation for the Semantic Web: Frontiers in Artificial Intelligence
and Applications, vol. 95, pp. 80-91, I0S Press, 2003.

Y.V. Srinivas and R. Jiillig, “Specware: Formal Support for
Composing Software,” Proc. Conf. Math. of Program Construction
(MPC "95), LNCS, vol. 947, pp. 399-422, 1995.

M. Uschold, M. Healy, K. Williamson, P. Clark, and S. Woods,
“Onology Reuse and Application,” Proc. First Int’l Conf. Formal
Ontology in Information Systems (FOIS '98), Frontiers in Artificial
Intelligence and Applications, vol. 46, pp. 179-192, 1998.

J. van Diggelen and V. Dignum, “Special Issue on Agent-Mediated
Knowledge Management,” Int’l]. Knowledge-Based and Intelligent
Eng. Systems, vol. 10, no. 4, pp. 259-261, 2006.

L. van Elst, V. Dignum, and A. Abecker, eds., Proc. Int’l Symp.
Agent-Mediated Knowledge Management (AMKM ’03), Revised and
Invited Papers, LNCS, vol. 2926, 2004.

S. Willmott, G. Vreeswijk, M. South, C. Chesfievar, G. Simari, J.
McGinis, and 1. Rahwa, “Towards an Argument Interchange
Format for Multiagent Systems,” Proc. Third Int'l Workshop
Argumentation in Multi-Agent Systems, 2006.

M. Wooldridge, N.R. Jennings, and D. Kinny, “The Gaia
Methodology for Agent-Oriented Analysis and Design,” Autono-
mous Agents and Multi-Agent Systems, vol. 3, pp. 285-312, 2000.
A. Zimmermann, M. Krotzsch, J. Euzenat, and P. Hitzler,
“Formalizing Ontology Alignment and Its Operations with
Category Theory,” Proc. Int’l Conf. Formal Ontology in Information
Systems (FOIS), Frontiers in Artificial Intelligence and Applica-
tions, vol. 150, pp. 277-288, 2006.

coordination of multia

1431

Marco Schorlemmer received the licenciate
and doctorate degrees in informatics from the
Technical University of Catalonia. He is currently
a tenured scientist at CSIC’s Atrtificial Intelli-
gence Research Institute in Barcelona. He is an
author of more than 50 publications in the fields
of formal specification and automated theorem
proving, diagrammatic representation and rea-
soning, distributed knowledge coordination, and
semantic interoperability of ontologies.

David Robertson received the BSc Hons
degree in ecological science from the Uni-
versity of Edinburgh and the PhD degree in
artificial intelligence from the Autonomous
University of Barcelona. He is a professor
and the head of the School of Informatics at
the University of Edinburgh. He has been a
principal investigator on more than 10 national
and international projects and is an author of
more than 100 publications on the design and
gent systems.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

