
Chapter 11
On possibilistic modal logics defined over
MTL-chains

Félix Bou, Francesc Esteva and Lluís Godo
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Abstract In this paper we revisit a 1994 paper by Hájek et al. where a modal logic
over a finitely-valued Łukasiewicz logic is defined to capture possibilistic reason-
ing. In this paper we go further in two aspects: first, we generalize the approach in
the sense of considering modal logics over an arbitrary finite MTL-chain, and sec-
ond, we consider a different possibilistic semantics for the necessity and possibility
modal operators. The main result is a completeness proof that exploits similar tech-
niques to the ones involved in Hájek et al.’s previous work.
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11.1 Introduction

In this paper, as our humble homage to Petr Hájek, our aim is to revisit Hájek et
al.’s paper1 [14] where a modal logic over a finitely-valued Łukasiewicz logic is
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1 Actually, [14] was for F. Esteva and L. Godo the first joint paper with P. Hájek.
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defined to capture possibilistic reasoning. In this paper we go further in two aspects:
first, by generalizing Hájek’s approach in the sense of considering modal logics
over an arbitrary finite MTL-chain, and second, by considering a slightly different
possibilistic semantics for the necessity and possibility modal operators.

Indeed, in [14] the authors defined a modal logic to reason about possibility and
necessity degrees2 of many-valued propositions. This logic was a generalization of
the so-called Possibilistic logic (see e.g. [6, 5]), a well-known uncertainty logic to
reasoning with graded beliefs on classical propositions by means of necessity and
possiblity measures. Possibilistic logic deals with weighted formulas (j,r), where
j is a classical proposition and r 2 [0,1] is a weight, interpreted as a lower bound
for the necessity degree of j . The semantics of these degrees is defined in terms of
possibility distributions p : W ! [0,1] on the set W of classical interpretations of a
given propositional language. A possibility distribution p on W ranks interpretations
according to its plausibility level: p(w) = 0 means that w is rejected, p(w) = 1
means that w is fully plausible, while p(w)< p(w0) means that w0 is more plausible
than w. A possibility distribution p : W ! [0,1] induces a pair of dual possibility
and necessity measures on propositions, defined respectively as:

P(j) = sup{p(w) | w 2 W ,w(j) = 1}
N(j) = inf{1�p(w) | w 2 W ,w(j) = 0} .

They are dual in the sense that P(j) = 1�N(¬j) for every proposition j . From a
logical point of view, possibilistic logic can be seen as a sort of graded extension of
the non-nested fragment of the well-known modal logic of belief KD45.3

When we go beyond the classical framework of Boolean algebras of events to
generalized algebras of many-valued events, one has to come up with appropri-
ate extensions of the notion of necessity and possibility measures for many-valued
events, as explored in [3]. A natural generalization, and indeed the one that we will
focus on for the main result in this paper, is to consider W as the set of propositional
interpretations of some many-valued calculi defined by a t-norm � and its residuum
). Then, a possibility distribution p : W ! [0,1] induces the following generalized
possibility and necessity measures over many-valued propositions:

P(j) = sup{p(w)�w(j) | w 2 W}
N(j) = inf{p(w)) w(j) | w 2 W} .

Actually, these definitions agree with the ones commonly used in many-valued
modal logics (see for example [2] and the references therein) in the particular case
where the many-valued accessibility relations R in Kripke-style frames (W,R) (i.e.,.
binary [0,1]-valued relations R : W ⇥W ! [0,1]) are indeed defined by possibility
distributions p : W ! [0,1] by putting R(w,w0) = p(w0) for any w,w0 2W .

2 In the sense of Possibility Theory [4].
3 In fact, as it is explained in Section 2, two-valued possibility and necessity measures over classical
propositions can be taken as an alternative semantics for the modal operators in the system KD45.
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Structure of the paper.

After this introduction, Section 2 contains a rather extensive overview of related
work. The main contribution of the paper is the fuzzy modal system given in Sec-
tion 3 that is shown to properly capture the intended possibilistic semantics for the
modal operators. The result has a limited scope since it only aplies to modal logics
over finite MTL-chains (expanded with truth-constants and the Monteiro-Baaz’s 4
operator) and to a language with finitely many variables. The axioms and complete-
ness proof are natural generalizations of the ones for the system MVKD45 in [14],
where the assumption about finitely-many variables is also adopted. In that paper
the semantics of the possibility modal operator is defined in terms of a ‘sup - min’
combination of possibility values of worlds and truth-values of formulas. Here the
semantics of the possibility modal operator is defined as a ‘sup - �’ combination,
where � is the monoidal operation of the MTL-chain. As in [14], we make an ex-
tensive use of the so-called maximal elementary conjunctions, which are definable
in our setting. Admittedly, this makes the resulting axiomatization not very elegant.
The paper ends with Section 4 stating some conclusions and an open problem.

11.2 Related work on modal approaches to possibilistic logics

When reviewing the literature on logical formalizations of different kinds of pos-
sibilistic reasoning, one can indentify two classes of systems according to the kind
of language used and the possibilistic semantics of modal necessity and possibility
operators, namely modal-like two-tiered logics and full modal logics. In this section
we provide a brief overview of the most relevant ones for our purposes in each class.

11.2.1 Two-tiered logics

By two-tiered logics we refer to systems whose language is defined in a two-level
manner: non-modal formulas are formulas from a given propositional logic L1 (e.g.
classical propositional logic) and then modal formulas are propositional combina-
tions (according to a second logic L2) of atomic modal formulas of the kind 2j

and 3j , where j 2 L1. In this way, the language of these systems allow neither for-
mulas with nested modalities (e.g. 23 j is not allowed) nor formulas mixing both
non-modal and modal subformulas (e.g. j !2y with j,y 2 L1 is not allowed). In
all these systems, models can be considered under the form of a possibility distribu-
tion p : W ! [0,1] on the set W of propositional evaluations for the logic L1 (either
classical or many-valued).

Among logics falling in this class we can find the following ones:
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(i) The logic MEL [1] corresponds to the case of L1 and L2 being both classi-
cal propositional logic (CPL) and where models are subsets E of the set W of
classical interpretations for the language of L1, i.e. E ✓ W . The two-valued
possibility distribution corresponding to a model E ✓ W is nothing but its char-
acteristic function, i.e. the mapping pE : W ! {0,1} where pE(w) = 1 if w 2 E,
and pE(w) = 0 otherwise. Atomic modal formulas are evaluated in a model E
as follows:

E ✏2j if w(j) = 1 for all w 2 E.

A complete axiomatization of MEL, which indeed can be seen as a fragment of
the modal logic KD, is given by the following set of additional axioms and rule
to those of CPL:

(K) 2(j ! y)! (2j !2y)
(D) 3>

necessitation: if j is a CPL tautology, derive 2j

In this logic, one can only express two-valued possibilities and necessities, i.e.
that a proposition is certainly true (2j), certainly false (2¬j), possibly true
(3j) or possibly false (3¬j). The epistemic status “unknown” can be repre-
sented as 3j ^3¬j , or equivalenty ¬2j ^¬2¬j .

(ii) While keeping L1 = L2 = CPL, a natural generalization of MEL is to allow
graded possibilities and necessities. This is done in [7], where the authors de-
fine what they call Generalized Possibilistic logic, GPL for short. To deal with
graded possibility and necessity they fix a finite scale of uncertainty values
U = {0, 1

k ,
2
k , . . . ,1} and for each value l 2 U \ {0} introduce a pair of modal

operators 2
l

and 3
l

. In this case models (epistemic states) are possibility dis-
tributions p : W ! U on the set W of classical interpretations for the language
L1 with values in U , and the evaluation of the modal formulas is as follows:

p ✏2
l

j if N
p

(j) = min{1�p(w) | w(j) = 0}> l .

The dual possibility operators are defined as 3
l

j = ¬2(1�l )+¬j , where
the superscript + refers to the succesor. The semantics of 3

l

j is the nat-
ural one, i.e. p ✏ 3

l

j whenever the possibility degree of j induced by p ,
P(j) = max{p(w) | w(j) = 1}, is at least l . A complete axiomatization of
GPL is given in [7], an equivalent and shorter axiomatization is given by the
following additional set of axioms and rules to those of CPL:

2
l

(j ! y)! (2
l

j !2
l

y)
31>
2

l1j !2
l2 j , if l1 > l2

necessitation: if j is a CPL tautology, derive 21j .

(iii) Another kind of systems that have been proposed in the literature are the ones
by Hájek et al. [13, 11]. Here the idea is a bit different since it is based on
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a formalization where L1 is still CPL but L2 is Łukasiewicz infinitely-valued
logic. The idea here is interpreting the modality 2 as a fuzzy modality in the
sense that a formula 2j (where j is a classical, Boolean proposition of L1) is a
fuzzy formula whose degree of truth in a given model is taken as the necessity
degree of j . Then Łukasiewicz logic is used to build compound expressions
(out of atomic modal ones) and to reason about the truth-degrees of those fuzzy
propositions. The logic can be augmented by the introduction of rational truth
constants to allow explicitly reasoning with necessity and possibility degrees.
A complete axiomatization is given by axioms of Łukasiewicz logic plus the
following ones on modalities, where 3j is defined as ¬Ł2¬j (we add the
subindex Ł to differentiate the connectives of Łukasiewicz logic from the ones
of CPL) :

2(j ! y)!Ł (2j !Ł 2y)
3>

necessitation: if j is a CPL tautology, then derive 2j .

(iv) Finally, we mention that the latter fuzzy logic-based approach has been gener-
alized to reason about the necessity and possibility of fuzzy events [6], where
a fuzzy event refers to a proposition (modulo logical equivalence) in a given
fuzzy logic [3]. In these systems both logics L1 and L2 refer to two (possibly
different) fuzzy logics and address different generalizations of the notion of ne-
cessity and possibility degrees of a fuzzy proposition. In general, if the fuzzy
logic L1 is the logic of a (continuous) t-norm ⇤ and its residuum ), possibilistic
models are given by possibility distributions p : W ! [0,1], where now W is the
set of L1 interpretations, that evaluate the necessity and possibility degree of a
proposition j from L1 as follows:

k2jk
p

= inf{p(w)) w(j) | w 2W}
k3jk

p

= sup{p(w)⇤w(j) | w 2W}.

Basically, two choices of L1 and L2 have been addressed in the literature, namely
taking L1 and L2 to be some variants of Łukasiewicz logic [9] or some variants
of Gödel logic [3]. For instance, in the former case, when L1 and L2 coincide
with the (k+1)-valued Łukasiewicz logic Łk expanded with truth-constants, the
following is a complete set of additional axioms and inference rules to those of
Łk for both modal and non-modal formulas:

2(j ^Ł y)$Ł (2j ^Ł 2y)
3>
2(r�j)$Ł (r�2j), for r 2 {0,1/k, . . . ,(k�1)/k,1}

where � refers to the strong disjunction of Łukasiewicz logics and r denotes the
truth constant of value r. The interested reader is referred to [10] for a general
treatment of this kind of logics.
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11.2.2 Full modal systems

As it regards to full modal systems capturing possibilistic semantics, either within a
classical or fuzzy logic approach, one can find less proposals in the literature. Next
we point out two approaches.

The most basic “possibilistic” system is indeed the classical modal logic KD45.
As it is well-known, the logic KD45 is axiomatized by the modal axioms

(K) 2(j ! y)! (2j !2y)
(D) 3>
(4) 2j !22j

(5) 3j !23j

and the necessitation inference rule for 2, and it is sound and complete for the
class of Kripke models M = (W,e,R), where W is a non-empty set of worlds, e :
W ⇥Var ! {0,1} provides a truth-evaluation of variables in each world, and the
accessibility relation R ✓W ⇥W is actually of the form R =W ⇥E with /0 6= E ✓W ,
see e.g. [15]. Hence, R can be equivalently described by a two-valued possibility
distribution pE : W ! {0,1} with pE(w) = 1 if w 2 E, and pE(w) = 0 otherwise.
This yields the following truth-evaluation for modal formulas:

(M,w) ✏2j if (M,w0) ✏ j for each w0 2 E,

which clearly shows that it does not depend on the particular world where it is
evaluated but only on the whole model.

The other directly related full modal system that we would like to refer to, and
that is in fact the main motivation for this paper, is 1994 Hájek et al.’s paper [14],
where a modal account of a certain notion of necessity and possibility of fuzzy
events is provided. In particular the logic MVKD45, that we describe below, is de-
veloped over the finitely-valued Łukasiewicz logic Łk (with truth-values in the set
Sk = {0,1/k, . . . ,(k � 1)/k,1}) expanded with some unary operators to deal with
truth-constants.

Let us summarize here the main ingredients of the logic and the given axiomati-
zation. The language of MVKD45 is that of Łk built from a finite set of propositional
variables Var = {p1, . . . , pn} and connectives ! and ¬, expanded with two modal
operators 2 and 3. Actually, in finitely-valued Łukasiewicz modal logics, one could
consider only one of them since the other is definable by duality: e.g. 2j is ¬3¬j .
Interestingly enough, for all truth-values r 2 Sk, the unary connectives (r), such that
the value of (r)j is 1 if the value of j is r and 0 otherwise, are definable in Łk. We
also use expressions (6 r)j and (> r)j to denote the disjunctions

W

i2Sk:i6r(i)j and
W

i2Sk:i>r(i)j , respectively.
The semantics of the modal operators is as follows. Models are possibilistic

Kripke structures of the form M = (W,e,p), where W is a non-empty set of possible
worlds, e :W ⇥Var ! Sk is an evaluation of propositional variables for each possible
world and p :W ! Sk is a normalized possibility distribution on W . Truth-evaluation
of formulas are defined inductively in the usual way (we omit the reference to the
model M):
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• if j 2Var, kjkw = e(w,j),
• if j is a propositional combination, kjkw is defined using the corresponding

truth functions of the Łk connectives,
• k2jkw = min{max(1�p(w0),kjkw0) | w0 2W},
• k3jkw = max{min(p(w0),kjkw0) | w0 2W}.

Note that this possibilistic semantics is a bit different from the general one we con-
sidered in item (iv) of the previous subsection. Actually this semantics was already
proposed by Dubois, Prade et al. (see e.g. [6])Ê for generalizing necessity and pos-
sibility measures over fuzzy sets using Kleene-Dienes implication and minimum
respectively.

The following axiomatization provided in [14] to capture this semantics makes
heavy use of maximally elementary conjunctions. Given the finite set of proposi-
tional variables Var = {p1, . . . , pn}, maximally elementary conjunctions (m.e.c.’s
for short) are formulas of the kind (r1)p1 ^ . . .^ (rn)pn. The set of m.e.c.’s will be
denoted mec. Axioms of MVKD45 are those of Łk plus:

• Axioms of KD45:
2(j ! y)! (2j !2y)
2j $22j

3j $23j

3>

• (r)2j $2(r)2j , (r)3j $2(r)3j

• Possibilistic axioms:
((r)3j ^E)! (6 r)(j ^3E), with E 2 mec
(r)3j !

W

E2mec(> r)3(E ^ (r)(j ^3E)), with r > 0

Deductions rules are modus ponens and necessitation for 2 (from j infer 2j). In
[14], the authors showed that this axiomatization is sound and complete with respect
to the possibilistic semantics introduced above.

11.3 Extending the logic of a finite MTL-chain with possibilistic
modal operators

In this section our aim is to generalize the above logic MVKD45 from [14]. On
the one hand we consider more general many-valued propositional logics, namely
we consider logics of finite linearly-ordered MTL algebras rather than only finitely-
valued Łukasiewicz logics. But on the other hand, we consider a different semantics
for the modal necessity and possibility operators than the one used in [14] and re-
called in Section 2.2. Actually, the semantics adopted here is consistent with the one
taken in [2], using the monoidal operation and its residuum to evaluate the possi-
bility and necessity operators respectively rather than using the min operation and
Kleene-Dienes implication as in [14]. Main consequences of these changes are that
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the necessity and possibility operators are no longer dual with respect to the negation
of the logic, and that the necessity operator does not satisfy axiom (K).

In what follows, let A = (A,^,_,�,),0,1) denote a finite MTL-chain. Our
modal logic will be defined on top of L(Ac

4), the finitely-valued propositional logic
of the finite MTL-chain A expanded with the Monteiro-Baaz’s 4 operator and with
truth constants r for each r 2 A. Thus, the language of L(Ac

4) is defined from a set
of propositional variables using connectives ^,&,! and 4, and truth constants r.

For our purposes, we can consider the logic L(Ac
4) as the consequence relation

specified by: a formula j logically follows from a set of formulas G , written G ✏Ac
4

j , whenever for each evaluation v of formulas into A such that v(y) = 1 for all y 2
G , then v(j) = 1 as well. Here, by evaluation we mean a mapping interpreting the
connectives ^,&,! into the algebra operations ^,�,) respectively, the connective
4 into the function 4 : A ! A such that 4(1) = 0 and 4(a) = 0 for a 6= 1, and
interpreting each truth-constant r into the value r 2 A.

Then, we extend the language of L(Ac
4) with two modal operators 2 and 3.

Actually, we assume our modal language to be generated from a finite set Var =
{p1, . . . , pn} of propositional variables together with the connectives4 ^,&,!,
truth-constants r (for each r 2 A) and unary operators 4, 2 and 3.

11.3.1 Semantics

Definition 11.1. An A-valued possibilistic Kripke frame is a pair F = hW,pi where
W is a non empty set (whose elements are called worlds) and p is a normalized A-
valued unary relation (i.e., p : W �! A and there exists w 2W such that p(w) = 1)
called possibility distribution. a

Actually, any A-valued possibilistic Kripke frame F = (W,p) can be considered
as a usual Kripke frame F = (W,R

p

), where the A-valued binary accessibility re-
lation R

p

: W ⇥W ! A is defined by R
p

(w,w0) = p(w0). Moreover, R
p

is clearly
serial, transitive and euclidean in the following generalized sense:

Serial: for every w 2W , there is w0 2W such that R
p

(w,w0) = 1
Transitive: for every w,w0,w00 2W , R

p

(w,w0)�R
p

(w0,w00)6 R
p

(w,w00)
Euclidean: for every w,w0,w00 2W , R

p

(w,w0)�R
p

(w,w00)6 R
p

(w0,w00).

Definition 11.2. An A-valued possibilistic Kripke model (or simply a possibilistic
Kripke model) is a 3-tuple K = hW,e,pi where hW,pi is an A-valued possibilistic
Kripke frame and e is a map, called valuation, assigning to each variable in Var and
each world in W an element of A (i.e., e : W ⇥Var �! A). We will say that K is
finite when W is so. a

4 Other connectives are defined as usual in MTL, for instance ¬j is j ! 0, j _y is ((j ! y)!
y)^ ((y ! j)! j), and j $ y is (j ! y)^ (y ! j).
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If K = hW,e,pi is a possibilistic Kripke model, the map e can be uniquely ex-
tended to a map k · kK,w : Fm �! A assigning to each formula and each world in
w 2W an element of A satisfying:

• kpkK,w = e(w, p) for each p 2Var,
• k ·kK,w is an algebraic homomorphism for the connectives ^,_,&,!,4,
• krkK,w = r, for every r 2 A,
• and the following rules for evaluating modal formulas

k3jkK,w = max
u2W

{p(u)�kjkK,u}, (Sem-3)

k2jkK,w = min
u2W

{p(u))kjkK,u}. (Sem-2)

Notice that the truth-evaluations for modal formulas starting with 3 or 2 do not
depend on the particular world w but only on W and p . Also we define kjkK =
min{kjkK,w | w 2W}. When kjkK = 1 (resp. kjkK,w = 1) we will also write K ✏
j (resp. (K,w) ✏ j). Finally, we define the notion of (local) logical consequence
as follows: for any set of formulas G [ {j}, j follows from G , denoted G ✏ j ,
whenever for any model K = (W,e,p) and world w 2 W , if (K,w) ✏ y for every
y 2 G then (K,w) ✏ j .

Call reduced a possibilistic Kripke model K = (W,e,p) such that for any worlds
w,w0 2W , if e(w, ·) = e(w0, ·) then w = w0, and hence p(w) = p(w0).5 Since we are
assuming that both the set of propositional variables Var and the MTL-chain A are
finite, it holds that there is a finite number of reduced models and all of them have
a finite number of worlds as well. Next lemma shows that we can actually restrict
ourselves to consider the subclass of reduced possibilistic Kripke models.

Proposition 11.1. For any possibilistic Kripke model K there is a reduced model K0

such that kjkK = kjkK0 for any formula j .

Proof: Let K = (W,e,p) be a possibilistic Kripke model and define an equivalence
relation on W as follows: w ⇠= w0 whenever e(w, p) = e(w0, p) for all propositional
variables p 2 Var. We will denote by [w] the equivalence class of w. Let us define
the model K0 = (W 0,e0,p 0) as follows:

1. W 0 =W/⇠=
2. for each w 2W , e0([w], p) = e(w, p) for all p 2Var
3. p

0 : W 0 ! [0,1] is the mapping defined as p

0([w]) = max{p(w0) | w0 2 [w]}.

Clearly, K0 is reduced. Let us check by induction that, for any formula j and any
w 2 W , kjkK,w = kjkK0,[w]. Indeed, this is obvious for j being a propositional
variable. The inductive steps for the propositional connectives are also clear, and
the interesting steps are the cases of the modal operators:

5 We use the notation e(w, ·) to denote the function p 2Var 7�! e(w, p) 2 A.
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• Let j = 2y . Then, using the induction hypothesis, we have the following chain
of equalities:

k2jkK,w = minw2W{p(w))kykK,w}= minw2W{p(w))kykK0,[w]}=
minw2W{(maxw02[w] p(w0)))kykK0,[w]}= minw2W{p

0([w]))kykK0,[w]}=
min[w]2W 0{p

0([w]))kykK0,[w]}= k2jkK0,[w].

We point out that the third equality is an easy consequence of the inclusion
{p(w0))kykK0,[w0] : w0 2W}◆ {(maxw02[w] p(w0)))kykK0,[w] : w 2W}.

• Let j =3y . Then, using the induction hypothesis, we have the following chain
of equalities:

k3jkK,w = maxw2W{p(w)�kykK,w}= maxw2W{p(w)�kykK0,[w]}=
maxw2W{(maxw02[w] p(w0))�kykK0,[w]}= maxw2W{p

0([w])�kykK0,[w]}=
max[w]2W 0{p

0([w])�kykK0,[w]}= k3jkK0,[w].

This ends the proof. a

This last result, together with the fact that there are only finitely many reduced
models, has the following relevant consequences.

Corollary 11.1. Modulo semantical equivalence, there are only a finite number of
different formulas. Therefore, if G is a possibly infinite set of formulas, then there
exists a finite subset G0 ✓ G that is semantically equivalent to G in the following
sense: for any formula j , G ✏ j iff G0 ✏ j .

Throughout the rest of the paper, we will make use of the following notation
conventions:

• (1)j will denote the formula 4j , and (0)j will denote the formula 4¬j ,
(r)j will denote the formula 4(r $ j) (when r 62 {0,1}),
(> r)j will denote the formula 4(r ! j)
(> r)j will denote the formula (> r)j ^¬(r)j
(6 r)j will denote the formula 4(j ! r)
(< r)j will denote the formula (6 r)j ^¬(r)j

• Propositional combinations of formulas of the kind (r)j , where j is an arbitrary
formula, will be called B-formulas (for Boolean formulas)

• As in MVD45, maximally elementary conjunctions (m.e.c.’s) are B-formulas
that are conjunctions of the form

V

i=1,...,n(ri)pi (remember that p1, . . . , pn are
the finitely many fixed propositional variables). We will keep denoting by mec
the set of all m.e.c.’s.

Note that for each B-formulas j and y , the formulas j^y and j&y are equivalent,
that is, k(j ^y)$ (j&y)kK = 1 for all possibilistic Kripke models K.

Next lemma shows some useful tautologies of the class of possibilistic Kripke
models.

Lemma 11.1. The following equivalences are tautologies for the class of all Possi-
bilistic Kripke models:
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1. j $
V

r2A((r)j ! r)
2. 2j $

V

r2A (3(r)j ! r)
3. 2(j ! r)$ (3j ! r)
4. (0)3j $ (1)2¬j

5. (r)3j $
⇣

(1)2(j ! r)^ (< 1)2(j ! r�)
⌘

, if r > 0 and r� is the predeces-
sor of r .

Proof: 1. Obvious.
2. k2jkK =

V

w2W{p(w))kjkK,w}=
V

r2A(
V

{p(w)) r | w 2W,kjkK,w = r}) =
V

r2A(
V

w2W{p(w)) (k(r)jkK,w ) r)}) =6
V

r2A(
V

w2W{(p(w)�k(r)jkK,w)) r}) =7
V

r2A{(
W

w2W{p(w)�k(r)jkK,w})) r}=
V

r2A{k3(r)jkK ) r}=
k
V

r2A(3(r)j ! r)kK .
3. k2(j ! r)kK =

V

w2W{p(w)) (kjkK,w ) r)}=
V

w2W{(p(w)�kjkK,w)) r}=
(
W

w2W{(p(w)�kjkK,w)}) r =
k3j ! rkK .

4. Taking r = 0 in item 3 we get that 2(¬j)$ ¬3j is a tautology, and hence in
particular (1)2¬j $ (0)3j as well.

5. If r > 0 then the claim directly follows from the observation that for any formula
y , (r)y is equivalent to (1)(y ! r)^(< 1)(y ! r�). Then, by item 3, we have
that (r)3j is equivalent to (1)(2j ! r)^ (< 1)(2j ! r�).

a

Taking into account that item 1 of Lemma 11.1 gives that

3j $
^

r2A
((r)3j ! r)

is a tautology, items 2, 4 and 5 of the same lemma tell us that, due to the presence
of the truth-constants, the modal operators 2 and 3 are indeed inter-definable:

2j as
V

r2A (3(r)j ! r), and
3j as (> 0)2¬j ^

⇣

V

r2A\0

⇣

(1)2(j ! r)^ (< 1)2(j ! r�)
⌘

! r
⌘

.

Indeed, the latter is obtained by noticing that, by the above equivalence, 3j is
equivalent to ((0)3j ! 0)^ (

V

r2A\0((r)3j ! r)), and then by applying item 4
to the first conjunct and item 5 to the second conjunct.

6 Here we use the fact the equation x ) (y ) z) = (x� y)) z holds in every MTL-chain.
7 Here we use the fact the equation (x1 ) y)^(x2 ) y) = (x1_x2)) y holds in every MTL-chain.
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11.3.2 Syntax

Assuming a Hilbert style axiomatization (with modus ponens as unique inference
rule) of L(A) (i.e., the propositional logic of the MTL-chain A), one can get an
axiomatization of L(Ac

4), its expansion with the Baaz-Monteiro 4 operator and
canonical truth-constants, by adding (cf. [2, Prop. A.12]):

• the well-known axioms and necessitation rule for 4 (see e.g. [11]),
• the following book-keeping axioms:8

(r&s)$ r� s
(r ! s)$ r ) s
(r^ s)$ min(r,s)
4r $4r,

• and the witnessing axiom:
W

r2A(j $ r).

The last book-keeping axiom guarantees that truth-constants in the logic behave as
canonical ones, in the sense that each truth-constant r is actually interpreted as the
value r in A.

Taking this into account, next we define an axiomatic system for the modal ex-
pansion of L(Ac

4) that will be shown to be sound and complete with respect to the
class of possibilistc Kripke models defined above.

Definition 11.3. The logic Pos(Ac
4) has the following axioms:

• Axioms of L(Ac
4)

• Axioms from KD45:

(4) 2j $22j

(5) 3j $23j

(D) 3>

(4’) (r)2j $2(r)2j , for each r 2 A
(5’) (r)3j $2(r)3j , for each r 2 A

• Possibilistic axioms (for each r 2 A):

(NP ) 2(j ! r)$ (3j ! r)
(P1) ((r)3j ^E)! (6 r)(j&3E), with E 2 mec
(P2) (r)3j !

W

E2mec(> r)3(E ^ (r)(j&3E)), with r > 0

8 Notice that these axioms could also be expressed as the following B-formulas:

(r� s)(r&s), (r ) s)(r ! s), (min(r,s))(r^ s), (4r)4r and
W

r2A(r)j .

However, the adopted formulation makes less use of the 4 connective.
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Deductions rules of Pos(Ac
4) are modus ponens, necessitation for 4 (from j derive

4j) and monotonicity for 2: if j ! y is a theorem, infer 2j !2y .
The notion of proof in Pos(Ac

4), denoted `, is defined from the above axioms
and rules (notice that the application of the monotonicity rule for 2 is restricted to
theorems, in contrast to the other two rules). a

Axioms (P1) and (P2) actually capture the semantics of the 3 operator defined
in (Sem-3) as a maximum of values. If 3j takes value r, (P1) tells us that each
element in the maximum must be less of equal than r, while (P2) expresses that the
maximum is actually attained. Notice also that each m.e.c. E correspond to a possi-
ble world w, and hence the value of 3E corresponds to the possibility distribution
on w.

To prove soundness of Pos(Ac
4) with respect to the possibilistic Kripke seman-

tics, we need first to prove some auxiliary results in the next lemma.

Lemma 11.2. Let K = (W,e,p) be a possibilistic Kripke model. Then the following
conditions hold:

1. For each w 2W and formula j , there is a unique m.e.c. E and truth-value r 2 A
such that (K,w) ✏ E ^ (r)j .

2. For each formula j and every m.e.c. E, if (K,w) ✏ E for some w2W, then there
exists a unique value r such that K ✏ E ! (r)j .

3. For any m.e.c. E, formula j and value r, it holds K ✏ (> 0)3((r)j ^E) !
(E ! (r)j).

Proof: Items 1 and 2 are easy. As for item 3, let w 2 W , and assume (K,w) ✏ (>
0)3((r)j ^E). Then necessarily k3((r)j ^E)kw > 0, i.e. there exists w0 2W such
that p(w0)�k(r)j ^Ekw0 > 0. Since (r)j ^E is a B-formula, the latter holds iff
p(w0)> 0 and k(r)j ^Ekw0 = 1. Therefore (K,w0) ✏ E, and by item 2, r is actually
the unique value such that K ✏ E ! (r)j , and hence in particular, (K,w) ✏ E !
(r)j . So we have proved that for any w 2W , (K,w) ✏ (> 0)3((r)j ^E)! (E !
(r)j). a

Theorem 11.1 (Soundness). The logic Pos(Ac
4) is sound with respect to the class

of possibilistic Kripke models.

Proof: Notice that, as observed before, possibilistic Kripke models can be consid-
ered as many-valued Kripke models with a transitive, euclidean and serial accessi-
bility relation. Therefore, from general results in [16], axioms (4), (5) and (D) are
automatically sound. Moreover, the related axioms with truth constants (4’) and (5’)
are also sound as an easy computation shows, and the soundness of axiom (NP ) is
just item 3 of Lemma 11.1. Next we prove soundness of axioms (P1) and (P2).

(P1): Assume there is w 2 W such that (K,w) ✏ (r)3j ^ E, otherwise the result
is trivial. Then k3Ekw = max{p(w0) | w0 ✏ E} = p(w) since w can only be
the unique world in W such that w ✏ E. Then kj&3Ekw = kjkw �k3Ekw =
kjkw �p(w)6 max{kjkw0 �p(w0) | w0 2W}= k3jk= r.
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(P2): Assume r > 0, otherwise it is obvious. If r = k3jk, then there is w0 2 W
and a m.e.c. E such that r = kjkw0 � p(w0), w0 ✏ E and p(w0) = k3Ek.
Therefore r = kjkw0 � k3Ek. Thus kE ^ (r)(j&3E)kw0 = 1 and hence
kE ^ (r)(j&3E)kw0 � p(w0) > kjkw0 � p(w0) = r. Consequently, we have
k3(E ^ (r)(j&3E))k> r.

Modus ponens and necessitation for 4 are trivially sound, and finally, it is also easy
to show that monotonicity inference rule for 2 is also sound when applied to valid
implications. a

It is worth mentioning that the well-known axiom (K) is not sound in general
(although it is indeed sound for B-formulas), except for the case when the finite
MTL-chain A is a Gödel chain (see [2, Corollay 3.13] for details). Actually this is
the main difference with the modal system studied in [14], since there the semantics
of the necessity operator 2 (defined in Section 2.2), using min instead of �, makes
axiom (K) sound for every MTL-chain A.

11.3.3 Completeness

To finish this section our aim is to show that the logic Pos(Ac
4) also enjoys strong

completeness with respect to the semantics defined in the previous Section 11.3.1.
Let us remind that our axiomatization is already complete with respect to the non-
modal semantics given by the chain Ac

4, see [2, Prop. A.12] for more details. More-
over, for instance, the 4-deduction theorem

G [{j} ` y iff G `4j ! y

can be straightforwardly proved to hold by induction on the rules of our axiomati-
zation (take into account the monotonicity rule only applies to theorems).

Definition 11.4. A theory is a set of B-formulas. A theory T is consistent if T 6` 0.
A theory T is complete if for each B-formula y , either T ` y or T `¬y . Moreover,
we say that two complete theories T and T 0 are equivalent, written T ⇡ T 0, if for
each r and j , T ` (r)3j iff T 0 ` (r)3j . a

Note that any inconsistent theory is complete, and all inconsistent theories are
equivalent. On the other hand, using classical techniques, one can show that any
consistent theory T can be always extended to a complete and consistent super-
theory T ? ◆ T .

Next we will prove some lemmas necessary for the completeness proof.

Lemma 11.3. (a) If j is a B-formula, ` j $ (1)j , ` ¬j $ (0)j and ` j _¬j .
(b) If j is a B-formula and 0 < r < 1, then (r)j ` 0.
(c) T is complete and consistent iff for every formula j there exists a unique r such

that T ` (r)j .
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(d) For each complete and consistent theory T there is a unique E 2 mec such that
T ` E. We will denote such a unique m.e.c. ET .

Proof: (a) Taking into account that (1)j is 4j and (0)j is 4¬j , and that B-
formulas are propositional combinations of formulas starting with 4, it turns out
that the considered formulas are already tautologies in MTL4 (considering all the
2-formulas and 3-formulas as propositional variables), and hence, by completeness
of MTL4, they are also provable in MTL4, and thus in L(Ac

4) as well.
(b) This is an immediate consequence that our axiomatization is complete with

respect to the non-modal semantics over the chain Ac
4.

(c) Suppose T is complete and T 6` (r)j for each r 2 A. Then T ` ¬(r)j for
each r 2 A, hence T `

V

r2A¬(r)j , in other words, T ` ¬
W

r2A(r)j . But this is in
contradiction with the witnessing axiom

W

r2A(j $ r). Conversely, let y be a B-
formula and let r the unique value such that T ` (r)y given by the assumption. By
(b), it follows that r 2 {0,1}, hence either T ` (1)y or T ` (0)y , i.e. either T ` y

or T ` ¬y .
(d) Since T is complete and consistent, by (c), for each propositional variable pi

there is a unique ri such that T ` (ri)pi, hence T proves the m.e.c.
V

i=1,...,n(ri)pi. a

Lemma 11.4. The following conditions hold:

(a) For any B-formula j and any consistent theory T ,
if T ` (> 0)3j then j is consistent (i.e., j 6` 0).

(b) For any B-formula j , `3¬j ! ¬2j .
(c) For any B-formulas j and y , `2j ! (3y !3(j ^y)).

Proof: (a) Assume j is inconsistent. Then by the 4-deduction theorem, ` 4j !
0, i.e. ` ¬4j , but since j is a B-formula, ` j $4j , we have ` ¬j . By the
rule of necessitation for 2, ` 2¬j , hence (by axiom (NP)), we have ` ¬3j ,
i.e. ` (0)3j , and hence T ` (0)3j as well. But this is in contradiction with the
hypothesis that T ` (> 0)3j .

b) Let j be a B-formula. Taking r = 0, axiom (NP) gives ¬3¬j $2¬¬j , but if
j is a B-formula ¬¬j is equivalent to j . Hence ` ¬¬3¬j $ ¬2j , and since
y ! ¬¬y is a theorem of MTL, we thus have `3¬j ! ¬2j .

(c) For B-formulas, by (a) of Lemma 11.3, j and y we have that y is equivalent to
(y ^¬j)_(y ^j). Hence `3y $ (3(y ^¬j)_3(y ^j)), hence `3y !
(3(¬j)_3(y ^ j)), and by (b), ` 3y ! (¬2j _3(y ^ j)). Now, using
that (¬j _y)! (j ! y) is a theorem of MTL, we also have `3y ! (2j !
3(j ^y)), and hence `2j ! (3y !3(j ^y)) as well.

a

Lemma 11.5. Let T0 be a complete and consistent theory and let T0 ` (r)3j . Then,
the following conditions hold:

(a) For any theory T ⇡ T0 and for any E 2 mec, T ` E ! (6 r)(j&3E).
(b) There is a theory T ⇡ T0 and E 2 mec such that T ` E ^ (r)(j&3E).
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Proof: (a) Using (b) of Lemma 11.3, there is a unique value r such that T ` (r)3j .
If E is a m.e.c., then both (r)3j and E are B-formulas and then (r)3j ^ E
is equivalent to (r)3j & E. Then axiom (P1) can be equivalently expressed as
((r)3j & E) ! (6 r)(j&3E), and this equivalent in turn to (r)3j ! (E ! (6
r)(j&3E)). Now by applying modus ponens to the latter and (r)3j , we have
T ` E ! (6 r)(j&3E).

(b) Assume T0 ` (r)3j with r > 0. Then, by modus ponens with axiom (P2),
we get T0 `

W

E2mec(> r)3(E ^ (r)(j&3E)). Since T0 is complete9, for some E,
T0 ` (> r)3(E ^ (r)(j&3E)), and since r > 0 we have that T0 ` (> 0)3(E ^
(r)(j&3E)).

Let D denote E ^ (r)(j&3E), and let H = {(s)3y | T0 ` (s)3y} be the set
of B-formulas of the kind (s)3y provable from T0. We are going to prove that D
is consistent with H. Let Hf be the conjunction of an arbitrary finite subset of H.
Obviously, T0 `2Hf . Since both D and Hf are Boolean, by (c) of Lemma 11.4, we
have `2Hf ! (3D !3(D^Hf )), and by modus ponens, T0 `3D !3(D^Hf ),
and thus T0 ` (> 0)3D ! (> 0)3(D^Hf ) as well. But T0 ` (> 0)3D, so again
by modus ponens, T0 ` (> 0)3(D^Hf ). Hence, by (a) of previous Lemma 11.4,
D^Hf is consistent. We have thus proved that D is consistent with any arbitrary
finite conjunction Hf of H, therefore {D}[H is consistent. Finally consider T to be
a completion of {D}[H. This theory clearly proves D (i.e. T ` E ^ (r)(j&3E))
and T proves the same formulas of the kind (s)3y than T0, that is, T ⇡ T0.

Finally, assume T0 ` (0)3j . Let T be any theory such that T ⇡ T0. Then by (c)
of Lemma 11.3 we have T ` ET , and taking r = 0 in (a) above, we have T ` ET !
(0)(j&3ET ). Therefore, T ` (0)(j&3ET ) and the statement is proved. a

Corollary 11.2. Let T0 be a complete and consistent theory. Then, for any formula
j , T0 ` (r)3j iff the following two conditions hold:

(a) For any theory T ⇡ T0, T ` (6 r)(j&3ET ),
(b) There is a theory T

j

⇡ T0 such that T
j

` (r)(j&3ET
j

).

Proof: From left to right, it is a direct consequence of the previous lemma by con-
sidering for each complete and consistent theory T the corresponding m.e.c. ET as
defined in (c) of Lemma 11.3. For the other direction we reason as follows. As-
sume conditions (a) and (b) hold and assume further that T0 ` (s)3j with s 6= r. If
s < r, then applying the ‘left to right part’ to T0 ` (s)3j we would get (a): for every
T ⇡ T0, T ` (6 s)(j&3ET ), and this would contradict (b): T

j

` (r)(j&3ET ). In
a similar way, if s > r, then the application of the ‘left to right part’ to T0 ` (s)3j

would give (b): T 0 ` (s)(j&3ET ) for some T 0 ⇡ T0, which would be in contradic-
tion with (a): T ` (6 r)(j&3ET ) for all T ⇡ T0. a

From these lemmas we are ready to prove strong completeness but first we define
a sort of canonical model that will be used in the completeness proof.

Definition 11.5. Let T0 be a complete and consistent theory. For each r 2 A and
formula j such that T0 ` (r)3j , let T

j

be the complete theory such that T
j

⇡ T0

9 Remind that a complete theory is prime in the classical sense for B-formulas.
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and T
j

` (r)(j&3ET
j

) (as guaranteed by (b) of Corollary 11.2). Then we define
the following possibilistic Kripke model

K0 = (W0,e0,p0)

where

• W0 = {T0}[{T
j

| j formula} is the set of worlds,
• e0 : W0 ⇥Var ! A is defined by e0(T, p) = s whenever T ` (s)p,10 and
• p0 : W0 ! A is defined by p0(T ) = s if T ` (s)3ET . a

Note that, so defined, there is at least some T 2W0 such that p0(T ) = 1. Indeed,
since T0 ` (1)3>, the theory T> is such that T> ` (1)(>&3E>), i.e. T> ` (1)3E>.
Then, by definition, p0(T>) = 1. Therefore, K0 = (W0,e0,p) is indeed a possibilistic
Kripke model according to Definition 11.2. Moreover, it is a finite model, i.e. W0 is
finite. Indeed, W0 contains at most as many theories T as m.e.c.s E in mec, and it is
clear that mec is a finite set.

The truth-evaluation of a formula j in a world T 2 W0, kjkT,K0 , is defined as
usual (see the paragraph after Definition 11.2). In particular, for any formula y we
have

k3ykK0 = max
T2W0

{p(T )�kykT,K0}.

Lemma 11.6. (Truth Lemma) For each formula y , value r and T 2W0,

T ` (r)y iff kykT,K0 = r.

Proof: The proof is by induction, the interesting induction step being for y =3j .
Assume first T ` (r)3j , and reason as follows. Since T 2 W0, i.e. T ⇡ T0, by

definition T0 ` (r)3j as well. Then by Corollary 11.2, this happens if and only if:
(a) T 0 ` (6 r)(j & 3ET 0) for any T 0 ⇡ T0, and (b) there exists T

j

2 W0 such that
T

j

` (r)(j & 3ET
j

). Then this is in turn equivalent to the following equalities:

r = max{s | T 0 ` (s)(j & 3ET 0),T 0 2W0}
= max{s1 � s2 | T 0 ` (s1)j, T 0 ` (s2)3ET 0 ,T 0 2W0}
= max{s1 � s2 | s1 = kjkT 0,K0 ,s2 = p0(T 0),T 0 2W0}
= max{kjkT 0,K0 �p0(T 0) | T 0 2W0}
= k3jkK0 .

Note that in the third equality we apply the induction hypothesis to (s1)j .
For the right-to-left implication, assume k3jkT,K0 = r. Since we have already

proved the converse implication, we know that T 6` (r0)3j for every r0 6= r. Since
T 2 W0, it is complete and consistent, and by (c) of Lemma 11.3, we get that T `
(r)3j . a

10 This definition is sound due to (c) of Lemma 11.3.
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Theorem 11.2 (Strong Completeness). Pos(Ac
4) is strongly complete with respect

to the class of A-valued possibilistic Kripke frames, that is, the following conditions
are equivalent for any set of formulas G [{j}:

(1) G ` j

(2) G ✏ j

(3) For any reduced (and thus finite) possibilistic Kripke model K = (W,e,p) and
w 2W, if kykw,K = 1 for all y 2 G , then kjkw,K = 1.

Proof: (1) ) (2) is soundness (Theorem 11.1) and (2) ) (3) is trivial. As for
(3) ) (1), assume G 6` j . Then {(1)y | y 2 G }[ {(< 1)j} is consistent, hence
it can be extended to a complete theory T0. It is clear that T0 ` (1)y for every
y 2 G . Moreover, since T0 is complete, T0 ` (r)j , for some r < 1. We then build
a possibilistic Kripke model K0 = (W0,e,p) like in Definition 11.5, hence with W0
being finite. Then, by Lemma 11.6, kykT0,K0 = 1 for all y 2 G and kjkT0,K0 = r,
and hence kjkT0,K0 = r < 1. a

Completeness with respect to reduced models trivially implies that for every fi-
nite number of propositional variables n, the corresponding finitary consequence
` relation is decidable. To conclude, we would also like to notice that the above
strong completeness result could also be obtained from a weak completeness re-
sult (i.e. completeness for theorems) taking into account Corollary 11.1 and the
4-deduction theorem.

11.4 Conclusions and further work

In this short paper we have shown how the approach of [14] can be easily adapted to
define a many-valued modal system that capture reasoning with natural generaliza-
tions of possibility and necessity measures over many-valued formulas in a general
finite setting.

As recalled in Section 2, in the classical framework, when the possibility distri-
butions and the accessibility relations are crisp ({0,1}-valued), possibilistic systems
correspond to the classical modal system KD45, which is sound and complete with
respect to the class of Kripke frames with serial, transitive and euclidean accessibil-
ity relations. In other words, in the classical setting the tautologies of KD45-models
are the same than the tautologies of possibilistic models.

This result extends without difficulty to the many-valued framework when the
accessibility relations and the possibility distributions remain {0,1}-valued. How-
ever it is currently unknown whether it also extends in the general many-valued
case, when the accessibility relations and possibility distributions are both many-
valued (not necessarily finitely-valued, like in this paper). So the following problem
remains open: is every tautology of the class of possibilistic models (as defined here
in this paper) a tautology of the class Kripke models whose accessibility relations
are serial, transitive and euclidean?
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