Artificial Intelligence 311 (2022) 103756

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

A computational model of Ostrom’s Institutional Analysis and
Development framework

Check for
updates

Nieves Montes *, Nardine Osman, Carles Sierra

Artificial Intelligence Research Institute (IIIA-CSIC), UAB Campus, Carrer de Can Planas, Zona 2, 08193 Bellaterra (Barcelona), Spain

ARTICLE INFO

ABSTRACT

Article history:

Received 29 November 2021

Received in revised form 28 June 2022
Accepted 1 July 2022

Available online 8 July 2022

Keywords:

Institutional Analysis and Development
framework

Rules

Normative multiagent systems

Game theory

The Institutional Analysis and Development (IAD) framework developed by Elinor Ostrom
and colleagues provides great conceptual clarity on the immensely varied topic of social
interactions. In this work, we propose a computational model to examine the impact that
any of the variables outlined in the IAD framework has on the resulting social interactions.
Of particular interest are the rules adopted by a community of agents, as they are the
variables most susceptible to change in the short term. To provide systematic descriptions
of social interactions, we define the Action Situation Language (ASL) and provide a game
engine capable of automatically generating formal game-theoretical models out of ASL
descriptions. Then, by incorporating any agent decision-making models, the connection
from a rule configuration description to the outcomes encouraged by it is complete. Overall,
our model enables any community of agents to perform what-if analysis, where they can

Logic programming foresee and examine the impact that a set of regulations will have on the social interaction

they are engaging in. Hence, they can decide whether their implementation is desirable.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The Institutional Analysis and Development (IAD) framework is a conceptual toolbox put forward by Elinor Ostrom and
colleagues in an effort to identify and delineate the universal common variables that underlie the immense variety of human
interactions [1]. The framework identifies rules as one of the core constructs that determine the structure of interactions,
and acknowledges their potential to steer a community towards more beneficial and socially desirable outcomes.

This work presents the first attempt to turn the IAD framework into a computational model that allows communities of
agents to perform what-if analysis on a given rule configuration. To do so, we define the Action Situation Language (ASL)
whose syntax is highly tailored to the components of the IAD framework and that is used to write formal descriptions
of social interactions. The ASL is complemented by a game engine that generates the semantics of social interactions as
extensive-form games (EFGs). These EFGs can then be analyzed with the standard game-theoretical tools to predict which
outcomes are being most incentivized, and evaluated according to the overall social benefit they bring about. All the code
to go along with this work is open-sourced under an MIT license on the AI4EU platform and GitHub. Beyond the implemen-
tation of the fundamental algorithms, we include support for customized visualization of the generated game trees.

* Corresponding author.
E-mail address: nmontes@iiia.csic.es (N. Montes).

https://doi.org/10.1016/j.artint.2022.103756
0004-3702/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.artint.2022.103756
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2022.103756&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://www.ai4europe.eu/research/ai-catalog/ngames
https://github.com/nmontesg/norms-games
mailto:nmontes@iiia.csic.es
https://doi.org/10.1016/j.artint.2022.103756
http://creativecommons.org/licenses/by-nc-nd/4.0/

N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Exogenous variables

Biophysical
conditions Game engine
states.pl . Action arena
interpreter.pl
Attributes of —_— Action
the community -»| situation | |le.. ...

build.py An EFG

1
- Rules ' i
i : Predicted Bulusiton
; criteria
' Desirable properties
. (e.g. Pareto optimal,
] social welfare)

i

rules.pl
0 Decision-making paths of play
model

Outcomes

Fig. 1. Outline of the Institutional Analysis and Development framework, adapted from [2, p. 15]. Colored text outside boxes indicates either the scripts that
contain information on the boxed component, or the game-theoretical concepts that represent it.

This paper is organized as follows. We start by presenting the necessary background on the IAD framework, outline our
contributions and review some related work in the rest of this Introduction. Then, we present the syntax of the Action
Situation Language in Section 2. Next, in Section 3, we provide a detailed explanation of the process of rule interpretation
- a crucial step to turn action situation descriptions into games - and go through the game semantics generation process.
The last technical part, Section 4, reviews some issues related to implementation and the integration of the resulting game
representations with game-theoretical tools. Finally, we close with some illustrative examples in Section 6 and make our
concluding remarks in Section 7.

1.1. The Institutional Analysis and Development framework

Within the field of policy analysis, the Institutional Analysis and Development (IAD) framework, put forward by Ostrom
and colleagues [2], represents a comprehensive theoretical effort to identify and delineate the universal building blocks that
make up any social interaction. Its outline is presented in Fig. 1. In the center part, any social interaction is referred to as
an action arena. In it, a set of participants (the agents) find themselves in an action situation, which is the social space they
may enter, take actions in and jointly bring about outcomes.

According to the IAD framework, action arenas are affected by three sets of exogenous variables that jointly combine to
structure it (Fig. 1 left). These are the biophysical conditions, the attributes of the community and the rules of the interaction.
The first two are fairly straightforward to define. The biophysical conditions refer to the relevant characteristics of the
environment where the interaction takes place, such as land topology and location of resources. The attributes of the
community encompass variables intrinsically linked to the participants, such as age, gender, ethnicity and/or belonging
to one or several subgroups. Last of all, the meaning of the term rules is wide enough to require a detailed clarification that
we provide below.

The IAD framework acknowledges the four common uses of the term rules in everyday language [3, Ch. 6], according
to their scope: instructions, precepts, regulations and principles. First, instructions are understood as a set of steps to
effectively achieve some desirable outcome in a given context. Good contemporary examples are Ikea assembly guides. In
second place, precepts are somewhat similar to instructions, in the sense that they also directly concern the actions to be
taken by an agent. However, their scope is more general. Instead of specifying the particular actions that an agent should
perform in a specific situation or context, precepts provide widely applicable principles to help guide decision-making in
a range of situations. Good examples are the five precepts from the Buddhist faith [4], which should be regarded by any
person adhering to Buddhism regardless of the situation they are confronted with.

In the third place, regulations are, possibly, the most intuitive meaning of rules. They refer to statutes and ordinances
that constrain or provide alternative avenues for a course of action. Typically, regulative rules are understood as being
passed down from a central authority responsible for their crafting and enforcement. However, small communities can also
self-impose regulations on themselves in order to ensure sustainability, fairness, and other desirable goals. For example,
there are many cases of small communities of fishers, loggers and crop farmers who craft their own regulations regarding
how much fish, wood or water is each member entitled to [5].

Finally, the last of the meanings that rules take are as physical principles. These refer to the laws of nature that in-
evitably play a part in determining what actions and/or outcomes are physically possible and the effects they have on the
environment. If you drop an object, it will fall downwards. Additionally, if it is made of a fragile material such as glass or
ceramic, it will most certainly break.

N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Exogenous
variables
(1) PARTICIPANTS —
(5) CONTROL
assigned to !
over
N o (4) POTENTIAL
(2) POSITIONS linked to /; OUTCOMES
assigned to assigned to
(7) COSTS AND
(3) ACTIONS ——~ BENEFITS
L I J
abi)ut
(6) INFORMATION

Fig. 2. Internal structure of an action situation, adapted from [2, p. 33].

There is a major difference between the first two and the last two meanings. While instructions and precepts indicate
to an agent (either directly as instructions, or indirectly as precepts) what actions to perform provided the situation at
hand, regulations and principles condition the structure of the situation itself. Together, regulations and physical principles
jointly determine what actions are possible and/or allowed, what their effects are, potential sanctions if a prohibited action
is performed (or failure to perform an obliged action) and, consequently, which outcomes may be attained. Once all of that
information is gathered, instructions and precepts are invoked on that specific situation to output the particular course of
action to take. Hence, instructions and precepts directly target the actions to take given a social situation, while regulations
and principles determine the social situation itself.

In this work, we take the view that the function of rules is to mold the structure of the situation agents find them-
selves in, i.e. to modify the incentives and opportunities they face. Hence, the term rule will be used to encapsulate
both regulations and natural principles. There is a fundamental difference, however, between the two. While regulations
are human-made, and hence subject to revision and change, natural principles are not and therefore they are essentially
untouchable. We address this distinction in our logical language by distinguishing between default rules and additional
regulations through a priority relationship between rule statements. Also, we make the distinction between rules that
reflect natural principles and the biophysical conditions introduced early on. Physical laws control the dynamics of the
environment (drop an object and it will land on the ground) while biophysical conditions refer to static elements (like land
topology).

In the computational model of the IAD framework we present, we leave out instructions and precepts, since our Action
Situation Language does not include an avenue to model them in a systematic manner. We make this choice because we are
interested in the constructs that shape the social interactions (i.e. regulations and physical laws). Therefore, this work is not
concerned with the individual decision-making (which takes into account instructions and precepts) that agents perform
once they are faced some situation. For decision-making, we rely on game-theoretic schemes, which are directly applicable
on the extensive-form game representations of social interactions that are automatically built by our tool.

In addition to identifying the variables that condition an action arena, the IAD framework also determines the compo-
nents that together make up any action situation. There are in total seven variables at play (see Fig. 2): (1) the participants
who are allowed to enter; (2) the positions or roles that they take on; (3) the actions assigned to those roles; (4) the poten-
tial outcomes that may be reached; (5) the linkage between actions (or sequences of actions) to outcomes and the control
that agents have over it; (6) the information available to participants about all other variables (including what information
is available to others); and (7) the material reward and costs assigned to outcomes and/or actions.

Once participants populate an action situation, it becomes fully instantiated. By introducing some decision-making model
for every agent (such as traditional rationality notions like the Nash equilibrium), a prediction of how the interaction is
expected to play out and the eventual outcomes (the “Interactions” and “Outcomes” boxes in Fig. 1) that are likely to be
reached can be constructed. Finally, these outcomes can be evaluated in terms of some desirable properties (“Evaluation
criteria” box in Fig. 1), such as optimality, efficiency, or various metrics of social welfare [6].

N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

If the evaluation is not satisfactory, changes to the exogenous variables should be made in pursue of more desirable
outcomes (according to the evaluation criteria of choice). Of the three sets of exogenous variables, biophysical conditions
and the attributes of the community are fixed in the short term. In contrast, rules are relatively malleable. In particular,
human-crafted regulations are very much susceptible to review and modification. However, the “default” rules (those that
reflect natural principles) cannot be changed.

Despite being introduced several decades ago [7], the IAD framework is currently being used in policy analysis studies.
Most recent examples include scenarios of pollution and waste management in widely diverse areas of the world [8,9] as
well as conservation policy [10]. Research efforts on the theoretical front are also on-going in order to better integrate the
IAD framework with existing formal legal systems [11].

1.2. Contributions

The main contribution of this work is a computational model of Ostrom’s IAD framework. This model enables communi-
ties of agents to formally perform what-if analysis of potential new regulatory rules they may be considering to adopt. We
provide new tools and integrate them with existing concepts, to compose the complete connection from rule specification
to evaluation in terms of the joint outcomes that are encouraged by the regulations in place.

In order to write rule configurations in a systematic manner, we present our novel Action Situation Language (ASL). This
is a machine-readable logical language (implemented in Prolog) whose syntax is highly tailored to the exogenous variables
outlined in the IAD framework (see Fig. 1). ASL is complemented by a game engine that takes as input a valid action
situation description and automatically generates its semantics as an extensive-form game (EFG). EFGs are abstract and very
general models, prevalent in the microeconomics field [12, Ch.9], that can be instantiated to represent a wide variety of
social interactions among an arbitrary number of agents. Although environmental and community attributes also play a role
in generating the EFG semantics, we are particularly interested in the impact that rules have on the resulting formal model.
In fact, an essential component of the game engine is a rule interpreter, whose function is to query the rule base, process
their implications and solve conflicts between contradicting rules.

In fact, the two main innovations we present (ASL plus its game engine) bridge the gap between the normative multi-
agent systems (norMAS) and game theory fields. In norMAS, a great deal of work has been devoted to the study of norms,
rules and other constraining mechanisms to achieve coordination and socially beneficial behavior among autonomous agents
[13-15]. In parallel, game theory has provided a powerful toolbox to model multiagent interactions of competitive, cooper-
ative and hybrid nature. Very well established game theoretical solution concepts are prevalent across the MAS literature
(e.g. [16,17]). However, in game theory, the rules that configure the structure of the interaction become irrelevant once the
formal model has been built, and they are often expressed in non-systematic, plain natural language. With ASL, such rules
can be expressed in a systematic manner and their semantically equivalent formal game is automatically generated by the
game engine.

The choice of EFGs as the semantics for an ASL description is motivated by the availability of many game-theoretical
solution concepts, such as traditional rationality notions (e.g. Nash or correlated equilibrium, subgame perfect equilibria,
etc.) and social properties of outcomes (e.g. Pareto efficiency, social welfare), that can be readily applied to any model built
by the game engine. Due to the prevalence of these well-established concepts in the game theory literature, we do not see
the need to provide new solution concepts of our own. Introducing such models of agent decision-making (either “rational”
in the traditional sense or not) amounts to modeling the participant component of an action arena (see Fig. 1). This step
then paves the way to compute the most likely outcomes and evaluating them according to their optimality, efficiency, or
social welfare. At this point, the process that takes in a rule configuration and evaluates its impact is complete, and the
community of agents involved is informed about the repercussion that such regulations would have on them, were they to
be adopted.

1.3. Related work

Originally, the IAD framework was complemented by the Institutional Grammar (IG) [18]. The IG parses institutional
statements (which include strategies, norms in the sense of conventions, and regulative rules) into five fields: the attributes
(A) of the participants to whom the statement applies; the deontic (D) modality (permitted, forbidden or obliged); the
aim (I) of the statement, meaning the action or outcome to whom the deontic applies; the condition (C) under which the
statement applies; and the or-else (0) field which states the consequences of non-compliance. Put together, these fields
constitute the ADICO syntax. The three types of institutional statements are distinguished by the fields that are necessary
to describe them: AIC for strategies, ADIC for conventions and ADICO for rules. Lately, the IG has spurred renewed interest,
with extensions to the original proposal including the nesting of statements [19] and the distinction between different levels
of granularity in the parsing [20].

Although the early version of the IG did contain examples of formal games built from institutional statements [see 2,
Ch. 5-6], no attention has been paid at automating this process, as the ADICO syntax is not designed as a machine-readable
language. However, one of its most interesting features, which we will import into ASL to some extent, is the classification
of rules based on the component of the action situation that they target, according to the aim (I) field.

N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Although not being machine-readable, some works have attempted to make the ADICO syntax operational in agent-
based models [21,22]. There, the ADICO syntax is used to represent agents’ strategies and shared conventions. However,
these works are limited in scope, since they use very restricted forms of institutional statements (AIC and ADIC statements
obtained from combinations of a pre-defined set of possibilities for every field) and only target the modeling of common-
pool resource situations, i.e. natural resources that are jointly exploited by a community of farmers, fishers, loggers, etc., and
whose easy access makes it very difficult to forcefully exclude anyone from accessing it [5]. Although the IAD framework
indeed accounts for the analysis of this type of scenarios, it is intended to identify and analyze the components of a wide
variety of social interactions. Due to the limitations in these previous works, we choose not to build on top of them and
move away from the ADICO syntax by defining our own machine-readable language which is able to model a large range of
action situations by leveraging the generality of game theoretical models.

Another work with the same objective as ours (turning the IAD framework into a general-purpose operational computa-
tional tool) has been developed by [23] as the Modeling Agent systems based on Institutional Analysis (MAIA) framework.
Itsworkflow is somewhat similar to ours: input an action situation description into a web application (we feed an ASL de-
scription into the game engine) that automatically generates an executable script for an agent-based simulation (our engine
generates a game theoretical model). Beyond technical differences ([23] employs Java plus HTML, while we use a combina-
tion of Prolog and Python), our contributions diverge in the encoding of institutional statements, as [23] stick to the ADICO
syntax, while we propose a new if-then-where syntax.

However, the most significant difference between [23] and the present work lies in the approach to the “Participants”
component in Fig. 1. Our computational model of the IAD framework is agnostic with respect to the decision-making model
participants follow once they find themselves within an action arena. Hence, modeling participants and generating an action
situation representation are independent tasks and, in principle, the same decision-making model can be applied across a
wide diversity of situations, e.g. Nash equilibria computation can be applied to any extensive-form game. In contrast, the
MAIA framework requires a criterion for decision-making to be explicitly provided as an input to their simulation generator,
and therefore it needs for the participants to be modeled beforehand and crafted for every particular simulation. Such
criterion is tailored to the context at hand, and is not, in principle, exportable to other situations.

On another front, the field of General Game Playing (GGP) within the Al community has come up through the years with
machine-processable languages for the specification of general games. Most prominently, the Game Description Language
(GDL) [24] is a high-level language for the specification of games with a finite number of players and legal moves. GDL
provides compact descriptions of deterministic classical games (such as chess and checkers) and also admits a form of
restricted imperfect information in the form of simultaneous moves, a feature that we incorporate into our language.

Since its creation, some extensions have been added to GDL in order to improve its expressive power. Most notably,
GDL-II [25] incorporates the possibility of imperfect information and random moves by nature, although limiting those to a
uniform probability distribution. Later, yet another addition resulted in the introduction of GDL-III, where epistemic games
in which the rules depend on the knowledge of the agents can be represented by introducing player introspection [26].
Beyond game playing, GDL (in its original version) has been used for more socially relevant applications, such as mediated
dispute resolution [27] and automated negotiation [28].

For comparison purposes, ASL and GSL descriptions of the benchmark Iterated Prisoner’s Dilemma game are displayed
in Listings 1 to 4. Although both GDL and our ASL are logical languages for game specification, some of the features of
ASL make it much better suited than GDL for modeling socioeconomic interactions. First, when using the term “rules of the
game” in relation to GDL, it is referring to the complete game description (i.e. the logical program). In contrast, by “rules” in
this work we refer to one of the components describing an action situation, i.e. to the exogenous variable “rules” in Fig. 1,
separate from biophysical conditions and attributes of the community.

Second, although the authors in [25] include a qualitative description of a procedure to turn GDL descriptions into
extensive-form games (and vice-versa), this is not a central contribution of their work. Instead, they provide a logic for
reasoning about GDL game descriptions based on a variant of the Situation Calculus [29]. Differently, we put a lot of focus
on the interpretation and the translation of ASL descriptions into EFGs. These are the most prevalent models to represent
social interactions in microeconomics and policy analysis (see the examples in Section 6). They are abstract and general
enough to capture a wide variety of interactions, while at the same time being amenable for analysis by implementing
notions of rationality that are prevalent across the social sciences.

Finally, the feature that sets ASL apart from GDL is the fact that ASL descriptions are meant to be extensible. That is, an
ASL description is intended to be expanded with additional higher-priority rules. In other words, the same ASL description
can give rise to two different multiagent interactions, depending on whether new rules in addition to the default ones are
included or not. Differently, GDL game descriptions are static and not meant for modification. This is reflected in the fact
that GDL does not incorporate any mechanism to solve conflicts between rules, while ASL does.

N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

A game description system previous to GDL was the Game Language (Gala) [30]. The focus of the Gala system was
on the efficient computation of solutions of large imperfect information game trees, and it suffers from some of the same
drawbacks that make it unsuitable for the representation of socioeconomic interactions. In particular, Gala does not consider
the rules of the game separate from other relevant exogenous variables either, nor are its descriptions meant to be extended.

2. ASL syntax

Our intention is to define the syntax of ASL as fully machine-readable, yet also relatively syntactically friendly to make
it accessible to social science scholars. In order to completely describe an action situation, our language must specify the
three sets of exogenous variables that affect it (see Fig. 1):

e Attributes of the community: the agents susceptible of taking part in the interaction, plus any relevant characteristics:
age, gender, ethnicity, etc.
e Biophysical and environmental conditions: land topology, location of resources, etc.
e The rules structuring the situation, in particular the following four types, according to which aspect of the action
situation they address:
- Boundary rules: which agents are allowed to enter the action situation. For example, in many countries it is required
to be over 18 years old to participate in an electoral process.
- Position rules: what roles do the participants take on. For example, candidate, voter, etc.
- Choice rules: what actions are available to the various roles under the current conditions. For example, an agent with
the role voter can take the action to vote for one (or none) of the candidates.
- Control rules: what are the effects of those actions. In a majority rule electoral process, the candidate with the most
votes gets appointed to the position in contention.

Additionally, the following information is also necessary:

o The initial conditions when the interaction starts.

o The termination conditions under which the interaction halts.

e Which facts describing the state of the system can be simultaneously true (for example, an agent cannot be at two
different locations at the same time).

As explained in Section 1.1, we consider rules in the sense of regulations and physical principles. Concerning the former,
rule statements in ASL completely encapsulate human-made regulations. In fact, boundary, position and choice rules (which
deal with providing agents with access to the social interaction, a role in it and actions to affect it, respectively) are not
in any way related to the natural principles governing the environment. Concerning physical principles, these are captured
both by control rules that dictate the dynamics of the system (see Section 3) and incompatibilities between facts, which are
expressed through a dedicated predicate symbol.

ASL descriptions follow the standard syntax of logic programming and are thus composed of constant symbols, function
symbols, predicate symbols and variables. Expressions are classified as one of the following:

e A term is a variable, or a function symbol with terms as arguments.

e A literal is a predicate symbol (or its negation) with terms as arguments. Terms and literals that do not contain any free
variables are called ground terms and ground literals respectively.

e A clause is an expression of the form h: —b, ..., by, where the head h is a non-negated literal and the body b1, ..., by
are literals, with the meaning that bq, ..., b, together imply h.

Also, it is worth mentioning lists, which are ordered sets of elements are enclosed by “[” and “]” (the empty list is written
as “[]"). Also, the anonymous variable is represented by a single underscore . Its different occurrences may represent
different literals. Regular variables, in contrast, start with a capital letter (e.g. Agent, Action) and their occurrences are
all instantiated to the same ground literal within the scope of a clause.

ASL descriptions define, primarily, how a multiagent system evolves and transitions between states. A state s; is defined
as a finite set of ground literals, s; = {f1, ..., fn} (if p is an m-ary predicate symbol and a1, ..., &, are ground terms, then
p(a1,...,0y) is a ground term). The predicate symbols used to describe a particular action situation depend on the domain
at hand and are a design choice by the user. Hence, the truth of a fact (i.e. a ground literal) f; in state s; holds iff f; € s;. How
the facts are initialized and evolve is a matter for the building of the EFG semantics from the ASL description (Section 4.2)
and the interpretation of control rules (Section 3.2).

The keywords of ASL are gathered in Table 1. Most of these appear in rule/4 arguments, and only agent/1, ini-
tially/1, terminal/0 and incompatible/2 are used as standalone predicates. In fact, the agent/1 predicate
symbol appears both within rule statement and as a standalone predicate. We start by reviewing the predicates that
do not appear within rules. First, agent (Ag) denotes Ag as an individual susceptible of entering the action situation.

N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Table 1
Action Situation Language keywords, sorted into reserved predicate symbols (with their
arity) and operators (with their type in parentheses).

Predicates Operators

agent/1 rule/4

participates/1 role/2 if (prefix) then (infix)
can/2 does/2 where (infix) ~ (prefix)
initially/1 terminal/0 withProb (infix) and (infix)
incompatible/2

Thus, this predicate provides information on the attributes of the community. If needed, domain-dependent predicates of
the type feature name (Ag,Val) can be added to encode agent attributes. For example, age (alice, 34).

Second, initially (F) indicates that literal F holds true at the start of the interaction, prior to any action being
executed. For example, to indicate that at the start of the interaction, all agents, regardless of their role, are at the origin of
coordinates, we need to include the clause initially (at (Ag, position(0,0))) :- role(Ag,).terminal/0
plays the opposite role, as it returns true whenever the conditions for halting the interaction are met. For example, to
indicate that the interaction stops the moment an agent makes it to a finish line placed horizontally at some height y ¢/, we
need to include the clause terminal :- at(Ag, position(,Y)), Y>= y fl.

Finally, incompatible (F, L) states that literal F cannot be simultaneously true with the literals in list L. Formally,
incompatible(f, L) means that f ¢ s;, where s; = {l; | l; € L} is the state built from the literals in list L. For example,
to indicate that agents cannot be at two different positions simultaneously, we need to include the clause incompati-
ble(at (Ag,Posl),L) :- member (at (Ag,Pos2),L), Posl\==Pos2.

This example may raise the doubt of why we have chosen to have the second argument to incompatible/2 literals
be a list, instead of just a literal. We believe that having a list allows for greater flexibility in ASL descriptions. For example,
suppose fact f; is only incompatible with facts f, and f3 simultaneously, meaning that fi; cannot be part of a state only if
f2 and f3 are both part of it. This statement could not be expressed if the second argument to incompatible/2 were
a single literal. With our current syntax, it can be captured by the clause incompatible (f;,L) :- member (f;,L),
member (f3,L).

We move on now to rule/4 predicates. All of its clauses, regardless of the component they target, follow the general
template in Fig. 3, with the following four arguments:

1. An identifier Id that denotes the action situation where the rule is to be applied.

2. The Type of the rule, one of either boundary, position, choice or control.

3. The Priority of the rule. This is a non-negative integer that determines which statement is to prevail in case several
rules lead to contradicting consequences. The rule statements that are supposed to reflect the physical principles of
the domain are assigned priority 0 and are referred to as the default rules, while additional human-made regulations
have strictly positive priorities. The reserved overwriting operator ~ is introduced in order to have high priority rule
nullify the effects of lower priority rules. We use the term overwriting instead of negation operator since ASL, as a logic
programming language, follows negation as failure.

4. The content of the rule is expressed with an if-then-where statement (the three are all ASL reserved operators, see
Table 1). The content of the Condition and Consequence fields is subject to syntactic constraints according to the
type of the rule in question. We review these syntactic constraints in detail in the next section. The Constraints field
always consists of a list of literals and constraints, whose free variables unify with those in Condition and Conse-
quence. The separation of rule pre-conditions into a short Condition and a Constraints field is not technically
indispensable, but rather a stylistic choice to help keep the syntax concise.

Besides predicate symbols, Table 1 also displays reserved operators, all of which appear within the scope of rule/4
literals. Since ASL is implemented in Prolog, action situation descriptions can also make use of built-in Prolog predicates
(notably member (Elem, List), which has already been invoked) and operators, such as those for comparing terms. The
least familiar of these are Terml@e<Term2 (also @<=, @>, @>=), which is interpreted as Terml preceding Term2 in the
standard order of terms (i.e. also considering characters). Additionally, The Prolog library for constraint logic programming

Rule ::= rule(
Id,
Type,
Priority,
if Condition then Consequence where Constraints

).
Type ::= boundary | position | choice | control
Priority := 0]1]..]o0

Fig. 3. General syntax for if-then-where rules.

N. Montes, N. Osman and C. Sierra Artificial Intelligence 311 (2022) 103756

Table 2
Syntactic restrictions for the Condition and Consequence fields for every of the proposed rule
types. « stands for a literal, i.e. a predicate symbol with terms as arguments.

Rule type Condition Consequence

Boundary agent (Ag) [~]participates (Ag)

Position participates (Ag) [~]role (Ag,R)

Choice role (Ag,R) [~]can (Ag, Ac)

Control joint_action [consequence; withProb
b1,

consequence; withProb pj,

|

joint_action ::= does (Ag,Ac) [and joint_action]
consequence ::= « [and consequence]

over real numbers is autoloaded with the ASL interpreter, part of the game engine. This library provides support for numer-
ical constraints with syntax {Constraints} (for example, {Payoff < 10}).

2.1. Syntax by rule type

As introduced, ASL considers four rule types (boundary, position, choice and control) that target different action situation
components in Fig. 2. First, the boundary rules are aimed at regulating the participants (1) components of action situations,
as they designate which agents are able to enter the interaction. Second, position rules are responsible for assigning partic-
ipants to their roles or positions (2). A participant may take on multiple roles. Third, choice rules assign actions (3) to roles,
not to participants nor agents directly. Hence, an agent that is designated as a participant but is not assigned any role is
irrelevant to the evolution of the interaction. Finally, control rules state what is the effect of actions on the system. Hence,
this last rule type is directly responsible for the control (5) component of action situations.

Note that there is some disconnection between our four rule types and the seven variables within an action situation
in Fig. 2. There are no dedicated rule types for the outcomes (4), costs and benefits (7), and information (6) variables. For
the first two (outcomes, and costs and benefits), we argue that control rules are in charge. As they effectively regulate how
does the state of the world evolve, they are also indirectly determining what outcomes are possible. Additionally, if one
considers monetary and material rewards to be relevant in the current action situation, it is just enough to introduce a
payoff predicate, initialized, for example, with initially (payoff (Ag,0)) :- role(Ag,some_role). Then, its evolution
can be regulated with control rules, that map (possibly joint) actions to monetary gains. A simple example of the use of
control rules to regulate payoffs comes with the Iterated Prisoner’s Dilemma example in Section 2.3.

As for the information component, it is left unaddressed in this early version of ASL. As we explain in Section 4, we
only consider a restricted version of imperfect information in the semantics of any ASL description (much like in GDL
game specifications). Although introducing information constraints to limit players’ observability would certainly make for
an interesting extension, we do not include it here as we anticipate that it would greatly increase the complexity of the
resulting formal games, potentially opening the door for incomplete information and imperfect recall games.

As previously announced, the content of rule statements follows the syntax if Condition then Consequence
where Constraints, with additional restrictions on the Condition and Consequence fields depending on the rule
type. These restrictions are displayed in Table 2. Note that the boundary, position and choice rules all have an analogous
syntax: one agent/1, participates/1 or role/2 literal as the Condition, and participates/1, role/2 or
can/2 as the Consequence, respectively. Also, their Consequence literal might be preceded by the overwriting operator
~, although it only makes sense to use it with non-default rules. The overwriting operator ~ should not be confused with
strong negation. The operator ~ is used to have higher priority rules overwrite lower priority rules in case conflict arises
between the consequences of different rule statements. Our computational model still uses the closed-world assumption
and consequently negation as failure.

In contrast to the other rule types, control rules may have in their Condition multiple does/2 literals concatenated
by the and operator to account for the possibility that some effects are only brought about by joint actions, i.e. by hav-
ing several agents perform some action simultaneously. If one wished to express the fact that several different actions
Actq .. Acty, performed by several different agents Agy ... Agp, lead to the same effect (analogous to an or operator),
one needs to include several control rules, one per each agent-action pair: if does (Agl,Actl) then Consegq, .., if
does (Agn,Actn) then Consedq.

The Consequence of control rules, instead of a single literal, is a list where each of its members consists of (possibly
several) literals concatenated with the and operator. In contrast with the other rule types, the literals that