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Abstract. In this paper we extend the notion of multi-unit combinatorial reverse
auction by adding a new dimension to the goods at auction. In such a new type of
combinatorial auction a buyer can express transformability relationships among
goods: some goods can be transformed into others at a transformation cost. Trans-
formability relationships allow a buyer to introduce his information as to whether
it is more convenient to buy some goods or others. We introduce such informa-
tion in the winner determination problem (WDP) so that not only does the auc-
tion help allocate the optimal set of offers —taking into account transformability
relationships—, but also assesses the transformability relationships that apply. In
this way, the buyer finds out what goods to buy, to whom, and what transforma-
tions to apply to the acquired goods in order to obtain the required ones.

1 Introduction

Since many reverse (or direct) auctions involve the buying (or selling) of a variety of
different assets, combinatorial auctions [3, 7] (CA) have recently deserved much atten-
tion in the literature. In particular, a significant amount of work has been devoted to
the problem of selecting the winning set of bids [12, 2]. Nonetheless, to the best of
our knowledge, while the literature has considered the possibility to express relation-
ships among goods on the bidder side —such as complementarity and transformability
(e.g. [4],[13])—, the impact of the eventual relationships among the different assets to
sell/buy on the bid-taker side has not been conveniently addressed so far.

Consider that a company devoted to the assembly and repairing of personal comput-
ers (PCs) requires to assembly new PCs in order to fulfil his demand. Figure 1 graphi-
cally represents the way a PC is assembled. Our graphical description largely borrows
from the representation of Place/Transition Nets (PTN) [6], a particular type of Petri
Net. Each circle (corresponding to a PTNplace) represents a good. Horizontal bars
connecting goods represent assembly/disassembly operations, likewisetransitionsin a
PTN. Assembly and disassembly operations are labelled with an indexedt, and shall



be referred to astransformability relationships. In particulart1 andt2 represent disas-
sembly operations whereast3 andt4 stand for assembly operations. An arc connecting
a good to a transformation indicates that the good is aninput to the transformation,
whereas an arc connecting a transformation to a good indicates that the good is anout-
put from the transformation. In our example, a motherboard is aninput goodto t2,
whereas CPU, RAM, USB and empty motherboard areoutput goodsof t2. Thus,t2
represents the way a motherboard is taken into pieces (disassembled). The labels on the
arcs connectinginput goodsto transitions, and the labels on the arcs connectingoutput
goodsto transitions indicate the units required of eachinput goodto perform a transfor-
mation and the units generated peroutput goodrespectively. In figure 1, the labels on
the arcs connected tot3 indicate that 1 motherboard is assembled from 1 CPU, 4 RAM
units, 3 USBs and 1 empty motherboard at a cost of 8 EUR. Each transformation has an
associated cost every time it is carried out. In our example, assembling a motherboard
via t3 costs 8 EUR, while taking a motherboard into pieces viat2 costs 7 EUR.

Fig. 1.Graphical representation of an RFQ with t-relationships.

Say that the company’s warehouse contains most of the components composing
each PC. However, there are no components to assemble motherboards. Therefore, the
company would have to start a sourcing [5] process to acquire such components. For
this purpose, it may opt for running a combinatorial reverse auction [13] with qualified
providers. But before that, a professional buyer may realise that he faces a decision
problem: shall he buy the required components to assemble them in house into moth-
erboards, or buy already-assembled motherboards, or opt for amixed purchaseand buy
some components to assemble them and some already-assembled motherboards? This
concern is reasonable since the cost of components plus transformation (assembly) costs



may eventually be higher than the cost of already-assembled motherboards. Hence, the
buyer requires a combinatorial reverse auction mechanism that provides: (a) a language
to express required goods along with the relationships that hold among them; and (b) a
winner determination solver that not only assesses what goods to buy and to whom, but
also the transformations to apply to such goods in order to obtain the initially required
ones. In this paper we try to provide solutions to both issues.

Firstly, since commercial e-sourcing tools [11] only allow buyers to express fixed
number of units per required good as part of the so-calledRequest for Quotation(RFQ),
we have extended this notion to allow for the introduction of transformation relation-
ships (t-relationshipshenceforth) among goods. Thus, we introduce a formal definition
of aTransformability Network Structure(TNS) that largely borrows from Place/Transition
Nets [6], where transitions stand for t-relationships and places stand for goods.

Secondly, we extend the formalisation of multi-unit combinatorial reverse auction
(MUCRA), departing from the model in [12], to introduce transformability by applying
the expressiveness power of multi-set theory. Additionally, we provide a mapping of our
formal model to integer programming that takes into account t-relationships to assess
the winning set of bids along with the transformations to apply in order to obtain the
buyer’s initial requirements.

Finally, we empirically analyse how the introduction of t-relationships affects scal-
ability with respect to a classical multi-unit combinatorial reverse auction.

The paper is organised as follows. In section 2 we provide some background knowl-
edge on place/transition nets and multi-sets. In section 3 we present a formal model of
multi-unit combinatorial reverse auctions with t-relationships among goods, along with
its winner determination problem and its mapping to integer programming. Section 4
is devoted to illustrate some preliminary, experimental results. Finally, section 5 draws
some conclusions and outlines directions for future research.

2 Background

In this section we introduce some background knowledge on multi-sets and
place/transition nets.

A multi-setis an extension to the notion of set, considering the possibility ofmul-
tiple appearancesof the same element. Amulti-setMX over a setX is a function
MX : X → N mappingX to the cardinal numbers. For anyx ∈ X, MX(x) ∈ N
is called themultiplicity of x. An elementx ∈ X belongsto the multi-setMX if
MX(x) 6= 0 and we writex ∈ MX . We denote the set of multi-sets overX by XMS .
Given the multi-setsMS ,M′

S ∈ SMS , their union is defined as:MS ∪M′
S(x) =

MS(x) +M′
S(x).

Following [6], aPlace/Transition Net Structure(PTNS) is a tupleN = (G, T, A,E)
such that: (1)G is a set ofplaces; (2) T is a finite set oftransitionssuch thatP ∩
T = ∅; (3) A ⊆ (G × T ) ∪ (T × G) is a set ofarcs; (4) E : A → N

+ is an
arc expressionfunction. A markingof a PTNS is a multi-set overG. A PTNS with a
given initial markingM0 ∈ GMS is denoted byPTN = (N,M0) and it is called
a Place/Transition Net(PTN). The graphical representation of a PTNS is composed
of the following graphical elements: places are represented as circles, transitions are



represented as bars, arcs connect places to transitions or transitions to places, andE
labels arcs with values (see figure 1).

A stepis a non-empty and finite multi-set overT . A stepS ∈ TMS is enabledin a
markingM∈ GMS if the following property is satisfied:∀g ∈ G

∑
t∈S E(g, t)S(t) ≤

M(g).
Let stepS be enabled in a markingM1. Then,S may occur, changing theM1

marking to anotherM2 ∈ GMS marking. SettingZ(g, t) = E(t, g) − E(g, t) M2 is
expressed as:∀g ∈ G M2(g) = M1(g) +

∑
t∈S Z(g, t)S(t). Moreover, we say that

markingM2 is directly reachablefrom markingM1 by the occurrence of stepS, and
we denote it byM1[S > M2.

A finite occurrence sequenceis a finite sequence of steps and markings:M1[S1 >
M2 . . .Mn[Sn > Mn+1 such thatn ∈ N andMi[Si > Mi+1 ∀i ∈ {1, . . . , n}.M1

is called thestart marking, while Mn+1 is called theend marking. The firing count
multi-setK ∈ TMS associated to a finite occurrence sequence is the union of all its
steps:K =

⋃
i∈{1,2,...,n} Si.

A markingM′′ is reachablefrom a markingM′ iff there exists a finite occur-
rence sequence havingM′ as start marking andM′′ as end marking. We denote it
asM′[S1 . . .Sn > M′′, wheren ∈ N. Furthermore the start and end markings are
related by the following equation:

∀g ∈ G M′′(g) = M′(g) +
∑
t∈K

Z(g, t)K(t). (1)

The set of all possible markings reachable from a markingM′ is called itsreacha-
bility set, and is denoted asR(N,M′).

In [10], Murata shows that in anacyclicPetri Net a markingM′′ is reachablefrom
a markingM′ iff there exists a multi-setK ∈ TMS such that expression 1 holds (which
is equivalent to say that the state equation associated to a PTN admits an integer solu-
tion). As a consequence, when a Petri Net is acyclic, the reachability setR(N,M′) is
represented by

R(N,M′) = {M′′ | ∃K ∈ TMS : ∀g ∈ GM′′(g) = M′(g)+
∑
t∈K

Z(g, t)K(t)}. (2)

3 MUCRA with t-Relationships

3.1 Transformability Network Structures

A Transformability Network Structure describes the different ways in which our busi-
ness is allowed to transform goods and at which cost. More formally, atransformability
network structure(TNS) is a pairS = (N,CT ), whereN = (G, T, A,E) is a Place-
Transition Net Structure andCT : T → R

+ is a cost function. The cost function
associates atransformation costto eacht-relationship. In this context we associate: (1)
theplacesin G to a set of goods to negotiate upon; (2) thetransitionsin T to a set oft-
relationshipsamong goods; (3) thedirected arcsin A along with their weightsE to the
specification of the number of units of each good that are either consumed or produced
by a transformation.



The values ofC and the values ofE label respectively transitions (between paren-
thesis) and arcs in figure 1.

In the following example, we formally specify the Transformability Network Struc-
ture S = (N,CT ), graphically represented in figure 1: (1)G = {PC, Motherboard,
Case, Screen, Kb&Mouse, CPU, RAM, Empty Board, USB}; (2) T = {t1, t2, t3, t4};
(3) A = {(PC, t1), (t1,motherboard), (t1, case), (t1, screen), (t1, kb&mouse),
(motherboard, t2), (t2, CPU), (t2, RAM), (t2, EmptyBoard), (t2, USB), . . .}; (4)
E(PC, t1) = 1, E(t1,motherboard) = 1, E(t1, case) = 1, E(t1, screen) = 1,
E(t1, kb&mouse) = 1, E(motherboard, t2) = 1, E(t2, CPU) = 1, E(t2, RAM) =
4, E(t2, EmptyBoard) = 1, E(t2, USB) = 3, . . .; (5) CT (t1) = 5 EUR,CT (t2) = 7
EUR,CT (t3) = 8 EUR,CT (t4) = 7 EUR.

Given a Place/Transition netPTN = (N,M0), if we considerM0 as a good
configuration,PTN defines the space of good configurationsreachableby applying
tranformations toM0. The application of tranformations is obtained by firing transi-
tions onPTN . Hereafter, we consider the concepts oftransformation step, enabling
of a transformation step, occurrence of a transformation stepand transformation se-
quenceas the counterparts to, respectively,step, enabling of a step, occurrence of a
step, andfinite occurrence sequenceon aPTN .

We also need to define the concept of transformation cost, taking into account the
cost of transforming good configurationM0 into another good configurationM1 ∈
R(N,M0) by means of some transformation sequenceJ = (S1, . . . ,Sn). TheK fir-
ing count multi-set associated toJ accounts for the number of times a transition in the
sequence is fired. Thus, the cost of transforming good configurationM0 into good con-
figurationM1 amounts to adding the transformation cost of each transition in the firing
count multi-setK associated toJ . We assess the transformation cost associated toJ as
CTS(J) =

∑
S∈J

∑
t∈S CT (t)S(t) =

∑
t∈K CT (t)K(t). Notice that the transforma-

tion cost of a transformation sequence only depends on its firing count multi-set.

3.2 Winner Determination Problem (WDP) for MUCRA with t-relationships

In a classic MUCRA scenario, an RFQ can be expressed as a multi-setU ∈ GMS

whose multiplicity indicates the number of units required per good. In the example of
figure 1, ifU(motherboard) = 1,U(CPU) = 1,U(RAM) = 4,U(EmptyBoard) =
1,U(USB) = 3, U would be representing a buyer’s need for 1 motherboard (M), 1
CPU (C), 1 empty board (E), 4 RAM units (R), and 3 USB (U) connectors. Nonethe-
less, since t-relationships hold among goods, the buyer may have different alternatives
depending on the bids he receives. If we represent each bid as a multi-setB ∈ GMS ,
whose multiplicity indicates the number of units offered per good, the buyer might, for
example, have the following alternatives:

1. M0 = {M,C,R,R, R,R, E,U, U, U}. Buy all items as requested.
2. M1 = {M,M}. Buy 2 motherboards, and then disassemble 1 motherboard into

1 CPU, 4 RAM units, 1 Empty Board, and 3 USB connectors at costCT (t2) =
7EUR. The overall cost of the purchase results from the cost of the acquired units
plus the additional transformation cost.



Notice that both alternatives allow the buyer to obtain his initial requirement, though
each one at a different cost. The goal of the WDP is to assess what alternative to select.

We begin by defining the set of possible auction outcomes. Given a set of bidsB,
a possible auction outcome is a pair(W,J), whereW ⊆ B, andJ = (S1, . . . ,Sn)
is a transformation sequence, such that the application ofJ to PTN = (N,∪B∈WB)
allows a buyer to obtain a good configuration that fulfils his requirements inU . More
formally, the set of possible auction outcomes is defined as3:

Ω = {(W,J),W ⊆ B | ∃X ∈ GMS (
⋃
B∈W

B)[J > X ,X ⊇ U}. (3)

To each auction outcome(W,J) we associate anauction outcome costas follows:

CO(W,J) =
∑
B∈W

CB(B) + CTS(J) (4)

whereCB : B → R
+ stands for the bid cost function.

Definition 1 (Winner Determination Problem). Given a set of bidsB, an RFQU ∈
GMS , and a transformability network structureS = (N,CT ), the winner determi-
nation problem for a MUCRA with t-relationships amounts to assessing the auction
outcome(W opt, Jopt) ∈ Ω that minimises the auction outcome cost functionCO. For-
mally,

(W opt, Jopt) = arg min
(W,J)∈Ω

CO(W,J) (5)

3.3 Mapping to Integer Programming

In section 2, we defined the reachibility set according to equation 2 for the case of
acyclic Petri nets. Thus, if we restrict to the case of acyclic TNS, a finite occurrence
sequenceJ is completely specified by its firing count vectorK. Then, we can rewrite
expressions 3 and 4 respectively as follows:

Ω = {(W,K),W ⊆ B,K ∈ TMS | ∃X ∈ GMS (
⋃
B∈W

B)[K > X ,X ⊇ U}. (6)

CO(W,K) =
∑
B∈W

CB(B) + CTS(K) (7)

whereCTS(K) =
∑

t∈K CT (t)K(t). Hence, the WDP when considering acyclic TNSs
can be restated, from equation 5, to assess:

(W opt,Kopt) = arg min
(W,K)∈Ω

CO(W,K) (8)

We can model the problem of assessing(W opt,Kopt) as an Integer Programming
problem. For this purpose, we need to associate integer variables to the elements in: (1)
a generic subset of bids (W ⊆ B); and (2) a generic firing count multi-set (K).

3 Assuming free disposal.



In order to representW we assign a binary decision variablexB to each bidB ∈ B,
standing for whetherB is selected (xB = 1) or not (xB = 0) in W . A multi-set is
uniquely determined by its mapping functionK : T → N. Hence, we represent a multi-
setK ∈ TMS by considering an integer decision variableqt for eacht ∈ T . Eachqt

represents the multiplicity of elementt in theK multi-set. Thus, the translation into
integer programming of expression (8) becomes:

min[
∑
B∈B

xBp(B) +
∑
t∈T

qtc(t)] (9)

subject toxB ∈ {0, 1}. Notice that leaving theqt(t ∈ T ) decision variables unbounded
is utterly unrealistic because it is equivalent to say that the buyer has got the capability
of applying as many transformations as required to fulfilU . In practice, a buyer’s pro-
duction capacities are constrained, and therefore it is realistic to assume that the number
of in-house transformations that he can apply are constrained. Hence, we add the fol-
lowing constraints to equation 9:∀t ∈ T qt ∈ {0, 1, . . . ,maxt}, wheremaxt ∈ N.

Besides, we capture the side constraints enforcing that the selected bids, along with
the transformations applied to them, fulfilU by translating expression 6 into linear pro-
gramming. We consider a set of PTNs such thatPTN = (N,L), whereL = ∪B∈WB.
Moreover, we consider all the finite occurrence sequences ofPTN = (N,L) that
transformL into a configuration that at least fulfilsU . Under the hypothesis ofN being
acyclic we can express the reachability set ofL as follows:

∀g ∈ G M(g) = L(g) +
∑
t∈K

Z(g, t)K(t). (10)

Next, we select the elements in the reachability set[L > that at least fulfilU :

∀g ∈ G L(g) +
∑
t∈K

Z(g, t)K(t) ≥ U(g) (11)

Hence, substituting markingL by
∑

B∈B xBB(g) we finally obtain the following side
constraints:

∀g ∈ G
∑
B∈B

xBB(g) +
∑
t∈T

Z(g, t)qt ≥ U(g).

4 Experiments

The main purpose of our preliminary experiments is to empirically evaluate the benefits
and drawbacks of introducing transformability relationships. With this aim we com-
pared the scalability of the MUCRATR solver with respect to a traditional MUCRA
solver on large instances.

The solvers for the MUCRATR WDP and MUCRA WDP have been developed
with the aid of ILOG’s[1] CPLEX 9.0. The benchmark has been generated with the
aid of MATLAB 7.0 [9]. The solver for MUCRA’s WDP uses a state-of-the-art Integer
Programming formulation, that exploits the analogy of a multi-unit combinatorial auc-
tion WDP with a well known optimisation problem: the Multi Dimensional Knapsack
Problem (MDKP). For a complete explanation refer to [3].



A problem instance for a MUCRA is composed of a a multi-unit RFQ, a set of multi-
unit multi-item bids, whereas a MUCRATR additionally needs a TNS. Thus, firstly
we built some problem instances for the MUCRATR and we solved them with the
MUCRATR solver. Next, we solved the very same instances with the MUCRA solver
considering only bids and RFQ.

In [8], Leyton-Brown specifies an algorithm to create MUCA instances whose pur-
pose is to test WDP algorithms. We have adapted his algorithm to generate MUCRA
instances. It is well known from [13] that a MUCRA is the dual case to a MUCA.

The existence of a TNS has led us to change some aspects of Leyton-Brown’s al-
gorithm. Firstly, instead of assigning an independent average price to each good, we
have to take into account the t-relationships connecting goods. We assign goods’ prices
so that the sum of input good costs plus the transformation cost equals the sum of the
output good costs (adapted price distribution). Consider, for instance, the example de-
picted in figure 1: the default price distribution can generate problem instances in which
a PC price is lower than its USB’s prices, whereas our pricing policy creates a sort of
equilibrium among prices. Next, we consider more realistic to weight the average price
of each bid via a normal probability distribution instead of a uniform one (concretely
we used a normal distribution with mean 1 and variance 0.1).

In the following we describe the parameter settings of our experiments. We per-
formed a single experiment in which the only parameter varying was the number of
bids generated, ranging from 1000 to 270000.

The number of negotiated items was set to 20, the maximum number of units of
a single item that a buyer can ask for was set to 15. The maximum number of units a
bidder can offer for a single item was set to 20. The decaying probabilities employed to
generate the number of goods per bid and the number of units offered per bit per item
were both set to 0.8. The number of t-relationships imposed among the goods was set
to 8.

Figure 2 depicts the results of this preliminary scalability test. Notice that we ob-
tained very similar results to a state-of-the-art solver that does not take into account
t-relationships. Thus, we can conclude that the introduction of t-relationships does not
suppose a significant time overload with respect to a traditional combinatorial auction.

5 Conclusions and Future Work

In this paper we have presented a formalisation and an integer programming solution
to the winner determination problem of a new type of multi-unit combinatorial reverse
auction that allows for expressing t-relationships on the buyer side. Several advantages
derive from such a new type of auction. On the one hand, it allows a buyer to incor-
porate his uncertainty as to whether it is better to buy a required bundle of goods, or
alternatively buy some goods to transform them into the former ones, or even opt for
a mixed purchase and buy some goods as required and some others to be transformed.
This is achieved by introducing t-relationships among goods into the winner determi-
nation problem. Therefore, not only does the winner determination solver assess what
goods to buy and to whom, but also the transformations to apply to such goods in order
to obtain the initially required ones. To the best of our knowledge, this is the first type of
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Fig. 2.Comparation of MUCRATR and MUCRA solvers for a normal distribution.

auction aimed at also handling buyers’ uncertainty. As a side effect, the introduction of
t-relationships is expected to increase competitiveness among bidders, and thus obtain
better deals since bidders that otherwise would not be competing are put together to
compete. Finally, our integer programming solution can be readily implemented with
the aid of linear programming libraries.

We also performed some preliminary experiments comparing our solver for the
WDP for MUCRATR with a state-of-the-art MUCRA solver. We compared the dif-
ferences in terms of solving time and auction outcome cost. The results showed two
main issues: (1) there is no significant, computational overload when solving a MU-
CRATR WDP with respect to solving a MUCRA WDP; and (2) there are always sav-
ings in terms of costs when running a MUCRATR, being outstanding for small-medium
auction scenarios (less than 100 bids). Nonetheless, notice that the preliminary experi-
ments we have run deserve further elaboration in order to thoroughly validate our early
hypothesis.

As future work, it is our aim to further elaborate along several directions. Firstly,
we aim at theoretically analysing the benefits in terms of savings that our mechanism
provides with respect to multi-unit combinatorial reverse auctions. Secondly, we believe
that it is important to research on the theoretical properties of our mechanism from a
mechanism design point of view. And finally, the complexity of bidding in MUCRATRs
along with decision support mechanisms for bidders shall be studied.
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