
A characterization of collective conflict
for defeasible argumentation

Teresa ALSINET a,1, Ramón BÉJAR a and Lluís GODO b

a Department of Computer Science. University of Lleida, SPAIN
b Artificial Intelligence Research Institute (IIIA-CSIC), Bellaterra, SPAIN

Abstract.
In this paper we define a recursive semantics for warrant in a general defeasible

argumentation framework by formalizing a notion of collective (non-binary) con-
flict among arguments. This allows us to ensure direct and indirect consistency (in
the sense of Caminada and Amgoud) without distinguishing between direct and in-
direct conflicts. Then, the general defeasible argumentation framework is extended
by allowing to attach levels of preference to defeasible knowledge items and by
providing a level-wise definition of warranted and blocked conclusions. Finally,
we formalize the warrant recursive semantics for the particular framework of Pos-
sibilistic Defeasible Logic Programming, characterize the unique output program
property and design an efficient algorithm for computing warranted conclusions in
polynomial space.

Keywords. Defeasible argumentation, collective conflict, recursive warrant semantics.

1. Introduction and motivation

Possibilistic Defeasible Logic Programming (P-DeLP) [3] is a rule-based argumenta-
tion framework which is an extension of Defeasible Logic Programming (DeLP) [10] in
which defeasible rules are attached with weights (belonging to the real unit interval [0, 1])
expressing their belief or preference strength and formalized as necessity degrees. As
many other argumentation frameworks [8,14], P-DeLP can be used as a vehicle for facil-
itating rationally justifiable decision making when handling incomplete and potentially
inconsistent information. Actually, given a P-DeLP program, justifiable decisions corre-
spond to warranted conclusions (with a maximum necessity degree), that is, those which
remain undefeated after an exhaustive dialectical analysis of all possible arguments for
and against.

In [6] Caminada and Amgoud propose three rationality postulates which every rule-
based argumentation system should satisfy. One of such postulates (called Indirect Con-
sistency) claims that the closure of warranted conclusions with respect to the set of strict
rules must be consistent. A number of rule-based argumentation systems are identified in
which such postulate does not hold (including DeLP [10] and Prakken & Sartor’s [13],
among others). As a way to solve this problem, the use of transposed rules is proposed
in [6] to extend the representation of strict rules.

Since the dialectical analysis based semantics of P-DeLP does not satisfy indirect
consistency, in [2,1] a level-wise approach to compute warranted conclusions, called

1Correspondence to: T. Alsinet. Department of Computer Science, University of Lleida. C/Jaume II, 69.
Lleida, Spain. Tel.: +34 973702734; Fax: +34 973702702; E-mail: tracy@diei.udl.cat

level-based P-DeLP, was defined ensuring the indirect consistency postulate without ex-
tending the representation of strict rules with transposed rules. In contrast with DeLP
and other argument-based approaches [8,14,5,15], the level-based P-DeLP framework
does not require the use of dialectical trees as underlying structures for characterizing the
semantics for warranted conclusions. The level-based P-DeLP framework distinguishes
two types of conflicts between arguments, direct and indirect. Direct conflicts occur when
there exists an inconsistency emerging from arguments supporting contradictory literals.
Indirect conflicts occur in a given program when there exists an inconsistency emerging
from the set of strict rules of the program and a set of non-defeated (due to a direct con-
flict) arguments. The level-based P-DeLP framework therefore establishes an implicit
evaluation order between conflicts, in the sense that if a conclusion is involved in both a
direct and indirect conflict, the direct conflict invalidates the indirect one. On the other
hand, although the level-based P-DeLP semantics for warranted conclusions is skeptical,
in [1] it was shown that some circular definitions of conflict between arguments can arise
and they can lead to different extensions of warranted conclusions.

Recently Pollock defined [12] a recursive semantics for defeasible argumentation
(without levels of preference) where circular definitions of defeat between arguments
were characterized by means of inference-graphs, representing (binary) support and de-
feat relations between the conclusions of arguments. Following this approach, our aim in
this paper is to formally characterize circular definitions of conflict among arguments that
cause different extensions of warranted conclusions in the level-based P-DeLP frame-
work. However, because of the above mentioned implicit evaluation order between con-
flicts and its undesired side-effect, we are in need for a new and general notion of con-
flict among arguments which, besides of ensuring the Caminda and Amgoud’s rational-
ity postulates, allows us to safely reason about circular definitions of conflict between
arguments.

To this end, in this paper we first define a recursive semantics for warranted con-
clusions in a quite general framework (without levels of strength) by formalizing a new
collective (non-binary) notion of conflict between arguments ensuring indirect consis-
tency without distinguishing between direct and indirect conflicts. Second we extend the
recursive semantics to an argumentation framework with levels of preference by provid-
ing a level-wise definition of warranted and blocked conclusions. A warranted conclu-
sion is a justified conclusion which is only based on warranted information and which
does not generate a conflict, while a blocked conclusion is a conclusion which, like war-
ranted conclusions, is only based on warranted information, but it does generate a con-
flict. Third, we specialize the warrant recursive semantics for the particular framework of
P-DeLP, we refer to this formalism as RP-DeLP, characterize the condition under which
a program has a unique output based on what we call warrant dependency graph, and
design an efficient algorithm for computing warranted conclusions in polynomial space.

2. General defeasible argumentation framework

We will start by considering a rather general framework for defeasible argumentation
based on a propositional logic (L,`) with a special symbol ⊥ for contradiction2. For
any set of formulas A, if A ` ⊥ we will say that A is contradictory, while if A 6` ⊥ we

2If not stated otherwise, in this and in the next section (L,`) may be taken as classical propositional logic.

will say that A is consistent. A knowledge base (KB) is a triplet P = (Π,∆,Σ), where
Π,∆,Σ ⊆ L, and Π 6` ⊥. Π is a finite set of formulas representing strict knowledge
(formulas we take for granted they hold to be true), ∆ is another finite set of formulas
representing the defeasible knowledge (formulas for which we have reasons to believe
they are true) and Σ denotes the set of formulas over which arguments can be built. In
many argumentation systems, Σ is taken to be a set of literals.

The notion of argument is the usual one. Given a KB P , an argument for a formula
ϕ ∈ Σ is a pair A = 〈A,ϕ〉, with A ⊆ ∆ such that:

1. Π ∪A 6` ⊥, and
2. A is minimal (w.r.t. set inclusion) such that Π ∪A ` ϕ.

IfA = ∅, then we will callA a s-argument (s for strict), otherwise it will be a d-argument
(d for defeasible). The notion of subargument is referred to d-arguments and expresses
an incremental prove relationship between arguments which is formalized as follows.

Definition 1 (Subargument) Let 〈B,ψ〉 and 〈A,ϕ〉 be two d-arguments such that the
minimal sets (w.r.t. set inclusion) Πψ ⊆ Π and Πϕ ⊆ Π such that Πψ ∪ B ` ψ and
Πϕ ∪ A ` ϕ verify that Πψ ⊆ Πϕ. Then, 〈B,ψ〉 is a subargument of 〈A,ϕ〉, written
〈B,ψ〉 < 〈A,ϕ〉, when either B ⊂ A (strict inclusion for defeasible knowledge), or
B = A and Πψ ⊂ Πϕ (strict inclusion for strict knowledge), or B = A and Πψ = Πϕ

and ψ ` ϕ and ϕ 6` ψ 3.

A formula ϕ ∈ Σ will be called justifiable w.r.t. P if there exists an argument for ϕ, i.e.
there exists A ⊆ ∆ such that 〈A,ϕ〉 is an argument.

The usual notion of attack or defeat relation in an argumentation system is binary.
However in certain situations, the conflict relation among arguments is hardly repre-
sentable as a binary relation. For instance, consider the following KB P1 = (Π,∆,Σ)
with

Π = {a ∧ b→ ¬p}, ∆ = {a, b, p} and Σ = {a, b, p,¬p}.

Clearly,A1 = 〈{p}, p〉,A2 = 〈{b}, b〉,A3 = 〈{a}, a〉 are arguments that justify p, b and
a respectively, and which do not pair-wisely generate a conflict. Indeed, Π∪ {a, b} 6` ⊥,
Π ∪ {a, p} 6` ⊥ and Π ∪ {b, p} 6` ⊥. However the three arguments are collectively
conflicting since Π∪{a, b, p} ` ⊥, hence in this P1 there is a non-binary conflict relation
among several arguments. In the following we will formalize this notion of collective,
or non-binary, conflict among in principle valid arguments and which arises when we
compare them with the strict part of the knowledge base.

The following notion of acceptable argument with respect to a set (possibly empty)
of justifiable conclusions W will play a key role. If we think of W as a consistent set of
already warranted conclusions, an acceptable argument captures the idea of an argument
which is based on subarguments already warranted.

Definition 2 (Acceptable argument) Let W be a set of justifiable conclusions which is
consistent w.r.t. Π, i.e. Π∪W 6` ⊥. A d-argumentA = 〈A,ϕ〉 is an acceptable argument
for ϕ w.r.t. W iff:

3Notice that if (Π,∆,Σ) = ({r}, {r → p ∧ q}, {p, q, p ∧ q}) and A = {r → p ∧ q} thenA1 = 〈A, p〉,
A2 = 〈A, q〉 andA3 = 〈A, p ∧ q〉 are arguments for different formulas with a same support and thus, in our
framework,A3 < A1 andA3 < A2 are the subargument relations between argumentsA1,A2 andA3 since
p ∧ q ` p, p ∧ q ` q, p 6` p ∧ q and q 6` p ∧ q.

1. if 〈B,ψ〉 is a subargument of 〈A,ϕ〉 then ψ ∈W
2. Π ∪W ∪ {ϕ} 6` ⊥

In the above example, arguments A1, A2 and A3 are acceptable w.r.t. Π and the
empty set of conclusions W = ∅. However A4 = 〈{a, b},¬p〉 is an argument for ¬p,
but A4 is not acceptable w.r.t. W = ∅ since A2 and A3 are subarguments of A4 but
obviously a, b 6∈W .

Now we are ready to introduce the notion of collective conflict relative to a consistent
set of justifiable conclusions. The idea of defining a warrant semantics on the basis of
conflicting sets of arguments was proposed in [16] and [11]. The difference between
these approaches and our notion of collective conflict is that in [16] the notion of conflict
is not relative to a set of already warranted conclusions and [11] defines a generalization
of Dung’s abstract framework with sets of attacking arguments not relative to the strict
part of the knowledge base.

Definition 3 (Conflict among arguments) Let P = (Π,∆,Σ) be a KB, letW be a con-
sistent set of justifiable conclusions w.r.t. Π and let A1 = 〈A1, ϕ1〉, . . . ,Ak = 〈Ak, ϕk〉
be acceptable arguments w.r.t. W . We say that the set of arguments {A1, . . . ,Ak} gen-
erates a conflict w.r.t. W iff the two following conditions hold:

(C) The set of argument conclusions {ϕ1, . . . , ϕk} is contradictory w.r.t. Π ∪W ,
i.e. Π ∪W ∪ {ϕ1, . . . , ϕk} ` ⊥.

(M) The set {A1, . . . ,Ak} is minimal w.r.t. set inclusion satisfying (C), i.e. if S ⊂
{ϕ1, . . . , ϕk}, then Π ∪W ∪ S 6` ⊥.

Consider the previous KB P1. According to Definition 3, it is clear that the set of
acceptable arguments {A1,A2,A3} for p, b and a respectively generates a (collective)
conflict (w.r.t. W = ∅). The intuition is that this collective conflict should block the con-
clusions a, b and p to be warranted. Now, this general notion of conflict is used to define
a recursive semantics for warranted conclusions of a knowledge base. Actually we define
below an output of a KB P = (Π,∆,Σ) as a pair (Warr,Block) of subsets of Σ of war-
ranted and blocked conclusions respectively, all of them based on warranted information
but, while warranted conclusions do not generate any conflict, blocked conclusions do.

Definition 4 (Output for a KB) An output for a KB P = (Π,∆,Σ) is any pair
(Warr,Block), where Warr = s-Warr ∪ d-Warr with s-Warr = {ϕ | Π ` ϕ} ∩ Σ, and
d-Warr and Block are required to satisfy the following recursive constraints:

1. A d-argument 〈A,ϕ〉 is called valid (or not rejected) if it satisfies the following
two conditions:

(i) for every 〈B,ψ〉 < 〈A,ϕ〉, ψ ∈ d-Warr,
(ii) 〈A,ϕ〉 is acceptable w.r.t. the set W = {ψ | 〈B,ψ〉 < 〈A,ϕ〉}.

2. For every valid argument 〈A,ϕ〉 we have that
• ϕ ∈ d-Warr whenever there does not exist a set of valid argumentsG such that

(i) 〈A,ϕ〉 6< 〈C,χ〉 for all 〈C,χ〉 ∈ G
(ii) G ∪ {〈A,ϕ〉} generates a conflict w.r.t. W = {ψ | there exists 〈B,ψ〉 <

〈D, γ〉 for some 〈D, γ〉 ∈ G ∪ {〈A,ϕ〉}}

• otherwise, ϕ ∈ Block.

The intuition underlying this definition is as follows: an argument 〈A,ϕ〉 is either war-
ranted or blocked whenever for each subargument 〈B,ψ〉 of 〈A,ϕ〉, ψ is warranted; then,
it is eventually warranted if ϕ is not involved in any conflict, otherwise it is blocked.

Example 5 Consider the KB P2 = (Π,∆,Σ), with

Π = {a→ y, b ∧ c→ ¬y}, ∆ = {a, b, c,¬c} and Σ = {a, b, c,¬c, y,¬y}.

According to Definition 4, s-Warr = ∅ and the arguments 〈{a}, a〉, 〈{b}, b〉, 〈{c}, c〉
and 〈{¬c},¬c〉 are valid. Now, for every such valid argument there exists a set of valid
arguments which generates a conflict w.r.t. W = ∅: indeed both sets of valid arguments
{〈{a}, a〉, 〈{b}, b〉, 〈{c}, c〉} and {〈{c}, c〉, 〈{¬c},¬c〉} generate a conflict (since Π ∪
{a, b, c} ` ⊥ and Π∪{c,¬c} ` ⊥). Therefore a, b, c and ¬c are blocked conclusions. On
the other hand, the arguments 〈{a, b},¬c〉, 〈{a}, y〉 and 〈{b, c},¬y〉 are not valid since
they are based on conclusions which are not warranted. Hence y and ¬y are considered
as rejected conclusions. Thus, the (unique) output for P is the pair (Warr,Block) =
(∅,∆). Intuitively this output for P expresses that all conclusions in Block are valid,
however all together are contradictory w.r.t. Π.

The KB P2 was also considered in [2], where direct conflicts were evaluated before
indirect conflicts, and thus, every blocked literal invalidated all rules in which that literal
occurred. Hence, in [2], c and ¬c were considered as blocked conclusions but a, b and y
were warranted conclusions.

Next we prove that if (Warr,Block) is an output for a KB the set Warr of warranted
conclusions satisfies indirect consistency and the closure postulate (in the sense of Cam-
inada and Amgoud) with respect to the strict knowledge.

Proposition 6 (Indirect consistency) Let P = (Π,∆,Σ) be a KB and let (Warr,Block)
be an output for P . Then, Π ∪Warr 6` ⊥.

Proof: Suppose that Π ∪Warr ` ⊥. Obviously, it should be that Π ∪W ` ⊥ for some
W ⊆ d-Warr. However, by Definition 4, for every ϕ ∈ d-Warr there does not exist a
set W ′ ⊆ d-Warr such that Π ∪ W ′ ∪ {ϕ} ` ⊥, and therefore, Π ∪ W 6` ⊥ for all
W ⊆ d-Warr. 2

Proposition 7 (Closure) Let P = (Π,∆,Σ) be a KB and let (Warr,Block) be an output
for P . If Π ∪Warr ` ϕ with ϕ ∈ Σ, then ϕ ∈ Warr whenever there exits an acceptable
argument for ϕ w.r.t. Warr.

Proof: Suppose that for some W ⊆ Warr, Π ∪W ` ϕ and ϕ 6∈ Warr, for some formula
ϕ ∈ Σ such that there exists an argument 〈A,ϕ〉 satisfying that if 〈B,ψ〉 is a subargument
of 〈A,ϕ〉 then ψ ∈W . On the one hand, ifA = ∅, it must be that Π ` ϕ. Then, as ϕ ∈ Σ,
ϕ ∈ Warr. On the other hand, as Π ∪Warr 6` ⊥ and Π ∪W ` ϕ, Π ∪W ∪ {ϕ} 6` ⊥,
and thus, 〈A,ϕ〉 is a valid argument for ϕ. Then, if ϕ 6∈ Warr, there exits a set of valid
arguments G such that (i) 〈A,ϕ〉 6< 〈C,χ〉 for all 〈C,χ〉 ∈ G, and (ii) G ∪ {〈A,ϕ〉}
generates a conflict w.r.t. W ′ = {ψ | there exists 〈B,ψ〉 < 〈D, γ〉 for some 〈D, γ〉 ∈
G∪{〈A,ϕ〉}}. According to Definition 3, if G∪{〈A,ϕ〉} generates a conflict w.r.t. W ′,

then Π ∪W ′ ∪ {ϕ} ∪ {ψ | 〈B,ψ〉 ∈ G} ` ⊥ (condition (C)), and Π ∪W ′ ∪ S 6` ⊥, for
all set S ⊂ {ϕ}∪{ψ | 〈B,ψ〉 ∈ G} (condition (M)). Now, asW ⊆W ′ and Π∪W ` ϕ,
if Π ∪W ′ ∪ {ϕ} ∪ {ψ | 〈B,ψ〉 ∈ G} ` ⊥, then Π ∪W ′ ∪ {ψ | 〈B,ψ〉 ∈ G} ` ⊥, and
thus, ϕ ∈ Warr. 2

We remark that, as it will be discussed in Section 4, a KB may have multiple outputs.
For instance, consider the KBP3 = (Π,∆,Σ) with Π = ∅, ∆ = {p, q,¬p∨¬q} and Σ =
{p, q,¬p,¬q}. Then, one can check that there are two outputs, Warr1 = {p},Block1 =
{q,¬q}, and Warr2 = {q},Block2 = {p,¬p}.

3. Extending the framework with a preference ordering on arguments

In the previous section, we have considered knowledge bases containing formulas de-
scribing knowledge at two epistemic levels, strict and defeasible. A natural extension is
to introduce several levels of defeasibility or preference among different pieces of defea-
sible knowledge.

A stratified knowledge base (sKB) is a tuple P = (Π,∆,�,Σ), such that (Π,∆,Σ)
is a KB (in the sense of the previous section) and� is a suitable total pre-order on the set
of defeasible formulas ∆. Suitable means for us that this pre-order is representable by a
necessity measure defined on the set of formulas of L, namely ϕ � ψ iff N(ϕ) ≤ N(ψ)
for each ϕ,ψ ∈ ∆ ∪Π, where N is a mapping N : L → [0, 1] such that

1. N(>) = 1, N(⊥) = 0,
2. N(ϕ ∧ ψ) = min(N(ϕ), N(ψ)), and further
3. N(ϕ) = 1 iff Π ` ϕ

Then we define the strength of an argument 〈A,ϕ〉, written s(〈A,ϕ〉), as follows4:

s(〈A,ϕ〉) = 1 if A = ∅, and s(〈A,ϕ〉) = min{N(ψ) | ψ ∈ A}, otherwise.

Since we are considering several levels of strength among arguments, the intended
construction of the sets of conclusions Warr and Block is done level-wise, starting from
the highest level and iteratively going down from one level to next level below. If 1 >
α1 > . . . > αp ≥ 0 are the strengths of d-arguments that can be built within a sKB
P = (Π,∆,�,Σ), we define d-Warr = {d-Warr(α1), . . . , d-Warr(αp)} and Block =
{Block(α1), . . . ,Block(αp)}, where d-Warr(αi) and Block(αi) are respectively the sets
of warranted and blocked justifiable conclusions with strength αi. Then, we safely write
d-Warrr(> αi) to denote ∪β>αi

d-Warr(β), and analogously for Block(> αi), defininig
d-Warr(> α1) = s-Warr and Block(> α1) = ∅.

Definition 8 (Output for a sKB) An output for a sKB P = (Π,∆,�,Σ) is any pair
(Warr,Block), where Warr = s-Warr ∪ d-Warr with s-Warr = {ϕ | Π ` ϕ} ∩ Σ, and
d-Warr and Block are required to satisfy the following recursive constraints:

1. A d-argument 〈A,ϕ〉 of strength αi is called valid (or not rejected) if it satisfies
the following three conditions5:

4Actually, several N ’s may lead to a same pre-order �, but we can take any of them to define the degree of
strength since only the relative ordering is what matters.

5Notice that if 〈A,ϕ〉 is an acceptable argument w.r.t. d-Warr(> αi), then 〈A,ϕ〉 is valid whenever condi-
tion (iii) holds.

(i) for every subargument 〈B,ψ〉 < 〈A,ϕ〉 of strength αi, ψ ∈ d-Warr(αi);
(ii) 〈A,ϕ〉 is acceptable w.r.t.
W = d-Warr(> αi) ∪ {ψ | 〈B,ψ〉 < 〈A,ϕ〉 and s(〈B,ψ〉) = αi};

(iii) ϕ 6∈ d-Warr(> αi)∪Block(> αi) and {ϕ,ψ} 6` ⊥ for all ψ ∈ Block(> αi).

2. For every valid argument 〈A,ϕ〉 of strength αi we have that
• ϕ ∈ d-Warr(αi) whenever there does not exist a set G of valid arguments of

strength αi such that

(i) 〈A,ϕ〉 6< 〈C,χ〉 for all 〈C,χ〉 ∈ G
(ii) G ∪ {〈A,ϕ〉} generates a conflict w.r.t. W = d-Warr(> αi) ∪ {ψ |

there exists 〈B,ψ〉 < 〈D, γ〉 for some 〈D, γ〉 ∈ G ∪ {〈A,ϕ〉}}

• otherwise, ϕ ∈ Block(αi).

There are two main remarks when considering several levels of strength among ar-
guments. On the one hand a d-argument 〈A,ϕ〉 of strength αi is valid whenever there
does not exist a different valid argument for ϕ of strength greater than αi and ϕ is con-
sistent with each valid argument of strength greater than αi. On the other hand, a valid
argument 〈A,ϕ〉 of strength αi becomes blocked as soon as it leads to some conflict
among arguments of strength αi.

Example 9 Consider the KB P1 in the previous section

Π = {a ∧ b→ ¬p}, ∆ = {a, b, p} and Σ = {a, b, p,¬p}.
extended with levels of defeasibility as follows: {a, b} ≺ p. Assume α1 is the level of p
and α2 the level of a and b, obviously with 1 > α1 > α2. According to Definition 8,
s-Warr = ∅ and the argument for 〈{p}, p〉 is the only valid argument with strength α1.
Then, at level α1, we get d-Warr(α1) = {p} and Block(α1) = ∅. At level α2, we have that
〈{a}, a〉 and 〈{b}, b〉 are valid arguments for conclusions a and b respectively. However,
since Π ∪ d-Warr(α1) ∪ {a, b} ` ⊥, the conclusions a and b are blocked, and thus,
d-Warr(α2) = ∅ and Block(α2) = {a, b}. Notice that the argument 〈{a, b},¬p〉 for ¬p
is not acceptable since it is based on a and b and a, b 6∈ d-Warr(α2).

Example 10 Consider the KB P2 of Example 5:

Π = {a→ y, b ∧ c→ ¬y}, ∆ = {a, b, c,¬c}, and Σ = {a, b, c,¬c, y,¬y},
extended with three levels of defeasibility as follows: ¬c ≺ c ≺ {a, b}. Assume α1 is
the level of a and b, α2 is the level of c, and α3 is the level of ¬c, with 1 > α1 >
α2 > α3. Then, s-Warr = ∅ and, at level α1, we have not only the conclusions a,
b and y with valid arguments not generating conflict, but also 〈{a, b},¬c〉 is a valid
argument for ¬c which does not generate conflict. Therefore, d-Warr(α1) = {a, b, y,¬c}
and Block(α1) = ∅. At level α2, we have arguments for c and¬y. Since Π∪d-Warr(α1)∪
{c} ` ⊥, the argument 〈{c}, c〉 is not acceptable w.r.t. d-Warr(α1), and thus, c is a
rejected conclusion. Then, as the argument 〈{b, c},¬y〉 for ¬y is based on c, ¬y is also
a rejected conclusion, and therefore d-Warr(α2) = Block(α2) = ∅. Finally, at level α3

we have the argument 〈{¬c},¬c〉, but since ¬c is already in d-Warr(α1), we also have
d-Warr(α3) = Block(α3) = ∅.

4. A particular case: recursive P-DeLP

In this section we particularize the framework and recursive warrant semantics for strati-
fied knowledge bases defined in the previous section to the case of the P-DeLP programs.
As mentioned in Section 1, P-DeLP is a rule-based argumentation system extending the
well-known DeLP system in which weights are attached to defeasible rules expressing
their belief or preference strength and formalized as necessity degrees. For a detailed
description of the P-DeLP argumentation system based on dialectical trees the reader is
referred to [3].

Although the original syntax and inference of P-DeLP are a bit different (e.g. the
weights are explicit in the formulas and arguments), here we will present them in a way
so to adapt them to the framework introduced in the previous sections. We will refer to
this particular framework as RP-DeLP. Hence we define the logic (LR,`R) underlying
RP-DeLP as follows. The language of RP-DeLP is inherited from the language of logic
programming, including the notions of atom, literal, rule and fact. Formulas are built over
a finite set of propositional variables p, q, ...which is extended with a new (negated) atom
“∼p” for each original atom p. Atoms of the form p or∼pwill be referred as literals, and
if P is a literal, we will use ∼P to denote ∼p if P is an atom p, and will denote p if P
is a negated atom ∼p. Formulas of LR consist of rules of the form Q ← P1 ∧ . . . ∧ Pk ,
where Q,P1, . . . , Pk are literals. A fact will be a rule with no premises. We will also
use the name clause to denote a rule or a fact. The inference operator `R is defined by
instances of the modus ponens rule of the form: {Q ← P1 ∧ . . . ∧ Pk , P1, . . . , Pk} `R
Q. A set of clauses Γ is contradictory, denoted Γ ` ⊥, if , for some atom q, Γ `R q and
Γ `R ∼q.

A RP-DeLP program P is just a stratified knowledge base (Π,∆,�,Σ) over the
logic (LR,`R), where Σ consists of the set of all literals of LR. We will assume that �
is representable by a necessity measure N , so we will often refer to numerical weights
for defeasible clauses and arguments rather than to the pre-ordering�. Also, for the sake
of a simpler notation we will get rid of Σ from a program specification.

As we have mentioned in the previous section, in some cases the output (Warr,Block)
for a stratified knowledge base in general, and for a RP-DeLP program in particular, is
not unique, due to circular definitions of warranty that emerge when considering conflicts
among arguments. Such circular definitions of warranty are characterized next by means
of what we call warrant dependency graph of a RP-DeLP program. In [12] a similar
graph structure, called inference-graph, was defined to represent inference (support) and
defeat relations among arguments allowing to detect circular defeat relations when con-
sidering recursive semantics for defeasible reasoning. The main difference between both
approaches is that in our case we handle collective conflicts among arguments in order to
preserve direct consistency among warranted conclusions and indirect consistency with
respect to the strict knowledge .

In the following, given a RP-DeLP program P = (Π,∆) with preference levels
1 > α1 > . . . > αm > 0, if W denotes a set of justifiable literals, we will denote
by W (α) the subset of literals Q from W for which there exist an argument 〈A,Q〉
with maximum strength α, W (≥ α) = ∪β≥αW (β), and W (> α) = ∪β>αW (β) with
W (> α1) = W (1).

Definition 11 (Warrant dependency graph) Let P = (Π,∆) be a RP-DeLP pro-
gram and let W be a set of justifiable conclusions consistent with Π. Let A1 =

〈A1, Q1〉, . . . ,Ak = 〈Ak, Qk〉 be acceptable arguments of a same strength α w.r.t. W
such that for all i, Qi 6∈ W (≥ α). Moreover, let B1 = 〈B1, P1〉, . . . ,Bn = 〈Bn, Pn〉 be
arguments of the same strength α such that for all j, Pj 6∈W (≥ α), Pj 6∈ {Q1, . . . , Qk},
and there exists an argument S ∈ {A1, . . . ,Ak} with S < Bj . Then, the warrant depen-
dency graph (V,E) for {A1, . . . ,Ak} w.r.t. W and {B1, . . . ,Bn} is defined as follows:

1. For every literalL ∈ {Q1, . . . , Qk}∪{P1, . . . , Pn}, the set of vertices V includes
one vertex vL.

2. For every pair of literals {L1, L2} such that L1 =∼L2 with L1 ∈ {P1, . . . , Pn}
and L2 ∈ {Q1, . . . , Qk}, the set of directed edges E includes one edge
(vL1 , vL2)6.

3. For every pair of literals {L1, L2} such that L1 ∈ {Q1, . . . , Qk}, L2 ∈
{P1, . . . , Pn} and the argument of L1 is a subargument of the argument of L2,
the set of directed edges E includes one edge (vL1 , vL2)7.

4. For every strict rule L← L1 ∧ . . . ∧ Lm of Π such that

- either ∼L ∈W (≥ α) or ∼L ∈ {Q1, . . . , Qk}, and
- for every Li (i = 1, ...,m), either Li ∈ W (≥ α) or Li ∈ {Q1, . . . , Qk} ∪
{P1, . . . , Pn},

the set of directed edgesE includes one edge (vLi
, vLj

)8 for every pair of literals
{Li, Lj} ⊆ {L1, . . . , Lm} with Li ∈ {P1, . . . , Pn} and Lj ∈ {Q1, . . . , Qk}
whenever the argument of Lj is not a subargument of the argument of Li.

5. Elements of V andE are only obtained by applying the above construction rules.

Intuitively, the warrant dependency graph for a set of arguments represents conflict and
support dependences among arguments in {A1, . . . ,Ak} and arguments in {B1, . . . ,Bn}
w.r.t. a set of justified conclusions W .

Example 12 Consider a RP-DeLP program defined from the KB P3 of Section 2; i.e. a
RP-DeLP program with an empty set of strict clauses and the following set of defeasible
clauses with just one defeasibility level:

∆ = {p, q,∼p← q,∼q ← p}.
Now, consider the empty set of conclusions W = W (1) = ∅ and arguments for conclu-
sions p and q; i.e.A1 = 〈{p}, p〉 andA2 = 〈{q}, q〉. Finally, consider the arguments for
conclusions ∼p and ∼q; i.e. B1 = 〈{q, ∼p← q},∼p〉 and B2 = 〈{p, ∼q ← p},∼q〉.

Figure 1 (a) shows the warrant dependency graph for A1 and A2 w.r.t. W = ∅, B1,
and B2. Conflict and support dependences between literals are represented as dashed
and solid arrows, respectively. The cycle of the graph expresses that (1) the warranty of
p depends on a (possible) conflict with ∼ p; (2) the support of ∼ p depends on q (i.e.
the validity of ∼ p depends on the warranty of q); (3) the warranty of q depends on a
(possible) conflict with ∼q; and (4) the support of ∼q depends on p (i.e. the validity of
∼q depends on the warranty of p).

Consider now the RP-DeLP program P4 = (Π,∆), with
Π = {y,∼y ← p ∧ r,∼y ← q ∧ s} and ∆ = {p, q, r ← q, s← p}

with just one defeasibility level. Moreover consider the set of justified conclusions W =

6The directed edge (vL1 , vL2) represents a conflict dependence of L2 w.r.t. L1.
7The directed edge (vL1 , vL2) represents a support dependence of L2 w.r.t. L1.
8The directed edge (vLi

, vLj
) represents a conflict dependence of Lj w.r.t. Li.

W (1) = {y} and arguments for conclusions p and q; i.e.
A1 = 〈{p}, p〉 and A2 = 〈{q}, q〉.

Finally, consider arguments for conclusions r and s; i.e.
B1 = 〈{q, r ← q}, r〉 and B2 = 〈{p, s← p}, s〉.

Figure 1 (b) shows the warrant dependency graph for A1 and A2 w.r.t. W , B1, and
B2. The cycle of the graph expresses that (1) the warranty of p depends on a (possible)
conflict with r; (2) the support of r depends on q (i.e. the validity of r depends on the
warranty of q); (3) the warranty of q depends on a (possible) conflict with s; and (4) the
support of s depends on p (i.e. the validity of s depends on the warranty of p).

q ∼q

p ∼p1

3
42

(a)

p q

r s

1 324

(b)

Figure 1. Warrant dependency graphs: (a) for P3, (b) for P4.

The characterization of the unique output property for a program P = (Π,∆) is
done level-wise, starting from the highest level and iteratively going down from one
level to next level below. For every level it consists in checking whether for some literal
L, the warranty of L recursively depends on itself based on the topology of a warrant
dependency graph defined as follows.

Definition 13 (Graph for a literal) Let P = (Π,∆) be a RP-DeLP program, let
(Warr,Block) be an output for P and let L be a literal such that L ∈ Warr(α), for
some level α. The graph for L w.r.t. Warr is the warrant dependency graph (V,E) for
arguments {A1, . . . ,Ak} w.r.t. W and {B1, . . . ,Bn} where

• W = Warr(≥ α)\{L},
• A1 = 〈A1, Q1〉, . . . ,Ak = 〈Ak, Qk〉 are all arguments with strength α9 that are

acceptable w.r.t. W (according to Definition 2) and such that Qj 6∈ Warr(> α)
and Qj ,∼Qj 6∈ Block(> α), and

• B1 = 〈B1, P1〉, . . . ,Bn = 〈Bn, Pn〉 are all arguments with strength α that satisfy
the following conditions 10:

(i) Pj 6∈ Warr(> α) and Pj 6∈ {Q1, . . . , Qk},
(ii) Pj ,∼Pj 6∈ Block(> α),
(iii) for all 〈C,R〉 < Bj with strength β > α, R ∈ Warr(β) and for all 〈C,R〉 <

Bj with strength α, R ∈ {Q1, . . . , Qk} ∪ {P1, . . . , Pn},
(iv) Π ∪Warr(> α) ∪ {〈C,R〉 < Bj} ∪ {Pj} 6` ⊥,
(v) there exists an argument S ∈ {A1, . . . ,Ak} such that S < Bj , and

9Remark that for all argument Aj ∈ {A1, . . . ,Ak} with Qj 6= L, Aj does not depend on L and either
Qj ∈ Warr(α) or Qj ∈ Block(α).

10Remark that for all argument Bj ∈ {B1, . . . ,Bk}, either Bj depends on L and (Pj , α) ∈ Warr(α) ∪
Block(α) or Bj depends on some Qj ∈ Block(α).

(vi) for every argument S ∈ {A1, . . . ,Ak} such that S < Bj , there does not
exist a set of arguments G ⊆ {A1, . . . ,Ak}\{S} such that G∪ {S} generates
a conflict w.r.t. W .

Proposition 14 (RP-DeLP program with unique output) Let P = (Π,∆) be a RP-
DeLP program and let (Warr,Block) be an output for P . (Warr,Block) is the unique
output for P iff for all literal L ∈ Warr there is no cycle in the graph for L w.r.t. Warr.

Intuitively, given a literal L such that L ∈ Warr(α), for some program preference level
α, Definition 13 builds the warrant dependency graph for L and all acceptable arguments
{A1, . . . ,Ak} of strength α that do not depend on L w.r.t. arguments {B1, . . . ,Bn} of
strength α whose supports depend on L or on some argument in {A1, . . . ,Ak}. Then,
according to Definition 11, the existence of a cycle expresses that the warranty of the
argument for L depends on the validity of some B ∈ {B1, . . . ,Bn}, which depends
on the warranty of some L′ ∈ {A1, . . . ,Ak} with L 6= L′, which in turn depends
on the validity of some B′ ∈ {B1, . . . ,Bn} with B′ 6= B, which in turn depends on
the warranty of L. Thus, for arguments of L and L′ there does not exist a (unique)
conflict evaluation order. Obviously, for RP-DeLP programs with unique output the set of
warranted conclusions for every level α can be (computed) defined by an unique conflict
evaluation order between arguments. Next we show that programs of Example 12 have
multiple outputs.

Example 15 According to Definition 8, Output1 = (Warr1,Block1) with Warr1 = {p}
and Block1 = {q,∼q}, is an output for program P3 of Example 12. Then, according to
Definition 13, Figure 1 shows the graph for p w.r.t. Warr1; i.e. the warrant dependency
graph for arguments {A1,A2} w.r.t. W and {B1,B2} with

A1 = 〈{p}, p〉, A2 = 〈{q}, q〉, W = ∅,
B1 = 〈{q, ∼p← q},∼p〉 and B2 = 〈{p, ∼q ← p},∼q〉.

Therefore, according to Proposition 14, Output1 is not the unique output for P3 since
there is a cycle in the graph for p w.r.t. Warr1. Notice that Output2 = (Warr2,Block2)
with Warr2 = {q} and Block2 = {p,∼ p}, is also an output for program P3 and the
graph for q w.r.t. Warr2 also contains a cycle.

Consider now the RP-DeLP program P4 of Example 12. According to Definition 8,
Output1 = (Warr1,Block1) with Warr1 = {y, p} and Block1 = {q, s}, is an out-
put for P4. Then, according to Definition 13, Figure 1 shows the graph for p w.r.t.
W = Warr1(1) = {y} proving that the output for P4 is not unique. Indeed, notice that
Output2 = (Warr2,Block2) with Warr2 = {y, q} and Block2 = {p, r}, is also an output
for program P4 and the graph for q w.r.t. Warr2 also contains a cycle.

One of the main advantages of the warrant recursive semantics for RP-DeLP is from
the implementation point of view. Actually, warrant semantics based on dialectical trees
and, in general, rule-based argumentation frameworks like DeLP [7,9], might consider an
exponential number of arguments with respect to the number of rules of a given program.
In contrast, in our framework, at least for the particular case of RP-DeLP programs with
unique output, it is not necessary to explicitly compute all the possible arguments for a
given literal to check whether it is warranted, as we can implement an algorithm11 (not
shown here due to space limitations) with a worst-case complexity in PNP .

11Details can be found in the extended version at http://ia.udl.cat/ramon/comma2010full.pdf

5. Conclusions and future work

In this paper we have introduced a new recursive semantics for determining the warranty
status of arguments in defeasible argumentation. The distinctive features of this seman-
tics, e.g. with respect to Pollock’s critical link semantics, are: (i) it is based on a non-
binary notion of conflict in order to preserve consistency with the strict knowledge and
(ii) besides the set of warranted and rejected conclusions, we introduce the set of blocked
conclusions, which are those conclusions which are based on warranted information but
they generate a conflict with other already warranted conclusions of the same strength.

As future work we plan to formalize the maximal ideal output for RP-DeLP pro-
grams which will allow us to characterize the relationship between this unique output
based on the recursive warrant semantics and the output of DeLP [10] and other gene-
ral argumentation frameworks [5,4] based on the use of dialectical trees as underlying
structures for characterizing the semantics of warranted conclusions.

Acknowledgments Authors are thankful to the anonymous reviewers for their helpful com-
ments. Research partially funded by the Spanish MICINN projects MULOG2 (TIN2007-68005-
C04-01/02) and ARINF (TIN2009-14704-C03-01/03), CONSOLIDER (CSD2007-0022), and ESF
Eurocores-LogICCC/MICINN (FFI2008-03126-E/FILO), and the grant JC2009-00272 from the
Ministerio de Educación.

References
[1] T. Alsinet, C.I. Chesñevar, and L Godo. Enforcing indirect consistency in possibilistic defeasible logic

programming: a level-based approach. In IPMU’08, pages 497–504, 2008.
[2] T. Alsinet, C.I. Chesñevar, and L Godo. A level-based approach to computing warranted arguments in

possibilistic defeasible logic programming. In COMMA’08, pages 1–12, 2008.
[3] T. Alsinet, C.I. Chesñevar, L. Godo, and G. Simari. A logic programming framework for possibilistic

argumentation: Formalization and logical properties. Fuzzy Sets and Systems, 159 (10): 1208–1228,
2008.

[4] L. Amgoud and C. Cayrol. On the Acceptability of Arguments in Preference-based Argumentation. In
UAI’08, pages 1–7, 1998.

[5] P. Besnard and A. Hunter. Elements of Argumentation. The MIT Press, 2008.
[6] M. Caminada and L. Amgoud. On the evaluation of argumentation formalisms. Artificial Intelligence,

171 (5-6): 286–310, 2007.
[7] L. Cecchi, P. Fillottrani, and G. Simari. On the complexity of DeLP through game semantics. In NMR

Workshop, pages 386–394, 2006.
[8] C. Chesñevar, A. Maguitman, and R. Loui. Logical Models of Argument. ACM Computing Surveys, 32

(4): 337–383, 2000.
[9] C.I. Chesñevar, G. Simari, and L. Godo. Computing dialectical trees efficiently in possibilistic defeasible

logic programming. In LPNMR’05, pages 158–171, 2005.
[10] A. García and G. Simari. Defeasible Logic Programming: An Argumentative Approach. Theory and

Practice of Logic Programming, 4 (1): 95–138, 2004.
[11] S.H. Nielsen and S. Parsons. A Generalization of Dung’s Abstract Framework for Argumentation:

Arguing with Sets of Attacking Arguments. In ArgMAS’06, pages 54–73, 2006.
[12] J.L. Pollock. A recursive semantics for defeasible reasoning. In Iyad Rahwan and Guillermo R. Simari,

editors, Argumentation in Artificial Intelligence, chapter 9, pages 173–198. Springer, 2009.
[13] H. Prakken and G. Sartor. Argument-based extended logic programming with defeasible priorities.

Journal of Applied Non-classical Logics, 7: 25–75, 1997.
[14] H. Prakken and G. Vreeswijk. Logical Systems for Defeasible Argumentation. In D. Gabbay and F.

Guenther, editors, Handbook of Phil. Logic, pages 219–318. Kluwer, 2002.
[15] I. Rahwan and G. Simari, editors. Argumentation in Artificial Intelligence. Springer, 2009.
[16] G. Vreeswijk. Abstract Argumentation Systems. Artificial Intelligence, 90(1-2): 225–279,1997.

