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Abstract. In this paper we introduce ambient LCC, a language to agent interaction models
for P2P networks. The language is based on process algebra concepts and combines the no-
tions of Light weight coordinate calculus(LCC) and ambient calculus. It is specially designed
to support the execution of electronic institutions, an organization model for Multi Agent
Systems.

1 Introduction

During recent years, Electronic institutions (EI) have proven to be one of the interesting and effec-
tive organization models for MAS communication and coordination [8, 5, 9, 4]. In the EI approach,
protocols are expressed diagrammatically using graphs of finite-state automata (i.e. state-charts).
The EI approach has two levels of abstraction: scenes in which agents communicate, and institu-
tions which are composed of scenes. These two levels of abstraction make it possible to compose
large protocols from smaller ones. Thus EIs combine the benefits of diagrammatic specification with
levels of abstraction which modularize the protocol specification. EI is also a promising technology
to tackle the complexity inherent in open systems due to the need for adequate interoperation of
heterogeneous, independent, distributed, autonomous components/agents. One of the challenges
that face the centralized EI model in this regard is the lack of a distributed specification. This
becomes ever more relevant as the MAS community moves closer to P2P networks.

The light weight coordination calculus (LCC) proposed by Dave Robertson [11] is a protocol
language designed to be completely peer to peer and does not rely on any centralized infrastructure.
Being a process calculus variant, it has the advantage of being based on a powerful theoretical
foundation. LCC can be used as a distributed interaction language to translate the centralized
EI protocol. The EI model has two levels of abstraction: scenes in which agents communicate,
and institutions which are composed of scenes. These two levels of abstraction make it possible to
compose large protocols from smaller ones whereas LCC has only one level of abstraction, which is
loosely equivalent to a single scene. A theoretical framework, an extension of LCC language with
the additional layers of abstraction from EI is proposed in this paper. The theoretical basis for our
unified approach is the Ambient Calculus [1] which is a process calculus1 which gives us the notion
of bounded locations (ambients) in addition to the normal concurrency operations.

1 Process calculus is a family of related approached to the formal specification of concurrent systems.
Process calculus enable the high-level description of interactions, communications, and synchronisations
between a collection of agents. Furthermore, the algebraic laws of process calculus allow these descriptions
to be manipulated and analysed via formal reasoning techniques.



The introduction of ambients gives us the ability to formally define scene composition, and the
transitions between scenes, which were previously lacking in LCC. This is specially important as
breaking protocols into small pieces (or combining small pieces to obtain more complex ones) is a
basic software engineering need that ambient calculus facilitates. Furthermore, the EI concept has
a hierarchical notion of scene (or activity) that maps easily into the ambient concept. Electronic
institution concepts like joining or leaving a scene can naturally be mapped into in and out opera-
tions over ambients, and information models can be represented as accessible variables within the
ambient. The notion of state, so important in P2P protocols, can then be lodged in an ambient and
move with it. The potential loss of good synchronisation properties that a centralised EI approach
has can be also recovered by the ambient synchonisation operations. Finally, the concept of ambi-
ent is very lightweight and model checking can be applied to interaction models written in ambient
LCC.

We considered a number of already existing alternatives. Dynamic Logic [6] is a powerful specifica-
tion tool to describe the consequences of (possibly concurrent) actions in the evolution of the state
of computer systems. However, no efficient verification techniques exist, and the conceptual distance
between the notion of electronic institution inspiring our approach and dynamic logic concepts is
far too large. BPEL4WS [12] is an orchestration language for business stateful protocols over web
services. However, it lacks the rich social structure and role flow that electronic institutions permit,
as well as it does not provide support for norm specification.

The Web Services Choreography Description Language (WS-CDL) http://www.w3.org/TR/ws-
cdl-10/ has a number of similarities to the approach that we define here. For example, it allows
interactions between participants to be defined using sequence, choice and parallel operations. It also
defines specific roles for the participants within the interaction, and permits separate interactions
to be composed. However, WS-CDL has no formal semantics, and it is unclear how WS-CDL
specifications should be enacted. There is no basis on which to verify interactions, or check that
compositions are meaningful. Furthermore, there are no higher-level abstractions, such as scenes
and institutions as provided in the EI approach. The WS-CDL language is also incomplete and the
specification is still under development at the time of writing.

The next section provides a brief introduction to the concepts required to understand this work.
The following sections introduce Ambient LCC syntax and the mapping of Electronic institution
concepts into the newly introduced language. Finally we also provide an example translating an EI
scene into ambient LCC syntax.

2 Background material

Each of the concepts in the following subsections require an in depth treatment. However due to
space constraints, a detailed discussion on the background materials is beyond the scope of this
paper, hence interested readers are adviced look into the references.

2.1 Electronic Institutions

The idea behind EIs is to mirror the roles traditional institutions play in the establishment of
“the rules of the game”–a set of conventions that articulate agents’ interactions– but in our case



applied to agents (humans or software entities) that interact through messages whose (socially
relevant) effects are known to interacting parties. The essential roles EIs play are both descriptive
and prescriptive: the institution makes the conventions explicit to participants, and it warrants
their compliance2.

EIs —as artifacts— involve a conceptual framework to describe agent interactions as well as an
engineering framework to specify and deploy actual interaction environments. We have been devel-
oping the EI artifact for some time and advocating that open MAS can be properly designed and
implemented with it [8, 5, 9, 4]. Our experiences in the deployment of applications as EIs, e.g. [10,
2] make us confident of the validity of this approach. We look at EIs as a framework for developing
multiagent systems (MAS). We do so for two reasons, first because open systems can be viewed as
a type of MAS, where the entities that interoperate in the open system are simply thought of as
agents. Secondly, because, in that light, some recent methodologies and conceptual proposals for
MAS engineering are then relevant for open systems. Our approach, has things in common with
some of those methodologies and conceptual proposals, however we believe that it contributes to
the engineering of this type of MAS through three salient distinctive features:

1. It is socially-centered, and neutral with respect to the participating agents internals and the
application domain of their interaction

2. It has a uniform conceptual framework to manage components and interactions that prevails
through the different views (high-level specification, implementation, monitoring, . . . ) of a given
system.

3. It has an interaction-centered methodology that is embedded in a suit of software tools that
support the system development cycle from specification to deployment.

2.2 The Lightweight Coordination Calculus (LCC)

LCC can be considered as a heavily-sugared variant of the π-calculus [7] with an asynchronous
semantics. The extensions to the core calculus are designed to make the language more suited
to the concepts found in multi-agent systems and dialogues. LCC was designed specifically for
expressing Peer-to-Peer (P2P) style interactions within multi-agent systems, i.e. without any central
control.The abstract syntax of LCC is presented in Figure 1.

Where null denotes an event which does not involve message passing; Term is a structured term and Id is

either a variable or a unique identifier for the agent.

There are five key syntactic categories in the definition, namely: Framework, Clause, Agent, Dn
(Definition), and Message. These categories have the following meanings. A Framework, which
bounds an interaction in our definition, comprises a set of clauses. Each Clause corresponds to
an agent, and each agent has a unique name a and a Type which defines the role of the agent.
The interactions that the agent must perform are given by a definition Dn. These definitions may
be composed as sequences ( then ), choices ( or ), or in parallel ( par ). The actual interactions

2 In terms of Simon’s engineering design abstractions, EIs are the –social– interface layer between the
problem space the participating systems deal with, on one side, and the internal decision or functional
intricacies of the various participating systems, on the other.



Framework := {Clause, . . .}
Clause := Agent :: Dn
Agent := a(Type, Id)

Dn := Agent |Message | Dn then Dn | Dn or Dn | Dn par Dn | null← C
Message := M ⇒ Agent |M ⇒ Agent← C |M ⇐ Agent | C ←M ⇐ Agent

C := Term | C ∧ C | C ∨ C
Type := Term

M := Term

Fig. 1. Abstract Syntax of LCC.

between agents are given by Message definitions. Messages involve sending (⇒ ) or receiving (⇐ )
of terms M from another agent, and these exchanges may be constrained by C.

2.3 A Calculus of Mobile Ambients

The ambient calculus was developed as a way to express mobile computation. It can also be consid-
ered as an extension of the basic operators of the π-calculus [7]. The inspiration behind the ambient
calculus is the observation that many aspects of mobility involve administrative considerations. For
example, the authorisation to enter or exit a domain, and the permission to execute code in a par-
ticular domain. These issues were principally motivated by the needs of mobile devices. However,
they are very similar to the issues faced by agents in an open environment, e.g. the Internet.

The ambient calculus addresses the administrative considerations by defining an ambient (infor-
mally) as a “bounded space where computation happens”. The crucial point is the existence of a
boundary, which determines what is inside and outside the ambient. This boundary is analogous
to a firewall. Ambients can also be nested, leading to an administrative hierarchy, which is a com-
monly occurring structure on the Internet, e.g. intra-nets, and demilitarised zones. An ambient is
also something that can be moved. For example, to represent a computer or agent moving from one
place to another.

More precisely, each ambient has a name, a collection of local agents that run directly within the
ambient, and a collection of sub-ambients. The syntactic categories are processes (P , Q, and R),
and capabilities (M). A process is analogous to an individual agent. A process may be placed inside
an ambient, may be replicated, and may be composed in parallel with another process, which means
that the processes execute together. We write n[P ] to denote an ambient named n, which contains
the process (i.e. agent) P . For more information on ambient calculus refer [1]

3 Ambient LCC

Ambient LCC inherits the notion of ambient, the most important extension to LCC, from the theory
of ambient calculus. Most of the properties of an ambient as defined by Cardelli stand valid in the
context of ambient LCC as well. The following highlights the structure and properties of ambient
LCC.



– Ambient Structure An ambient in Ambient LCC consists of two logical components, an
ambient specification and an execution environment. The ambient specification specifies the
signature of the ambient. It provides the details of what are the parameter values that define
the ambient. This may include information such as how many agent processes can be active in
an ambient at a given time, what are the entry and exit conditions for agent processes and what
are the rules governing communication and message passing within the ambient environment,
and so on. The execution environment provides the execution state of the ambient to hold
the execution parameters. An ambient is also defined recursively to allow layers of abstraction
in the protocol definition which can be mapped to a tree structure. At each layer, ambients
correspond to bounded places, where processes can interact, with ambients providing the context
for interaction.

– Ambient Movement A process entering an ambient must necessarily enter through the top
layer of the ambient tree, and can successively traverse the tree structure. A process in any
ambient node in the tree is necessarily in all the parent ambient nodes. Similarly if a process
wants to come out of a parent ambient, it should do so only after it exits the child ambient.
Processes are also given capabilities to create and destroy ambients upon satisfaction of certain
conditions. Another concept that needs a mention here is the property of processes holding
ambients. As Ambient LCC works in a distributed setting, there is no assumption of a global
infrastructure. Processes are the only entities having state and hence capable of holding ambi-
ents. Hence, at any given point in time, all the ambient execution environments reside in some
process and this process has special privileges to modify the ambient. This restricted update
mechanism is used to implement the synchronization needed for agent communication.

– Agent ambients There is a special kind of ambient defined in the language, and associated with
agent processes. Though agents can be naturally associated with processes, an agent ambient
is meant to keep the state of an agent process. Most of the computation happens in ambients
that may contain more than one agent, and the state of these computations is preserved in
the execution environment of the enclosing ambient. Yet there are certain parameters that are
relevant to an agent which need to be preserved throughout the life of an agent as the agent
process moves from one ambient to another. The agent ambient is there to preserve such process
specific states. Thus, in this context, agents are treated as special ambients with a process and
an ambient around them. The agent ambients do not get separated from the agent processes at
any point during the life of the process and always move along with the process. In this sense
these are special ambients around agent processes. Yet in treatment of the ambients, a uniform
syntax is adopted which includes the agent ambients, though certain operations are not allowed
in the agent ambients.

4 Ambient LCC syntax

The previous section dealt with the conceptual background of ambient LCC. The more formal
specification of the syntax and functional properties along with notations and conventions are
discussed in this section. A detailed discussion on LCC specific syntax is omitted here and can be
found in [11]. The ambient LCC syntax is as follows:

Framework ::= 〈∆, Clausen〉
Clause ::= A :: Def



A ::= a(IdA, IdR, Id∆)
Def ::= Action | A | [E ←]Def [← C] | Def or Def | Def then Def | Def par Def
∆ ::= 〈Id∆, τ∆〉 | Id∆ | ∆(∆n)
Action ::= Message | Op∆ | E | timeout(n)
Message ::= M ⇒ A |M ⇐ A
Op∆ ::= new (〈Id∆, τ∆〉, Idδ) | new (Id∆, Idδ) | in Idδ(R) | out Idδ(R) | open Idδ

τ∆ ::= Spec∆

C ::= get(Term, V ) | Term | C ∧ C | C ∨ C
E ::= put(V, Term) | C | P (V n, V n)
M ::= Term : τ
V ::= variable[: τ ]
n ::= integer

An ambient is represented by the symbol ∆. The agents and roles are denoted by A and R respec-
tively. IdA, IdR, Id∆ respectively represent the unique identification of an agent, role and ambient,
while Idδ uniquely determines the specific ambient instance (execution environment). τ represents
a type, which can be either an ambient type or the type associated with a term or a variable.

In ambient LCC, a framework is the combination of an ambient and a number of clauses. This
view is the main extension that is brought to LCC, where there was only the notion of agents
and no entity above the agent layer. Thus there are six key syntactic categories in the definition,
apart from the five categories that exist in the LCC language, the additional category introduced
in ambient LCC is the Ambient. Next, we describe the ambient syntax and the changes introduced
in other categories.

– Ambient Definition An ambient ∆ can be defined as 〈Id∆, τ∆〉 | Id∆ | ∆(∆n). ∆ consists of
the type of the ambient τ∆ and the ambient identification Id∆, or just a reference to a previously
defined ambient, Id∆. There is also a provision for defining an ambient inside another ambient
through the definition of ∆(∆n).The following explains the details of ambient definition.

The type of the ambient is the signature of the ambient. Intuitively, τ∆ is the set of parameters
that define the ambient and that specify the norms of access and conduct within an ambient. τ∆

is normally derived from the interaction model specification and hence is an interaction model
dependent parameter.

Ambients can be defined recursively to include the notion of an ambient inside another ambient.
This permits us to define an ambient structure such as 〈Idps, τps〉(Ids1 , Ids2 , Ids3). By referring
to an ambient identifier we can easily build complex ambients. The following example illustrates
how this can be achieved:

〈Idps, τps〉(〈Idps1 , τps1〉(〈Idsa , τsa〉), Idsa , Idsb
, 〈Idps2 , τps2〉(〈Idsb

, τsb
〉, 〈Idsc , τsc〉))

– Agent Definition In the light of the ambient addition, there are slight variations in the
interpretation of the other categories. A Framework, which still bounds an interaction now
comprises an ambient and a set of clauses. Each Clause corresponds to an agent in an ambient.
An agent is redefined in the new language as an entity having a unique identifier A enacting a
role R in an ambient ∆ and is represented as a(IdA, IdR, Id∆). They are subsequently defined
as agents enacting certain roles in specific ambient instances, or carrying out actions, upon
satisfying certain conditions (preconditions C) and has certain effects (post conditions E).



The interactions that the agent must perform are given by a definition Def . These definitions
may be composed as sequences ( then ), choices ( or ), or parallel execution ( par ). Additionally
the definitions are optionally constrained by a precondition and affected by a post condition.

– Action Definition In the new definition, the fifth syntactic category is replaced by an enclosing
category, namely Action. There are two kinds of Actions, Messages form one category used as
an interaction mechanism among agents. Another category is the ambient operations that an
agent can perform to function effectively within the ambient framework. The actual interactions
between agents are given by Message definitions. Messages involve sending (⇒ ) or receiving
( ⇐ ) terms M from another agent and the process is made generic by the definition [E ←
]Def [← C]. In this context, C stands for the preconditions that an agent needs to satisfy
before sending any message. E represents in general the effect of an action that an agent has
performed. The definition also includes the possibility of combining more than one condition in
a conjunctive or disjunctive manner. In summary the different kinds of message operations in
Ambient LCC remain the same as that in LCC, with the only difference that they all must be
carried out in the context of an ambient now.

The actual ambient operations are: creating an ambient type and instance at the same time
new (〈Id∆, τ∆〉, Idδ), creating an ambient instance of a predefined ambient type new (Id∆, Idδ),
moving into an ambient instance in Idδ(r), moving out of an ambient instance out Idδ(r) and
opening an ambient instance open Idδ. Here, Idδ represents the unique identifier for the ambient
instance (execution environment).

new (〈Id∆, τ∆〉, Idδ) is two operations encapsulated into one construct. new first creates a new
ambient and declares its type as τ∆. Then the id, Id∆ is returned as the id of the newly created
ambient. Using this new ambient, an instance of the same is created and finally the id of the
instance Idδ is returned. Thus in this case, both the ambient id and the instance id are returned
as the result of the new operation. Whereas the new (Id∆, Idδ) takes an existing ambient Id∆

and creates an instance of this ambient, and returns the id Idδ of the newly created instance.

The in and the out operations manage the movement of the agent across the ambients. Upon
satisfying a set of preconditions, as specified in τ∆, in Idδ(r) will let the agent executing the op-
eration inside an ambient instance. out Idδ(r) is similar. open Idδ destroys the ambient instance
δ and provides a logical end of an ambient execution environment.

– Access primitives The access primitives are there to support the actions that an agent wants
to execute. There are two primitive operations provided to access variables (in general Terms),
get(Term, V ) put(V, Term). This can be used to access and update variables in the various
levels of the ambient hierarchy. This is achieved through typing the primitives with the ambient
identifier Idδ. For example, get(Term, V ) : δ1 will get the value of the term from the ambient
instance δ1 and will make V bound to it. The variables are generalized to a prolog term to
include the possibility of containing complex expressions. Ambient LCC is a strongly typed
language, and as far as possible typed variables are used. τ can be an ambient type, an ambient
instance id, or any other previously defined type at specification time.

The Timeout is used to introduce a minimal time management into the language. Interaction
models normally constrain many agent actions to happen within a time interval. That is to say,
agents can no longer perform a certain operation once a time interval is elapsed.



4.1 A few methodological issues

So far what we have discussed is the syntax of Ambient LCC. There are a few concepts, which are
not specifically part of the language syntax, but nevertheless methodologically important as they
provide additional structure and ease of understanding.

– Ambient execution environment An ambient ∆ consists of two logical components, the am-
bient specification τ∆ which we have previously dealt with, and the ambient instance, also called
the ambient execution environment δ. The following describes the notion of δ and elaborates on
what constitutes its structure. The ambient execution environment is a runtime environment
of the ambient ∆ of type τ∆. For any ambient ∆ of type τ∆, there can be an infinite enumera-
tion of its runtime counterpart. The execution environment deals with the execution variables,
the current state the ambient is in and so on. It is defined in such a way that the execution
variables comply with the specification requirements of τ∆. δ is not part of the formal syntax
of the ambient LCC, and this omission is intended so as not to have to repeat the execution
parameters in the protocol specification. Nevertheless, the variables have reserved names and
can be accessed by these names scoped by the ambient identifier. As with τ∆ definition, the δ
definition varies with the interaction model under consideration.

The recursive definition of ambients is also valid at the ambient instance level. That is, the
recursive definition specifies the ambient hierarchy as explained previously. This is a τ∆ spec-
ification at the highest level, and hence taken as the blueprint while creating the execution
ambients. The structure of δ is created at runtime based on the in and out operations. These
operations should respect the ambient hierarchy defined at the type level. Thus the following
statements hold for nested ambients at instance level.

• To move into a sub ambient of an enclosing ambient, it is required to be in the enclosing
ambient. That is, given the spec 〈Id∆1 , τ∆1〉(〈Id∆2 , τ∆2〉) where ∆1 encloses ∆2 and the
operations new(Id∆1 , Idδ1) and new(Id∆2 , Idδ2), for an agent a ∈ A, with role r ∈ R,
in Idδ2(r) is valid only if a ∈ δ1 due to a prior operation, in Idδ1(r), that moved a into the
enclosing ambient.

• After open Idδ2 is executed, a is assumed to be in the surrounding ambient, δ1. open more-
over destroys the ambient Idδ2 .

• Similarly, after out Idδ2(r) is executed, a is assumed to be in the surrounding ambient, δ1

– Domain Type It is also useful to divide τ∆ into two parts, that of τI and τD. While τI holds
the interaction model specification variables, τD holds the domain variables which are specific
to a domain. The separation between τI and τD is brought in to keep the domain independent
specification from the domain dependent variables. τD is the place holder for all the variables
that are part of the domain. By including τD in the specification, the execution environment
variables are forced to adhere to the τD specification. This also provides the possibility of
automatic verification.



5 Mapping Electronic Institutions into Ambient LCC

Ambient LCC can be used to implement electronic institutions in a distributed environment (i.e.
without any central infrastructure) while preserving the semantics of scenes and performative struc-
tures. From an Electronic institution perspective, an ambient is an entity which can represent a
performative structure, a scene or an agent. It has a nested structure as well, so we can have
a performative structure ambient containing a collection of scene ambients, and a scene ambient
containing a collection of agent ambients. The level of nesting corresponding to the nesting in the
performative structure. The ambient processes can be agent processes that run in an agent ambient,
scene ambient or a performative structure ambient, each of which are expanded below.

5.1 Structural mapping

The mapping between EIs and Ambient LCC is based on the following structural translations:

– Performative structure ambients An institution’s top performative structure is mapped
into the highest level ambient, that we call rootambient, which includes other performative
structure ambients, scene ambients and agent ambients. The nesting is achieved by the recur-
sive definition of the ambients. Any agent process entering an institution, first enters the root
ambient, becoming an agent ambient (i.e. an ambient with a process running the decision mak-
ing processes and a set of parameters to maintain the private state of the agent), and until it
exits the institution resides in the root ambient (or in any ambient in the nested structure).
In the process of enacting different scenes and transitions, the agent ambient enters and exits
various sub ambients, at various layers of the nested structure.

– Scene ambients As for any ambient in Ambient LCC, a scene ambient is composed of a
scene ambient specification and an execution environment. The specification of a scene in an
EI is mapped into a number of parameters, the ambient type, that keep as values the different
components of a scene specification (e.g. the states of the state machine, the arcs, the allowed
illocutions, etc.) The execution environment parameters keep the context of the scene in execu-
tion and provides an environment for enacting the scene ambient specification. By this we mean,
the scene ambient execution environment contains, for instance, the names of the participating
agent processes at any given point in time, their roles, and the state of the computation at
that instant of time. The participating agents are aware of the ambients they are in, and can
communicate among themselves by referring to their identification within the ambient. Scene
ambients are the most dynamic in the sense that most of the computation occurs within a scene
ambient. The capabilities of movement defined in the language is expressive enough to model
the movement of agents within an EI scene.

– Transition Ambients Transitions are considered as special kinds of scenes in electronic in-
stitutions. Owing to their similarity with the scenes and following similar conventions, it is
fair enough to treat them similarly in ambient LCC too. Thus, transitions are mapped into
ambients and derive all the properties of ambients as defined in the language. Transitions in
ambient LCC facilitate the initiation of scene ambients. They also execute the agent movements
into succeeding scenes. Apart from these, transitions provide the settings for a scene ambient
to start the execution, or for the agents to start their protocols.



– Agent Ambients We map agents into agent ambients. As mentioned before, an agent ambient
contains a process (for internal thinking) and the parameters that represent the internal state
of the agent. We don’t map the functionality of governors. A governor provides an abstraction
that facilitates the interaction between external agents and an institution. They ensure that the
institution norms are followed as all agent messages go through the governors. Agent ambients
provide the agent specific context of computation, but do not quite ensure that agents follow
the norms of the institution.

6 An Example of an EI expressed as an interaction model in ambient
LCC

As an example of conversion of an institution entity, we choose for translation an Auction scene.
When translated into ambient LCC, the scene corresponds to protocol fragments from the Buyer
and Auctioneer role perspectives. In an upward bidding protocol, the auction scene starts when
the Auctioneer declares the startauction followed by the start of a round selecting a particular
Good, initial price and bidding time. Then the auction proceeds when the Buyer agents request to
buy the Good for the Price announced. If there are one or more Buyer agents requesting the Good
for the last called Price then the Auctioneer increases the Price. The process gets repeated until
there is a Timeout. If there is no more Buyer agents requesting for the Good before the Timeout
expires, then the Good is either sold to the last Buyer who requested the Good for the previous
Price, or else the Good is withdrawn from the auction. The following are the protocol fragments
(illocution schema) as specified in the original electronic institution.

Fig. 2. Upward Bidding Auction

1. inform((?x Auctioneer)(all Buyer)(startauction ?a))
2. inform((!x Auctioneer)(all Buyer)(startround ?good ?price ?bidding time))



3. inform((!x Auctioneer)(all Buyer)(offer !good !price))
4. request((?y Buyer)(!x Auctioneer)(bid !good !price))

null : timeout [!bidding time]

5. inform((!x Auctioneer)(all Buyer)(offer !good ?price))
8 inform((!x Auctioneer)(all Buyer)(sold !good, !price, !Buyerid))
9 inform((!x Auctioneer)(all Buyer)(withdrawn !good))

10 inform((!x Auctioneer)(all Buyer)(close))

The Auction scene ambient is defined as follows.

∆A = 〈IdA, τA〉
Where The scene specification parameters
τIs

= 〈R,DFS ,W, w0,Wf , (WAr)r∈R,
(WEr)r∈R, Θ, λ,min,Max〉 for the above scene A are:

R ={Auctioneer, Buyer}
DFA = 〈{(startauction ?a), (startround ?good ?price ?bidding time),

(offer !good !price), (bid !good !price), (sold !good, !price, !Buyerid),
(withdrawn !good), (close)}, , 〉

W = {w0, w1, w3, w4, w5, w6, w2}
w0 = w0
Wf = {w2}
(WAr)r∈R = {{w0, w1}Buyer, {w0}Auctioneer)
(WEr)r∈R = {{w2}Buyer, {w2}Auctioneer)
Θ = {(w0, w1), (w1, w2), (w1, w3), (w3, w4), (w4, w5), (w4, w6), (w6, w1)}
λ = {(w0, w1)→ 1, (w1, w2)→ 10, (w1, w3)→ 2, (w3, w4)→ 3, (w4, w5),

(w4, w6), (w6, w1)}
(w3, w5)→ msg5}

min = {Auctioneer → 1, Buyer → 1}
Max = {Auctioneer → 1, Buyer → 15}

Here τA specifies the rules that need to be kept while creating and executing instances of Auction
scene ambient. It specifies that the only roles allowed to play the Auction scene are the Buyer and
the Auctioneer roles. It also specifies the start and end states of the scene as w0 and w2. Then it
goes on further to specify that w0 is the only state through which both the Auctioneer and Buyer
can enter the scene ambient and w2 is the only state through which both the Auctioneer and Buyer
can exit the ambient. It also specifies that the minimum and maximum number of agents that can
be present at the ambient at any instance of time is 0 and 100 for the Buyer role and 1 in both
cases for the Auctioneer role. It then specifies how the state change from one state to the next can
happen through a number of parameters including λ which stands for the illocutions mentioned
above.

The entry into the scene is done from outside the scene, and handled by the preceding transaction
ambients. After a successful entry into the scene ambient is done, the scene protocols from the
different role perspectives namely the Auctioneer and the Buyer expanded below are enacted. There
are a few calls to external functions such as getSaleinfo(Buyer id, Quantity) and getGoodsinfo(G,
P,B) as part of the protocol. We don’t specify them here and their meaning should be clear from
their names.



a(X, Auctioneer, Auction) ::
put(“w”, “w1”) ∧ put(“GList”, Gr) ∧ put(“PList”, Pr) ∧ put(“BList”, Br)←

startauction(Idauction)⇒ a( , Buyer, Auction))
← get(“w”, “w0”) ∧ getGoodsinfo(G, P, B)

or
put(“w”, “w2”)← close(Idauction)⇒ a( , Buyer, Auction))
← get(“w”, “w1”) ∧GList = []

or
put(“w”, “w3”)←

startround(Good, Price, Bidding time)⇒ a( , Buyer, Auction))
← get(“w”, “w1”)∧
GList = [Good|Gr] ∧ PList = [Price|Pr] ∧BList = [Bidding|Br]

or
put(“w”, “w4”) ∧ offer(Good, Price)⇒ a( , Buyer, Auction))← get(“w”, “w3”)
or
put(“w”, “w6”)← get(“w”, “w4”) ∧ timeout[Bidding time]
or
bid(Good, Price)⇐ a(Buyer( , Buyer, Auction))← get(“w”, “w5”)
or
put(“w”, “w4”)← offer(Good, Price)⇒ a( , Buyer, Auction))
or
put(“w”, “w1”) ∧ put(“Buyer”, Buyer id) ∧ put(“SaleQty”, Quantity)←

sold(Good, Quantity, Price, Buyer id)⇒ a( , Buyer, Auction))
← get(“w”, “w6” ∧ Sold constarints ∧ getSaleinfo(Buyer id, Quantity)

or
put(“w”, “w1”)← withdrawn(Good)⇒ a( , Buyer, Auction))
←Withdraw cnstr

or
a(X, Auctioneer, Auction)← get(“w”, “w2”) ∧Gr! = []
or
open Idauction ← get(“w”, “w2”) ∧Gr = []

a(B, Buyer, Auction)) ::
put(“w”, “w5”)← bid(Good, Price)⇒ a(X, Auctioneer, Auction)← get(“w”, “w4”)∧

offer(Good, Price)⇐ a(X, Auctioneer, Auction)
or
sold(Sale)⇐ a(X, Auctioneer, Auction)← get(“w”, “w6”)

7 Discussion

This paper introduces a new language, (its concepts, syntax and mappings) based on process al-
gebra concepts and specially adapted to the implementation of electronic institution models. The
combination of a peer to peer interaction language (LCC) and Ambient concepts gives us specific
avantages in addressing the challenges of developing open MAS. LCC by its design cater to dis-
tributed MAS and Ambients give the notion of bounded places and a rich structure to express even
complex organization models such as Electronic Institutions. We also have developed a translation
algorithm (not detailed here) which translates an EI scene into its Ambient LCC counter part. Fur-
ther extensions needs to be developed to map the entire EI institution into the new language. We



also have developed algorithms to take care of synchronization issues at the EI scene level. This too
needs to be extended at the institution level. Though this work concentrates on the EI organization
model, we believe that the language is general enough to map other organization models for MAS
[3], specially those that are distributed.
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