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Abstract. The investigation reported in this paper aims at clarifying
an important yet subtle distinction between (i) the logical objects on
which measure theoretic probability can be defined, and (ii) the inter-
pretation of the resulting values as rational degrees of belief. Our central
result can be stated informally as follows. Whilst all subjective degrees
of belief can be expressed in terms of a probability measure, the converse
doesn’t hold: probability measures can be defined over linguistic objects
which do not admit of a meaningful betting interpretation. The logical
framework capable of expressing this will allow us to put forward a pre-
cise formalisation of de Finetti’s notion of event which lies at the heart
of the Bayesian approach to uncertain reasoning.

1 Introduction: the epistemic structure of de Finetti’s
betting interpretation

De Finetti’s theory of subjective probability is well-known and widely scrutinized
in the literature (cf. [2]), so we will review only on those aspects which are directly
relevant to our present purposes1.

Let θ1, . . . , θn be events of interest. De Finetti’s betting problem is the choice
that an idealised agent called bookmaker must make when publishing a book, i.e.
when making an assignment B = {(θi, βi) : i = 1, . . . , n} in which each event of
interest θi is given value βi ∈ [0, 1]. Once a book has been published, a gambler
can place bets Si ∈ R on any event θi by paying Siβi to the bookmaker. In return
for this payment, the gambler will receive Si, if θi obtains and nothing otherwise.
Note that “betting on θi” effectively amounts, for the gambler, to choosing a
real-valued Si which determines the amount payable to the bookmaker2.

1 The reader who wishes to consult the originals is referred to [2, 3, 5, 6].
2 In order to avoid potential distortions arising from the diminishing value of money,

de Finetti invokes the “rigidity hypothesis” to the effect that Si should be small.



De Finetti’s construction of the betting problem proceeds by forcing the
bookmaker to write fair betting odds for any given book B. To this end, two
modelling assumptions are built into the problem, namely (i) the bookmaker
must accept any number of bets on B and (ii) when betting on θi, gamblers can
choose the sign of the stakes Si, thereby possibly (and unilaterally) imposing a
payoff swap to the bookmaker. Taken jointly, conditions (i-ii) force the book-
maker to publish books with zero-expectation, for doing otherwise may offer
gamblers the possibility of making a sure profit, possibly by swapping payoffs.
As the game is zero-sum, this is equivalent to forcing the bookmaker into sure
loss. The Dutch Book theorem states that this possibility is avoided exactly
when the bookmaker chooses betting odds which are probabilities.

This line of argument presupposes an epistemic structure which de Finetti
mentions only in passing in his major contributions to this topic [3–5]. A more
direct, albeit very informal, reference to the point appears in [6]. For reasons
that will be apparent in a short while, the underlying epistemic structure of the
betting problem is fundamental to understanding the notion of event :

[T]he characteristic feature of what I refer to as an “event” is that the
circumstances under which the event will turn out to be “verified” or
“disproved” have been fixed in advance. [6] (p. 150)

This very informal characterisation echoes the characterisation de Finetti
gives of random quantities –of which events are special cases. A random quantity
is a “well-determined” unknown, namely one which is so formulated as “to rule
out any possible disagreement on its actual value, for instance, as it might arise
when a bet is placed on it.” ([5], Section 2.10.4).

The epistemic structure implicit in the betting framework clearly builds on
the presupposition that at the time of betting bookmakers and gamblers ignore
the truth value of the event on which they are betting, i.e. they agree that, say
v(θ) is undefined. Yet, for the bet to be meaningful, i.e. payable at all, players
must also agree on the conditions which will decide the truth value of θ. This
implies that a betting interpretation of probability is meaningful only for those
sentences whose truth value is presently (at the time of betting) undecided, but
which the players know that will eventually be decided. Now, there are certainly
well-formed formulas escaping this restriction, so probability functions defined
on them cannot have a betting interpretation.

Before introducing the logical framework that will formalise this in Section
2, let us pause for a second to appreciate why the interpretation of probability
which arises in this context is clearly subjective. Whether a sentence qualifies
as an event depends crucially on the state of information of the individuals
involved in the betting problem. Compare this with the logical, measure-theory
inspired, characterisation of probability functions which is derived under the
tacit assumption that the agent’s state of information is empty, that is to say
the set of events includes all possible sentences. This assumption will be relaxed
in our framework and indeed this will lead us to generalise the scope of the
representation theorem of probability functions on sentences by introducing a
refinement of the notion of probability functions which we call bet functions



and we denote by Bet(·). In particular, we shall be interested in characterising
sentences of SL in such a way that the resulting definitions of facts and events
(Section 3.2) will give us enough structure to prove that Bet(·) so defined is
consistent in the sense of de Finetti (Section 4) and to show that its extension
to inaccessible sentences preserves consistency (Section 5). Section 6 concludes
by pointing to the future work which we envisage within the framework fleshed
out in this paper.

2 Background

Let L = {p1, . . . , pn} be a finite set of propositional variables, and let SL =
{θ, φ, . . .} be the set of sentences built as usual from L in the language of clas-
sical propositional logic. Denote by ATL be the set of maximally elementary
conjunctions of L, that is the set of sentences of the form α = pε11 ∧p

ε2
2 ∧ . . .∧pεnn ,

with εi ∈ {0, 1} and where p1i = pi and p0i = ¬pi, for i = 1, . . . , n.
Note that the Lindenbaum algebra3 on SL is a finite Boolean algebra and

hence it is atomic. In particular the elements of ATL exactly correspond the
atoms of the Lindenbaum algebra.

ATL is in 1-1 correspondence with the set V of (classical) valuations on
L. This implies that there is a unique valuation satisfying v(α) = 1 namely
vα(pεii ) = εi for 1 ≤ i ≤ n. Conversely, given a valuation v ∈ V there exists a
unique atom α ∈ ATL such that v(α) = 1. Now let

Mθ = {α ∈ ATL | α |= θ},

where |= denotes the classical Tarskian consequence. Since there exists a unique
valuation satisfying α, say vα, by definition of |= it must be the case that vα(θ) =
1. Thus

Mθ = {α ∈ ATL | vα(θ) = 1}.

This framework is sufficient to provide a very general representation theorem
for probability functions.

Theorem 1 (Paris 1994).

1. Let P be a probability function on SL.4 Then the values of P are completely
determined by the values it takes on ATL = {α1, . . . , αJ}, as fixed by the
vector

〈P (α1), P (α2), . . . , P (αJ)〉 ∈ DL = {a ∈ RJ | a ≥ 0,

J∑
i=1

ai = 1}.

3 Recall that the Lindenbaum algebra over L is the quotient set SL/ ≡, where ≡ is the
logical equivalence relation (defined as θ1 ≡ θ2 iff |= θ ↔ θ2), with the operations
induced by the classical conjunction, disjunction and negation connectives.

4 P : SL→ [0, 1] is a probability function on sentences if (i) P (>) = 1, (ii) P (θ1∨θ2) =
P (θ1) + P (θ2) if |= ¬(θ1 ∧ θ2), and (iii) P (θ1) = P (θ2) if |= θ1 ↔ θ2.



2. Conversely, fix a = 〈a1, . . . , aJ〉 ∈ DL and let P ′ : SL→ [0, 1] be defined by

P ′(θ) =
∑

i:αi∈Mθ

ai. (1)

Then P ′ is a probability function.

In words, Theorem 1 shows that every probability function arises from distribut-
ing the unit mass of probability across the J = 2n atoms of the Lindenbaum
algebra generated by L = {p1, . . . , pn}.

Our goal is to refine this result by isolating a class of sentences on which,
we argue, there should be no distribution of epistemically significant mass. More
specifically, we aim at building a framework in which those probabilities which
bear a meaning as betting quotients can be formally distinguished from those
which do not. Central to achieving this will be a rigorous definition of de Finetti’s
notion of event, which will be distinguished from the related notion of fact.
Under certain conditions, all sentences in SL will either be events or facts. Under
more general conditions a third class of inaccessible sentences will feature in SL.
The central result of this paper can be intuitively phrased as establishing that
probabilities which are defined on sentences which are not events can only be
given trivial values. Trivial, as we will shortly see, means one of two things. Either
a sentence can (coherently) be given only its truth value (and this characterises
betting on facts), or it should be given 0. This means that the “uncertainty mass”
is really concentrated only on events, for which we provide a formal definition.

3 Formal preliminaries: information frames, facts and
events

In what follows, we denote subsets of SL by capital Greek letters Γ,∆, . . ., and
the classical Tarskian consequence is denoted by either |= or Cn depending on
whether its relational or operational definition is more suited to the specific to
the context. Recall that a (total, classical) valuation is a function v : L→ {0, 1}
which extends uniquely to the sentences in SL. A total valuation represents a
“fully informed” epistemic state since it allows agents to assign a truth-value
(either 1 or 0) to any sentence of SL. However, an epistemic state determined
by a set Γ of sentences (the ones known to be true), will permit an assignment
of truth-values 1 or 0 only to some subset of sentences. In fact, each Γ uniquely
determines a three-valued map on SL, eΓ : SL→ {0, 1, u}, defined as

eΓ (θ) =


1 if θ ∈ Cn(Γ ),

0 if ¬θ ∈ Cn(Γ ),

u otherwise.

(2)

where the new value u reads as unknown.
Notice that partial evaluations are not truth-functional. Note also that, if

Γ ⊆ Γ ′ then Cn(Γ ) ⊆ Cn(Γ ′). From now on, we will say that a mapping



e : SL → {0, 1, u} is a partial evaluation whenever there exists Γ ⊆ SL such
that e = eΓ .

Given two partial valuations e, e′, we say that e′ extends e, written e ⊆ e′,
when the class of formulas which e sends into {0, 1} is included into that one
which e′ sends into {0, 1}. Note that if e = eΓ and e′ = eΓ ′ then

e ⊆ e′ ⇔ Γ ⊆ Γ ′. (3)

By a theory we mean a deductively closed subset of SL. So, Γ is a theory if
and only if Cn(Γ ) = Γ . We denote the set of theories on L by T. Let us finally
recall that a theory Γ ∈ T is maximally consistent iff for every θ ∈ SL, either
Γ |= θ, or Γ |= ¬θ. Note also that for any maximally consistent Γ ∈ T, there
exists a (total) valuation v ∈ V such that for all θ ∈ SL, eΓ (θ) = v(θ).

Definition 1 (Determined sentences). We say that Γ ⊆ SL determines
θ ∈ SL, written Γ � θ if and only if, ∀pi ∈ V ar(θ), eΓ (pi) ∈ {0, 1}.

Definition 2 (Decided sentences). We say that Γ ⊆ SL decides θ ∈ SL,
written Γ B θ if and only if eΓ (θ) ∈ {0, 1}.

It is clear that for all Γ ⊆ SL and θ ∈ SL, if Γ � θ then Γ B θ as well.
Furthermore, as remarked above, if Γ ∈ T is maximally consistent, then Γ �
θ ⇔ Γ B θ. The following are immediate consequences of the above definitions.

Proposition 1. For all Γ ⊆ SL, and for all θ, ϕ ∈ SL, the following hold:

1. Γ � θ iff Γ � ¬θ; Γ B θ iff Γ B ¬θ.
2. If Γ B θ, and Γ B ϕ, then Γ B θ ◦ ϕ for all ◦ ∈ {∧,∨,→}.
3. If Γ B θ, Γ 7 ϕ, and eΓ (θ) = 0 then Γ � θ ◦ ϕ for every ◦ ∈ {∧,∨,→}, but

Γ B θ ∧ ϕ and Γ B θ → ϕ, and in particular eΓ (θ ∧ ϕ) = 0, eΓ (θ → ϕ) = 1.
4. If Γ B θ, Γ 7 ϕ, and eΓ (θ) = 1 then Γ � θ ◦ ϕ for every ◦ ∈ {∧,∨,→}, but

Γ B θ∨ϕ, Γ Bϕ→ θ and Γ B θ → ϕ, and in particular eΓ (θ∨ϕ) = eΓ (ϕ→
θ) = 1.

3.1 Information frames

Definition 3 (Information frame). An information frame F is a pair 〈W,R〉
where W is a non-empty subset of partial valuations defined as in Equation (2)
and R is a binary transitive relation on W .

Remark 1. Since each partial valuation is uniquely determined by a Γ ⊆ SL, we
can freely use w1, w2, . . . to denote either subsets of SL or their associated partial
valuations, depending on which interpretation suits best the specific context. As
a consequence of Equation (3) the inclusion w ⊆ w′ is always defined.

We interpret wi ∈ W as an agent’s state of information, i.e. the sentences
(equivalently, the partial valuation) which capture all and only the information
available to an agent who finds itself in state wi. Under this interpretation the
relation R models the agent’s possible transitions among information states. For
reasons that will soon be apparent, we always require R to be transitive. As
more structure is needed further restrictions on R will be considered.



Definition 4. Let F = 〈W,R〉 be an information frame. We say that F is

– Monotone if (w,w′) ∈ R implies w ⊆ w′.
– Complete if w ⊆ w′ implies (w,w′) ∈ R.

Under our interpretation, monotonicity captures the idea that agents can
only learn new information, but never “unlearn” the old one. In addition, mono-
tonicity implies that the dynamics of information is stable in the sense that
once a formula is either determined or decided at state w (i.e. it is given a bi-
nary truth-value), this remains fixed at any information state reachable from w.
Hence if w � φ, then there cannot exist (w,w′) ∈ R such that w′ 4 φ. Complete-
ness ensures that the agent will learn all the possible consistent refinements to
its current information state. So, if (w,w′) 6∈ R, there exists θ such that w′ � θ
and w � ¬θ. Finally, note that if F is monotonic and complete then obviously
R coincides with set-inclusion among states (equivalently, sets of sentences).

3.2 Facts and events

The following definition captures the differences among facts, events and inac-
cessible sentences in a monotone information frame.

Definition 5. Let 〈W,R〉 be a monotone information frame, let w ∈ W , and
let θ ∈ SL. We say that θ is a w-fact if w B θ.

On the other hand, if w 7 θ, we say that θ is:

– a w-event if for every (total) valuation V extending w there exists w′ with
(w,w′) ∈ R such that w′ B θ and w′(θ) = V (θ).

– w-inaccessible if for every (total) valuation V and every world w′ such that
w′(θ) = V (θ), (w,w′) 6∈ R.

We shall respectively denote by F(w), E(w) and I(w) the class of w-facts,
w-events, and w-inaccessible sentences, for some information frame 〈W,R〉 and
some w ∈W .

The following proposition sums up some key properties of the sets F(w),
E(w) and I(w).

Proposition 2. Let 〈W,R〉 be a monotone information frame, and let w ∈ W .
Then the following hold:

1. The structure 〈F(w),∧,¬,⊥〉 is a Boolean algebra.
2. If w is a total valuation, then SL = F(w), while if w = ∅ is the empty

valuation, then F(w) = ∅.
3. If 〈W,R〉 is complete, then 〈E(w),∧,¬,⊥〉 is a Boolean algebra.
4. If 〈W,R〉 is complete, then for all w ∈W , SL = F(w)∪E(w). Therefore, in

particular, if 〈W,R〉 is complete, then I(w) = ∅.
5. If I(w) 6= ∅, then for every w′ such that its corresponding valuation is total,

(w,w′) 6∈ R.



It is worth noticing that in arbitrary monotone information frameworks one
cannot ensure that sentences which are neither w-facts nor w-events, are w-
inaccesible, so that the sets F(w), E(w), I(w) form a partition of SL. As we will
discuss in further detail in the concluding section, it is surprisingly difficult to
find natural properties on frames which ensure the rather desirable property that
SL = F(w) ∪ E(w) ∪ I(w). When the information framework is also complete
then we trivially get this condition since I(w) = ∅.

4 Formalising the betting problem

Next we formalise a notion of Dutch book in our generalised framework.

Definition 6. Let 〈W,R〉 be an information frame, and let Γ = {θ1, . . . , θn}. A
book is any mapping B : Γ → [0, 1]. Then we further define:

– for w ∈ W , the book B is said to be w-Dutch iff there exist S1, . . . , Sn ∈ R
such that for every w′ ∈W such that w′ B θi for every i, and (w,w′) ∈ R,

n∑
i=1

Si(w
′(θi)−B(θi)) < 0;

– the book B is said to be w-coherent, or non-w-Dutch, if B is not w-Dutch;
– the book B is said to be a w-book, if each formula θi ∈ Γ is a w-event.

For w-books, being w-Dutch is a notion that collapses to the usual case. In
fact if all the θi’s are w-events, by definition, each possible evaluation of θi is
accessible from w, and hence the extra requirement that the book be w-Dutch is
redundant. On the other hand, a w-coherent w-book can be extended to more
general books satisfying w-coherence, as shown by the following result.

Theorem 2. Let (W,R) be a monotone information frame, let w ∈ W and let
B : θi ∈ Γ 7→ βi ∈ [0, 1] be a w-coherent w-book. Let ϕ be a sentence which is
not a w-event and consider the book B′ = B ∪ {(ϕ, α)}. Then:

(1) B′ is w-coherent iff α = w(ϕ), in case ϕ is a w-fact.
(2) B′ is w-coherent iff α = 0, in case ϕ is w-inaccessible.

Proof: (1). (⇒). Suppose, to the contrary, that α 6= w(ϕ), and in particular
suppose that w(ϕ) = 1, so that α < 1. Then, the gambler can secure a sure win
by betting a positive S on ϕ. In this case in fact, since the information frame
is monotonic by the definition of w-book, w(ϕ) = 1 holds in every world w′

accessible from w. Thus the gambler pays S · α in order to surely receive S in
any such w′. Conversely, if w(ϕ) = 0, then, under the absurd hypothesis, α > 0
and in that case it is easy to see that a sure-winning choice for the gambler
consists in swapping payoffs with the bookmaker, i.e. to bet a negative amount
of money on ϕ.



(⇐). Let S1, . . . , Sn, S be a system of bets on on θ1, . . . , θn, ϕ. SinceB is coherent,
there exists a w′ accessible from w that realizes every θi, and such that

n∑
i=1

Si(βi − w′(θi)) = 0.

Since ϕ is a w-fact and w′ is accessible from w, it follows that w′(ϕ) = w(ϕ) = α.
Therefore one also has(

n∑
i=1

Si(βi − w′(θi))

)
+ S(α− w′(ϕ)) = 0

and hence B′ is also w-coherent.

(2). (⇒). Suppose that α > 0. By contract, the bettor is accepting to pay a
positive stake S > 0 on ϕ, and this means that the he must pay α · S to the
bookmaker, thus occurring in a sure loss since ϕ will not be decided in any world
w′ accessible from w.
(⇐). Since B is w-coherent and since by hypothesis α = 0, B′ extends B in way
which is trivial in the following sense: any gambler betting strictly positive stakes
S1, . . . , Sn, S on B′ will pay to the bookmaker

∑
i Siαi+Sα =

∑
i Siαi+0. And

since ϕ is w inaccessible, in every world w′ accessible from w, she will receive∑
i Siw

′(θi). Hence the coherence of B′ follows from the coherence of B. �

The following example illustrates that w-coherent w-books cannot be char-
acterised, in general, within the standard axiomatic framework for probability.

Example 1. Let L = {p, q} with the following intuitive interpretation:

– p reads “the electron ε has position π”;
– q reads “the electron ε has energy η”.

Suppose further that our agent is in a state w such that the truth value of both
p and q are unknown. In the usual quantum mechanics interpretation, an agent
in w may either learn the position of ε, or its energy, but not both. This gives
rise to the information frame depicted in Figure 1 where we may assume the
following conditions hold:

w1 B p, w1 7 q, and w1(p) = 0; w2 B p, w2 7 q, and w2(p) = 1;
w3 B q, w3 7 p, and w3(q) = 0; w4 B q, w4 7 p, and w4(q) = 1;
w5 B p, q, and w5(p) = w5(q) = 1 w6 B p, q, and w5(p) = w5(q) = 0.
w7 B p, q, and w7(p) = 0, w7(q) = 1 w8 B p, q, and w8(p) = 1, w8(q) = 0.

It is immediate to see that p and q are w-events, but p ∧ q is not. In fact, for
instance, due to the inaccessibility of w5, the valuation v mapping p and q to 1
has no correspondence in the worlds which are accessible from w. Analogously,
¬p ∧ q, p ∧ ¬q and ¬p ∧ ¬q are not w-events either.

Each probability assignement which coherently assigns a value to p∧q returns
P (p ∧ q) = 0. In fact either p ∧ q turns out to be realized in an accessible state
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Fig. 1. Heisenberg’s principle allows for the information frame to be such that states
w1, w2, w3, w4 are reachable from w. Any world in which both variables are decided,
namely w5, w6, w7 and w8, are not accessible from w.

(i.e. in w1, or in w3) in which it turns out to be false, or it turns out to be true,
but in the world w5 which is not accessible. Therefore, by an argument entirely
analogous to the proof of Theorem 2, every assignment giving a positive value
β to p ∧ q would lead to a sure loss for the bookmaker.

Compare this with the standard measure-theoretic approach. In particular
let L2 be the 16 element Lindenbaum algebra generated by the variables p and
q with atoms p ∧ q, ¬p ∧ q, p ∧ ¬q, and ¬p ∧ ¬q. In the absence of the structure
imposed by information frames, it would be very natural to assume a uniform
probability distribution over the atoms of L2, thereby mapping p ∧ q into a
strictly positive value and therefore exposing the bookmaker to sure loss for the
bookmaker.

5 Betting on inaccessible sentences

Example 1 illustrates that an otherwise standard probability assignment on the
atoms of L2 may lead to sure loss because of the inaccessibility of w5. The
purpose of this section is to show that de Finetti’s own coherence criterion fully
applies when the information frame shared by the bookmaker and gamblers are
complete, so that no sentence is inaccessible.

Definition 7 (Bet functions). Let 〈W,R〉 be a monotone information frame,
and w ∈W . We say that a partial function Bet : SL→ [0, 1] satisfying:

Bet(θ) =

{
w(θ) ∈ {0, 1}, if θ ∈ F(w)

0, if θ ∈ I(w)
(4)

is a w-bet function if in addition it satisfies:

– Bet(θ) = Bet(ϕ), for all θ, ϕ ∈ E(w) such that |= θ ↔ ϕ,
– for all θ, ϕ, (θ ∨ ϕ) ∈ E(w) ∪ F(w) in the domain of Bet such that θ |= ¬ϕ,

Bet(θ ∨ ϕ) = Bet(θ) +Bet(ϕ) (5)



– Bet(θ) is not defined on each θ ∈ SL \ (E(w) ∪ F(w) ∪ I(w)).

The conditions in (4) capture the (obvious) formalisation of the intuitive
remarks put forward at the end of Section 2 which we now generalise to possibly
incomplete frames, i.e. such that for some w ∈ W , I(w) 6= ∅. The condition
expressed by (5) clearly captures the additivity of the betting functions.

In order to characterise inaccessible sentences, we will be working with the
corresponding partial valuations and we will identify, for the sake of notational
simplicity, states with (partial) valuations.

Definition 8. Let w,w′ be partial valuations. We say that w and w′ are incom-
patible (and we will write w⊥w′) if ∃p such that wBp, w′Bp, and w(p) 6= w′(p).

For a fixed w and Γ ⊆ SL let V ar(Γ ) be the set of propositional variables
occurring in Γ , we define S(Γ,w) to be the set of worlds w′ ∈W such that:

(1) (w,w′) ∈ R
(2) for all p 6∈ V ar(Γ ), w′(p) = u
(3) there exists a total valuation v such that ∀θ ∈ Γ , v(θ) = w′(θ)

We call the set S(Γ,w) the w-decisive set for Γ . The idea is that S(Γ,w) captures
the minimal set of accessible worlds from w where all sentences of Γ are decided,
and no other sentences except for those that necessarily follow from Γ . States
belonging to the w-decisive set for Γ are logically independent in the following
sense: for any set of formulas Γ , and for every w ∈ W , either S(Γ,w) is empty,
or w′⊥w′′ for each w′, w′′ ∈ S(Γ,w), i.e., by Definition 8, w′ ∪ w′′ ` ⊥.5

The following easily proved proposition sums up interesting properties of
w-decisive sets.

Proposition 3. Let 〈W,R〉 be a monotone information frame, w ∈W , Γ ⊆ SL.
Then the following hold:

1. If Γ ∩ I(w) 6= ∅, then S(Γ,w) = ∅;
2. If Γ ⊆ E(w), then S(Γ,w) 6= ∅;

Let 〈W,R〉 be an information frame, w ∈ W , and Γ ⊆ E(w) ∪ F(w) ∪ I(w).
Further, let Γ ′ = Γ ∩ (E(w) ∪ F(w)). Finally, let π : S(Γ ′, w) → [0, 1] satisfy∑
w′∈S(Γ ′,w) π(w′) = 1, and define Bet′π(·) : Γ ′ ⊆ SL→ [0, 1] by

Bet′π(θ) =
∑

w′∈S(Γ ′,w)

π(w′) · w′(θ),

for all θ ∈ Γ ′.
5 Note that if I(w) 6= ∅, w-bets cannot be characterised as distributions on ATL. As

pointed out in Section 2 above, in fact, the formulas in ATL correspond to total
valuations. But by Proposition 2, whenever I(w) 6= ∅, each w′ corresponding to a
total valuation must be such that (w,w′) 6∈ R.



The map Bet′π is extended to a partial map Betπ over Γ by the coherence
criterion we proved in Theorem 2. Hence, for each θ ∈ Γ ,

Betπ(θ) =

{
Bet′π(θ) if θ ∈ Γ ′,
0 if θ ∈ I(w).

(6)

The following is then easily proved.

Theorem 3. Let Γ , w and π be as above, and let Betπ be defined by (6). Then
Betπ is a w-bet function.

Proof: Betπ restricted to w-events and w-facts of Γ is clearly normalised and
additive in the sense of Definition 7. In addition, for θ ∈ F(w), w(θ) = w′(θ)
for each w′ ∈ S(Γ,w), and hence we have: (i) if w(θ) = 1, then Betπ(θ) =∑
w′∈S(Γ,w) π(w′) · w′(θ) =

∑
w′∈S(Γ,w) π(w′) = 1; (ii) if w(θ) = 0, Betπ(θ) =∑

w′∈S(Γ,w) π(w′) · 0 = 0. Therefore in any case, Betπ(θ) = w(θ) for each θ ∈
F(w), and hence Betπ(>) = 1 holds. �

We close the section by stating two easily proved results which illustrate how
the notion of w-coherence arises from w-bets. The notion of w-coherence will be
the focus of future work.

Theorem 4. Let Γ be any set of formulas, and let B : Γ → [0, 1] be a book.
Then the following are equivalent:

(1) B is w-coherent,
(2) There exists a w-bet function Bet on SL extending B.
(3) There exists a probability measure P on on the Lindenbaum algebra generated

by Γ ∩ (E(w) ∪ F(w)) extending B on Γ ∩ (E(w) ∪ F(w)).

Proof: We are going to sketch the proof of (1)⇔ (2).
(1)⇒ (2). If B is w-coherent, then so is the book B− obtained by restricting

B to the formulas in Γ ′ = Γ ∩ (E(w) ∪ F(w)). Since Γ ′ does not contain w-
inaccessible formulas, B− is coherent and hence a standard argument (see for
instance [8, Theorem 2]) shows that B′ is coherent iff one can find a probability
distribution π on S(Γ ′, w). Then the map Betπ defined through (6) satisfies (2).
(2) ⇒ (1). Let Bet′ the partial mapping on SL defined by restricting Bet on
E(w). Then the claim easily follows from Theorem 2. �

The above theorem shows that the usual characterization of coherence can
be recovered asking for the information frame to be monotone and complete.

Corollary 1. Let 〈W,R〉 be monotone and complete, with w ∈W . Let Γ ⊆ SL,
and let B : Γ → [0, 1]. Then the following are equivalent:

(1) B is w-coherent,
(2) B is coherent,
(3) There exists a w-bet function Bet on SL extending B,
(4) There exists a probability P on SL extending B.



6 Conclusions and future work

We have introduced a logical framework capable of making explicit the implicit
epistemic structure that lies at the very heart of the Bayesian representation
of uncertainty. As a central step towards achieving this we distinguished facts,
events and inaccessible sentences with the understanding that the betting frame-
work underlying the subjective interpretation of probability demands that gen-
uine uncertainty be expressed only on events. The ensuing logical framework
leads to a significant refinement of the classical (logical) representation of prob-
ability functions recalled in Section 1. In this spirit, Theorem 3 shows that
consistent subjective degrees of belief are the subset of probability values which
arise from what we call betting functions.

In further work we will tackle the question at a higher level of generality,
namely by showing how Theorem 1 can be in fact derived within our framework
as a special case of a more general result which involves defining bet functions
over suitable quotient algebras. The idea, roughly speaking, is to capture the
requirement that a specific set of sentences (events) should be given all the unit
mass by factoring a Lindenbaum algebra over the ideal generated by the set of
w-facts, for some w ∈ W . This will provide a suitable basis for giving a pure
measure-theoretic account of subjective probability with its underlying epistemic
structure. One obstacle to achieving this full generality is currently represented
by our unsuccessful attempts to provide natural conditions under which SL is
partitioned by facts, events and inaccessible formulas.
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