
The Use of Cases as Heuristics to speed up

Multiagent Reinforcement Learning

Reinaldo A. C. Bianchi1,2 and Ramón López de Mántaras1

1 Artificial Intelligence Research Institute (IIIA-CSIC), Bellaterra, Spain.
{rbianchi,mantaras}@iiia.csic.es

2 Centro Universitário da FEI, São Bernardo do Campo, Brazil.
rbianchi@fei.edu.br

Abstract. This work presents a new approach that allows the use of
cases in a case base as heuristics to speed up Multiagent Reinforce-
ment Learning algorithms, combining Case Based Reasoning (CBR) and
Multiagent Reinforcement Learning (MRL) techniques. This approach,
called Case Based Heuristically Accelerated Multiagent Reinforcement
Learning (CB-HAMRL), builds upon an emerging technique, Heuristic
Accelerated Reinforcement Learning (HARL), in which RL methods are
accelerated by making use of heuristic information. CB-HAMRL is a
subset of MRL that makes use of a heuristic function H derived from a
case base, in a Case Based Reasoning manner. An algorithm that incor-
porates CBR techniques into the Heuristically Accelerated Minimax–Q
is also proposed and a set of empirical evaluations were conducted in
a simulator for the robot soccer domain, comparing the three solutions
for this problem: MRL, HAMRL and CB-HAMRL. Experimental results
show that using CB-HAMRL, the agents learn faster than using RL or
HAMRL methods.

1 Introduction

Heuristic Accelerated Reinforcement Learning (HARL) (1; 2) is an emerging
technique in which RL methods are sped up by making use of a conveniently
chosen heuristic function, which is used for selecting appropriate actions to per-
form in order to guide exploration during the learning process. HARL techniques
are very attractive: as RL, they are based on firm theoretical foundations. As
the heuristic function is used only in the choice of the action to be taken, many
of the conclusions obtained for RL remain valid for HARL algorithms, such as
the guarantee of convergence to equilibrium in the limit and the definition of an
upper bound for the error.

Although several methods have been successfully applied for defining the
heuristic function, a very interesting option has not been explored yet: the reuse
of previously learned policies, using a Case Based Reasoning approach. This
paper investigates the combination of Case Based Reasoning (CBR) and Multi-
agent Reinforcement Learning (MRL) techniques, with the goal of speeding up
MRL algorithms by using previous domain knowledge, stored as a case base.

2

To do so, we propose a new algorithm, the Case Based Heuristically Accel-
erated Minimax–Q (CB-HAMMQ), which incorporates Case Based Reasoning
techniques into an existing HAMRL algorithm, the Heuristically Accelerated
Minimax–Q (HAMMQ).

Soccer competitions, such as RoboCup, which has been proven to be an
important challenge domain for research, and where RL techniques have been
widely used. The application domain of this paper is that of a a simulator for
the robot soccer domain that extends the one proposed by Littman (3), called
“Expanded Littman’s Soccer”. Nevertheless, the technique proposed in this work
is domain independent.

The paper is organized as follows: section 2 briefly reviews the Multia-
gent Reinforcement Learning problem, describes the HAMRL approach and the
HAMMQ algorithm, while section 3 describes Case Based Reasoning. Section 4
shows how to incorporate CBR techniques into HAMRL algorithms, in a modi-
fied formulation of the HAMMQ algorithm. Section 5 describes the robotic soccer
domain used in the experiments, presents the experiments performed, and shows
the results obtained. Finally, Section 6 provides our conclusions.

2 Heuristic Accelerated Multiagent Reinforcement

Learning

Systems where multiple agents compete among themselves to accomplish their
tasks can be modeled as a discrete time, finite state, finite action Markov Game
(MG) – also known as Stochastic Game (SG). The goal of an agent in a MRL
problem is to learn an optimal policy π : S×A1× . . .×Ak that maps the current
state s into a desirable action(s) a to be performed in s, from any starting state.
In MRL, this policy is learned through trial-and-error interactions of the agent
with its environment: on each interaction step the agent senses the current state s

of the environment, chooses an action a to perform, executes this action, altering
the state s of the environment, and receives a scalar reinforcement signal r (a
reward or penalty).

This paper considers a well-studied specialization of MGs in which there
are only two players, called agent and opponent, having opposite goals. Such
specialization, called a zero-sum Markov Game (ZSMG), allows the definition
of only one reward function that the learning agent tries to maximize while the
opponent tries to minimize. A two player ZSMG (3) is defined by the quintuple
〈S,A,O, T ,R〉, where:

– S: a finite set of environment states.
– A: a finite set of actions that the agent can perform.
– O: a finite set of actions that the opponent can perform.
– T : S ×A×O → Π(S): the state transition function, where Π(S) is a prob-

ability distribution over the set of states S. T (s, a, o, s′) defines a probability
of transition from state s to state s′ (at a time t+1) when the learning agent
executes action a and the opponent performs action o.

3

– R : S ×A ×O → ℜ: the reward function that specifies the reward received
by the agent when it executes action a and its opponent performs action o,
in state s.

To solve a ZSMG, Littman (3) proposed the use of a strategy similar to
Minimax for choosing an action in the Q-Learning algorithm, the Minimax–Q
algorithm, which works in the same way as Q-Learning does. The action-value
function of an action a in a state s when the opponent takes an action o is can
be computed iteratively by:

Q̂t+1(s, a, o)←Q̂t(s, a, o) +

α [r(s, a, o) + γVt(s
′)− Q̂t(s, a, o)], (1)

where α is the learning rate, γ is the discount factor and the value Vt(s) of a
state can be computed using the equation:

V (s) = max
π∈Π(A)

min
o∈O

∑

a∈A

Q(s, a, o)πa, (2)

where the agent’s policy π is a probability distribution over actions, and πa is the
probability of taking the action a against the opponent’s action o. In an Alter-
nating Markov Game (AMG), where two players take their actions in consecutive
turns, the policy becomes deterministic and equation 2 can be simplified:

V (s) = max
a∈A

min
o∈O

Q(s, a, o). (3)

Formally, a Heuristically Accelerated Multiagent Reinforcement Learning
(HAMRL) algorithm is a way to solve a MG problem with explicit use of a
heuristic function H : S × A× O → ℜ to influence the choice of actions during
the learning process. H(s, a, o) defines a heuristic that indicates the desirability
of performing action a when the agent is in state s and the opponent executes
action o.

The first HAMRL algorithm proposed was the Heuristically Accelerated Min-
imax Q (HAMMQ) (2), as an extension of the Minimax–Q algorithm. The only
difference between them is that in the HAMMQ the heuristic function is used in
the action choice rule, which defines which action at must be executed when the
agent is in state st. The action choice rule used in the HAMMQ is a modifica-
tion of the standard ǫ−Greedy rule used in Minimax–Q, to include the heuristic
function:

π(s) =

{

arg max
a

min
o

[

Q̂(s, a, o) + ξHt(s, a, o)
]

if q ≤ p,

arandom otherwise,
(4)

where H : S × A × O → ℜ is the heuristic function, q is a random value
uniformly distributed over [0, 1] and 0 ≤ p ≤ 1 is a parameter that defines the
exploration/exploitation tradeoff. The subscript t indicates that it can be non-
stationary (it can be computed only once, or be continually recomputed) and
0 ≤ ξ ≤ 1 is a real variable used to weight the influence of the heuristic.

4

Table 1. The HAMMQ algorithm.

Initialize Q̂t(s, a, o) and Ht(s, a, o) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Update the values of Ht(s, a, o) as desired.
Select an action a using equation 4.
Execute the action a, observe r(s, a, o), s′.
Update the values of Q(s, a, o) according to equation 1.
s← s′.

Until s is terminal.
Until some stop criteria is reached.

As a general rule, the value of Ht(s, a, o) used in HAMMQ should be higher
than the variation among the Q̂(s, a, o) values for the same s ∈ S, o ∈ O, in
such a way that it can influence the choice of actions, and it should be as low as
possible in order to minimize the error. It can be defined as:

H(s, a, o) =

{

max
i

Q̂(s, i, o)− Q̂(s, a, o) + η if a = πH(s),

0 otherwise.
(5)

where η is a small real value (usually 1) and πH(s) is the action suggested by the
heuristic policy. Convergence of this algorithm is presented by Bianchi, Ribeiro
and Costa (2), together with the definition of an upper bound for the error. The
complete HAMMQ algorithm is presented in Table 1.

Despite the fact that RL is a method that has been traditionally applied
in the Robotic Soccer domain, only recently have HARL methods been used in
this domain. Bianchi, Ribeiro and Costa (2) investigated the use of a multiagent
HARL algorithm in a simplified simulator for the robot soccer domain and Ce-
liberto, Ribeiro, Costa and Bianchi (4) studied the use of the HARL algorithms
to speed up learning in the RoboCup 2D Simulation domain. The heuristic used
in the both papers were very simple ones: in the first paper the heuristic was ‘if
the agent is with the ball, go to the opponent’s goal’, and in the second paper
it was simply ‘go to the ball’.

3 Case-based reasoning

Humans frequently try to solve a new problem by remembering a previous similar
situation, reasoning about it, and then reusing knowledge of that situation to
solve the new problem. Case-based reasoning (CBR) (5; 6) uses knowledge of
previous situations (cases) to solve new problems, by finding a similar past case
and reusing it in the new problem situation. In the CBR approach, a case usually
describes a problem and its solution, i.e., the state of the world in a defined
moment and the sequence of actions to perform to solve that problem.

5

According to López de Mántaras et al (6), solving a problem by CBR in-
volves “obtaining a problem description, measuring the similarity of the current
problem to previous problems stored in a case base with their known solutions,
retrieving one or more similar cases, and attempting to reuse the solution of the
retrieved case(s), possibly after adapting it to account for differences in problem
descriptions”. Other steps that are usually found in CBR systems are the eval-
uation of the proposed solution, the revision of the solution, if required in light
of its evaluation, and the retention (learning) of a new case, if the system has
learned to solve a new problem.

The case definition used in this work is the one proposed by Ros (7; 8; 9;
10; 11; 12), which is composed of three parts: the problem description (P), the
solution description (A) and the case scope (K), and is formally described as a
3-tuple:

case = (P, A, K). (6)

The problem description P corresponds to the situation in which the case can
be used. For example, for a simple robotic soccer problem, the description of a
case can include the robot position, the ball’s position and the positions of the
other robots in the game. For a game with n robots, P can be:

P = {xB, yB, xR0
, yR0

, . . . , xRn
, yRn

}. (7)

The solution description is composed by the sequence of actions that each
robot must perform to solve the problem, and can be defined as:

A = {R0 : [a01
, a02

, ..., a0p0
], . . . , Rn : [an1

, an2
, ..., anpn

]}, (8)

where n is the number of robots in the team, a0i
is an individual or joint action

that robot Ri must perform and pi corresponds to the number of actions the
robot Ri performs.

The case scope defines the applicability boundaries of the cases, to be used
in the retrieval step. For example, Ros (12) define it as “the regions of the field
within which the ball and the opponents should be positioned in order to retrieve
that case”. In the case of a simple robot soccer problem, K can be represented
as circles or ellipsoids centered on the ball’s and opponents’ positions indicated
in the problem description. It can be defined as:

K = {τB, τR0
, . . . , τRn

}, (9)

where τB is the radius of the region around the ball and τR0
. . . τRn

the radius of
the regions around the n robots in the game (teammates and opponents). The
case retrieval process consists in obtaining from the base the most similar case,
the retrieved case. Therefore, it is necessary to compute the similarity between
the current problem and the cases in the base. The similarity function indicates
how similar a problem and a case are. In most cases, the function is defined by
the distance between the ball and the robots in the problem and in the case.

Sim(p, c) = dist(Bc, Bp) +

n
∑

i=0

dist(Ri
c, Ri

p), (10)

6

where Bc is the position of the ball in the case and Bp its position in the problem,
Ri

c the position of the Robot i in the case and Ri
p its position in the problem,

and dist(a, b) is the gaussian distance between object a and b. This distance is
computed as follows:

dist(a, b) = e−((ax−bx)2+(ay−by)2)/2τ2

, (11)

where τ is the radius of the scope around the object. In this work, τ is the same
for the ball and robots positions. The Gaussian distance is used because the
larger the distance between two points, the lower the similarity between them.
Finally, τ is used as a threshold that defines a maximum distance allowed for
two points to have some degree of similarity: if dist(a, b) > τ , Sim(a, b) = 0.

Before a case can be reused, it might be necessary to adapt it to the present
situation. Adaptation of a case means that the retrieved solution is modified, by
translation, rotation or the addition of steps to the sequence of actions in the
solution before it can be used. In this work, we assume that rotation and trans-
lation costs are small when compared to the cost of the additional steps, because
the first two are trivial computations, while the performance of additional steps
by the robots are actions that must be executed (in the simulator or in the real
world), taking more time. Therefore, we define the cost as the number of steps
added to the adapted solution. In this work, the case that will be reused is the
one that maximizes the similarity while minimizing the adaptation cost.

In recent years, CBR has been used by several researchers in the Robotic
Soccer domain. By far, the Robocup 2D Simulation League is the domain where
more work has been done. To mention a few, Lin, Liu and Chen (13) presented
a hybrid architecture for soccer players where the deliberative layer corresponds
to a CBR system, Ahmadi et al (14) presented a two-layered CBR system for
prediction for the coach and Berger and Lämmel (15) proposed the use of a CBR
system to decide whether a pass should be performed.

CBR has been also used in other Robocup Leagues. In the Small Size League,
Srinivasan et al (16) proposed a CBR planning for both offense and defense team
behavior, for a team of two soccer playing robots; in the work by Marling et al

(17), CBR is used to help planning individual moves and team strategies. In the
Four-Legged League, Karol et al (18) presented high level planning strategies
including a CBR system. Finally, the works of Ros (12) presents the most ample
use of CBR techniques in the Robotic Soccer domain, proposing the use of CBR
techniques to handle retrieval, reuse and acquisition of a case base for the action
selection problem of a team for the Four-Legged League (9; 11; 12). A more
extensive review of the use of CBR in Robotic Soccer can be found in works by
(19) and by Ros (7; 12).

4 Combining Case Based Reasoning and Multiagent

Reinforcement Learning

Bianchi, Ribeiro and Costa (1) states that there should be many methods that
can be used to define a heuristic function for a HARL algorithm. For example,

7

Table 2. The CB-HAMMQ algorithm.

Initialize Q̂t(s, a, o) and Ht(s, a, o) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Compute similarity and cost.
If there is a case that can be reused:

Retrieve and Adapt if necessary.
Compute Ht(s, a, o) using Equation 5 with the

actions suggested by the case selected.
Select an action a using equation 4.
Execute the action a, observe r(s, a, o), s′.
Update the values of Q(s, a, o) according to equation 1.
s← s′.

Until s is terminal.
Until some stop criteria is reached.

the same work makes use of information from the learning process itself to infer a
heuristic in execution time, proposing a technique that derives a crude estimate
of the transition probabilities, and then it propagates – from a final state – the
correct policies which lead to that state. Bianchi, Ribeiro and Costa (2) employed
prior domain knowledge to establish a very simple ad-hoc heuristic for speeding
up learning in a Multiagent Reinforcement Learning domain.

In order to give HAMRL algorithms the capability of reusing previous knowl-
edge from a domain, we propose a new algorithm, the Case Based HAMMQ, that
extends the HAMMQ algorithm, being capable of retrieving a case stored in a
base, adapting it to the current situation, and building a heuristic function that
corresponds to the case.

As the problem description P corresponds to one defined state of the set of
states S in an MDP, an algorithm that uses the RL loop can be implemented.
Inside this loop, before the action selection, we added steps to compute the sim-
ilarity of the cases in the base with the current state and the cost of adaptation
of these cases. A case is retrieved if the similarity is above a certain threshold,
and adaptation cost is low. After a case is retrieved, an heuristic is computed
using Equation 5 with the actions suggested by the case selected. The complete
CB-HAMMQ algorithm is presented in Table 2.

Sharma et al (20) makes use of CBR as a function approximator for RL,
and RL as revision algorithm for CBR in a hybrid architecture system; Juell
and Paulson (21) exploit the use of RL to learn similarity metrics in response to
feedback from the environment; Auslander et al (22) uses CBR to adapt quickly
an RL agent to changing conditions of the environment by the use of previously
stored policies and Li, Zonghai and Feng (23) proposes an algorithm that makes
use of knowledge acquired by reinforcement learning to construct and extend a
case base.

8

Our approach differs from all previous works combining CBR and RL be-
cause of the heuristic use of the retrieved case. Bianchi, Ribeiro and Costa (2)
proved that if the heuristic used is an admissible one, there will be a speed up in
convergence time, if not, the use of the heuristic will not impede the RL method
to converge to the optimal policy. As we use the case base as an heuristic, if
the case base corresponds to an admissible heuristic there will be a speed up in
the convergence time. But if the case base does not contain any useful case –
or even if it contains cases that implement wrong solutions to the problem, the
agent will learn the optimal solution anyway, by using the RL component of the
algorithm (2). Finally, this is the first work that uses CBR in a MRL algorithm.

5 Experiments in the Robotic Soccer Domain

A set of empirical evaluations of the CB-HAMMQ approach were carried out in
a proposed simulator for the robot soccer domain that extends the one proposed
by Littman (3). In this domain, called “Expanded Littman’s Soccer”, two teams,
A and B, of three players each compete in a 10 x 15 grid presented in figure 1.
Each team is composed by the goalie (g), the defender (d) and the attacker (a).
Each cell can be occupied by only one player. The actions that are allowed are:
keep the agent still, move – north, south, east and west – or pass the ball to
another agent. The action “pass the ball” from agent ai to aj is successful if
there is no opponent in between them. If there is an opponent, it will catch the
ball and the action will fail. Actions are taken in turns: all actions from one
team’s agents are executed at the same instant, and then the opponents’ actions
are executed. The ball is always with one of the players. When a player executes
an action that would finish in a cell occupied by the opponent, it loses the ball
and stays in the same cell. If an action taken by one agent leads it out the board,
the agent stands still. When a player with the ball gets into the opponent’s goal,
the trial ends and its team scores one point. The starting positions of all players
are random, and the ball is given to one of the agents in a random fashion at
the beginning of a trial.

To solve this problem, three algorithms were used: the Minimax–Q, described
in section 2, the HAMMQ, described in section 2 and the CB-HAMMQ, proposed
in section 4. Although this domain is still a simple one, it is more complex than
the original one proposed by Littman: due to the size of the state space, it is
not possible to use a lookup table containing all the states of the problem. In
this work a variable resolution table similar to the one proposed by Munos and
Moore (24) is used.

The heuristic used in the HAMMQ algorithm was defined using a simple
rule: if holding the ball, go to the opponents’ goal, not taking into account the
teammates’ and opponents’ positions, leaving tasks such as learning to pass the
ball or to divert the opponent to the learning process.

The heuristic value used in the CB-HAMMQ is computed during the games,
as described in section 4. The case base used contains a set of basic cases that
can be used without adaptation costs. The case base used in this experiment is

9

Ag

Ad

Aa

Ba

Bd

Bg

Fig. 1. The “Expanded Littman’s Soccer” environment proposed.

composed of 5 basic cases, which cover the most significant situations that are
observed during a game in the expanded Littman’s Soccer environment. These
cases can be described as:

1. If the agent is with the ball and there is no opponent blocking it, then move
to the goal.

2. If the agent is with the ball and there is an opponent blocking it, then move
up.

3. If the agent is with the ball and there is an opponent blocking it, then move
down.

4. If the agent is with the ball and a teammate is closer to the goal, then pass
the ball to the other agent.

5. If the ball is with an opponent and the agent is close to the opponent, then
stay in front of the opponent.

Is important to notice that this case base does not correspond to the optimal
solution of the problem.

The reward the agents receive are the same for all algorithms: the agent that
is holding the ball receives +100 every time it reaches the goal. This is a very
simple reward scheme, but we decided to use it in this work to avoid the creation
of a mismatch between the reward function used in training and the performance
measure examined, which is the number of goals scored. Other reward schemes
could be used, for example, one that gives rewards to intercepting the ball, losing
the ball or correctly passing the ball, such as the one used by Kalyanakrishnan,
Liu and Stone (25).

Thirty training sessions were run for the three algorithms, with each session
consisting of 20,000 games of 10 trials. Figure 2 shows the learning curves for all
algorithms when the learning team plays against an opponent moving randomly,
and presents the average goal balance scored by the learning team in each match.

10

 0

 2

 4

 6

 8

 10

 12

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

G
oa

ls

Games

CBR
Minimax-Q

HAMMQ
CB-HAMMQ

Fig. 2. Goals balance for the CBR, Minimax–Q, the HAMMQ and the CB-HAMMQ
algorithms against a random opponent for the Expanded Littman’s Robotic Soccer.

It is possible to verify that at the beginning of the learning phase Minimax–Q has
worse performance than HAMMQ, and that this has a worse performance than
CB-HAMMQ. As the matches proceed, the performance of the three algorithms
become similar, as expected. As it can be seen in this figure, the Minimax–Q is
still learning after 20,000 games: as it is slower than the other two algorithms, it
will only reach the optimal solution after 50,000 games. In this figure it can also
be observed the performance of a team of agents using only the case base: a line
with values close to 7. As the case base does not contain the optimal solution to
the problem, the agents have a performance that is worst than the one presented
by the other teams at the end of the learning process.

Figure 3 presents the learning curves (the difference of goals made at the end
of a game) for the three algorithms when learning while playing against a learning
opponent using Minimax–Q. It can be seen that CB-HAMMQ is better than
HAMMQ and Minimax–Q at the beginning of the learning process. Student’s
t–test was used to verify the hypothesis that the use of heuristics speeds up the
learning process. The result is that the CB-HAMMQ is better than HAMMQ
until the 7,000th game when playing against a random opponent, and until the
500th game when playing against the Minimax–Q, with a level of confidence
greater than 5%. The same test can be made comparing the CB-HAMMQ and
the Minimax–Q: in this case, the first outperform the latter until the 20,000th

game, while both are playing against a random opponent, and until the 1,000th

game when the CB-HAMMQ is playing against the Minimax–Q. After these

11

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 500 1000 1500 2000

G
oa

ls

Games

Minimax-Q
HAMMQ

CB-HAMMQ

Fig. 3. Goals balance for Minimax–Q, the HAMMQ and the CB-HAMMQ algorithms
against an opponent using Minimax–Q for the Expanded Littman’s Robotic Soccer.

number of games the results of the algorithms are comparable, since the three
algorithms converge to equilibrium.

Finally, table 3 shows the average number of goals and the average number of
games won at the end of 20,000 games while playing against a random opponent,
and table 4 presents the same data for games played against a Minimax–Q oppo-
nent, at the end of 2,000 games. It can be seen in table 4 that when Minimax–Q
agents are playing against other Minimax–Q agents, the number of goals made
and games won are approximately the same, while when CB-HAMMQ agents
played against Minimax–Q ones, CB-HAMMQ team made more goals and won
more games. CB-HAMMQ also won more games (1145, losing 425) and made
more goals (11109) than the HAMMQ algorithm.

Table 3. Results for games against Random opponent.

Algorithm Goals made × goals conceded

Minimax–Q (140207 ± 174) × (38498 ± 164)
HAMMQ (166208 ± 150) × (22065 ± 153)

CB-HAMMQ (188168 ± 155) × (11292 ± 140)

Games won × games lost

Minimax–Q (18297 ± 33) × (1037 ± 28)
HAMMQ (19469 ± 9) × (27 ± 4)

CB-HAMMQ (19997 ± 1) × (0 ± 0)

12

Table 4. Results for games against Minimax–Q opponent.

Algorithm Goals made × goals conceded

Minimax–Q (10299 ± 234) × (9933 ± 240)
HAMMQ (10467 ± 197) × (9347 ± 197)

CB-HAMMQ (11109 ± 152) × (8845 ± 153)

Games won × games lost

Minimax–Q (848 ± 60) × (696 ± 55)
HAMMQ (998 ± 50) × (530 ± 43)

CB-HAMMQ (1145 ± 37) × (426 ± 32)

The parameters used in the experiments were the same for all the algorithms.
The learning rate is α = 0, 9, the exploration/ exploitation rate was defined as
being equal to 0.2 and the discount factor γ = 0.9 (these parameters are similar
to those used by Littman (3). The value of η was set to 1. Values in the Q
table were randomly initiated, with 0 ≤ Q(st, at, ot) ≤ 1. The experiments were
programmed in C++ (GNU g++ compiler) and executed in a MacBook Pro,
with 4GB of RAM in a Mac OS X platform.

6 Conclusion

This work presented a new algorithm, called Case Based Heuristically Acceler-
ated Minimax–Q (CB-HAMMQ), which allows the use of a case base to define
heuristics to speed up the well-known Multiagent Reinforcement Learning al-
gorithm Minimax–Q. This approach builds upon an emerging technique, the
Heuristic Accelerated Reinforcement Multiagent Learning, in which MRL meth-
ods are accelerated by making use of heuristic information. The experimental re-
sults obtained using a new domain proposed for the robotic soccer games showed
that CB-HAMMQ attained better results than HAMMQ and Minimax–Q alone.

Finally, since Heuristic functions allow RL algorithms to solve problems
where the convergence time is critical, as in many real time applications. Fu-
ture works includes incorporating CBR in other well known Multiagent RL al-
gorithms, like Minimax-SARSA, Minimax–Q(λ), and Nash-Q, and expanding
this framework to deal with General Sum Markov Games.

Bibliography

[1] Bianchi, R.A.C., Ribeiro, C.H.C., Costa, A.H.R.: Accelerating autonomous
learning by using heuristic selection of actions. Journal of Heuristics 14(2)
(2008) 135–168

[2] Bianchi, R.A.C., Ribeiro, C.H.C., Costa, A.H.R.: Heuristic selection of
actions in multiagent reinforcement learning. In Veloso, M., ed.: Proceedings
of the 20th International Joint Conference on Artificial Intelligence (IJCAI
2007), AAAI Press, AAAI Press (2007) 690–695

[3] Littman, M.L.: Markov games as a framework for multi-agent reinforcement
learning. In: Proceedings of the 11th International Conference on Machine
Learning (ICML’94). (1994) 157–163

[4] Celiberto, L.A., Ribeiro, C.H.C., Costa, A.H.R., Bianchi, R.A.C.: Heuristic
reinforcement learning applied to robocup simulation agents. In Visser,
U., Ribeiro, F., Ohashi, T., Dellaert, F., eds.: RoboCup. Volume 5001 of
Lecture Notes in Computer Science., Springer (2007) 220–227

[5] Aamodt, A., Plaza, E.: Case-based reasoning: foundational issues, method-
ological variations, and system approaches. AI Commun. 7(1) (1994) 39–59

[6] de Mántaras, R.L., McSherry, D., Bridge, D., Leake, D., Smyth, B., Craw,
S., Faltings, B., Maher, M.L., Cox, M.T., Forbus, K., Keane, M., Aamodt,
A., Watson, I.: Retrieval, reuse, revision and retention in case-based rea-
soning. Knowl. Eng. Rev. 20(3) (2005) 215–240

[7] Ros, R., Arcos, J.L., de Mántaras, R.L., Veloso, M.: A case-based approach
for coordinated action selection in robot soccer. Artificial Intelligence (2009)
doi:10.1016/j.artint.2009.02.004

[8] Ros, R., Veloso, M., de Mántaras, R.L., Sierra, C., Arcos, J.L.: Retriev-
ing and reusing game plays for robot soccer. Lecture Notes in Artificial
Intelligence 4106 (2006) 47–61

[9] Ros, R., Veloso, M., de Mántaras, R.L., Sierra, C., Arcos, J.L.: Beyond
individualism: Modeling team playing behavior in robot soccer through
case-based reasoning. In: 22nd AAAI Conference on Artificial Intelligence,
Vancouver, Canada, AAAI Press, AAAI Press (2007) 1671–1674

[10] Ros, R., de Mántaras, R.L., Arcos, J.L., Veloso, M.: Team playing behavior
in robot soccer: A case-based approach. Lecture Notes in Artificial Intelli-
gence 4626 (2007) 46–60

[11] Ros, R., Arcos, J.L.: Acquiring a robust case base for the robot soccer
domain. In Veloso, M., ed.: Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI 2007), AAAI Press, AAAI Press
(2007) 1029–1034

[12] Ros, R.: Action Selection in Cooperative Robot Soccer using Case-Based
Reasoning. PhD thesis, Universitat Autònoma de Barcelona, Barcelona
(2008)

[13] Lin, Y., Liu, A., Chen, K.: A hybrid architecture of case-based reasoning and
fuzzy behavioral control applied to robot soccer. In: Workshop on Artificial

14

Intelligence, International Computer Symposium (ICS2002), Hualien, Tai-
wan, National Dong Hwa University, National Dong Hwa University (2002)

[14] Ahmadi, M., Lamjiri, A.K., Nevisi, M.M., Habibi, J., Badie, K.: Using a
two-layered case-based reasoning for prediction in soccer coach. In Arabnia,
H.R., Kozerenko, E.B., eds.: MLMTA, CSREA Press (2003) 181–185

[15] Berger, R., Lämmel, G.: Exploiting past experience – case-based decision
support for soccer agents. In: KI 2007: Advances in Artificial Intelligence
- 30th Annual German Conference on AI. Volume 4667., Springer (2007)
440–443

[16] Srinivasan, T., Aarthi, K., Meenakshi, S.A., Kausalya, M.: Cbrrobosoc: An
efficient planning strategy for robotic soccer using case based reasoning.
In: CIMCA ’06: Proceedings of the International Conference on Computa-
tional Inteligence for Modelling Control and Automation and International
Conference on Intelligent Agents Web Technologies and International Com-
merce, Washington, DC, USA, IEEE Computer Society (2006) 113

[17] Marling, C., Tomko, M., Gillen, M., Alexander, D., Chelberg, D.: Case-
based reasoning for planning and world modeling in the robocup small size
league. In: IJCAI-03 Workshop on Issues in Designing Physical Agents for
Dynamic Real-Time Environments. (2003)

[18] Karol, A., Nebel, B., Stanton, C., Williams, M.A.: Case based game play
in the robocup four-legged league part i the theoretical model. In Polani,
D., Browning, B., Bonarini, A., Yoshida, K., eds.: RoboCup. Volume 3020
of Lecture Notes in Computer Science., Springer (2003) 739–747

[19] Burkhard, H.D., Berger, R.: Cases in robotic soccer. In Weber, R., Richter,
M.M., eds.: ICCBR. Volume 4626 of Lecture Notes in Computer Science.,
Springer (2007) 1–15

[20] Sharma, M., Holmes, M., Santamaŕıa, J.C., Irani, A., Jr., C.L.I., Ram, A.:
Transfer learning in real-time strategy games using hybrid cbr/rl. In Veloso,
M., ed.: Proceedings of the 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007), AAAI Press, AAAI Press (2007) 1041–1046

[21] Juell, P., Paulson, P.: Using reinforcement learning for similarity assessment
in case-based systems. IEEE Intelligent Systems 18(4) (2003) 60–67

[22] Auslander, B., Lee-Urban, S., Hogg, C., Muñoz-Avila, H.: Recognizing
the enemy: Combining reinforcement learning with strategy selection using
case-based reasoning. In Althoff, K.D., Bergmann, R., Minor, M., Hanft,
A., eds.: ECCBR. Volume 5239 of Lecture Notes in Computer Science.,
Springer (2008) 59–73

[23] Li, Y., Zonghai, C., Feng, C.: A case-based reinforcement learning for probe
robot path planning. In: 4th World Congress on Intelligent Control and
Automation, Shanghai, China. (2002) 1161– 1165

[24] Munos, R., Moore, A.: Variable resolution discretization in optimal control.
Machine Learning 49(2/3) (2002) 291–323

[25] Kalyanakrishnan, S., Liu, Y., Stone, P.: Half field offense in robocup soccer:
A multiagent reinforcement learning case study. In Visser, U., Ribeiro, F.,
Ohashi, T., Dellaert, F., eds.: RoboCup. Volume 5001 of Lecture Notes in
Computer Science., Springer (2007) 72–85

