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Preface

Knowledge representation and reasoning (KRR), on the one hand, and
machine learning (ML), on the other hand, have largely been developed as
independent research trends in artificial intelligence (AI). Human reasoning,
however, is often based on an intricate combination of processes that are
related to learning (e.g. induction or extrapolation) and processes that are
closer to deductive reasoning. Similarly, we can expect that progress in
AI will increasingly need to rely on hybrid approaches that combine the
explainability and teachability of KRR methods with the robustness and
data-driven nature of ML methods. The ambitious aim of truly integrating
reasoning and learning beyond one-way linkage raises many new questions,
which this workshop hopes to explore.

Beyond a study of the underlying principles, this workshop also focuses on
applications, with a particular emphasis on the use of spatial and temporal
knowledge in everyday tasks.

The workshop serves as a forum for researchers from di↵erent fields (in-
cluding Automated Theorem Proving, Cognitive Computing, Cognitive Ro-
botics, Commonsense Reasoning, Constraint Solving, Logic, Mathematics,
Machine Learning, Natural Language Processing, Theoretical Computer Sci-
ence, Qualitative Reasoning) to discuss open problems, methodology, and
recent advancements in the field. It also provides a forum for early career
researchers to present their current work and to build up networks.

This workshop is the first under this name and with this scope. However
it is to a limited extent a follow-up of previous ECAI and IJCAI workshops
(already co-organised by three of the co-organisers of the present workshop):

• the successful series of WL4AI workshops (Weighted Logics for Ar-
tificial Intelligence: ECAI-2012, IJCAI-2013, IJCAI-2015)

• the IJCAI-2017 workshop on Logical Foundations for Uncertainty
and Learning (LFU)

L & R - 2018 looks broadly at the intersection of logical formalisms and
learning, by unifying the themes of WL4AI and LFU, and additionally en-
couraged submissions touching on defeasible reasoning and nonmonotonic
frameworks among other issues.

Finally, we would like to express our gratitude to:

• Jesse Davis, Kristian Kersting, Angelika Kimmig, Stephen Muggle-
ton and Marco Schorlemmer for having accepted to give invited talks
at this workshop,

• the program committee members for their commitment to the success
of this event and for their work,

• the authors of LR-2018 for the quality of their contributions.

Vaishak Belle, Lluis Godo, Henri Prade, Jochen Renz, Steven Schockaert,
Ute Schmid, and Diedrich Wolter
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This workshop results from the fusion of two workshop proposals that were encouraged to

merge by the organizers of the joint workshop program of the Federated AI Meeting of AAMAS,

ICML, and IJCAI (FAIM), leading to an unusually large set of Workshop Chairs.
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Alex Kirsch Tübingen University/Intuity, Germany
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July 13 and 14, 2018, Stockholm, Sweden

Friday 13

14.30 - 14.10 Welcome

14.10 - 15.00 Invited talk: Challenges in Real-World (Spatio-)Temporal Data:
Case Studies in Anomaly Detection and Sports
Jesse Davies

15.00 - 15.10 Discussion

15.10 - 15.30 Session 1:
Inductive Logic Programming, Ontology Reasoning, and Spatial Knowledge:
A Short Survey of 15-Years Research
Francesca Alessandra Lisi

Co↵ee Break 15.30 – 16.00

16.00 - 16.50 Invited talk: Meta-Interpretive Learning: Achievements and Challenges
Stephen Muggleton

16.50 - 17.00 Discussion

17.00 - 17.30 Organiser talk: Towards a reconciliation between reasoning and learning:
A position paper
Didier Dubois, Henri Prade

17.30 - 17.40 Discussion

17.40 - 18.30 Invited talk: Reasoning at a Distance by Way of Conceptual Metaphors and Blends
Marco Schorlemmer

18.30 - 18.40 Discussion

End of the afternoon session

2

The contents of this programme includes a series of invited talks and (shorter) organiser

talks together with regular contributions in order to provide multiple views of the ways learning

and reasoning may interact. Each session is followed by substantial time for discussion among

participants.
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9.00 - 9.50 Invited talk: Probabilistic logic programming and learning
Angelika Kimmig

9.50 - 10.00 Discussion

Co↵ee Break 10.00 – 10.30

10.30 - 11.00 Organiser talk: E↵ective probabilistic logical reasoning in continuous domains
Vaishak Belle

11.00 - 11.10 Discussion

11.10 - 11.50 Session 2:

A Symbolic Approach for Explaining Errors in Image Classification Tasks
Marjan Alirezaie, Martin Längkvist, Michael Sioutis and Amy Loutfi

Sugeno Integral for Rule-Based Monotone Classification
Quentin Brabant, Miguel Couceiro, Didier Dubois, Henri Prade and Agnes Rico

11.50 - 12.20 Organiser talk: Geometric representations of logical theories
Steven Schockaert

12.20 - 12.30 Discussion

Lunch 12.30 – 14.00

14.00 - 15.15 Session 3:

Inducing Regular Grammars Using Recurrent Neural Networks
Mor Cohen, Avi Caciularu, Idan Rejwan and Jonathan Beran

Using Sequence to Sequence Neural Networks for Solving
Similar Mathematical Problems
Ali Davody and Mihai Sebastian Baba

Refining Manually-Designed Symbol Grounding and
High-Level Planning by Policy Gradients
Takuya Hiraoka, Takashi Onishi and Yoshimasa Tsuruoka

Spatio-temporal awareness for wireless telecommunicaiton networks
H. Joe Steinhauer, Tove Helldin and Gunnar Mathiason

15.15 - 15.30 Discussion

Co↵ee Break 15.30 – 16.00

16.00 - 16.30 Organiser talk: Integrating Qualitative Spatial Reasoning and Learning:
Prospects and Problems
Diedrich Wolter

16.30 - 16.40 Discussion

16.40 - 17.30 Invited talk: Computational modeling of complex AI systems that learn and think
Kristian Kersting

17.30 - 17.40 Discussion

17.40 - 18.10 Organiser talk: Learning or Reasoning? Identifying Problems
Where One Is Not Enough
Jochen Renz

18.10 - 18.30 Discussion and closing
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Challenges in Real-World (Spatio-)Temporal Data:

Case Studies in Anomaly Detection and Sports

Jesse Davis

KU Leuven
Belgium

Abstract

An unifying theme in my research is the analysis of real-world (spatio-)
temporal data. We investigate data generated from a variety of di↵erent
sources such as sports matches, (recreational) athletes, retail stores, and
airplanes among others. On the one hand, these domains are characterized
by the presence of domain knowledge that is crucial to consider when design-
ing solutions. On the other hand, they give rise to very rich and complicated
data that confront an analyst with a variety of challenges such as the lack of
ground truth labels, the need to construct relevant features, and changing
contexts. In this talk, I will highlight some of the most important challenges
that arise in this setting and how we have tackled them by discussing two
di↵erent applications. In the first part of the talk, I will discuss the prob-
lem of attempting to identify anomalies in resource usage data from a retail
environment. In the second part of the talk, I will describe our e↵orts to
analyze data arising from sports matches.
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Computational modeling of complex AI systems that learn

and think

Kristian Kersting

TU Darmstadt
Darmstad, Germany

Abstract

Our minds make inferences that appear to go far beyond standard ma-
chine learning. Whereas people can learn richer representations and use
them for a wider range of learning tasks, machine learning algorithms have
been mainly employed in a stand-alone context, constructing a single func-
tion from a table of training examples. In this talk, I shall touch upon a
view on machine learning and AI that can help capturing these human learn-
ing aspects by combining high-level languages and databases with statistical
learning, optimisation, and deep learning. High-level features such as rela-
tions, quantifiers, functions, and procedures provide declarative clarity and
succinct characterisations of the data science problem at hand. This helps
reducing the cost of modelling and solving it. Putting deep probabilistic
learning into the machine learning stack, it even paves the way towards one
of my dreams, the automatic data scientist an AI that makes data analysis
and reporting accessible to a broader audience of non-experts in machine
learners.

This talk is based on joint works with many people such as Vaishak
Belle, Carsten Binnig, Martin Grohe, Zoubin Ghahramani, Samuel Kolb,
Parisa Kordjamshidi, Martin Mladenov, Alejandro Molina, Sriraam Natara-
jan, Robert Peharz, Cristopher Re, Dan Roth, Scott Sanner, Karl Stelzner,
Martin Trapp, Isabel Valera, and Antonio Vergari.
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Probabilistic logic programming and learning

Angelika Kimmig

Cardi↵ University
Cardi↵, UK

Abstract

Reasoning with relational data, learning, and dealing with uncertainty are
central to many aspects of AI. Their combination is studied under a variety
of names, and a broad range of languages and tools have been developed.
Probabilistic logic programming achieves this combination by extending the
representation and reasoning capabilities of logic programming to settings
with uncertain data. This talk provides a gentle introduction to the field,
and also touches upon applications and challenges.

L & R  2018

- 3 -



Meta-Interpretive Learning: Achievements and Challenges

Stephen H. Muggleton

Imperial College London
London, UK

Abstract

Meta-Interpretive Learning (MIL) is a recent Inductive Logic Programming
technique aimed at supporting learning of recursive definitions. A power-
ful and novel aspect of MIL is that when learning a predicate definition it
automatically introduces sub-definitions, allowing decomposition into a hi-
erarchy of reuseable parts. MIL is based on an adapted version of a Prolog
meta-interpreter. Normally such a meta-interpreter derives a proof by re-
peatedly fetching first-order Prolog clauses whose heads unify with a given
goal. By contrast, a meta-interpretive learner additionally fetches higher-
order meta-rules whose heads unify with the goal, and saves the resulting
meta-substitutions to form a program. This talk will overview theoretical
and implementational advances in this new area including the ability to learn
Turing computabale functions within a constrained subset of logic programs,
the use of probabilistic representations within Bayesian meta-interpretive
and techniques for minimising the number of meta-rules employed. The
talk will also summarise applications of MIL including the learning of reg-
ular and context-free grammars, learning from visual representations with
repeated patterns, learning string transformations for spreadsheet applica-
tions, learning and optimising recursive robot strategies and learning tactics
for proving correctness of programs. The talk will conclude by pointing to
the many challenges which remain to be addressed within this new area.
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Reasoning at a Distance by Way of Conceptual Metaphors

and Blends

Marco Schorlemmer

IIIA - CSIC
Barcelona, Spain

Abstract

Cognitive scientists of the embodied cognition tradition have been provid-
ing evidence that a large part of our creative reasoning and problem-solving
processes are carried out by means of conceptual metaphor and blending,
grounded on our bodily experience with the world. In this talk I shall aim at
fleshing out a mathematical model that has been proposed in the last decades
for expressing and exploring conceptual metaphor and blending with greater
precision than has previously been done. In particular, I shall focus on the
notion of aptness of a metaphor or blend and on the validity of metaphorical
entailment. Towards this end, I shall use a generalisation of the category-
theoretic notion of colimit for modelling conceptual metaphor and blending
in combination with the idea of reasoning at a distance as modelled in the
Barwise-Seligman theory of information flow. I shall illustrate the adequacy
of the proposed model with an example of creative reasoning about space
and time for solving a classical brain-teaser. Furthermore, I shall argue for
the potential applicability of such mathematical model for ontology engi-
neering, computational creativity, and problem-solving in general.
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E↵ective probabilistic logical reasoning in continuous

domains

Vaishak Belle

University of Edinburgh
Edinburgh, UK

Abstract

Weighted model counting (WMC) is the problem of com- puting the mass
of a function over the set of models of a propositional theory and lies at the
heart of probabilistic ar- tificial intelligence, where a core issue is to quantify
uncer- tainty over logically-structured worlds. Many state-of-the-art algo-
rithms dealing with discrete Bayesian networks, factor graphs, probabilistic
programs , and probabilistic databases reduce their inference problem to
a WMC computation. While a typical WMC inference task is to compute
the partition functions and marginals of factored probability distributions, it
has also been used as a subroutine for more general tasks such as automated
planning.

In this talk, we report on a new computational abstraction called weighted
model integration that extends WMC to continuous and mixed discrete con-
tinuous domains. We discuss various strategies for solving the task e↵ec-
tively.
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Towards a reconciliation between reasoning and learning
A position paper

Didier Dubois1 and Henri Prade1,2
1. IRIT, University of Toulouse, France

2. QCIS, University of Technology, Sydney, Australia
{dubois,prade}@irit.fr

Abstract

The paper first examines the contours of artificial
intelligence (AI) at its beginnings, more than sixty
years ago, and points out the important place that
machine learning already had at that time. The am-
bition of AI of making machines capable of per-
forming any information processing task that the
human mind can do, means that AI should cover
the two modes of human thinking: the instinctive
(reactive) one and the deliberative one. This also
corresponds to the difference between mastering a
skill without being able to articulate it and hold-
ing some pieces of knowledge that one can use to
explain and teach. In case a functional represen-
tation applies to a considered AI problem, the re-
spective merits of learning a universal approxima-
tion of the function vs. a rule-based representation
are discussed, with a view to better draw the con-
tours of AI. Moreover, the paper reviews the rela-
tive positions of knowledge and data in reasoning
and learning, and advocates the need for bridging
the two tasks. Some examples are outlined. The
paper is also a plea for a unified view of the various
facets of AI as a science.

1 Introduction
What is artificial intelligence (AI) about? What are the re-
search topics that belong to AI? What are the topics that stand
outside? In other words, what are the contours of AI? An-
swers to these questions may have evolved with time, as did
the issue of the proper way (if any) of doing AI.

Indeed over time, AI has been successively dominated by
logical approaches (until the mid 1990’s) giving birth to the
so-called “symbolic AI”, then by (Bayesian) probabilistic ap-
proaches, and since recently by another type of numerical
approach, artificial neural networks. This state of facts has
contributed to developing antagonistic feelings between dif-
ferent schools of thought, including claims of supremacy of
some methods over others, rather than fostering attempts to
understand the potential complementarity of approaches.

Moreover, when some breakthrough takes place in some
sector of AI such as expert systems in the 1980’s, or fuzzy

logic in the 1990’s (outside mainstream AI), or yet deep learn-
ing [LeCun et al., 2015] nowadays, it is presented through
its technological achievements rather than its actual scientific
results. So we may even - provocatively - wonder: Is AI a
science, or just a bunch of engineering tools? In fact, AI has
developed over more than sixty years in several directions,
and many different tools have been proposed for a variety of
purposes. This increasing diversity, rather than being a valu-
able asset, may be harmful for an understanding of AI as a
whole, all the more so as most AI researchers are highly spe-
cialized in some area and are largely ignoring the rest of the
field.

Besides, beyond the phantasms and fears teased by the
phrase ‘artificial intelligence’, the meaning of words such as
‘intelligence’, ‘learning’, or ‘reasoning’ has a large spectrum
and may refer to quite different facets of human mind activ-
ities, which contributes to blur the meaning of what we say
when we are using the acronym AI. Starting with ‘intelli-
gence’, it is useful to remember the dichotomy popularized
by [Kahneman, 2011] between two modes of thinking: “Sys-
tem 1” which is fast, instinctive and emotional, while “Sys-
tem 2” is slower, more deliberative, and more logical. See
[Raufaste, 2001] for an illustration of similar ideas in the area
of radiological diagnosis, where “super-experts” provide cor-
rect diagnosis, even on difficult cases, without any delibera-
tion, while “ordinary experts” may hesitate, deliberate on the
difficult cases and finally make a wrong diagnosis. Still, a
“super-expert” is able to explain to an “ordinary expert” why
went wrong and what was important to notice in the difficult
cases.

Darwiche [2017] has recently pointed out that what is
achieved by deep leaning corresponds to tasks that do not
require much deliberation, at least for a top expert, and is
far from covering all that may be expected from AI. In other
words, the system is mastering skills rather than being also
able to elaborate knowledge for thinking and communicating
about its skills. This is the difference between an excellent
driver (without teaching capability) and a driving instructor.

The intended purpose of this note is to advocate in favor of
a unified view of AI both in terms of problems and in terms of
methods. The paper is organized as follows. First, in Section
2 a reminder on the history of the early years of AI empha-
sizes the idea that the diversity of AI has been there from its
inception. Then Section 3 first discusses relations between a
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functional view and a rule-based view of problems, in rela-
tion with “modeling versus explaining” concerns. The main
paradigms of AI are then restated and the need for a variety
of approaches ranging from logic to probability and beyond
is highlighted. Section 4 reviews the roles of knowledge and
data both in reasoning and in machine learning. Then, Section
6 points out problems where bridging reasoning and learning
might be fruitful. Section 7 calls for a unified view of AI, a
necessary condition for letting it become a mature science.

2 A short reminder of the beginnings of AI
To have a better understanding of AI, it may be useful to have
a historical view of the emergence of the main ideas under-
ling it [Marquis et al., 2014b; 2014a; Nilsson, 2010]. We only
focus here on its beginnings. Still it is worth mentioning that
exactly three hundreds years before the expression ‘artificial
intelligence’ was coined, the English philosopher Thomas
Hobbes of Malmesbury (1588-1679) described human think-
ing as a symbolic manipulation of terms similar to mathe-
matical calculation [Hobbes, 1839]. Indeed, he wrote “Per
Ratiocinationem autem intelligo computationem.” (or in En-
glish one year later “By ratiocination I mean computation.”)
The text continues with “Now to compute, is either to collect
the sum of many things that are added together, or to know
what remains when one thing is taken out of another. Ratioci-
nation, therefore, is the same with addition and subtraction;”
One page after one reads: “We must not therefore think that
computation, that is, ratiocination, has place only in num-
bers, as if man were distinguished from other living creatures
(which is said to have been the opinion of Pythagoras) by
nothing but the faculty of numbering; for magnitude, body,
motion, time, degrees of quality, action, conception, propor-
tion, speech and names (in which all the kinds of philosophy
consist) are capable of addition and subtraction.” Such a de-
scription appears retrospectively quite consonant with what
AI programs are trying to do!

In the late 1940’s with the advent of cybernetics [Wiener,
1949], the introduction of artificial neural networks [Mc-
Culloch and Pitts, 1943], the principle of synaptic plasticity
[Hebb, 1949] and the concept of computing machines [Tur-
ing, 1948] lead to the idea of thinking machines with learn-
ing capabilities. In 1950, the idea of machine intelligence
appeared in a famous paper by Turing [1950], while Shannon
[1950] was investigating the possibility of a program playing
chess, and the young Zadeh [1950] was already suggesting
multiple-valued logic as a tool for the conception of thinking
machines.

As it is well-known, the official birthday act of AI corre-
sponds to a research program whose application for getting a
financial support, was written in the summer of 1955, and en-
titled “A proposal for the Dartmouth summer research project
on artificial intelligence” (thus putting the name of the new
field in the title!); it was signed by the two fathers of AI, John
McCarthy (1927-2011), and Marvin Minsky (1927-2016),
and their two mentors Nathaniel Rochester (1919-2001) (who
designed the IBM 701 computer and was also interested in
neural network computational machines), and Claude Shan-
non (1916-2001) [McCarthy et al., 2006] (in 1950 he was al-
ready the founder of digital circuit design theory based on

Boolean logic, the founder of information theory, but also
the designer of an electromechanical mouse (Theseus) able
to search through the corridors of a maze until reaching the
target and to acquire and use knowledge from past experi-
ence). Then a series of meetings was organized at Dartmouth
College (Hanover, New Hampshire, USA) during the sum-
mer of 1956. At that time, McCarthy was already interested
in symbolic logic representations, while Minsky had already
built a neural network learning machine (he was also a friend
of Frank Rosenblatt [1958] the inventor of perceptrons).

The interests of the six other participants can be roughly
divided into reasoning and learning concerns, they were on
the one hand Herbert A. Simon (1916-2001), Allen Newell
(1927-1992) [Newell and Simon, 1956] (together authors
with John Clifford Shaw (1922-1991) of a program The Logic
Theorist able to prove theorems in mathematical logic), and
Trenchard More [1959] (a logician interested in natural de-
duction at that time), and on the other hand Arthur Samuel
(1901-1990) [1959] (author of programs for checkers, and
later chess games), Oliver Selfridge (1926-2008) [1959] (one
of the fathers of pattern recognition), and Ray Solomonoff
(1926-2009) [1956] (already author of a theory of probabilis-
tic induction).

Interestingly enough, as it can be seen, these ten partici-
pants, with different backgrounds ranging from psychology
to electrical engineering, physics and mathematics, were al-
ready carriers of the large variety of research directions that
can still be observed to-date in AI from machine learning to
knowledge representation and reasoning.

3 Representing functions and beyond
There are two modes of representation of knowledge, that
call be called respectively functional and logical. The first
mode consists in building a big function that produces a re-
sult when triggered by some input. The second mode consists
of separate, possibly related, chunks of explicit knowledge,
expressed in some language. The current dominant machine
learning paradigm (up to noticeable exceptions) has adopted
the functional approach, which ensures impressive successes
in tasks requiring reactiveness, at the cost of losing explana-
tory power. Indeed, we can argue that what is learnt is know-
how or skills, rather than knowledge. The other, logical,
mode of representation, is much more adapted to encoding
articulated knowledge, reasoning and producing explanations
via deliberation, but its connection to learning from data is
for the most part still in infancy.

A simple starting point for discussing relationships be-
tween learning and reasoning is to compare the machineries
of a classifier and a rule-based expert system, for diagnosis
for instance. In both cases, a functional view may apply. On
the one hand, from a set of examples (of inputs and outputs
of the function, such as pairs (symptoms, diseases)) one can
easily predict the diseases corresponding to a new case via
its input symptoms, after learning some function (e.g., using
neural nets). On the other hand, one may have a set of ex-
pert rules stating that if the values of the inputs are such and
such, the global evaluation should be in some subset. Such
rules are mimicking the function. If collected from an expert,
rules may turn out to be much less successful than the func-
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tion learned from data. Clearly, the first view may provide
better approximations and does not require the elicitation of
expert rules, which is costly. However, the explanatory power
will be poor in any case, because it will not be possible to an-
swer “why not” questions and to articulate explanations based
on causal relations. On the contrary, if causal knowledge is
explicitly represented in the knowledge base, it has at least
the merit of offering a basis for explanations (in a way that
should be cognitively more appropriate for the end-user). It
is moreover well-known that causal information cannot easily
be extracted from data: only correlations can be laid bare if
no extra information is obtained [Pearl, 2000].

The fuzzy set literature offers early examples of the re-
placement of an automatic control law by a set of rules. In-
deed Zadeh [1973] proposed to use fuzzy expert rules for
controlling complex non linear dynamic systems that might
be difficult to model using a classical automatic control ap-
proach, while skilled humans can do the job. This was rapidly
shown to be successful [Mamdani and Assilian, 1975]. The
fact of using fuzzy rules, rather standard if-then rules, had
the advantage of providing a basis for an interpolation mech-
anism, when an input was firing several rules to some de-
gree. At that time, although the approach was numerical and
quite far from the symbolic logic-based AI mainstream trend
in those times, it was perceived as an AI-inspired approach,
since it was relying on the representation of expert know-
how by chunks of knowledge, rather than on the derivation
of a control law from the modeling of the physical system
to be controlled (which is the classical control engineering
paradigm). After some time, it was soon recognized that
fuzzy rules could be learnt rather than obtained from experts,
while keeping excellent results thanks to the property of uni-
versal approximation possessed by sets of fuzzy rules. Math-
ematical models of such fuzzy rules are in fact closely related
to neural network radial basis functions. But, fuzzy rules thus
obtained by learning may become hardly intelligible. This re-
search trend, known under the names of ‘soft computing’ or
‘computational intelligence’, thus drifted away from an im-
portant AI concern, the explainability power; see [Dubois and
Prade, 1998] for a discussion.

The long term ambition of AI is to make machines capa-
ble of performing any information processing task the human
mind can perform. This certainly includes recognition, iden-
tification, decision and diagnosis tasks (including sophisti-
cated ones). They are “System 1” tasks (using Kahneman
terminology) as long as we do not need to explain and rea-
son about obtained results. But there are other problems that
are not fully of this kind, even if machine learning may also
play a role in their solving. Consider for instance the solv-
ing of quadratic equations. Even if we could determine, in
a bounded domain, by machine learning techniques, whether
an equation has zero, one or two solutions and what are their
values (with a good approximation) from a large amount of
examples, the solving of such equations by discovering their
analytical solution(s), via factorization through symbolic cal-
culations, seems to be a more powerful way of handling of
the problem (the machine could then teach students).

AI problems cannot be always be viewed in terms of the
functional view mentioned above. There are cases where we

have not a function, but a multiple-valued function, e.g., find-
ing all the solutions (if any) of a set of constraints. Apart
from solving combinatorial problems, tasks such as reasoning
about static or dynamical situations, or building action plans,
or explaining results, communicating explanations pertaining
to machine decisions in a way meaningful way to an end-user,
or analyzing arguments and determining their possible weak-
ness, or understanding what is going on in a text, a dialog in
natural langage, in an image, a video, or finding relevant in-
formation and summarizing it are examples that may require
capabilities beyond pure machine learning.

This is why AI, over the years, has developed general rep-
resentation settings and methods capable of handling large
classes of situations, while mastering computation complex-
ity. For this purpose, at least five general paradigms have
emerged in AI:
• Knowledge representation with symbolic or numerical

structured settings for representing knowledge or prefer-
ences, such as logical languages, graphical representa-
tions like Bayesian networks, or domain ontologies de-
scribing taxonomy of concepts. Dedicated settings have
been also developed for the representation of temporal or
spatial information, of uncertain pieces of information,
or of independence relations.

• Reasoning and decision Different types of reasoning
tasks, beyond classical deduction, have been formal-
ized such as: nonmonotonic reasoning for handling
exception-tolerant rules in the presence of incomplete
information, or reasoning from inconsistent information,
or belief revision, belief updating, information fusion in
the presence of conflicts, or formal argumentation han-
dling pros and cons, or yet reasoning directly from data
(case-based reasoning, analogical reasoning, interpola-
tion, extrapolation). Models for qualitative (or quanti-
tative) decision from compact representations have been
proposed for decision under uncertainty, multiple crite-
ria, or group decisions.

• General algorithms for problem solving This cov-
ers a panoply of generic tools ranging from heuristic
ordered search methods, general problem solver tech-
niques, methods for handling constraints satisfaction
problems, to efficient algorithms for classical logic in-
ference (e.g., SAT methods), or for deduction in modal
and other non-classical logics.

• Learning The word ‘learning’ also covers different
problems, from the classification of new items based on
a set of examples (and counter-examples), the induction
of general laws describing concepts, the synthesis of a
functional relation by regression, the clustering of sim-
ilar data (separating dissimilar data into different clus-
ters) and the labelling of clusters, to reinforcement learn-
ing and to the discovery of regularities in data bases and
data mining. Most of these problems can be handled by
a variety of methods.

• Multiple agent AI Under this umbrella, there are quite
different problems such as: the cooperation between hu-
man or artificial agents and the organization of tasks for

L & R  2018

- 9 -



achieving collective goals, the modeling of BDI (Belief,
Desire, Intention) agents, possibly in situations of dia-
logue (where, e.g., agents, which have different informa-
tion items at their disposal, do not pursue the same goals,
and try to guess the intentions of the other ones), or the
study of the emergence of collective behaviors from the
behaviors of elementary agents.

4 Reasoning with knowledge or with data
In the above research areas, knowledge and data are often
handled separately. In fact, AI traditionally deals with knowl-
edge rather than with data, with the important exception of
machine learning, whose aim can sometimes be viewed as
changing data into knowledge. Indeed, basic knowledge is
obtained from data by induction, while prior background
knowledge may help learning machineries. These remarks
suggest that the joint handling of knowledge and data is a gen-
eral issue, and that combining reasoning and learning meth-
ods should be seriously considered.

Knowledge-based systems, or ontologies expressed by
means of description logics, or yet Bayesian networks, repre-
sent background knowledge that is useful to make prediction
from facts and data. In these reasoning tasks, knowledge as
well as data is often pervaded with uncertainty. This has been
extensively investigated.

Data, provided that they are reliable, are positive in nature
since their existence manifests the actual possibility of what
is observed or reported. This contrasts with knowledge that
delimit the extent of what is potentially possible by specifying
what is impossible (which has thus a negative flavor). This is
why reasoning from both knowledge and data goes much be-
yond the application of generic knowledge to factual data as
in expert systems. It is is a complex issue, which has received
little attention until now [Ughetto et al., 1999].

As pointed out in [Prade, 2016], reasoning directly with
data has been much less studied. The idea of similarity natu-
rally applies to data and gives birth to specific forms of rea-
soning such as case-based reasoning, case-based decision, or
even case-based argumentation. “Betweenness” and similar-
ity are at the basis of interpolation mechanisms, while ana-
logical reasoning, which may be both a matter of similarity
and dissimilarity provides a mechanism for extrapolation.

Analogical reasoning, in particular analogical proportion-
based inference, interpolation and extrapolation are forms
of commonsense reasoning that can be applied to symbolic
and numerical knowledge, but which might be also use-
ful in machine learning, as recently shown in classifica-
tion. Analogical proportions are statements of the form
“a is to b as c is to d”, often denoted a : b :: c : d,
which expresses that “a differs from b as c differs from d

and b differs from a as d differs from c”. This translates
into a Boolean logical expression [Miclet and Prade, 2009;
Prade and Richard, 2013] which is true only for the 6 fol-
lowing patterns (0, 0, 0, 0), (1, 1, 1, 1), (1, 0, 1, 0), (0, 1, 0, 1),
(1, 1, 0, 0), and (0, 0, 1, 1) for (a, b, c, d). Note that these pat-
terns are also compatible with the arithmetic difference defi-
nition a� b = c�d, where a� b 2 {�1, 0, 1}, which is not a
Boolean logic definition. Analogical proportions straightfor-
wardly extends to vectors such as ~a = (a1, ..., an), by stating

~a :

~

b :: ~c :

~

d iff 8i2 [1, n], ai : bi :: ci : di. The basic analog-
ical inference pattern [Stroppa and Yvon, 2005], is then

8i 2 {1, ..., p}, ai : bi :: ci : di holds
8j 2 {p+ 1, ..., n}, aj : bj :: cj : dj holds

Thus analogical reasoning amounts to finding completely in-
formed triples (~a,

~

b,~c) appropriate for inferring the missing
value(s) in ~

d. When there exist several suitable triples, pos-
sibly leading to distinct conclusions, one may use a majority
vote for concluding. This extends to analogical proportions
between numerical values. It has been successfully applied,
for Boolean, nominal or numerical attributes, to classifica-
tion [Miclet et al., 2008; Bounhas et al., 2017] (then the class
cl(~x) (viewed as a nominal attribute) is the unique solution,
when it exists, such as cl(~a) : cl(

~

b) :: cl(~c) : cl(~x) holds),
and more recently to preference learning [Pirlot et al., 2016;
Fahandar and Hüllermeier, 2018]. It has been theoretically
established that analogical classifiers always yield exact pre-
diction for Boolean affine functions (which includes x-or
functions), and only for them [Couceiro et al., 2017b]. Still
good results can be obtained in other cases [Couceiro et al.,
2018].

Moreover, analogical inequalities [Prade and Richard,
2017] of the form “a is to b at least as much as c is to d”
might be useful for describing relations between images, as
in [Law et al., 2017].

Besides, the ideas of interpolation and extrapolation
closely related to analogical proportion-based inference,
which are of crucial importance in many numerical domains,
can be applied in symbolic settings in the case of propo-
sitional categorization rules, using relations of betweenness
and parallelism respectively, with a conceptual spaces seman-
tics [Schockaert and Prade, 2013]; see [Schockaert and Prade,
2011] for an illustration.

5 Learning from incomplete data
The need for reasoning from incomplete, uncertain, vague, or
inconsistent information, has led to the development of new
approaches beyond logic and probability. Incompleteness is a
well-known phenomenon in classical logic. However, many
reasoning problems exceed the capabilities of classical logic
(initially developed in relation with the foundations of math-
ematics where statements are true or false, and there is no un-
certainty in principle). As for probability theory, single prob-
ability distributions, often modeled by Bayesian networks are
not fully appropriate for handling incomplete information nor
epistemic uncertainty. There are different, but related, frame-
works for modeling ill-known probabilities that were devel-
oped in the last 50 years by the Artificial Intelligence com-
munity at large [Walley, 1996]: belief functions and evidence
theory (which may be viewed as a randomization of the set-
based approach to incomplete information), imprecise proba-
bility theory (which uses convex families of probability func-
tions) and quantitative possibility theory (which is the sim-
plest model since one of the lower and the upper probability
bounds is trivial).

The traditional approach for going from data to knowledge
is to resort to statistical inferential methods. However, these
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methods used to assume data that are precise and in sufficient
quantity. The recent concern with big data seems to even
strengthen the relevance of probability theory and statistics.
However there are a number of circumstances where data is
missing or is of poor quality, especially if one tries to collect
information for building machines or algorithms supposed to
face very complex or unexpected situations (e.g. autonomous
vehicles in crowded areas). The concern of Artificial Intel-
ligence for reasoning about partial knowledge has led to a
questioning of traditional statistical methods when data is of
poor quality.

When data is missing or just imprecise (one then speaks
of coarse data), statistical methods need to be adapted. In
particular the question is whether one wishes to model the
observed phenomenon along with the limited precision of
the observations, or despite it. The latter trend comes down
to complete the data in some way (using imputation meth-
ods). A well-known method that does it is the EM algorithm
[Dempster et al., 1977]: starting from a class of parameter-
ized statistical models, the idea is to iteratively construct a
precise model that fits the data as much as possible, by gener-
ating at each step a precise observation sample in agreement
with the incomplete data (using a revision step on the current
model) followed by the computation of a new model applying
the maximum likelihood method to the last precise sample.
This technique, including variants based on belief functions
[Denoeux, 2013], has been extensively used in AI for cluster-
ing and learning Bayesian nets.

However the obtained result, where by virtue of the algo-
rithm, data has become complete and precise, is not easy to
interpret. If we want to be faithful to the data and its imper-
fections, one way is to build a model that accounts for the
imprecision of observations, i.e., a set-valued model. This is
the case if a belief function is obtained via maximum like-
lihood on imprecise observations: one optimizes the visible
likelihood function [Couso and Dubois, 2018]. The idea is
to cover all precise models that could have been derived, had
the data been precise. Imprecise models are useful to lay bare
ignorance when it is present, so as to urge finding more data,
but it may be problematic for decision problems, when we
have to act despite ignorance.

So we must try to optimize the likelihood function based
on the actual values behind the imprecise observations. But
such likelihood functions (either pertaining to the real phe-
nomenon under study, or to both the phenomenon and its
measurement) are ill-known in the case of coarse data [Couso
and Dubois, 2018]. In that case we are bound

• to make assumptions on the measurement process so as
to create a tight link between the hidden likelihood func-
tion pertaining to the outcomes of the real phenomenon,
and the visible likelihood of the imprecise observations
(for instance the CAR (coarsening at random) assump-
tion [Heitjan and Rubin, 1991], or the superset assump-
tion [Hüllermeier and Cheng, 2015]. In that case, the
coarseness of the data can be in some sense ignored. See
[Jaeger, 2005] for a general discussion.

• or to pick a suitable hidden likelihood function among
the ones compatible with the imprecise data, for instance

using an optimistic maximax approach that tends to dis-
ambiguate the data [Hüllermeier, 2014], or a maximin
(robust) approach that favors statistical models with high
variance to cover the partial ignorance [Guillaume et al.,
2017]. In that case, the measurement process is ignored.

See [Couso et al., 2017] for more discussions about such
methods for statistical inference with poor quality data.

Besides, a new cumulative entropy function [Serrurier and
Prade, 2013] has been proposed, which is based on confi-
dence intervals of frequency estimates that together considers
the entropy of the probability distribution and the uncertainty
around the estimation of its parameters. Such a function takes
advantage of the ability of a possibility distribution to upper
bound a family of probabilities previously estimated from a
limited set of examples and of the link between possibilistic
specificity order and entropy [Dubois and Hüllermeier, 2007].
This has been applied to the learning of decision trees to cope
with the fact that as we go deeper downward the tree, the ex-
amples become rarer and the faithfulness of entropy decreases
[Serrurier and Prade, 2015].

Finally, let us also mention that the fact that we may have
to work with incomplete relational data and that knowledge
may also be uncertain motivates the use of a new probabilis-
tic programming language first called “Probabilistic Simi-
larity Logic”, and then “Probabilistic Soft Logic” (PSL, for
short) where each ground atom in a rule has a truth value in
[0, 1], and which uses the Łukasiewicz t-norm and co-norm
to handle the fuzzy logical connectives [Fakhraei et al., 2013;
Farnadi et al., 2014; Bach et al., 2017]. We are close to
the representation concerns of fuzzy answer set programs
[Mushthofa et al., 2015]. Besides, there is a need for com-
bining symbolic reasoning with the subsymbolic vector rep-
resentation of neural networks in order to use gradient de-
scent for training the neural network to infer facts from an
incomplete knowledge base, using similarity between vec-
tors [Rocktäschel and Riedel, 2017; Cohen et al., 2017;
Cohen, 2016].

6 New representation formats in learning
Machine learning may find some advantages to use advanced
representation formats as target languages, such as weighted
logics (probabilistic, fuzzy, possibilistic, prioritized, etc). For
instance, qualitative possibility theory extends classical logic
by attaching lower bounds of necessity degrees and cap-
tures nonmonotonic reasoning, while generalized possibilis-
tic logic [Dubois et al., 2017] is more powerful and can cap-
ture answer-set programming, or reason about the ignorance
of an agent. Can such kinds of qualitative uncertainty model-
ing, or yet fuzzy or uncertain description logics, uncertainty
representation formalisms, weighted logics (Markov logic,
probabilistic logic programs, multi-valued logics, possibilis-
tic logic, etc.), be used more extensively in machine learning?
Some answers can be found in [Serrurier and Prade, 2007;
Kuzelka et al., 2015; 2016; 2017]. This also raises the ques-
tion of extending version space learning [Mitchell, 1979]
to such new representation schemes [Hüllermeier, 2003;
Prade and Serrurier, 2008; Prade et al., 2009a].

If-then rules are a popular representation format in rela-
tional learning [Rückert and De Raedt, 2008]. But, can we
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reason with knowledge extracted from data in a consistent
way? For instance, can rules having exceptions extracted
from data be processed by a nonmonotonic inference system
yielding new default rules? How can we insure that these
new rules are still agreeing with the data? The problem is
then to extract genuine default rules that hold in a Boolean
database. It does not just amount to mine association rules
with a sufficiently high confidence level. We have to guar-
antee that any new default rules that are deducible from the
set of extracted default rules are indeed valid with respect to
the database. For doing that, we need a probabilistic seman-
tics for nonmonotonic inference. It has been shown [Ben-
ferhat et al., 1999] that default rules of the form “if p then
generally q”, denoted p|⇠q, where |⇠ obey the postulates of
preferential inference [Kraus et al., 1990] have both i) a pos-
sibilistic semantics expressed by the constraint ⇧(p ^ q) >

⇧(p^¬q), for any max-decomposable possibility measure ⇧
(⇧(p _ q) = max(⇧(p),⇧(q))), and a probabilistic seman-
tics expressed by the constraint Prob(p^ q) > Prob(p^¬q)
or any big-stepped probability Prob. This is a very special
kind of probability such that if p1 > p2 > ... > pn�1 � pn

(where pi is the probability of one of the n possible worlds),
the following inequalities hold 8i = 1, n�1, pi > ⌃j=i,n pj .
Then, one can infer a new default p|⇠q from a set of defaults
� = {pk|⇠qk|k = 1,K} if and only if the constraints mod-
eling � entail the constraints modeling p|⇠q. Thus, extract-
ing defaults amounts to looking for big-stepped probabilities,
by clustering lines describing items in Boolean tables, so as
to find default rules, see [Benferhat et al., 2003] for details.
Then the rules discovered are genuine default rules that can
be reused in a nonmonotonic inference system, and can be
encoded in possibilistic logic (assuming rational monotony).

Multiple threshold rules, i.e., selection rules of the form
“if x1 � ↵1 and · · · xj � ↵j and · · · then y � �” (or
deletion rules of the form ‘if x1  �1 and · · · xj  �j

and · · · then y � �”) is another format of interest in ordi-
nal classification / regression problems [Greco et al., 2006;
Blaszczyski et al., 2011]. Assuming that data are made of a
collection of pairs (x

k
, yk), k = 1, ..., N where x

k is a tu-
ple (x

k
1 , ..., x

k
n) of local evaluations item k, and that y in-

creases with the xi’s in the broad sense, it is of interest of
describing the data with such rules of various lengths. It has
been noticed [Greco et al., 2004; Dubois et al., 2014] that,
once the numerical data are normalized between 0 and 1,
rules where all (non trivial) thresholds are equal can be rep-
resented by Sugeno integrals (a generalization of weighted
min and weighted max, which is a qualitative counterpart of
Choquet integrals [Grabisch and Labreuche, 2010]). More-
over, it has been shown recently [Couceiro et al., 2017a] that
generalized forms of Sugeno integrals are able to describe
a global (increasing) function, taking values on a finite lin-
early ordered scale, under the form of general thresholded
rules. Another approach, in the spirit of version space ap-
proach, provides a bracketing of an increasing function by
means of a pair of Sugeno integrals [Prade et al., 2009b;
2009a].

There are other types of rules that may be of interest as a
representation format, for instance, gradual rules, which ex-
press statements of the form “the more x is A, the more y is

B, where A, and B are gradual properties modeled by fuzzy
sets [Serrurier et al., 2007; Nin et al., 2010]. It is also worth
remembering that other types of fuzzy rules may provide a
rule-based interpretation [d’Alché-Buc et al., 1994] for neu-
ral nets. With respect to neural nets, let us also mention a non-
monotonic inference view [Balkenius and Gärdenfors, 1991;
Gärdenfors, 1991].

7 Conclusion
Knowledge representation and reasoning on the one hand,
and machine learning on the other hand, have been devel-
oped largely as independent research trends in artificial intel-
ligence in the last three decades. Still reasoning and learning
are two basic capabilities of the human mind that may inter-
act. Similarly the two corresponding AI research areas may
benefit from mutual exchanges. Current learning methods de-
rive know-how from data in the form of complex functions
involving many tuning parameters, but they should also aim
at producing articulated knowledge, so that knowledge repos-
itories, storing interpretable chunks of information, could be
fed from data. More precisely, a number of logical-like for-
malisms, whose explanatory capabilities could be exploited,
have been developed in the last 30 years (non-monotonic log-
ics, modal logics, logic programming, probabilistic and pos-
sibilistic logics, many-valued logics, etc.) that could be used
as target languages for learning techniques, without restrict-
ing to first-order logic, or to Bayes nets.

Interfacing classifiers with human users may require some
ability to provide high level explanations about recommen-
dations or decisions that are understandable by an end-user.
Reasoning methods should handle knowledge and informa-
tion extracted from data. The joint use of (supervised or unsu-
pervised) machine learning techniques and of inference ma-
chineries raises new issues. There is a number of other points,
worth mentioning, which have not be addressed in the above
discussions:

• Teachability A related issue is more generally how to
move from machine learning models to knowledge that
be communicated to humans, about the way the machine
proceeds when solving problems.

• Using knowledge Another issue is a more systematic
exploitation of symbolic background knowledge in ma-
chine learning devices. Can prior causal knowledge help
exploiting data and getting rid of spurious correlations?
Can an argumentation-based view of learning be devel-
oped?

• Representation learning Data representation impacts the
performance of machine learning algorithms [Bengio et
al., 2013]. In that respect, what may be, for instance, the
role of vector space embeddings, or conceptual spaces?

• Unification of learning paradigms Would it be possible
to bridge learning paradigms from transduction to induc-
tive logic programming? Even including formal concept
analysis, or rough set theory?

This paper has especially advocated the interest of a coop-
eration between two basic areas of AI: knowledge represen-
tation and reasoning on the one hand and machine learning
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on the other hand, reflecting the natural cooperation between
two modes, reactive and deliberative of human intelligence. It
is also a plea for maintaining a unified view of AI, all facets
of which have been present from the very beginning, as re-
called in Section 2 of this paper. It is time that AI comes of
age as a genuine science, which means stopping unproduc-
tive rivalries between different approaches, and fostering a
better shared understanding of the basics of AI through open-
minded studies bridging sub-areas in a constructive way. In
the same spirit, a plea for a unified view of computer science
can be found in [Bajcsy and Reynolds, 2002]. Mixing, bridg-
ing, hybridizing advanced ideas in knowledge representation,
reasoning, and machine learning or data mining should renew
basic research in AI and contribute in the long term to a more
unified view of AI methodology.
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Abstract

Machine learning algorithms, despite their increas-
ing success in handling object recognition tasks,
still seldom perform without error. Often the pro-
cess of understanding why the algorithm has failed
is the task of the human who, using domain knowl-
edge and contextual information, can discover sys-
tematic shortcomings in either the data or the algo-
rithm. This paper presents an approach where the
process of reasoning about errors emerging from
a machine learning framework is automated using
symbolic techniques. By utilizing spatial and geo-
metrical reasoning between objects in a scene, the
system is able to describe misclassified regions in
relation to its context. The system is demonstrated
in the remote sensing domain where objects and en-
tities are detected in satellite images.

1 Introduction
Many machine learning algorithms are trained by optimiz-
ing a cost function that continuously measures the training
errors during learning, and adapts the model parameters in
order to minimize these errors. With this approach, the learn-
ing algorithms seem to learn from their errors. However, such
learning processes differ from what human advisors usually
mean by “learn-from-your-mistakes”, which entails that the
learner is able to understand why the errors occurred and
conceptualize them by expressing their characteristics. The
training process of minimizing a cost function is not aimed
towards explaining the errors or describing why such errors
have been made, but instead follows the defined rules for pa-
rameter updates given by the selected minimization optimiza-
tion method.

For satellite image classification, a classifier that only uses
the RGB channels as input runs the risk of producing a large
amount of misclassifications (errors) due to the visual sim-
ilarity between certain classes. For example, the class wa-
ter looks similar to shadows, and buildings with gray roofs
will look similar to roads in the RGB channels. One so-
lution to this problem, that has been addressed in previous

⇤Equal contribution

works, is to use additional sources of information as in-
put to the classifier, such as Synthetic-aperture radar (SAR),
Light detection and ranging, (LIDAR), or Digital Elevation
Model (DSM) for the height information, and/or hyperspec-
tral bands, near-infrared (NIR) bands, and synthetic spectral
bands for texture and color information [Ma et al., 2017;
Cheng et al., 2017]. However, these works are imprac-
tical for satellite images that only contain RGB channels,
such as Google Maps. Another possible solution to increase
the performance is to change the architecture of the clas-
sifier in order to increase the capacity, e.g., by using deep
Convolutional Neural Networks (DCNNs) [Ball et al., 2017;
Zhang et al., 2017; Guirado et al., 2017].

In this paper, instead of adding additional sources of infor-
mation or experimenting with the architecture of the classi-
fier, we aim to spatially explain the errors in terms of their
structure and neighborhood. To this end, we propose a repre-
sentation of the context that includes symbolic concepts and
their relations, in order to reason upon and retrieve the re-
quired characteristics of the data.

Integration of data-driven learning methods with symbolic
reasoning has been identified in the literature as one of the
key challenges in Artificial Intelligence [Garcez et al., 2015].
Depending on the approaches to represent both low and high
level data, such integration has been addressed under differ-
ent names that include abduction-induction in learning [Ray-
mond, 2000], structural alignment [Alirezaie and Loutfi,
2012], and neural-symbolic methods [Besold et al., 2017;
Bader and Hitzler, 2005]. With the increasing interest in con-
nectionist learning systems, and in particular in deep learn-
ing methods, research on integrated neural-symbolic sys-
tems has recently made considerable progress. Such integra-
tions are routinely referred to as explainable Artificial Intel-
ligence (XAI), and used to provide better insights into the
learning process [Doran et al., 2017].

1.1 Related Work
As discussed in [Xie et al., 2017], in neural-symbolic sys-
tems where the learning is based on a connectionist learning
system, one way of interpreting the learning process is to ex-
plain the classification outputs using the concepts related to
the classifier’s decision. The work presented in [Hendricks
et al., 2016] introduces a learning system based on a convo-
lutional network LRCN [Donahue et al., 2017] that provides
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explanations over the decisions of the classifier. An explana-
tion is in the form of a justification text. In order to generate
the text, the authors have proposed a loss function upon sam-
pled concepts that, by enforcing global sentence constraints,
helps the system to construct sentences based on discriminat-
ing features of the objects found in the scene. However, in
this work, no specific symbolic representation was provided,
and the features related to the objects are taken from the sen-
tences already available for each image in the dataset (CUB
dataset [Wah et al., 2011]).

With focus on the knowledge model, the work presented
in [Sarker et al., 2017] proposes a system that explains the
classifier’s outputs based on the background knowledge. The
key tool of the system, called DL-Learner, works in parallel
with the classifier and accepts the same data as input. Us-
ing the Suggested Upper Merged Ontology (SUMO)1 as the
symbolic knowledge model, the DL-Learner is also able to
categorize the images by reasoning upon the objects together
with the concepts defined in the ontology. The compatibility
between the output of the DL-Learner and the classifier can
be seen as a reliability support and at the same time as an
interpretation of the classification process.

Likewise, the work detailed in [Icarte et al., 2017] relies on
a general-purpose knowledge model, namely, the Concept-
Net Ontology. In this work, the integration of the symbolic
model and a sentence-based image retrieval process based on
deep learning is used to improve the performance of the learn-
ing process. For this, the knowledge about different concepts
(e.g., their affordances, their relations with other objects) is
aligned with objects derived from the deep learning method.

Although in the aforementioned works, the role of the sym-
bolic knowledge represented by ontologies in regard to im-
proving or interpreting the learning process has been empha-
sized, they are limited in terms of the symbolic representation
models. More specifically, the concepts and their relations in
ontologies are simplified, limiting the richness of delibera-
tion in an eventual reasoning process, especially for visual
imagery data.

1.2 Contribution
In this work, we propose an ontology-based reasoning ap-
proach to assist a neural network classifier for a semantic
segmentation task. This assistance can be used in particular
to represent typical errors and provide possible explanations
which can later be used in correcting misclassification. Our
work differentiates from the previous neural-symbol systems
in two regards. Firstly, our method is able to find the most
likely misclassified data (which can be rephrased as errors
realization). Secondly, our model focuses on the misclassi-
fications and uses ontological knowledge (with concepts and
their spatial relations) together with a geometrical processing
to explain them.

The rest of the paper is structured as follows: In Section 2
we present the steps of our approach. Section 3 provides the
technical details on the classification process. The symbolic
module including the ontological knowledge model and the
reasoning process is explained in Section 4. Our experimental

1http://www.adampease.org/OP/

evaluations are presented in Section 5, which is followed by
a brief discussion on the future work in Section 6.

2 Approach
Figure 1 illustrates our approach of using background (on-
tological) knowledge to explain the errors from a classifier
trained on satellite image data. The process is composed of
several steps including: (1) error realization, (2) error charac-
terization using geometrical/spatial reasoning, (3) error gen-
eralization based on the frequency, and (4) error explana-
tion by aligning its features with the ontological knowledge
(ontological reasoning). The inferred explanation can pos-
sibly contribute in the process of error correction (shown as
dashed-line) and update the classification results.

Misclassified Areas (    )

Classified Regions

Satellite Imagery Data

Backgrond
Knowledge
(OntoCity)

1 Error Realization

CAE-based Classifier

Spatial Reasoner

2 Error Characterization

3 Error Generalization

4 Error Explanation

Ontological Reasoner

5 Error Correction

Classification Update

Figure 1: The process of explaining a misclassification in 4 steps:
(1) error realization, (2) error characterization, (3) error generaliza-
tion, and (4) error explanation. This process will contribute in error
correction shown in dashed line.

Error realization refers to the process indicating likely
misclassified areas (errors) on the map (to be detailed
in Section 3). Given theses misclassified areas, a spa-
tial/geometrical processing method characterizes such areas
in terms of their structure and also identifies spatial relations
within their vicinity. An ontological reasoning process is sub-
sequently applied upon both the retrieved characterization of
the errors and domain knowledge about generic spatial con-
straints in outdoor environments. After generalizing the rela-
tions retrieved by the reasoner based on their frequency, their
semantics may justify the errors made by the classifier. Algo-
rithm 1 provides further details of the explanation process.

Algorithm 1 Explaining Misclassification
Require: S = empty,m,R
1: . S: A hash-map, empty in the beginning
2: . m: The given misclassification matrix
3: . R: The given list of classified regions
4: G  extractGeometries(m)
5: for each r 2 R do
6: t getRegionType(r)
7: for each g 2 G do
8: q  calculateRCC(g, r)
9: S(q, t) < q, t >
10: end for
11: end for
12: < Q, T > getMostSeenPair(S)
13: C  queryOntology(Q, T )
14: Explanation getRegionType(C)

The data used in this work consists of a RGB satellite im-
age of central Stockholm, Sweden, with size 4000 ⇥ 8000
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pixels and a pixel-resolution of 0.5 meters. The data was di-
vided into patches of 500⇥ 500 pixels and divided into train
and test sets by a 50 � 50 split so that both sets contained a
similar class distribution. The ground truth used in the classi-
fication process has been provided by the Swedish Mapping,
Cadastral and Land Registration Authority (Lantmäteriet).

3 Object Detection and Classification
A Convolutional Auto-encoder (CAE) [Masci et al., 2011] is
used to classify every pixel in each sub-image of size 500 ⇥
500 pixels into one of 5 categories, namely, vegetation, road,
building, water, and railroad. One layer of a CAE consists of
an encoder and a decoder, see Figure 2.

RGB input, 𝐼 𝑥 

Encoder Decoder 

Convolutional layer Pooling layer de-pooling de-convolution 

𝑊𝑖𝑘 𝑝 𝑝 𝑊𝑜𝑘 

Figure 2: Overview of a one layer of Convolutional Autoencoder
(CAE) that consists of an encoder and a decoder. The input is a
RGB image and the output is the semantic segmentation.

The k-th feature map in the convolutional layer is calcu-
lated as:

h

k = �1

�
I

i ⇤W k
ik + b

k
�

(1)

where Ii is the input image with color channel i, W k
ik is the k-

th filter from input channel i and filter k, bk is the bias for the
k-th filter that is applied to the whole map, �1 is a non-linear
activation function, and ⇤ denotes the convolution operation.
In this work, we used the Rectified Linear Unit (ReLu) [Nair
and Hinton, 2010] as the activation function. For an input
image of size m⇥m⇥c and a filter matrix of size n⇥n⇥c⇥k,
the convolutional layer is of size (m�n+1)⇥(m�n+1)⇥k.

The pooling layer is obtained by downsampling the con-
volutional layer by taking the maximum value in each p ⇥ p

non-overlapping subregion. The size of the pooling layer is
(m� n+ 1)/p⇥ (m� n+ 1)/p⇥ k.

The unpooling is performed with switch variables [Zeiler et
al., 2011] that remember the position of the maximum value
during the pooling operation.

Finally, a deconvolutional operation is performed to obtain
the final output, x. For a typical convolutional autoencoder,
the output has the same dimensions as the input image, I .
However, for our application we want to perform a classifica-
tion of the input image. Therefore, the output image x has the
dimensions m ⇥ m ⇥ K where K is the number of classes.
The K-th output layer denotes the probability of each pixel
belonging to class K. The output layer is calculated as:

x = �2

�
o

k ⇤W k
ok + c

K
�

(2)

where o

k is the k-th map of the unpooling layer, W k
ok is the

k-th filter from unpooling layer o and filter k, cK is the bias
for the K-th output layer, and �2 is the softmax non-linear
activation function.

Figure 3 shows an overview of the method that is used to
identify regions that have a high probability to be misclassi-
fied (i.e., the method to realize errors). The system consists of
two Convolutional Auto-encoders (CAE) (noted CAE 1 and
CAE 2 in Figure 3).

The first model, CAE 1, is trained to perform the image-
to-image translation from the RGB input to the classified im-
age x. CAE 1 is trained with supervised learning using the
ground-truth y, see Section 3.

The second model, CAE 2, is trained unsupervised to re-
construct the input ground-truth y into the reconstruction of
the ground-truth ŷ. The purpose of the model CAE 2 is to
learn the overall structure and relation between classes.

The predicted label image x is then used as input to CAE 2
to get a reconstruction of the label image x̂. The main idea is
that regions that have a high reconstruction error, (x � x̂)2,
have a higher probability to be misclassified and should be
further analyzed by the reasoner in order to explain a possi-
ble cause for the misclassification and give a suggestion for a
more likely classification.

RGB input 

𝑦 

𝑦  

𝑥 𝑥  

Encoder 2 

En
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de
r 2

 

De
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De
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E 

1 
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2 

Figure 3: Overview of the method for indicating suspected misclas-
sified regions. The input to the classifier (CAE 1) is an RGB image
and produces the semantic segmentation, x. The label reconstructor
(CAE 2) is first trained to reconstruct the groundtruth, y, into the
reconstruction ŷ. The classified output x is then reconstructed us-
ing the label reconstructor to get the reconstructed classifications x̂.
The reconstruction error between x and x̂ is then used to indicate the
misclassified regions. Red arrows indicate the data processing dur-
ing training and black arrows indicate the process during inference.

One important aspect of our method is the architecture for
the label reconstructor in order to identify misclassified re-
gions. On one hand, a single-layered CAE with a small fil-
ter size could easily reconstruct any configuration of the pre-
dicted map by simply reconstructing the local input pixel-by-
pixel. Instead of increasing the filter size, we use a deep net-
work with 5 layers. Due to the subsampling in each layer,
this leads to the lower layers learn to reconstruct the local in-
put and the higher layers learn the relation between areas with
a larger perceptive field.

The classifier (CAE 1) and the label reconstructor (CAE
2) are constructed with the same architecture and consist of
a 5-layer CAE. The filter size for each layer is [11, 9, 7, 5, 3]
and the number of filters in each layer is [10, 20, 30, 40, 50].
The pooling dimension is set to 2 in each layer and uses max-
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pooling. The activation function in each layer is the ReLu-
activation function except for last layer that uses a softmax ac-
tivation function. The parameters were initialized with Xavier
initialization [Glorot and Bengio, 2010] and trained using the
AdaGrad [Duchi et al., 2011] optimization method until con-
vergence, which took around 50 hours on a GTX 1060 GPU.

4 Reasoning on misclassifications
The misclassification explanation process relies on geomet-
rical and ontological reasoning. Before outlining the details
of the explanation process, we first briefly introduce OntoC-
ity which contains the background knowledge model used in
this work.

4.1 OntoCity

OntoCity2 is an extension of the GeoSPARQL3 ontology that
serves as a standard vocabulary for geospatial data by en-
abling qualitative spatial reasoning upon this type of data.
OntoCity, whose representational details can also be found
in [Alirezaie et al., 2017], has been designed to repre-
sent cities in terms of different aspects including the struc-
tural details, conceptual and physical objects, their types
(e.g., natural or man-made), and their relations (e.g., spa-
tial constraints, affordances). The main concept in On-
toCity is oc:CityFeature, which is the subclass of the class
geos:Feature

4 and defines any spatial object with a geometry
in the physical world. According to the following axiom5, a
city feature is (or more specifically is a subclass of) a feature
whose geometry is in the form of a polygon and has at least
one spatial relation with another city feature:

oc:CityFeature v geos:Feature u
9 geos:hasGeomtery.geos:Polygon u
9 oc:hasSpatialRelation.oc:CityFeature

By spatial relation we refer to the 8 relations in RCC-8
(Region Connection Calculus) [Cohn et al., 1997] that are
also defined in GeoSPARQL, and are used to specialize the
definition of features in a city. In OntoCity there are different
types of features defined as subclasses of the oc:CityFeature

class. For instance, a feature might be with a fixed geom-
etry (oc:FixedGeometryFeature) or a dynamic one whose ge-
ometry changes in time (oc:DynamicGeometryFeature). Like-
wise, a feature can be physical (oc:PhysicalFeature, e.g.,
a landmark with absolute elevation value measured from
the sea floor), conceptual (oc:ConceptualFeature, e.g., a
rectangular division in a city regardless of their land-
marks), mobile (oc:MobileFeature, e.g., a car), or stationary
(oc:StationaryFeature, e.g., a building). The following ax-
ioms show some subsumption relations with oc:CityFeature:

2https://w3id.org/ontocity/ontocity.owl
3http://www.opengeospatial.org/standards/geosparql
4The prefixes oc and geos refer to the URIs of OntoCity and

GeoSPARQL, respectively.
5The axioms are in description logic (DL) [Baader and Nutt,

2003].

oc:DynamicGeometryFeature v oc:CityFeature

oc:FixedGeometryFeature v oc:CityFeature

oc:MobileFeature v oc:CityFeature

oc:StationaryFeature v oc:CityFeature

oc:ConceptualFeature v oc:CityFeature

oc:PhysicalFeature v oc:CityFeature u
9 oc:hasAbsoluteElevationValue.xsd:double

Each of the aforementioned subclasses of the class
oc:CityFeature has its own taxonomy. Due to the lack of
space, we only mention a limited number of these axioms.
For instance, oc:Region as a physical feature with a fixed ge-
ometry which is also stationary (i.e., non-mobile) represents
a landmark that can per se be categorized into various types
such as flat or non-flat regions, or likewise, into man-made or
natural ones:

oc:Region v oc:PhysicalFeature u oc:StationaryFeature u
oc:FixedGeometryFeature

oc:ManmadeRegion v oc:Region

oc:NaturalRegion v oc:Region

oc:FlatRegion v oc:Region

oc:NonFlatRegion v oc:Region u
9 oc:hasRelativeElevationValue.xsd:double u
9 oc:intersects.oc:Shadow

A non-flat region in OntoCity refers to those landmarks
with a relative elevation value, where by relative we mean
the height measured from the ground level (in their neighbor-
hood) and not from the absolute sea-level. Due to its height,
a non-flat region is also assumed to cast shadows (defined as
the class oc:Shadow in OntoCity) with which it has a spatial
relation oc:intersects that subsumes several RCC-8 relations
including partially overlapping (geos:rcc8po) and externally
connected (geos:rcc8ec).

The subclasses of the class oc:Region can also specify the
texture (i.e., type) of the landmark categorized as follows. in
the following. It is worth mentioning that some of these re-
gion types are used as labels by the classifier to classify re-
gions:

oc:River v oc:WaterArea v oc:Region

oc:Road v oc:PavedArea v oc:ManmadeRegion

oc:Park v oc:VegetationArea v oc:Region

oc:Building v oc:ManmadeRegion u oc:NonFlatRegion

The RCC-8 relations are used in OntoCity to describe more
specific features (e.g., bridges, shadows, shores) whose spa-
tial relations with their vicinity are important in their defini-
tions. For instance, a bridge is defined as a man-made region
which is not flat (i.e, has elevation) and is partially overlap-
ping (referring to the RCC-8 relation geos:rcc8po) at least an-
other region (e.g., a water area, a street):

oc:Bridge v oc:ManmadeRegion u oc:NonFlatRegion u
9 geos:rcc8po.oc:Region

The concept shadow as a spatial feature with a geometry
is also defined in OntoCity. Although the shape of shadows
depends on the exact position of the source light and also the
height value of the casting objects, it is still possible to qual-
itatively describe shadows in the ontology. In OntoCity, a
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shadow is seen as a conceptual (non-physical) feature whose
geometry is dynamic and mobile (i.e., changing depending
on the time of the day). The definition of the concept shadow
becomes more precise by adding the spatial constrains saying
that a shadow is also intersecting (oc:intersects) with at least
one non-flat region (likely as its casting object):

oc:Shadow v oc:ConceptualFeature u
oc:DynamicGeometryFeature u oc:MobileFeature u
9 oc:intersects.oc:NonFlatRegion

The aforementioned axioms were a sub set of the gen-
eral knowledge represented in OntoCity. However, the back-
ground knowledge can be much more specific and indicate
unique features of a specific environment (e.g., “in the given
region there is no building connected to water areas”).

4.2 Explaining the misclassifications
The process of explaining the misclassifications is composed
of several steps as shown in Algorithm 1. The algorithm ac-
cepts as input the list of the classified regions R as well as the
misclassifications represented in the form of a pixel matrix
m (as the reconstruction error between x and x̂ explained in
Section 3). In order to (spatially) characterize the errors, first
the boundaries of the misclassified areas formed by misclas-
sified pixels need to be extracted (see line 4 in the algorithm).
Given the geometry of both the misclassified areas (G) and
the classified regions (R) in the form of polygons, the algo-
rithm calculates all the possible (RCC-8) qualitative spatial
relations between any pairs of (g, r) where g 2 G is a mis-
classified area and r 2 R is a classified region in its vicinity.
For each pair (g, r), besides the calculated spatial relation q,
the algorithm also keeps the type of the region r shown as t.
This information for each pair is added to the list S, which at
the end of the geometrical calculation process will contain all
the spatial relations that exist between the misclassified areas
for each specific region type (see lines 5-11). The information
provided in S can be also seen as the geometrical characteris-
tics of the misclassified areas (i.e., error characterization).

As the next step, to find a general description indicating
why the classifier has been confused, the characteristics of
the errors are generalized based on their frequency. Let the
pair < Q,T > (see line 12) be the most observed spatial
relation Q between the misclassified areas and a specific re-
gion type T, and let us view it as a representative feature of
the misclassified areas. By applying an ontological reasoner
upon OntoCity, we can query the ontology and ask for all
the spatial features that are at least in one Q relation with
type T, where the DL syntax of the query is: 9 T.Q. By ap-
plying the ontological reasoner the query can also be further
generalized from the type T to its super-classes in OntoC-
ity (see line 13). The concept (C) as a spatial feature (C v
oc:CityFeature), which is inferred by the reasoner, is
considered as an explanation.

5 Empirical Evaluation
The classifier was trained on the training set and applied upon
the test data and resulted in ⇡ 32K segments (or regions).
Figure 4, left column, shows a 500 ⇥ 500 pixel large subset

of the test data together with the segmentation. Each seg-
ment is classified into vegetation, road, building, water, or
railroad (middle column). The reconstruction error (right col-
umn) identifies the probability that the segment is misclassi-
fied, in particular, the darker the segment the less likely it is
to be misclassified (i.e., error realization).

Vegetation Road Building Water Railroad

Figure 4: Left: Input RGB image together with the segmentation.
Middle: Classified segmentation from the classifier. Right: Average
reconstruction error for each segment where bright areas indicate
suspected classification errors.

Figure 5: A high level representation of an example error expla-
nation process. The misclassified area (in red) is externally con-
nected (geos:rcc8ec) to the building region (in blue). By map-
ping the 3 aforementioned entities into their equivalent concepts in
the ontology, the ontological reasoner infers the direct superclass
(i.e., oc:shadow) of the misclassified area whose constraints are
more general (9 oc:intersects.oc:NonFlatRegion) than
the spatial representation of the red misclassified area.

Given the segments and the sorted list of reconstruction
errors, the spatial reasoner together with the ontological rea-
soner are in charge of error explanation. The high level repre-
sentation of the symbolic process is illustrated in Figure 5. In
the following we go through the details of each step requited
to achieve the final explanations for the errors. The error
characterization process as the first step considers the top 100
misclassified regions to extract their boundaries and their spa-
tial relations with their segmented neighborhood. This step
has been implemented using the open-source JTS Topology
Suite6. Table 1 shows a summary of the error characteriza-
tion process. To find a representative feature of the misclas-
sified areas (i.e., error generalization), Algorithm 1 takes into
account the pair < Q, T > as the most observed spatial rela-
tion Q between the misclassified areas and a specific region
type T, which in our case, as shown in Table 1, is the pair
< Q= geos:rcc8ec, T= oc:Building> which involves 89 mis-
classified areas.

The pair < Q,T > is enough to query the ontological
concepts with spatial constraints. We have extended and
used the reasoner Pellet, as an open-source Java based

6https://github.com/locationtech/jts
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``````````Type (t)
Relation (q)

ec po

oc:Building 89 5
oc:Road 41 0
oc:Water 19 1

Table 1: A summary on the error characterization process: Each
cell value represents the number of misclassified regions involved in
the given spatial relations (q) with the given region type (t), where
ec and po refer to the RCC-8 relation externally connected and
partially overlapping, respectively.

OWL 2 ontological reasoner [Sirin et al., 2007]. The
extension is in terms of filtering concepts based on their
spatial constraints. The DL syntax of the query given to the
reasoner is 9 geos:rcc8ec.oc:Building interpreted as “all the
things that are at least in one geos:rcc8ec relation with the
region type oc:Building”. The ontological reasoner results
in a hierarchically linked concepts in the ontology from the
most generalized to the most specialized (direct superclass)
concepts satisfying the constraint given in the query. As
shown in Table 2, the satisfactory concept is explained as
“a mobile conceptual feature with a dynamic geometry”
or more specifically a oc:shadow (as a direct answer of the
query). In OntoCity, the concept shadow is defined based on
the spatial constraint: 9 oc:intersects.oc:NonFlatRegion,
which is found by the reasoner as the direct gen-
eralization of the query 9 geos:rcc8ec.oc:Building

(where, geos:rcc8ec v oc:intersects and
oc:Building v oc:NonFlatRegion) (see Figure 5).

Inferred concepts by the reasoner description
oc:CityFeature indirect superclass
oc:ConceptualFeature indirect superclass
oc:DynamicGeometryFeature indirect superclass
oc:MobileFeature indirect superclass
oc:Shadow direct superclass

Table 2: Error explanation as the output of the ontological reasoner.

Figure 6 shows two samples taken from the classification
output, with some marked misclassified areas. At the first
row, the areas marked with number 1 and 2 are misclassi-
fied as water. As the RGB image on the left illustrates, the
marked areas are connected to buildings which cast shadows.
Knowing that an area is under shadow, we can explain that the
classifier is confused due to the similarity between the color
of the shadow and the color of water (both looked dark). At
the second row, the area marked with number 1 is likewise
misclassified as water. This area is again (externally) con-
nected with a building whose shadow can explain the mis-
classification. This area is furthermore located between (i.e.,
connected with) at least two disconnected regions labeled as
roads which are disconnected at the shadow area. It can ex-
plain the second most observed relation listed in Table 2, be-
tween the misclassified areas and the region type oc:Road. As-
suming buildings are often located close to roads (or streets),
their shadow are likely casted on some parts of the roads.
Therefore, a road instead of being recognized as a single road,
is segmented into several roads disconnected at the shadow

areas due to the change in their colors. Errors caused by shad-
ows are not always labeled as water. Again in the second row,
the areas marked with number 2 and 3 are also connected to
buildings and roads, however, misclassified as railroads again
due to the fact that the darkness of the shadow at this location
is similar to the captured color of railroads in the image data.

Vegetation Road Building Water Railroad

1

2

1

2

3

Figure 6: Two examples of the classification output along with their
input RGB image, classified segmentation and the average recon-
struction error. The misclassified areas marked with numbers are
in spatial relations with buildings, roads, vegetation, etc. The on-
tological reasoner explains the misclassification as the result of the
shadow of buildings on their neighborhood.

6 Discussion & Future Work

In this paper, we have proposed an ontology-based reason-
ing approach that automates the process of making sense of
the misclassifications. The symbolic module (i.e., the spatial
and ontological reasoning) used in this approach can act as a
referee who explains why something has been misclassified.
This explanation is made based on the geometrical features
of the data which are not used by the classifier that only relies
on the RGB channels of satellite image data.

Given the explanation about the errors, we ideally would
like the symbolic module to also provide a correction of the
misclassifications (see Figure 1). For this, there are a num-
ber of issues that have not been addressed in this work. The
correction process depends on the inferred concept from the
ontology. For example, if the concept as the explanation
refers to a specific region type (i.e, a physical concept such as
oc:Bridge) we could relabel the misclassified pixels with
the region type. However, as we have shown, it can be a con-
ceptual feature for which finding a relevant label to relabel
the misclassified pixels might need further processing. If the
reasoner infers that the misclassified area is under shadow, for
example, the new label for this area is assumed to be the same
as the type of the regions surrounding (referring to the RCC-
8 relation tangential proper part: geos:rcc8tpp) the area
under shadow. As the next step, we will focus on the correc-
tion process and deal with the aforementioned issues.
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M. Längkvist, F. Klügl, and A. Loutfi. An ontology-based
reasoning framework for querying satellite images for
disaster monitoring. Sensors, 17(11):2545, 2017.

[Baader and Nutt, 2003] F. Baader and W. Nutt. The descrip-
tion logic handbook. chapter Basic Description Logics,
pages 43–95. Cambridge University Press, 2003.

[Bader and Hitzler, 2005] S. Bader and P. Hitzler. Dimen-
sions of neural-symbolic integration - A structured survey.
CoRR, abs/cs/0511042, 2005.

[Ball et al., 2017] J.E. Ball, D.T. Anderson, and C.S. Chan.
Comprehensive survey of deep learning in remote sensing:
theories, tools, and challenges for the community. Journal
of Applied Remote Sensing, 11(4):042609, 2017.

[Besold et al., 2017] T.R. Besold, A.S. Garcez, S. Bader,
H. Bowman, P. Domingos, P. Hitzler, K. Kuehnberger,
L.C. Lamb, D. Lowd, P.M.V. Lima, L. de Penning,
G. Pinkas, H. Poon, and G. Zaverucha. Neural-Symbolic
Learning and Reasoning: A Survey and Interpretation.
CoRR, abs/1711.03902, 2017.

[Cheng et al., 2017] G. Cheng, J. Han, and X. Lu. Remote
sensing image scene classification: Benchmark and state
of the art. IEEE, 2017.

[Cohn et al., 1997] A.G. Cohn, B. Bennett, J. Gooday, and
N.M. Gotts. Qualitative spatial representation and reason-
ing with the region connection calculus. In Proc. Dimacs
Int. WS on Graph Drawing, 1994., pages 89–4, 1997.

[Donahue et al., 2017] J. Donahue, L.A. Hendricks,
M. Rohrbach, S. Venugopalan, S. Guadarrama, K. Saenko,
and T. Darrell. Long-term recurrent convolutional net-
works for visual recognition and description. IEEE Trans.
Pattern Anal. Mach. Intell., 39(4):677–691, 2017.

[Doran et al., 2017] D. Doran, S. Schulz, and T.R. Besold.
What Does Explainable AI Really Mean? A New Concep-
tualization of Perspectives. 2017.

[Duchi et al., 2011] J. Duchi, E. Hazan, and Y. Singer. Adap-
tive subgradient methods for online learning and stochastic
optimization. JMLR, 12(Jul):2121–2159, 2011.

[Garcez et al., 2015] A.S. Garcez, T.R. Besold, L.D. Raedt,
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(3) ERIC, Université Claude Bernard Lyon 1, 43 bld du 11-11, 69100 Villeurbanne
{quentin.brabant, miguel.couceiro}@loria.fr, {dubois, prade}@irit.fr, agnes.rico@univ-lyon1.fr

Abstract
We present a method for modeling empirical data
by a rule set in ordinal classification problems. This
method is nonparametric and uses an intermediary
model based on Sugeno integral. The accuracy of
rule sets thus obtained is competitive with other
rule-based classifiers. Special attention is given to
the length of rules, i.e., number of conditions.

1 Introduction
Let X = X1 ⇥ · · · ⇥Xn, where each Xi is a totally ordered
set called attribute domain, and let L be a totally ordered set,
whose elements are called classes. The minimal and maxi-
mal element of any totally ordered set X are denoted by 0X

and 1X , respectively. An instance is a pair (x, y) 2 X ⇥ L.
A dataset is a collection of instances (in which the same in-
stance can appear several times). A model of a dataset is a
function f : X ! L, and its accuracy is the proportion of
instances for which f(x) = y in agreement with the dataset.

We consider datasets that can be accurately modeled by a
nondecreasing function. Such datasets are typically found in
Multi-Criteria Decision Aid, where evaluation of alternatives
depends on several criteria, but also in some medical diagno-
sis problems. The task of finding an accurate nondecreasing
model of a dataset has been addressed in several ways (see,
e.g., [Gutiérrez et al., 2016]). In this short paper, we focus
on rule-based models, since rules provide an explicit justifi-
cation for each class prediction they make. We consider sets
of (selection) rules of the form

8i 2 A, xi � ↵i ) y � � (1)

where A ✓ [n], � 2 L, and, for all i 2 A, ↵i 2 Xi. The
VC-DomLEM algorithm [Blaszczyński et al., 2011] allows
us to learn such a set of rules, which yields a good accuracy
compared to other interpretable models.

In [Brabant et al., 2018], we proposed an alternative
method for learning rule sets, which relies on Sugeno inte-
grals. This method does not require the tuning of any hyper-
parameter and is competitive with VC-DomLEM in terms of
accuracy. Moreover, this method raises new questions about
the relevance of capacities (i.e., monotonically increasing set
functions) in data-modeling.

2 Rule-based and capacity based models
Let R be a set of rules of the form (1). For any rule r 2 R, let

fr(x) = � if 8i 2 A, xi � ↵i, and 0 otherwise.
We define fR(x) = maxr2R fr. Note that fR is the smallest
function such that the identity fR(x1, . . . , xn) = y is com-
patible with all rules in R. We will say that a function f is
equivalent to R if f = fR.

In what follows, we use the notation [n] = {1, . . . , n}. Let
µ : 2

[n] ! L be a capacity, i.e., a set function 2

[n] ! L

such that µ(;) = 0L, µ([n]) = 1L, and µ(I)  µ(J) for all
I ✓ J ✓ [n]. The Sugeno integral w.r.t. µ is the aggregation
function Sµ : L

n ! L defined by
Sµ(x1, . . . , xn) = max

I✓[n]
(min(µ(I),min

i2I
xi)).

Note that the Sugeno integral can be a model for ordinal clas-
sification only if X1 = · · · = Xn = L. A Sugeno util-

ity functional (SUF) is a more expressive model which can
merge values from different scales. Let ' = ('1, . . . ,'n),
where each 'i : Xi ! L is a nondecreasing function such
that 'i(0Xi) = 0L and 'i(1Xi) = 1L. The SUF Sµ,' is the
function defined by

Sµ,'(x1, . . . , xn) = Sµ('1(x1), . . . ,'n(xn)).

It was shown in [Brabant et al., 2018] that:
1. Any SUF is equivalent to a rule set.
2. Any single rule is equivalent to a SUF.
3. Some rule sets are not equivalent to a single SUF.

In other words, some combinations of rules cannot be ex-
pressed by one SUF. However, the second assertion allows
to say that any rule set is equivalent to some function MS :

X ! L defined by MS(x) = max{Sµ,'(x) | Sµ,' 2 S},
where S is a set of SUFs. We call such function a max-SUF.
There is no reason to think that a max-SUF provides a better
interpretability than its equivalent rule set. However, we will
show that it can be used as an intermediate model in the task
of modeling a dataset by a rule set.

3 From SUFs to rule sets and vice-versa
Any SUF S',µ is equivalent to the rule set

[

I✓[n]

[

�µ(I)

{8i 2 I, xi � ↵i ) y � �}, (2)
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where ↵i = min{a 2 Xi | 'i(a) � �}. Note that this set is
likely to contain redundant rules. Now let us show a method
of translation of a rule set R into a SUF.

1. Initialize µ and ' = ('1, . . . ,'n) with minimal values.

2. For each rule x1 � ↵1, . . . , xn � ↵n ) y � � in R:

(a) let A = {i 2 [n] | ↵i > 0},
(b) increase µ(A) up to �,
(c) for each i 2 A, increase 'i(↵i) up to �

After these steps we always have Sµ,' � fR. When Sµ,' >

fR, no SUF is equivalent to R.
In some cases, it is not problematic that Sµ,' > fR. For

example, if fR is a model of a dataset D, we may want to
find an SUF that best fits D. Obtaining Sµ,' = fR is not
always possible since SUFs are not expressive enough. How-
ever, equality can be always achieved using a max-SUF [Bra-
bant et al., 2018]. The method presented in the next section
relies on this fact.

4 Learning rules from empirical data
Let D be a dataset. The following three steps provide a
method for modeling D by a max-SUF.

1. Selection of an order-preserving subset of data. Two
instances (x, y) and (x’, y0) can be anti-monotonic together,
i.e, x  x’ and y

0  y. We iteratively remove instances from
D, starting from those that are anti-monotonic with the high-
est number of other instances, until no anti-monotonic pair
remains. We denote by D� the dataset obtained in this way.

2. Modeling D� by a rule set R. Initialize R to ;. For
each instance ((a1, . . . , an), y) in D�, search for a set A ✓
[n] with minimal cardinality, such that the rule

8i 2 A, xi � ai ) y � �, (3)

is not contradicted by any instance in D�. Add the rule (3) to
R. At the end of this step, the class of each instance in D� is
exactly predicted by fR.

3. Translation of R into a max-SUF. See Algorithm 1.
The obtained max-SUF is not necessarily equivalent to R, but
it fits D� precisely.

Algorithm 1: Makes a partition P of R such that the max-
SUF MS verifies MS(x) = y for each instance (x, y).

1 P {}
2 for each r 2 R do
3 affected false
4 for each P 2 P do
5 translate P into a SUF Sµ,'

6 if Sµ,'(x)  y for all instance (x, y) in D

� then
7 add r to P

8 affected true
9 break loop

10 if affected = false then
11 add {r} to P

1 2 3 4 5 6 7 8 9 10 11 12 avg.
Steps 1,2. 72.7 88.7 96.2 77.9 86.0 46.2 77.4 25.6 68.8 63.4 57.2 51.3 67.6
Steps 1,2,3. 76 95.3 97.2 89.3 92.4 65.2 84.5 26.4 69.4 63 56.7 53.2 72.4
VC-DomLEM 76.7 96.3 97.1 91.7 95.4 67.5 87.7 26.9 66.7 55.6 56.4 54.6 72.7

Table 1: Accuracy obtained with each method on each dataset.
Datasets are numbered as in [Blaszczyński et al., 2011]

Rule length
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

da
ta

se
t

1 1 64 23 11 1
2 13 72 13 1 1 1 1 1
3 3 24 41 32
4 38 47 10 3 1 1
5 3 25 31 13 5 2 3 2 1 1 3 5 3 1 1
6 2 20 37 22 6 2 1 1 1 9
7 20 21 21 12 9 15 3
8 6 62 16 16
9 6 26 36 32
10 5 26 42 27
11 6 2 25 45 9 5 4 1 3
12 3 24 44 21 5 1 2

Table 2: Percentage of rules with a given length, for each data set.

Note that the max-SUF given by this method can be trans-
lated back into a rule set, which constitutes an equivalent
model and is easier to interpret.

5 Empirical study
We compared our method to VC-DomLEM on the 12 datasets
in [Blaszczyński et al., 2011]. In order to show the impor-
tance of Step 3 in our method, we separately evaluated the
rule set given by steps 1 and 2 alone, and the max-SUF given
by steps 1,2, and 3. We see that Step 3 increases the accuracy
substantially on most datasets. However, it is not clear why
translating a rule set into a max-SUF has this positive effect.

The length of a rule of the form (1) is the size of A. Shorter
rules are easier to interpret and constitute more concise mod-
els. The max-SUF obtained from Step 3 can be translated
into an equivalent rule set R. The percentage of rules of each
length in R is displayed in Table 2. The dual of max-SUFs
are the min-SUFs, i.e., sets of (rejection) rules of the form

8i 2 A, xi  ↵i ) y  �.

When learning min-SUFs by a dual method, the rule-length
distribution differs from that obtained by learning max-SUFs.
Long rules of one type sometimes go along with short rules
of the other type.
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Abstract

Grammar induction is the task of learning
a grammar from a set of examples. Re-
cently, neural networks have been shown
to be powerful learning machines that can
identify patterns in streams of informa-
tion. In this work we investigate their ef-
fectiveness in inducing a regular grammar
from data, without any assumptions about
the grammar. We train a recurrent neu-
ral network to distinguish between strings
that are in or outside a regular language,
and utilize an algorithm for extracting the
learned finite-state automaton. We apply
this method to several regular languages
and find unexpected results regarding the
connections between the network’s states
that may be regarded as evidence for gen-
eralization.

1 Introduction

Grammar induction is the task of learning a gram-
mar from a set of examples, thus constructing a
model that captures the patterns within the ob-
served data. It plays an important role in scientific
research of sequential phenomena, such as human
language or genetics. We focus on the most ba-
sic level of grammars - regular grammars. That is,
the set of all languages that can be decided by a
Deterministic Finite Automaton (DFA).

Inducing regular grammars is an old and ex-
tensively studied problem (De la Higuera, 2010).
However, most suggested methods involve prior
assumptions about the grammar being learned. In
this work, we aim to induce a grammar from ex-
amples that are in or outside a language, without
any assumption on its structure.

⇤ Authors equally contributed to this work.

Recently, neural networks were shown to be
powerful learning models for identifying patterns
in data, including language-related tasks (Linzen
et al., 2016; Kuncoro and Ballesteros, ). This
work investigates how good neural networks are
at inducing a regular grammar from data. More
specifically, we investigate whether RNNs, a neu-
ral network that specializes in processing sequen-
tial streams, can learn a DFA from data.

RNNs are suitable for this task since they re-
semble DFAs. At each time step the network has
a current state, and given the next input symbol it
produces the next state. Formally, let st be the cur-
rent state and xt+1 the next input symbol, then the
RNN computes the next state st+1 = �(st, xt+1),
where � is the function learned by the RNN. Con-
sequently, � is actually a transition function be-
tween states, similar to a DFA.

This analogy between RNNs and DFAs sug-
gests a way to understand RNNs. It enables us
to ”open the black box” and analyze the network
by converting it into the corresponding DFA and
examining the learned language.

Inspired by that, we explore a method for gram-
mar induction. Given a labeled dataset of strings
that are in and outside a language, we wish to
train a network to classify them. If the network
succeeds, it must have learned the latent patterns
underlying the data. This allows us to extract
the states used by the network and reconstruct the
grammar it had learned.

There is one major difference between the states
of DFAs and RNNs. While the former are discrete
and finite, the latter are continuous. In theory, this
difference makes RNNs much more powerful than
DFAs (Siegelmann and Sontag, 1995). However
in practice, simple RNNs 1 are not strong enough
to deal with languages beyond the regular domain

1Without the aid of additional memory such as in LSTMs
(Hochreiter and Schmidhuber, 1997)
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(Gers and Schmidhuber, 2001).
Similar ideas have already been investigated

in the 1990s (Cleeremans et al., 1989; Giles et
al., 1990; Elman, 1991; Omlin and Giles, 1996;
Morris et al., 1998; Tino et al., 1998)2. These
works also presented techniques to extract a DFA
from a trained RNN. However, most of them in-
cluded a priori quantization of the RNNs contin-
uous state space, yielding exponential number of
states even for simple grammars. Instead, several
works used clustering techniques for quantizing
the state space, which yielded much smaller num-
ber of states (Zeng et al., 1993). However, they
fixed the number of clusters in advance. In this
work, we introduce a novel technique for extract-
ing a DFA from an RNN using clustering without
the need to know the number of cluster. For that
purpose, we present a heuristic to find the most
suitable number of states for the DFA, making the
process much more general and unconstrained.

2 Problem Statement

Given a regular language L and a labeled dataset
{(Xi, yi)} of strings Xi with binary labels yi =

1 , Xi 2 L, the goal is to output a DFA A such
that A accepts L, i.e., L(A) = L.

Since the target language L is unknown, we re-
lax this goal to A(

¯

Xi) = ȳi. Namely, A accepts
or rejects correctly on a test set {( ¯Xi, ȳi)} that has
not been used for training. Accordingly, the ac-
curacy of A is defined as the proportion of strings
classified correctly by A.

3 Method

The method consists of the following main steps.
3

1. Data Generation - creating a labeled dataset
of positive and negative strings: 15, 000

strings for training the network, a valida-
tion set of 10, 000 strings for constructing the
DFA, and a test set of 10, 000 strings for eval-
uating the results.

2. Learning - training an RNN within 15
epochs to classify the dataset with high
accuracy- in almost all the conducted ex-
periments (fully described in the next sec-
tion), a nearly perfect validation accuracy is
achieved, approximately 99%.

2For a more thorough survey of relevant papers, see sec-
tion 5.13 in (Schmidhuber, 2015)

3Python code is available at https://github.com/acrola/

RnnInduceRegularGrammar

3. DFA Construction - extracting the states
produced by the RNN, quantizing them and
constructing a minimized DFA.

3.1 Data Generation

The following method was used to create a bal-
anced dataset of positive and negative strings.
Given a regular expression we randomly generate
sequences out of it. As for the negative strings,
two different methods were used. The first method
was to generate random sequences of words from
the vocabulary, such that their length distribu-
tion is identical to the positive ones. The other
approach was to generate ungrammatical strings
which are almost identical to the grammatical
ones, making the learning more difficult for the
RNN. We generated the negative strings by apply-
ing minor modifications such as word deletions,
additions or movements. Both methods did not
yield any significant difference in the results, thus
we show only results for the first method.

3.2 Learning

We used the most basic architecture of RNNs, with
one layer and cross entropy loss. In more detail,
the RNN’s transition function is a single fully-
connected layer given by

st = tanh (Wst�1 +Uxt + v) .

Prediction is made by another fully-connected
layer which gets the RNN’s final state sn as an
input and returns a prediction ŷ 2 [0, 1] by,

ŷ = �(A�(Bsn + c) + d).

where � stands for the sigmoid function,
W,U,A,B are learned matrices and v, c, d are
learned vectors.
The loss used for training is cross entropy,

l = � 1

n

nX

i=1

yi log ŷi + (1� yi) log (1� ŷi) ,

where y1, . . . , yn are the true labels and ŷ1, . . . , ŷn

are the network’s predictions. To optimize our
loss, we employ the Adam algorithm (Kingma and
Ba, 2014)

Our goal is to reach perfect accuracy on the
validation set, in order to make sure the network
succeeded in generalizing and inducing the regu-
lar grammar underlying the dataset. This assures
that the DFA we extract later is reliable as much
as possible.
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3.3 DFA Construction

When training is finished, we extract the DFA
learned by the network. This process consists of
the following four steps.

Collecting the states First, we collect the
RNN’s continuous state vectors by feeding the net-
work with strings from the validation set and col-
lecting the states it outputs while reading them.

Quantization After collecting the continuous
states, we need to transform them into a discrete
set of states. We can achieve this by simply using
any conventional clustering method with the Eu-
clidean distance measure. More specifically, we
use the K-means clustering algorithm, where K is
taken to be the minimal value such that the quan-
tized graph’s classifications match the network’s
ones with high rate. That is, for each K we build
the quantized DFA (as we describe later) and count
the number of matches between the DFA’s classifi-
cations and the network’s over a validation set. We
return the minimal K that exceeds 99% matches.
It should be noted that the initial state is left as is
and is not associated with any of the clusters.

Building the DFA Given the RNN’s transition
function � and the clustering method c, we use the
following algorithm to build the DFA.

Algorithm 1 DFA Construction
V,E  �,�

for each sequence Xi do

st�1, vt�1  s0, c(s0)

for each symbol xt+1 2 Xi do

st  �(st�1, xt)

vt  c(st)

Add vt to V

Add (vt�1, xt)! vt to E

st�1, vt�1  st, vt

end for

Mark vt as accept if ŷi = 1

end for

return V,E

Finally, we use the Myhill-Nerode algorithm
in order to find the minimal equivalent DFA
(Downey and Fellows, 2012).

4 Experiments

To demonstrate our method, we applied it on the
following few regular expressions.

(a) (01)⇤ (b) (0|1)⇤100

Figure 1: Minimized DFAs for binary regexes

4.1 Simple Binary Regexes

The resulting DFAs for the two binary regexes
(01)⇤ and (0|1) ⇤ 100 are shown in Figure 1.

It can be observed that the method produced
perfect DFAs that accept exactly the given lan-
guages. The DFAs accuracy was indeed 100%.

A finding worth mentioning is the emergence
of cycles within the continuous states transitions.
That is, the RNN before quantization mapped new
states into the exact same state it has already seen
before. This is surprising because if we think of
the continuous states as random vectors, the prob-
ability to see an exact vector twice is zero. This
finding, which was reproduced for several regexes,
may be an evidence for generalization as we dis-
cuss later.

4.2 Part of Speech Regex

To test our model on a more complicated grammar,
we created a synthetic regex inspired by natural
language. The regex we used describes a simpli-
fied part-of-speech grammar,
DET? ADJ ⇤NOUN VERB (DET? ADJ ⇤NOUN)?
The resulting DFA is shown in Figure 2.

The DFA’s accuracy was 99.6%, i.e. the learned
language is not exactly the target one, but is very
close. For example, it accepts sentences like

The nice boy kissed a beautiful lovely girl

and rejects sentences like
The boy nice

However, by examining the DFA we can find sen-
tences that the network misclassifies. For exam-
ple, it accepts sentences like

The the boy stands

Inspecting the DFA’s errors might be meaning-
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Figure 2: Minimized DFA for synthetic POS regex

ful also for training, as a technique for targeted
data augmentation. By the pumping lemma, each
of the states where the network is wrong stands for
an infinite class of sequences that end at the same
state. In other words, those states are actually a
”formula” for generating as much data as we want,
such that the network is wrong. This way, the net-
work can be re-trained on its own errors.

5 Discussion

Learning

The network reached 100% accuracy quickly on
the synthetic datasets. This may indicate that de-
ciding a regular language is a reasonable task for
an RNN, and illustrates the similarity between
RNNs and DFAs discussed earlier.

Emergence of cycles

The emergence of cycles within the continuous
states, mentioned in experiment 4.1 , might be un-
derstood as an evidence for generalization. Hav-
ing learned those cycles means that for an infinite
set of sequences the network will always traverse
the same path and predict the same label. In other
words, the model has generalized for sequences of
arbitrary length before quantization.

It should be noted that such cycles have also
been noticed in (Tino et al., 1998). Nevertheless,
in their work the learning objective was predicting
the next state rather than classifying the whole sen-
tence. As a result, the emergence of cycles is ex-
pected, since the network was forced to learn them
by the supervision. This differs from the case of
classification, as learning the states and the cycles
is not supervised.

Quantization

The process used for quantizing the states may in-
troduce conflicts, if two different states in the same
cluster lead to two different clusters for the same
input. However, all of our experiments did not
yield any conflict. This means that the clusters do
reflect well the RNN’s different states.

This is reasonable due to the continuity of the
RNN’s transition function, which maps ”close”
states into ”close” states in terms of Euclidean dis-
tance. Thus, states within the same cluster will
have similar transitions and therefore be mapped
into the same cluster.

Another way to confirm the clusters validity is
to check their compatibility with the network’s de-
cisions, i.e., whether accepting or rejecting states
are clustered together. Figre 3 presents the con-
tinuous vectors for the binary regex (0|1) ⇤ 100

4.
Clearly, the states are divided into five distinct
clusters and only one of them is accepting.

Figure 3: RNN’s continuous states

6 Conclusions

We investigated a method for grammar induction
using recurrent neural networks. This method
gives some insights about RNNs as a learning
model, and raises several questions, for example
regarding the cycles within the continuous states.

Quantization via clustering proved itself to re-
flect well the true states of the network. Identi-
fying an infinite set of vectors as one state may
reduce the network’s sensitivity to noise. Thus,
states quantization during or after training may be
considered as a technique for injecting some ro-
bustness to the model and reducing overfitting.

Finally, this method may serve as a tool for sci-
entific research, by finding regular patterns within
a real-world sequence. For example, it would
be interesting to use this method for natural lan-
guage, more specifically to induce grammar rules

4To reduce the vectors dimensions we used PCA.
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of phonology, which is claimed to be regular (Ka-
plan and Kay, 1994). Another example is to use
it to find regularity within the structure of DNA,
which is also regarded as regular (Gusfield, 1997).
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Abstract
Deep neural networks have enjoyed great success in
recognizing patterns among large datasets. On the
other hand, proofs of lots of mathematical theorems
are very similar to each other. In this paper, by rep-
resenting problems as directed graphs, we provide
a concrete definition of similarity notion between
problems. Then we examine the performance of
deep sequential models to predicting solutions of
similar mathematical problems.

1 Introduction
In recent years, Deep Neural Network (DNN) models have
attracted much attention due to their great success in var-
ious tasks, including image recognition and classification
[Krizhevsky et al., 2012; Szegedy et al., 2015; Ioffe and
Szegedy, 2015; Simonyan and Zisserman, 2014; He et al.,
2015; Szegedy et al., 2014], and speech recognition [Hin-
ton et al., 2012; Amodei et al., 2016]. In all of these cases,
one needs to recognize similar patterns in a collection of data
samples, and this is done very well by DNNs.

On the other hand, when doing research in science or learn-
ing a topic, we often encounter a situation where we should
solve a new problem which is similar to another problem with
a known solution. For example, showing that

p
3 is irrational,

is very similar to the irrationality proof of
p
2 and we may get

some idea for our new problem by looking at the solution ofp
2 problem. Motivated by the success of DNNs in pattern

recognition, it is natural to use them for solving similar prob-
lems in different branches of science.

In this work we take the first step in this direction by using
DNNs for proving similar theorems in logic. We first give a
precise meaning to the notion of similarity between problems.
This is achieved by representing proof of theorems as directed
graphs. Then by comparing the shape and nodes of graphs,
corresponding to different problems, we would be able to de-
fine several levels of similarity.

Furthermore, the premises and proofs can be represented
by ordered lists, which suggests sequence to sequence models
as the first candidates to be applied for this task. We test
the learning ability of sequence to sequence models on these
similarity classes. We show that there is a hierarchy of model

performance on these classes, and therefore our approach can
be used to measure the intelligence level of learning models
for proving logical theorems. Also we find some criteria for
the statistics of data sets, in order to achieve a high accuracy.
The main contributions of this work are as follows:

a) Introducing a concrete definition of pattern similarity in
proofs and showing that it is useful for understanding the
creativity of learning models.

b) Using sequence to sequence models for proving similar
theorems in propositional logic, in an end-to-end fash-
ion. To the best of our knowledge, this is the first work
in this direction.

2 Related Work
Previous researches on applications of deep learning tech-
niques in theorem proving are mainly focused on guiding au-
tomatic theorem provers, like E [Schulz, 2002], by premise
selection. These activities have been initiated by [Alemi et
al., 2016], who used neural sequence models for premise se-
lection. More recently, [Loos et al., 2017] embedded deep
networks inside prover E, as a proof guider. It has been
shown there that guided automatic prover can prove more the-
orems under the same computational conditions. Also a new
dataset (HolStep) for such kind of tasks has been introduced
in [Kaliszyk et al., 2017]. The state-of-the-art results on this
dataset are presented in [Wang et al., 2017a].

In addition, machine-learning methods have been used
for fine-tuning the running parameters of automated theorem
provers, known as strategy selection (see [Bridge et al., 2014]
and references therein).

There are also plenty of works on solving math-word prob-
lems including [Wang et al., 2017b; Hosseini et al., 2014;
Amnueypornsakul and Bhat, 2014; Mitra and Baral, 2016]
and reasoning in general (see for example [Rocktäschel et al.,
2015]).

Learning based on similarity is introduced and developed
in [Indurkhya, 1991]. In particular, an algebraic approach
has been invented to formalizing the underlying process of
learning [Indurkhya, 1999].

Automatic theorem provers have been also used for check-
ing the correctness of softwares and compilers. In this
way, we can guarantee that the software is bug-free and im-
plemented correctly. For example [Leroy, 2009] used the
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Coq proof assistant for checking the correctness as well as
programing the CompCert compiler (see also [Klein et al.,
2009]).

Here we try to adopt an end-to-end learning strategy for
proving similar conjectures in mathematical logic. One ad-
vantage of this method is its applicability to solving ex-
ploratory problems, where the final answer of the problem
is not given. As we shall see, such kind of extensions do not
introduce conceptual (or even technical) difficulties in this ap-
proach.

It is worth mentioning that the output probability distribu-
tion of our model can be used for guiding a searching module
in finding the final solutions. Since we do not use any search
algorithm in this work, instead of comparing our model with
classical automatic provers, we focus mainly on concept and
usefulness of similarity notion in learning procedure. In par-
ticular, the introduced model in this work can be used as an
actor network to provide optimal policy for a reinforcement
learning based agent whose task is solving similar mathemat-
ical problems.

3 Inference in Mathematical Logic
3.1 Inference Graph
On very general ground, mathematical problems commonly
fall into two categories: Proving-like problems, where the
questioner should provide a proof of the desired statement
given in the problem, and exploring-like problems, where the
final answer is not provided and one should essentially solve
a puzzle.

In both cases, the procedure of solving a mathematical
problem consists of applying a sequence of inference rules
to mathematical propositions, starting with a set of assump-
tions. In strict mathematical terminology, inference rules usu-
ally refer to the standard logical rules which one can use to
infer any valid conclusion from some premises. Here by in-
ference rules we mean any piece of thought action that one
takes during the solution procedure. This includes using a
mathematical definition, selecting a particular strategy of so-
lution (like proof by contradiction), substitution in a formula,
or applying a standard logical rule and so on.

Any rule can be considered a function which maps a set of
inputs (this can be empty) to an output1. For logical rules, the
inputs and output are propositional forms.

It turns out to be helpful to represent the solution of logi-
cal problems by a graph, which we call inference graph. The
nodes of these graphs are mathematical propositions and in-
ference rules. Figure 1a shows an example of inference graph.
In this example, starting from top, the solution begins with
four propositions P [0]

0 , P

[0]
1 , P

[0]
2 and P

[0]
3 which are given as

assumptions. In the next step we use inference rules R[0]
0 and

R

[0]
1 to conclude P

[1]
0 and P

[1]
1 respectively. Finally by ap-

plying inference rule R

[1]
0 to P

[1]
0 , P [0]

2 and P

[1]
1 we arrive at

the result of problem, P [2]
0 . We label propositions, P [l]

i , and

1In order to simplify the notation we assume that rules have just
one output, in the case of several outputs we can define several
copies of the rule.

P

[2]
0

R

[1]
0

P

[1]
0

R

[0]
0

P

[0]
0 P

[0]
1

P

[1]
1

R

[0]
1

P

[0]
2 P

[0]
3

(a) A typical inference graph. (b) The corresponding shape of
inference graph on the left side.

Figure 1

rules, R[l]
i , by their corresponding layer-number, l, counted

from up to down, and position in the layer, i, counted from
left to right in each layer.

More formally, we may represent the inference graph as
an ordered list which is constructed by stacking proposition
and rule layers from top to down. For example the inference
graph of Figure 1a can be represented by the following list:
⇥

P [0]
0 , P [0]

1 , P [0]
2 , P [0]

3

⇤
,
⇥
R[0]

0

�
P [0]

0 , P [0]
1

�
, R[0]

1

�
P [0]

1 , P [0]
2 , P [0]

3

�⇤
,

,
⇥
P [1]

0 , P [1]
1

⇤
,
⇥
R[1]

0

�
P [1]

0 , P [0]
2 , P [1]

1

�⇤
,
⇥
P [2]

0

⇤�

⌘

P [0], R[0], P [1], R[1], P [2]

�

where P [l] and R

[l] are lists of propositions and rules in the
layer l. In a similar way, a general inference graph can be
written as:


P [0], R[0], P [1], R[1], · · · , P [L]

�
. (1)

In order to compare different inference graphs, we need
to introduce some definitions. Let us define the depth of the
inference diagram to be the layer index of the last proposition,
namely L. So, the depth of the inference graph of Figure 1a
is two. Another useful notion is the shape of inference graph.
We define the shape of inference graph to be a placeholder
which is obtained by removing particular propositions and
rules used in that solution. The shape of inference graph of
Figure 1a is depicted in Figure 1b.

3.2 Similarity of Logic inferences
We are now in a position to define several levels of similar-
ity between mathematical problems by comparing their cor-
responding inference graphs:

Zero-type similarity: Two problems are zero-type similar
if their inference graphs have the same shape and rule layers.
So the only difference between them is propositional layers.
An example is given in Figures 2a and 2b.

Shape-type similarity: Two problems are similar of
shape-type if their corresponding inference graphs have the
same shape. Figures 2a and 2c show an example.

Depth-type similarity: Two problems are similar of depth
type if their corresponding inference graphs have equal depth,
like graphs which have been shown in Figures 2a and 2d.
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p4

r1

p3

r0

p0 p1 p2

(a)

q4

r1

q3

r0

q0 q1 q2

(b)

q4

r3

q3

r2

q0 q1 q2

(c)

q5

r4

q3

r2

q0 q1

q4

r3

q2

(d)

Figure 2: Inference-graphs (a) and (b) are similar of zero
type. (a) and (c) are similar of shape type. Finally (d) is
in depth similarity class of (a).

Intuitively, we expect that problems in a zero-type simi-
larity class be more similar to each other than problems in
shape-type or depth-type class of similarity. Indeed the level
of similarity decreases from zero-type to depth-type class of
problems. Before proceeding further, it is worth mentioning
that the solution of a mathematical problem is not unique in
general and problems can be solved in several ways. Accord-
ingly, in the above definitions we compare inference graphs
of specific solutions.

3.3 Inference rules of propositional logic
In this proof-of-concept study, for the sake of simplicity, we
prefer to consider problems in natural deduction. Indeed nat-
ural deduction is a fundamental module of any reasoning pro-
cedure. Therefore the current work provides a backbone for
future development in this direction. Actually we don’t use
any particular property of natural deduction system except the
specific form of inference rules.

Table 10 lists down the inference rules of natural deduction
with one and two number of inputs, respectively. We can con-
sider these rules as building blocks of deep inference graphs
in natural deductions.

4 Sequence to sequence neural network as
theorem prover

As we have mentioned in the last section the solutions of
mathematical problems can be written as sequences of math-
ematical propositions and inference rules. Also the problem
itself may be represented by a list of assumptions followed
by the conclusion of the problem (in the case of proving-like
problems):

⇥
P

[0]
0 , P

[0]
1 , · · · , P [0]

n , P

[C]
0

⇤
. (2)

Also for exploring problems we may replace the result of
the problem, P [C]

0 , in the above list with an encoded token
which specifies the aim of problem.

Therefore a natural choice of deep-learning model to be
used as a problem solver would be sequence to sequence neu-
ral network [Sutskever et al., 2014; Cho et al., 2014]. Fig-
ure 3 shows the network that we employ in this work. En-
coder module is a bidirectional recurrent neural network with
LSTM cells. We feed the ordered list 2, character by charac-
ter, as one-hot vectors to the encoder. For the decoder we also
use a RNN with LSTM cells. During the training procedure
we feed the ordered list of the rules used for inferring P

[C]
0

as the target sequence of decoder. More precisely we use the
label of rules followed by their index of inputs to specify this
target list. For example the target list of inference graph de-
picted in Figure 2d is as follows:

⇥
r2, 0, 1, r3, 2, r4, 3, 4

⇤
. (3)

In the case that the rule has some other parameters, we
concatenate these parameters in the target list by putting them
after the inputs of the corresponding rule. It is important to
note that by having the input 2 and output 3 of theorem, we
can completely reconstruct the inference graph.

In addition to simple sequence to sequnce model
(Seq2Seq), we also consider sequence to sequence model
equipped with the attention mechanism (Seq2SeqAttn),
which has been shown has a great effect on the perfor-
mance of seq2seq model [Luong et al., 2015; Weston et al.,
2014]. We train these models using the TensorFlow frame-
work [Abadi et al., 2015] .

5 Zero-Similarity Class
Let us start by examining the performance of these models on
solving problems within the zero-similarity class. The task on
network in this case is recognizing building blocks of infer-
ence rules. We first consider the basic rules of natural de-
duction, namely problems with depth one. Actually the only
meaningful similarity class that these problems belong to is
the zero one.

5.1 Depth-One problems
Since the number of applied rules in this case is just one, we
may employ a more simplified representation of decoder tar-
gets. Indeed the labels of input arguments are redundant and
solution of a problem is completely specified by giving the
label of applied rule, [R[0]

0 ] .
The total number of listed rules in table 10 is N1 = 40

and therefore we have forty depth-one distinct zero-similarity
classes2 . For each class we generate M1 samples of prob-
lems. To do that, we randomly generate a formula (string)
with maximum length of ten for each individual proposition.
We use ptrain ⇥M1 of them to train the network, pdev ⇥M1 of
them as development (dev) set and the rest ptest⇥M1 samples

2By distinct problems we mean problems with different shapes
or rule lists. In other words two problems are distinct if they are not
belong to the same zero-similarity class.
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[L�1]
0
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Figure 3: Architecture of seq2seq model we use in this work.

to measure the accuracy of the neural networks. In practice
we use ptrain = 0.8 and pdev = ptest = 0.1. The table below
shows the summary of data sets:

Table 1: Content of depth-one data sets.

data set number of
distinct problems

number of
samples per class total number of samples

total generated data N1 M1 M1 ⇥N1

train N1 ptrain ⇥M1 ptrain ⇥M1 ⇥N1

dev N1 pdev ⇥M1 pdev ⇥M1 ⇥N1

test N1 ptest ⇥M1 ptest ⇥M1 ⇥N1

Here are two examples of generated problems with zero-
similarity:

Example 1:
P [0]
0 = (((f _ (d _ d)) ! (d _ (¬d))) ^ ((c _ f) ! (b $ f)))

P [0]
1 = ((f _ (d _ d)) _ (c _ f))

P [1]
0 = ((d _ (¬d)) _ (b $ f))

rules list = decoder target = [CD]

Example 2:
P [0]
0 = (((a ! (¬c)) ! (b _ e)) ^ ((d ! d) ! ((¬c) ^ a)))

P [0]
1 = ((a ! (¬c)) _ (d ! d))

P [1]
0 = ((b _ e) _ ((¬c) ^ a))

rules list = decoder target = [CD]

Table 2 displays the experimental results with different val-
ues of generated samples per class, M1. As it is expected, the
accuracy increases by feeding more examples to the network
and almost saturates around M1 ' 60, where the networks
have learned to solve depth-one problems with %96 accuracy
by training them with 0.8⇥60 = 48 samples per problem, for
a total of 48⇥40 = 1920 samples. In the next two subsections
we consider deeper problems with zero-type similarity.

5.2 Cascade graphs
By definition a zero-similarity class consists of problems with
the same shape and rule list. However, in general, we may
have several (zero-) similarity classes in our data set. For
the purpose of illustration, let us first generate our data with
fixed-shape cascade graphs (see Figure 4a). These graphs are

Table 2: Accuracy of models on depth-one problems.

M1 10 20 30 40 50 60
Seq2Seq 0.650 0.850 0.925 0.925 0.955 0.967

Seq2SeqAttn 0.675 0.850 0.908 0.944 0.925 0.966

well-defined for each depth and enable us to compare perfor-
mance of network for different depths.

Like the last subsection, we are working with fixed shape
problems and therefore we may specify the decoder targets
just by the label of rules. For example the output of network
for the graph corresponding to Figure 4b can be represented
as

⇥
R1, R2, R3

⇤
. Before we proceed further, we provide an

example of generated problems with depth two:
Example 3:

P

[0]
0 = (((c ^ b) _ e) ! ((¬a) _ ((¬f) ! c)))

P

[0]
1 = ((c ^ b) _ e)

P

[0]
2 = ((¬a) ! (¬b))

P

[0]
3 = (¬(¬b))

P

[1]
0 = ((¬f) ! c)

rules list = [MP, MT, DS]

We consider NCd distinct cascade problems for each depth d.
In particular, NC2 = 71 and NC3 = 200 cascade problems
have been generated with depth two and three respectively.
Dividing these problems to train, dev and test set is the same
as the last section (see Table 3). We also add the M1 = 50
data set of depth one problems (section 5.1) to the training set.
This is reasonable, because these problems teach the network
the basic rules.

data set number of distinct
problems with depth d

number of
distinct shapes

number of samples
per problem

number of
depth-one samples

total NCd 1 Md M1 ⇥N1

train NCd 1 ptrain ⇥Md M1 ⇥N1

dev NCd 1 pdev ⇥Md -
test NCd 1 ptest ⇥Md -

Table 3: Summary of cascade data sets used for zero-
similarity class.

L & R  2018

- 33 -



(a) cascade shape graphs
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(b) cascade graph with depth
two

Figure 4

Table 4 depicts the performance of networks on test set in
depth two and three. Interestingly, the accuracies in depths
two and three are higher than their depth-one counterparts,
with the same number of samples (Table 2). Indeed we arrive
at a high performance around %99 just by training networks
with 8 samples per problem.

Table 4: Performance of model on depth two and three cas-
cade problems with zero-similarity.

(a) depth 2

M2 10 20 30
Seq2Seq 0.985 0.996 0.998

Seq2SeqAttn 0.984 0.981 0.996

(b) depth 3

M3 10 20 30
Seq2Sqe 0.993 0.998 0.998

Seq2SqeAttn 0.98 0.992 0.993

5.3 General graphs
Let us now consider a more difficult task, where the data
sets consist of problems with several shapes. For simplic-
ity, we consider graphs where rule nodes have no common
inputs, i.e. propositional nodes. At each depth, NSd number
of such shapes have been generated. In particular we consider
NS2 = 10 and NS3 = 20 different shapes in depth two and
three. Figure 5 shows the depth-two shapes that we have gen-
erated. Let us denote the total number of distinct problems
corresponding to NSd shapes by Nd. Using this notation, Ta-
ble 5 represents the content of data sets.

Table 5: Summary of zero-similarity data sets with several
shapes. In practice we use N2 = N3 = 100, NS2 = 10,
NS3 = 20 and pdev = ptest = 0.1.

data set number of distinct
problems with depth d

number of
distinct shapes

number of samples
per problem

total Nd NSd Md

train Nd NSd ptrain ⇥Md

dev Nd NSd pdev ⇥Md

test Nd NSd ptest ⇥Md

Here is an example of generated problems with the shape
of Figure 5d:

Example 4:

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j)

Figure 5: Generated shapes with depth two.

P

[0]
0 = ((b ^ (¬d)) ! (¬b))

P

[0]
1 = (¬(¬(b ^ (¬d))))

P

[2]
0 = (¬b)

rules list = [InvDN, 1, MP, 0, 2]

Table 6 reports the experimental results. Again we see a
high performance, even for this multi-shape task, by feeding
a few samples to the networks. It is worth mentioning that
the accuracy of random selection of rules is about 1

# tokens '
0.015. In conclusion, it seems that the sequential models are
very robust for solving problems with zero-similarity.

Table 6: Performance of models on zero-similarity classes
with several shapes.

(a) depth 2

M2 10 20 30
Seq2Seq 0.932 0.956 0.969

Seq2SeqAttn 0.948 0.951 0.975

(b) depth 3

M3 10 20 30
Seq2Seq 0.956 0.959 0.969

Seq2SeqAttn 0.945 0.976 0.976

6 Shape-Similarity Class
The task of networks in this section is to solve a problem by
looking at the solutions of problems with the same shape but
different rule lists. Like in the last section let us start with
cascade problems.

6.1 Cascade graphs
Following our notation in section 5.2, we use Ntr out of NCd

cascade problems to build our training set. The rest NCd�Ntr
problems have been used to generate dev and test sets. Con-
tents of data sets are shown in the table 7. The performance
of the models as a function of percentage of used problems,
Ntr
NCd

, is shown in Figure 6. As can be seen in this figure, the
attention mechanism has a great impact on the performance
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Table 7: Statistics of cascade-problems data sets with shape
similarity. In practice we use M2 = M3 = 30, NC2 = 71
and NC3 = 200.

data set number of distinct
problems with depth d

number of
distinct shapes

number of samples
per problem

total NCd 1 Md

train Ntr 1 Md

dev 1
2 (NCd �Ntr) 1 Md

test 1
2 (NCd �Ntr) 1 Md

of network. In particular by using thirty percent of available
data as training set, we are able to reach to accuracies more
than sixty and eighty percent in depth two and three, respec-
tively.

Figure 6: Performance of models on cascade problems with
shape similarity.

6.2 General graphs
In a more general setup we may consider problems with sev-
eral distinct shapes. If we define Pd(sh) to be the number of
generated distinct problems for each specific shape, we select
Ntr out of Pd(sh) problems to generate our training set. The
remaining Pd(sh) � Ntr problems will be used for produc-
ing dev and test sets, as shown in the table 8. The experi-
mental results are shown in Figure 7. Again we see that the
Seq2SeqAttn model has a better performance. However, due
to presence of multiple classes with different shapes, the ac-
curacy of both models decreases with respect to cascade case
(with the same value of Ntr/Ntotal).

7 Depth Similarity Class
Finally we arrive at the most difficult task: the network should
predict the shape and rule list of a given problem, by looking
at the solution of training set problems with other shapes.

Among all generated shapes in each depth, NSd , we use Ntr
of them to generating our training set and the rest are used for
dev and test sets, as shown in the table 9. Figure 8 depicts

Table 8: Summary of data sets with shape similar problems.
In practice we use P3(sh) = P2(sh) = 20, NS3 = NS2 = 10
and M3 = M2 = 20.

data set number of distinct
problems with depth d

number of
distinct shapes

number of samples
per problem

total Nd NSd Md

train NSd ⇥Ntr NSd Md

dev 1
2 ⇥NSd ⇥ (Pd(sh)�Ntr) NSd Md

test 1
2 ⇥NSd ⇥ (Pd(sh)�Ntr) NSd Md

Figure 7: Performance of models on problems with shape
similarity.

the experimental results. We observe that the networks per-
form poorly on the depth-similar problems in compared with
the shape class (Figure 7), as we have expected. Indeed the
accuracy of models is reduced by a factor of two. Also the
attention mechanism has a little impact on the performance
of the network.

8 Discussion
In this work we have explored the learning ability of sequen-
tial models in proving similar mathematical problems. To
this end, we represented solutions as ordered graphs, which
led to a natural definition of similarity notion between prob-
lems. We found that these models are very robust for solving
problems with zero-type similarity. Also their performance
on shape similar problems is fair enough. On the other hand
solving problems with new shapes is the most difficult task
for these models and we observed a lower performance com-
pared to zero and shape similarity classes.

This end-to-end approach based on graph representation is
very general and can be applied practically to any branches
of mathematics. Its main advantages are:

• Problem Engineering: Data augmentation is standard
technique for generating new data and making the model
more robust against overfitting. In the same way, we can
generate new problems (graphs) from existing ones in
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Table 9: Statistics of depth similar data sets. In practice we
use NS2 = 10, NS3 = 100, P2(sh) = 10, P3(sh) = 2,
M3 = M2 = 20.

data set number of distinct
problems with depth d

number of
distinct shapes

number of samples
per problem

total Nd NSd Md

train Ntr ⇥ Pd(sh) Ntr Md

dev 1
2 ⇥ (Nd �Ntr ⇥ Pd(sh))

1
2 (NSd �Ntr) Md

test 1
2 ⇥ (Nd �Ntr ⇥ Pd(sh))

1
2 (NSd �Ntr) Md

Figure 8: Performance of models on depth similarity classes.

several ways. For example we may join graphs, cutting
a graph or changing the applied rules and so on.

• Exploring problems: This end-to-end method is also
applicable to exploring problems. For example consider
the following example:

Find the roots of x2 + ax+ b = 0.
This problem can be represented by [solve, x2 + ax +
b = 0], where solve is a special token corresponding
to “Find the roots”. The solution of these kind of prob-
lems can also be represented as graph. However data
augmentation is more tricky in this case.

It would be interesting to improve the models that we have
used in this work and achieving more higher accuracies. For
example we may try other sophisticated architectures, using
beam search [Wiseman and Rush, 2016] and so on. Another
promising direction for future investigations is to use these
models for performing a brute-force search or guiding a rein-
forcement learning agent and comparing the results with the
ones of automatic theorem provers. We leave these extensions
as well as studying exploring problems to the future works.
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A Inference Rules
id Rule Inputs output
1 Modus Ponens (MP) p ! q, p q

2 Modus Tolens (MT) p ! q, ¬q ¬p
3 Constructive Dilemma (CD) (p ! q) ^ (r ! s), p _ r q _ s

4 Destructive Dilemma (DD) (p ! q) ^ (r ! s), ¬q _ ¬s ¬p _ ¬r
5 Disjunctive Syllogism (DS) p _ q, ¬p q

6 Hypothetical Syllogism (HS) p ! q, q ! r p ! r

7 Conjunction (Conj) p, q p ^ q

8 Addition2 (Add2) p, q p _ q

9 Simplification (Simp) p ^ q p

10 Addition1 (Add1) p p _ q

11 Associative Laws (AssocConj) p ^ q ^ r p ^ (q ^ r)
12 Inverse Associative Laws (InvAssocConj) p ^ (q ^ r) p ^ q ^ r

13 Associative Laws (AssocDisj) p _ q _ r p _ (q _ r)
14 InAssociative Laws (InAssocDisj) p _ (q _ r) p _ q _ r

15 Commutative Laws (ComConj) p ^ q q ^ p

16 Commutative Laws (ComDisj) p _ q q _ p

17 Distributive Laws (Distr) p ^ (q _ r) p ^ q _ p ^ r

18 InvDistributive Laws (InvDistr) p ^ q _ p ^ r p ^ (q _ r)
19 Distributive Laws (Distr) p _ (q ^ r) (p _ q) ^ (p _ r)
20 InvDistributive Laws (InvDistr) (p _ q) ^ (p _ r) p _ (q ^ r)
21 Contrapositive Law (Contra) p ! q ¬q ! ¬p
22 InvContrapositive Law (InvContra) ¬q ! ¬p p ! q

23 Double Negation (DN) p ¬¬p
24 InvDouble Negation (InvDN) ¬¬p p

25 De Morgans Laws (DeMConj) ¬(p ^ q) ¬p _ ¬q
26 InvDe Morgans Laws (InvDeMConj) ¬p _ ¬q ¬(p ^ q)
27 De Morgans Laws (DeMDisj) ¬(p _ q) ¬p ^ ¬q
28 InvDe Morgans Laws (InvDeMDisj) ¬p ^ ¬q ¬(p _ q)
29 Idempotency (IdemConj) p ^ p p

30 InvIdempotency (InvIdemConj) p p ^ p

31 Idempotency (IdemDisj) p _ p p

32 InvIdempotency (InvIdemDisj) p p _ p

33 Material Equivalence (EquivConj) p $ q (p ! q) ^ (q ! p)
34 InvMaterial Equivalence (InvEquivConj) (p ! q) ^ (q ! p) p $ q

35 Material Equivalence (EquivDisj) p $ q (p ^ q) _ (¬p ^ ¬q)
36 InvMaterial Equivalence (InvEquivDisj) (p ^ q) _ (¬p ^ ¬q) p $ q

37 Material Implication (Impl) p ! q ¬p _ q

38 InvMaterial Implication (InvImpl) ¬p _ q p ! q

39 Exportation (Exp) p ^ q ! r p ! (q ! r)
40 InvExportation (InvExp) p ! (q ! r) p ^ q ! r

Table 10: Inference rules.
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Abstract
Hierarchical planners that produce interpretable
and appropriate plans are desired, especially in its
application to supporting human decision making.
In the typical development of the hierarchical plan-
ners, higher-level planners and symbol grounding
functions are manually created, and this manual
creation requires much human effort. In this pa-
per, we propose a framework that can automati-
cally refine symbol grounding functions and a high-
level planner to reduce human effort for designing
these modules. In our framework, symbol ground-
ing and high-level planning, which are based on
manually-designed knowledge bases, are modeled
with semi-Markov decision processes. A policy
gradient method is then applied to refine the mod-
ules, in which two terms for updating the modules
are considered. The first term, called a reinforce-
ment term, contributes to updating the modules to
improve the overall performance of a hierarchical
planner to produce appropriate plans. The second
term, called a penalty term, contributes to keep-
ing refined modules consistent with the manually-
designed original modules. Namely, it keeps the
planner, which uses the refined modules, produc-
ing interpretable plans. We perform preliminary ex-
periments to solve the Mountain car problem, and
its results show that a manually-designed high-level
planner and symbol grounding function were suc-
cessfully refined by our framework.

1 Introduction
Hierarchical planners have been widely researched in artifi-
cial intelligence communities. One of the main reasons for
that is that the hierarchical planers can divide complex plan-
ning problems, which flat planners cannot solve, into a se-
ries of more simple sub-problems, by using high-level knowl-
edges about the planning problem (e.g., [Nilsson, 1984;
Choi and Amir, 2009; Kaelbling and Lozano-Pérez, 2011]).

A hierarchical planner is composed of multiple planner
layers that are typically divided into two types: high-level and
low-level. A low-level planner performs micro-level plan-
ning, and it deals with raw information about an environment.

In contrast, a high-level planner performs macro-level plan-
ning, and it deals with more abstract symbolic information.
The raw and abstract symbolic information are mapped to
each other by symbol grounding functions. Imagine that a
hierarchical planner is used for controlling a humanoid robot
to put a lemon on a board. Here, the high-level planner makes
a plan such a “Pick a lemon up, and then put it on a board.”
The low-level planner makes a plan for controlling the robot’s
motors according to sensor inputs, to achieve sub-goals given
by the high-level planner (e.g., “Pick a lemon up”). As the
low-level planner cannot understand what “Pick a lemon up”
means, the symbol ground function converts it into actual val-
ues, in the environment, which the low-level planner can un-
derstand.

Hierarchical planners are often used for supporting human
decision making (e.g., in supply chain [Özdamar et al., 1998]
or clinical operations [Fdez-Olivares et al., 2011]). In such
cases, people make decisions on the basis of a plan, and thus
it is necessary that 1) they understand the plan (especially
one of a high-level planner) and 2) they can reach satisfying
outcomes by following the plan (i.e., the hierarchical planner
gives appropriate plans).

In many previous studies on hierarchical planners, symbol
grounding functions and high-level planners were designed
manually [Nilsson, 1984; Malcolm and Smithers, 1990; Cam-
bon et al., 2009; Choi and Amir, 2009; Dornhege et al., 2009;
Wolfe et al., 2010; Kaelbling and Lozano-Pérez, 2011]. Al-
though this makes it possible for people to understand the
plans easily, much human effort is needed to carefully design
a hierarchical planner that provides appropriate plans.

Konidaris et al. [2014; 2015; 2016] have proposed frame-
works for automatically constructing symbol grounding func-
tions and high-level planners, but they require a human to
carefully analyze them to understand the plans. These con-
structed modules are often complicated and, in such cases,
analysis becomes a burden.

In this paper, we propose a framework that automatically
refines manually-designed symbol grounding functions and
high-level planners, with a policy gradient method. Our
framework differs from frameworks proposed in the afore-
mentioned previous studies on the basis of the following
points:
• Unlike the hierarchical planners based solely on

manually-designed symbol grounding functions and
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high-level planners [Nilsson, 1984; Malcolm and
Smithers, 1990; Cambon et al., 2009; Choi and Amir,
2009; Dornhege et al., 2009; Wolfe et al., 2010; Kael-
bling and Lozano-Pérez, 2011], our framework refines
these modules without human intervention. This auto-
mated refinement reduces the design workload for the
modules.

• Unlike the frameworks that automatically construct
symbol grounding functions and high-level plan-
ners [Konidaris et al., 2014; 2015; Konidaris, 2016], our
framework refines these while attempting to keep the re-
sulting symbol grounding consistent with prior knowl-
edge of the definition of the symbols as much as possi-
ble (see Section 4). Therefore, a person can understand
the plan that high-level planners output without careful
analysis of the refined modules.

In this paper, we first explain our hierarchical planner (in-
cluding the high-level planner and symbol grounding func-
tions), and how these are designed (Section 3). Then, we
introduce the framework designed to refine them (Section 4).
Finally, we experimentally demonstrate the effectiveness of
our framework (Section 5).

2 Preliminaries
Our framework, introduced in Section 4, is based on semi-
Markov decision processes (SMDPs) and policy gradient
methods.

2.1 Semi-Markov Decision Processes
SMDPs are a framework for modeling a decision problem in
an environment where a sojourn time in each state is a random
variable, and it is defined as a tuple ⟨S,O,R,P,γ⟩. S ⊆ Rn is
the n-dimensional continuous state space; O(s) is a function
that returns a finite set of options [Sutton et al., 1999] avail-
able in the environment’s state s ∈ S; R(s′, t|s,o) is the reward
received when option o ∈ O(s) is executed at s; arriving in
state s′ ∈ S after t time steps; P(s′, t|s,o) is a probability of
s′ ∈ S, and t after executing o in s; and γ ∈ [0,1] is a discount
factor.

Given SMDPs, our interest is to find an optimal policy over
options π∗(o|s):

π∗ = arg max
π

Vπ(s0), (1)

Vπ(s0) = Eπ [R(s1, t0|s0,o0)+ γ tR(s2, t1|s1,o1)+ ...] ,(2)

where (s0,o0, t0,s1) and (s1,o1, t1,s2) are transitions of a
state, an option, time steps elapsed while executing the op-
tion, and the arriving state after executing the option.

2.2 Policy Gradient
To find π∗, we use a policy gradient method [Sutton et al.,
2000]. In a policy gradient method, a policy πθ (o|s) param-
eterized by θ is introduced to approximate π∗, and the ap-
proximation is performed by updating θ with a gradient. Al-
though there are many policy gradient implementations (e.g.,
[Kakade, 2002; Silver et al., 2014; Schulman et al., 2015]),

we use REINFORCE [Williams, 1992]. In REINFORCE, θ
is updated as follows:

θ ← θ +α∇θ logπθ (s̃0, õ0)Vπθ (s̃0), (3)

Vπθ (s̃0) = R(s̃1, t̃0|s̃0, õ0)+ γ t̃0R(s̃2, t̃1|s̃1, õ1)+ ..., (4)

where α is a learning rate and (s̃0, õ0, t̃0, s̃1) and (s̃1, õ1, t̃1, s̃2)
are transitions of state, the executing option, elapsed time
steps, and arriving state, which are sampled on the basis of πθ
in a time horizon. Other variables and functions are the same
as those introduced in Section 2.1. We decided to use REIN-
FORCE for our work because it has successfully worked in
recent work [Silver et al., 2016; Das et al., 2017].

3 Hierarchical Planner with Symbol
Grounding Functions

In this section, we first describe the outline of a hierarchi-
cal planner (including the high-level planner) with symbol
grounding functions, which are manually designed. We then
provide concrete examples of them. The high-level planner
and symbol grounding functions described here are refined
by the framework, which is proposed in Section 4.

The hierarchical planner (Figure 1) is composed of two
symbol grounding functions (one for abstraction and the other
for concretization), a high-level planner, a low-level planner,
and two knowledge bases (one each for the high-level and
low-level planners). These modules work as follows:
Step 1 : The symbol grounding function for abstraction re-

ceives raw information, abstracts it to a symbolic infor-
mation on the basis of its knowledge base, and then out-
puts the symbolic information.

Step 2 : The high-level planner receives the abstract sym-
bolic information, makes a plan using its knowledge
base, and then outputs abstract symbolic information as
a sub-goal, which indicates the next abstract state to be
achieved.

Step 3 : The symbol grounding function for concretization
receives the abstract symbolic information, concretizes
it to raw information about a sub-goal, which specifies
an actual state to be achieved, then outputs the raw in-
formation on the sub-goal. This module performs the
concretization on the basis of its the knowledge base.

Step 4 : The low-level planner receives the raw information
about a sub-goal and then interacts with the environ-
ment to achieve the given sub-goal. In the interaction,
the low-level planner outputs primitive actions in accor-
dance with the raw information given by the environ-
ment. The interaction continues until the low-level plan-
ner achieves the given sub-goal, or until the total number
of elapsed time steps reaches a given threshold.

Step 5 : If the raw information from the environment is not
a goal or terminal state, return to the Step 1.

The knowledge bases for symbol grounding functions and
the high-level planners are designed manually.
Knowledge base for high-level planners is described

as a simple planning domain definition language
(PDDL) [McDermott et al., 1998]. In a PDDL, objects,
predicates, goals, and operators are manually specified.
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Figure 1: Outline of hierarchical planner with grounding functions.

Figure 2: Mountain car with abstract symbols.

The objects and predicates are for building logical for-
mulae, which specify the possible states in the planning
domain. The operators are represented as a pair of
preconditions and effects. The preconditions represent
the states required for applying the operator, and the
effects represent the arriving states after applying the
operators. We use PDDLs in this work because they
are widely used for describing a knowledge base for
symbolic planners.

Knowledge base for symbol grounding functions is de-
scribed as a list of maps between abstract symbolic
information and corresponding raw information. In this
paper, to simplify the problem, we assume that each
item of abstract symbolic information is mapped into
one interval of raw information. Despite its simplicity,
it is useful for representing, for example, typical spatial
information.

Here, we describe the knowledge bases and how the hi-
erarchical planner works to solve the mountain car prob-
lem [Moore, 1991] (Figure 2). In this problem, a car is placed
within a deep valley, and its goal is to drive out by going up
the right side hill. However, as the car’s engine is not strong
enough, it needs to first drive back and forth between the two
hills to generate momentum. In this problem, the hierarchical
planner receives raw information (the position and velocity of
the car) from the environment and is required to make a plan
to move it to the goal (the top of the right side hill).

An example of knowledge for the high-level planner
is shown in Table 1. In this example, objects are
composed of only a “Car.” Predicates are composed of
four instances (“Bottom of hills(x), On right side hill(x),
On left side hill(x), and At top of right side hill(x)”). For
example, “On right side hill(Car)” means that the car is on

Table 1: Example knowledge for high-level planners. Upper part
describes examples of objects, predicates, and goals. Lower part
describes examples of operators.

Objects x = {Car}
Predicates Bottom of hills(x), On right side hill(x),

On left side hill(x), At top of right side hill(x)
Goals At top of right side hill(Car)

Operators Preconditions Effects
Opr.1 Bottom of hills(x) On right side hill(x)
Opr.2 On right side hill(x) On left side hill(x)
Opr.3 On left side hill(x) At top of right side hill(x)

Table 2: Example knowledge for symbol grounding functions.
Abstract symbolic informations Interval of raw information
Bottom of hills(Car) position ∈ [−0.6,−0.4]
On right side hill(Car) position ∈ [−0.2,0.4]
On left side hill(Car) position ∈ [−1.2,−0.8]
At top of right side hill(Car) position ∈ [0.6,0.8]

the right side hill. Operators are composed of three types that
refer to a transition of the objects on the hills. For example,
“Opr.1” refers to the transition that object x has moved from
the bottom of the hills to the right side hill.

An example of the knowledge for symbol grounding func-
tions is shown in Table 2. This example shows mappings
between abstract symbolic information (the location of the
car), and corresponding intervals of raw information (the
actual value of the car’s position). For example, “Bot-
tom of hills(Car)” is mapped to the position of the car is in
the interval [-0.6, -0.4].

Given the knowledge described in Tables 1 and 2, an exam-
ple of how the hierarchical planner works is shown as follows:
Example of Step 1: The symbol grounding function for ab-

straction receives raw information (position=-0.5 and
velocity=0). The position is in the interval [-0.6, -0.4],
which corresponds to the “Bottom of hills(Car)” in Ta-
ble 2. Therefore, the symbol grounding function outputs
“Bottom of hills(Car).”

Example of Step 2: The high-level planner receives “Bot-
tom of hills(Car),” and makes a plan to achieve
the goal (“At top of right side hill(Car)”). By
using the knowledge in Table 1, the high-level
planner makes the plan [Bottom of hills(Car) →
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On right side hill(Car) → On left side hill(Car) →
At top of right side hill(Car)], which means “Starting
at the bottom of the hills, visit, in order, the right side
hill, the left side hill, and the top of the right side hill.”
After following the plan, the high-level planner outputs
“On right side hill(Car).”

Example of Step 3: The symbol grounding function re-
ceives “On right side hill(Car),” and concretizes it to
raw information about sub-goal (position= 0.1, veloc-
ity=*). Here, the position in the raw information is
determined as the mean of the corresponding interval
[−0.2,0.4] in Table 2. In addition, the mask (represented
by “*”) is putted to filter out factors in raw information,
which is irrelevant in the sub-goal (i.e., velocity in this
example).

Example of Step 4: The low-level planner receives posi-
tion= 0.1 and the mask. To move the car to the given
sub-goal (position=0.1), the low-level planner makes a
plan to accelerate the car. This planning is performed
by model predictive control [Camacho and Alba, 2013].
The low-level planner terminates itself when the car ar-
rives at the given sub-goal (position=0.1), or when it
takes a primitive action 20 times.

4 Framework for Refining Grounding
Function and High Level Planner

In this section, we propose a framework for refining the
symbol grounding functions and the high-level planner in-
troduced in the previous section. In our framework, sym-
bol grounding and high-level planning, which are based
on manually-designed knowledge bases, are modeled with
SMDPs. Refinement of the symbol grounding functions and
the high-level planner is achieved by applying policy gradi-
ents to the model. First, we introduce an abstract model and
then provide an example of its implementation in the moun-
tain car problem. Finally, we explain how the policy gradient
method is applied to the model.

4.1 Modeling Symbol Grounding and High-Level
Planning with SMDPs

We model symbol grounding and high-level planning, which
are based on manually-designed knowledge bases, with
SMDPs. The symbol grounding functions and the high-level
planner are modeled as components of the parameterized pol-
icy. In addition, the knowledge bases are modeled as priors
for the policy’s parameters.

We first assume that information and modules, which ap-
pear in hierarchical planning, are represented as random vari-
ables and probability functions, respectively (Figure 1). Sup-
pose that Sh is a set of all possible symbols the symbol
grounding functions and the high-level planner deal with, raw
information is represented as an n-dimensional vector, and
A ⊂ Rm is a set of all possible primitive actions. We denote
raw information by s,s′ ∈ Rn 1, abstract symbol information
by sh ∈ Sh, abstract symbolic information about a sub-goal

1The denotation is the same as that of the state described in Sec-
tion 2.1 because the raw information is modeled as the state.

Figure 3: SMDPs for our framework.

by gh ∈ Sh, raw information about a sub-goal g ∈ Rn, and a
primitive action by a ∈ A. In addition, we denote the symbol
grounding function for abstraction by P(sh|s;θsg f ), the sym-
bol grounding function for concretization by P(g|gh;θsg f ),
the high-level planner by P(gh|sh;θhp), the low-level plan-
ner by P(a|s,g), the environment by P(s′|s,a), the knowledge
base for high-level planners by P(θhp), and the knowledge
base for the high-level planner by P(θsg f ). Here, θsg f and
θhp are the parameters for the symbol grounding functions
and the high-level planner, respectively.

High-level planning and symbol grounding based on the
knowledge base are modeled as SMDPs (Figure 3). In this
model, the components of SMDPs (i.e., an option, a state, a
reward, and a transition probability) are implemented as fol-
lows:
Option o: is implemented as a tuple ⟨sh,gh,g⟩ of abstract

symbolic information sh, abstract symbolic information
about a sub-goal gh, and raw information about a sub-
goal g.

State s: is implemented as raw information.
Reward R(s′, t|s,o): is the cumulative reward given by the

environment P(s′|s,a), while the low-level planner
P(a|s,g) is interacting with P(s′|s,a).

Transition probability P(s′, t|s,o): is implemented as a
function, which represents the state transition pro-
ceeded by the interaction between the low-level plan-
ner P(a|s,g) and the environment P(s′|s,a). Note
that although the transition probability receives option
⟨sh,gh,g⟩, only g is used in the transition probability.

In this model, the parameterized policy πθ is implemented
to control abstraction of raw information, high-level plan-
ning, and concretization of abstract symbolic information, in
accordance with the knowledge bases. Formally, πθ is imple-
mented as follows:

πθ (g,gh,sh|s) = P(g,gh,sh,θsg f ,θhp|s)
= P(g|gh;θsg f )P(gh|sh;θhp)P(sh|s;θsg f )

·P(θsg f )P(θhp). (5)

The right term in the second line can be derived by decom-
posing the joint probability in the first line, in accordance with
the probabilistic dependency shown in Figure 2. Note that, in
this equation, θ is represented as θsg f ||θhp, i.e., a concatena-
tion of θsg f and θhp. By using this representation for πθ , we
can derive an update expression, which can refines θsg f and
θhp keeping them consistent with P(θsg f ) and P(θhp). See
Section 4.3 for details.

L & R  2018

- 42 -



P(θsg f ) and P(θhp) are needed to reflect the manually-
designed knowledge bases. To do so, first, P(θsg f ) and P(θhp)

are implemented as parametric distributions P(θsg f ;θ ′sg f ) and
P(θhp;θ ′hp), respectively, and their hyper-parameters θ ′sg f and
θ ′hp are determined to replicate manually-designed symbol
grounding functions and high-level planners. More formally,
we use θ ′∗sg f and θ ′∗sg f as the optimal parameters of θ ′sg f and
θ ′hp, respectively, acquired by the following equations:

θ ′∗sg f = arg min
θ ′sg f

Dsg f

(
P(g|gh;θsg f )P(θsg f ;θ ′sg f )

)
, (6)

θ ′∗hp = arg min
θ ′hp

Dhp

(
P(gh|sh;θhp)P(θhp;θ ′hp)

)
, (7)

where Dsg f and Dhp are a divergence (e.g., KL divergence)
from the manually-designed symbol grounding function and
high-level planner, respectively. Dsg f and Dhp are abstract
criteria, and thus, there are many implementations of func-
tionals “arg min

θ ′sg f

Dsg f (·)” and “arg min
θ ′hp

Dhp (·).”

4.2 An Example of Model Implementation to Solve
the Mountain Car Problem

We introduced an abstract model for symbol grounding and
high-level planning with knowledge bases in the previous sec-
tion. In this section, we provide an example of an implemen-
tation of the model to solve the mountain car problem.

First, Sh and A are implemented as follows:

Sh :=
{

Bottom of hills(Car), On right side hill(Car),
On left side hill(Car), At top of right side hill(Car)

}
,(8)

A := [−1.0,1.0]. (9)

Sh is implemented in accordance with the knowledge shown
in Table 2. A is implemented in accordance with the definition
of actions to solve the mountain car problem, and represented
as a set of values for the acceleration of the car.

Second, the probabilities of the modules in the hierarchical
planner are implemented as follows:

P(sh|s;θsg f ) :=
N(s|µsh ,σsh)

Σs′h∈Sh
N(s|µs′h

,σs′h
)
, (10)

P(g|gh;θsg f ) := N(g|µgh ,σgh), (11)

P(gh|sh;θhp) :=
exp(φ(sh)wwwT

gh
)

Σg′h∈Sh
exp(φ(sh)wwwT

g′h
)
. (12)

P(sh|s;θsg f ) is implemented as the normalized likelihood of
a normal distribution (Eq. (10)), and P(g|gh;θsg f ) is imple-
mented as a normal distribution (Eq. (11)). In Eq. (10) and
Eq. (11), N(s|µsh ,σsh) represents a normal distribution for s,
which is parameterized by mean µsh and standard deviation
σsh , s.t, ∀sh ∈ Sh. Note that µsh and σsh are identical to µgh
and σgh , respectively. P(sh|s;θsg f ) is implemented as a soft-
max function (Eq. (12)). In Eq. (12), φ(sh) is a base function
that returns a one-hot vector ∈ {0,1}|Sh| in which only one

element corresponding to the value of sh is set to a value of 1,
and the other elements are set to a value of 0. wwwgh ∈ R|Sh| is a
weight vector, s.t., ∀gh ∈ Sh. In this implementation, θsg f is a
vector composed of µsh ,σsh , s.t., sh ∈ Sh, and θhp is a vector
composed of the set wwwgh , s.t., gh ∈ Sh. P(a|s,g) and P(s′|s,a)
are implemented as deterministic functions, which represent
the simulator of environment2 and the model predictive con-
troller.

Third, the reward function R(s′, t|s,o) is implemented as
follows:

R(s′, t|s,o) := Σt
i=0γ ir(si,ai), (13)

r(si,ai) =

{
100 (if car position in si > 0.6)
−ai (otherwise)

,(14)

where si and ai are a state and a primitive action sampled
from the environment i time steps later from the executing
option o, respectively. Eq. (14) represents “low-level” reward
r(si), which is fed in accordance with ai and the car position
included in si.

Fourth, P(θsg f ;θ ′sg f ) and P(θhp;θ ′hp) are implemented as
follows:

P(θsg f ;θ ′sg f ) := ∏
sh∈Sh

N(µsh |µ
′
sh
,1) ·Uni(σsh), (15)

P(θhp;θ ′hp) := ∏
gh∈Sh

|sh|

∏
i=0

N(wgh,i|µ
′
wgh,i

,1). (16)

Eq. (15) represents a distribution for µsh and σsh . The com-
ponent for µsh is a normal distribution, which has mean µ ′sh
and standard deviation 1, and the component for σsh is a uni-
form distribution Uni(σsh). In addition, Eq. (16) represents
the normal distribution for wgh,i, which is the i-th element of
wwwgh . This distribution has mean µ ′wgh,i

and standard deviation

1. Note that, in this implementation, θ ′sg f and θ ′hp are µ ′sh
and

µ ′wgh,i
, respectively.

Finally, functionals in Eq. (6) and Eq. (7), are implemented
as follows:
Implementation of arg min

θ ′sg f

Dsg f (·) : Using Eq. (15), µ ′sh
is

set as the mean of the corresponding interval, which is
defined in the knowledge base for grounding functions.
For example, µ ′Bottom of hills(car) is determined as −0.5,
the mean of [−0.6,−0.4] in Table 2.

Implementation of arg min
θ ′hp

Dhp (·): Using Eq. (7), µ ′wgh
is

determined by Algorithm 1. The algorithm is outlined as
follows: first initialize µwgh

with valnin (line 1–3), and if
the operator, in which sh refers to the preconditions and
s′h refers to the effects, is contained in knowledge base
KBhp, the corresponding weight is initialized with Valin
(line 4–11). KBhp is initialized in accordance with Table
1 before it is passed to the algorithm.

2Open AI gym was used as the simulator: https://github.
com/openai/gym/wiki/MountainCarContinuous-v0
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Algorithm 1 Implementation of arg min
θ ′hp

Dhp

Require: The following variables are given:
(1) Set of abstract symbolic information Sh.
(2) Set of operators Khp included in the knowledge base
for the high-level planner. Each operator is represented
as a tuple (precondition, effect).
(3) Set of hyper parameters µ ′wgh

for all possible abstract
symbolic information sh.
(4) Weight value valin to be assigned to the weight of an
operator, which is included in the knowledge base.
(5) Weight value valnin to be assigned to the weight of an
operator, which is not included in the knowledge base.
(6) Index function I(sh) that maps sh to index i∈ I. i used
to access the element of µ ′wgh

.
1: for sh ∈ Sh do
2: Initialize µ ′wgh

with valnin

3: end for
4: for sh ∈ Sh do
5: i← 0
6: for s′h ∈ Sh do
7: if (sh,s′h) ∈ Khp then
8: µ ′wgh,I(s

′
h)
← valin

9: end if
10: end for
11: end for

4.3 Refining Symbol Grounding and High-Level
Planning with Policy Gradients

Refining the high-level planner P(gh|sh;θhp) and sym-
bol grounding functions (P(sh|s;θsg f ) and P(g|gh;θsg f )) is
achieved by a parameter update in Eq. (17). This equa-
tion contains two unique terms: a reinforcement term and a
penalty term. The reinforcement term contributes to updat-
ing the parameters to maximize the expected cumulative re-
ward, as in standard reinforcement learning. The penalty term
contributes to keeping the parameters consistent with the pri-
ors (i.e., manually-designed knowledge bases). This update
is derived by substituting θsg f ||θhp and Eq. (5) for θ and Eq.
(3), respectively. Using the example described in Section 4.2,
µsh , σsh and wwwgh are updated in this equation. In this case, the
penalty term prevents µsh and wgh,i, for all sh, gh, and i, from
moving far away from µ ′sh

and µ ′wgh ,i
, respectively.

5 Experiments

In this section, we perform an experimental evaluation to in-
vestigate whether the symbol grounding functions and high-
level planner are refined successfully by using the framework
we proposed in the previous section. In Section 5.1, we focus
on the evaluation for refining the symbol grounding functions
only. Then, in Section 5.2, we evaluate the effect of jointly
refining symbol grounding functions and the high-level plan-
ner.

5.1 Refinement of Symbol Grounding
We evaluate how the symbol grounding functions are refined
by our framework to solve the mountain car problem. The
experimental set up to implement the planner and our frame-
work is the same as that in the example introduced in Section
3 and Section 4.

For the evaluation, we prepared three types of method:
Baseline: A hierarchical planner that uses the grounding

functions and a high-level planner, which are manually
designed. This planner is identical to that introduced in
the example in Section 3.

NoPenalty: The framework that refines the symbol ground-
ing functions without the penalty term in Eq. (17). In
this method, the high-level planner is the same as that in
Baseline.

Proposed: The framework that refines the symbol ground-
ing functions with the penalty term. In this method, the
high-level planner is the same as that in Baseline.

These methods were evaluated on the basis of two criteria:
an average cumulative reward over episodes, and a parameter
divergence. The former is to evaluate if the hierarchical plan-
ner produces a more appropriate plan by refining its modules,
and the latter is to evaluate the interpretability of the refined
modules. The parameter divergence represents how much
the policy’s parameters (µsh )3 refined by the framework dif-
fer from the initial parameters. In this paper, this divergence
is measured by the Euclidean distance between the refined
parameter (µsh ) and its initial parameter (µ ′sh

). Initial values
for µsh and σsh are given, shown as “Init” in Table 3. µsh is
initialized with µ ′sh

, which is determined on the basis of the
implementation of the functional in Eq. (6) (see Section 4.2),
and σsh is manually determined. We consider 50 episodes as
one epoch and performed refinement over 2000 epochs.

The experimental results (shown in Figures 4 and 5) show
that 1) refining the grounding functions improves the per-
formance (average cumulative reward) of hierarchical plan-
ners, and 2) considering the penalty term keeps the refined
parameters within a certain distance from the initial parame-
ters. Regarding 1), Figure 4 shows the methods in which the
grounding functions are refined (NoPenalty and Proposed)
outperform Baseline. This result indicates the refinement for
grounding functions successfully improves its performance.
Regarding 2), Figure 5 shows that the parameter in NoPenalty
moves away from the original parameter in refining, while in
Proposed, the parameter stays close to the original one.

An example of the refined parameter for the ground-
ing functions for Proposed is shown in Table 3, which
indicates that the parameter is updated to achieve high-
performance planning while staying close to the original pa-
rameter. In this example, the mean and standard deviation
of “On right side hill(Car)” is changed significantly through
refinement. The mean for grounding On right side hill(Car)
is biased to a more negative position, and also flattened
to make the car climb up the left side hill quickly (Fig-
ure 6). This change makes the symbol grounding func-
tion more flattened and considers the center position as

3We assume µsh dominatingly determines the behaviors of sym-
bol grounding functions.
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θsg f ||θhp← θsg f ||θhp +αVπθsg f ||θhp
(s̃0){∇θsg f ||θhp logP(g̃0| ˜gh,0;θsg f )P( ˜gh,0| ˜sh,0;θhp)P( ˜sh,0|s̃0;θsg f )

︸ ︷︷ ︸
reinforcement term

+∇θsg f ||θhp logP(θsg f )P(θhp)
︸ ︷︷ ︸

penalty term

} (17)

Figure 4: Learning curves for
each methods. The vertical
axis represents average cumu-
lative rewards and the horizon-
tal axis the horizontal axis rep-
resents epochs (50 episodes for
each epoch).

Figure 5: Parameter diver-
gences. The vertical axis repre-
sents the average Euclidean dis-
tance and the horizontal axis rep-
resents learning epochs.

Table 3: Refined parameters.
µsh Bottom o f hills At top o f right side hill On right side hill On le f t side hill
Init -0.5 0.6 0.2 -1.1

Refined -0.5 0.46 -0.39 -1.1

σsh Bottom o f hills At top o f right side hill On right side hill On le f t side hill
Init 0.4 0.1 0.4 0.3

Refined 0.4 0.12 1.42 0.11

“On right side hill(Car).” The main interpretation of this re-
sult is that the symbol grounding function was refined to re-
duce the redundancy in high-level planning. In the original
symbol grounding functions, the center position is grounded
to “Bottom of hills (Car),” and the high-level planner makes
a plan [Bottom of hills(Car) → On right side hill(Car)
→ On left side hill(Car) → At top of right side hill(Car)],
which means “Starting at the bottom of hills, visit, in
order, the right side hill, the left side hill, and the
top of the right side hill.” However, this plan is redun-
dant; the car does not need to visit the right side hill
first. The refined symbol grounding function considers
the center position as “Right side hill(Car),” and thus the
high-level planner produces the plan [Bottom of hills(Car)
→ On right side hill(Car) → On left side hill(Car) →
At top of right side hill(Car)], in which the redundancy is
removed. It should also be noted that the order of the re-
fined means is intuitively correct. For example, the value
of µOn right side hill is higher than the value of µOn left side hill
(i.e., µOn right side hill means the place on more right-side
than µOn left side hill). It cannot be seen in the Baseline and
NoPenalty cases. This result supports the fact that our frame-
work refines the modules by maintaining their interpretabil-
ity.

5.2 Joint Refinement of Symbol Grounding and
High-Level Planning

In this section, we refine both the symbol grounding func-
tions and the high-level planner. The setup of the hierarchical
planner and the problem are the same as those of the previous
section, except for the knowledge base for the high-level plan-
ner. We removed “Opr.2” (as shown in Table 1) and used this
degraded version as the knowledge base for the experiment.

Figure 6: Example of refining
result symbol grounding function
for On right side hill.

Figure 7: Learning curve.

This degradation makes a space for refining the knowledge
base for the high-level planner. In addition, we put a small
coefficient of the penalty term for wwwgh , because we found that
considering this term too much makes the refinement worse
in a preliminary experiment. As long as the results of the
symbol grounding functions are interpretable, the result of the
high-level planner is interpretable as well. wwwgh is initialized
with w′gh,i, which is determined by (i.e., Algorithm 1) where
we set -1.3 as valin, and -0.02 as valnin. The resulting w′gh,i is
shown as “Init” in Table 4.

We prepared three types of methods:
NoRefining: A hierarchical planner with the degraded ver-

sion of the knowledge base for high-level planner. The
knowledge base for the symbol grounding function is the
same to that shown in Table 2.

RefiningHP: The framework that refines the high-level plan-
ner only. In this method, symbol grounding functions
are the same as those in NoRefining.

RefiningHPSGF: The framework that refines both symbol
grounding functions and the high-level planner.

From the experimental result (Figure 7), we can confirm
that our framework successfully refines both symbol ground-
ing functions and the high-level planner, from the viewpoint
of performance. RefiningHP outperforms NoRefining, and
RefiningHPSGF outperforms the other methods.

Table 4 provides an example of how the high-level plan-
ner was refined. It indicates that the dropped knowledge (i.e.,
Opr. 2) was successfully acquired in refinement, and knowl-
edge is discovered that makes high-level planning more effi-
cient. Considering the form of Eq. (12), the operator, which
corresponds to the element of a weight with a higher value,
contributes more to high-level planning. Therefore, these cor-
responding operators are worthwhile as knowledge for high-
level planning. In Table 4, the refined weight of the operator
(preconditions=On right side hill, effects=On left side hill)
is higher than those of other operators in which the pre-
condition contains On right side hill. This operator was
once initially removed and later acquired by the refinement.
Similarly, the operator (preconditions=Bottom of hills, ef-
fects=On left side hill), which is not shown in Table 1, was
newly acquired.
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Table 4: Example of high-level planner improvement. Refined weights wwwgh are shown for each precondition (column) and effect (row). Initial
weights are shown in parentheses.ɹ

Refined (Init) Bottom of hills At top of right side hill On right side hill On left side hill
Bottom of hills -5.88 (-1.3) -6.34 (-1.3) -3.15 (-1.3) -6.65 (-1.3)

At top of right side hill -9.04 (-1.3) -9.75 (-1.3) -4.76 (-1.3) 2.5 (-0.02)
On right side hill -0.98 (-0.02) 1 (-1.3) -2.03 (-1.3) -1.34 (-1.3)
On left side hill 0.85 (-1.3) -2.12 (-1.3) 1.74 (-1.3) -11.71 (-1.3)

6 Conclusion
In this paper, we proposed a framework that refines manually-
designed symbol grounding functions and a high-level plan-
ner. Our framework refines these modules with policy gra-
dients. Unlike standard policy gradient implementations, our
framework additionally considers the penalty term to keep pa-
rameters close to the prior parameter derived from manually-
designed modules. Experimental results showed that our
framework successfully refined the parameters for the mod-
ules; it improves the performance (cumulative reward) of the
hierarchical planner, and keeps the parameters close to those
derived from the manually-designed modules.

One of the limitations of our framework is that it deals
only with predefined symbols (such “Bottom of hills”), and
it does not discover new symbols. We plan to address this
drawback in future work. We also plan to evaluate our frame-
work in a more complex domain where primitive actions and
states are high-dimensional, and the knowledge base is rep-
resented in a more complex description (e.g., precondition
contains multiple states).
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cesses and decisions by hierarchical planning and scheduling.
Computational Intelligence, 27(1):103–122, 2011.
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Abstract
This short paper overviews 15 years of work by the
author at the intersection between the two AI areas
of Machine Learning and Knowledge Representa-
tion. The distinguishing feature of her research has
been the extension of the methodological appara-
tus of Inductive Logic Programming along a cou-
ple of directions towards Ontology Reasoning. The
former was concerned with learning hybrid rules
tightly integrating Datalog and Description Log-
ics, whereas the latter was concerned with learning
axioms in fuzzy Description Logics. Both turned
out to be alternative suitable ways to treat spatial
knowledge in several applications.

1 Introduction
Inductive Logic Programming (ILP) [Muggleton, 1990] was
born at the intersection between Logic Programming (LP)
[Lloyd, 1987] and Concept Learning [Mitchell, 1982]. It
provides a bunch of techniques for structuring, searching,
and bounding the space of hypotheses represented as Horn
clauses [Nienhuys-Cheng and de Wolf, 1997]). ILP has been
historically concerned with learning Horn rules from exam-
ples and background knowledge with the aim of prediction
(see, e.g., the system FOIL [Quinlan, 1990]). However, ILP
has also been applied to tasks - such as association rule min-
ing - other than classification where the scope of induction
is description rathen than prediction. A notable example of
this kind of ILP systems is WARMR [Dehaspe and Toivonen,
1999] which mines frequent DATALOG queries.

With the advent of the Semantic Web new challenges and
opportunities have been presented to ILP. In particular, on-
tologies and their logical foundations in the family of De-
scription Logics (DLs) [Baader et al., 2003] raised several
issues for the direct application of existing ILP systems, thus
urging the extension and/or adaptation of the ILP method-
ological apparatus to the novel context.

In the following two sections I will survey my work in
ILP over the past 15 years, first on learning so-called onto-
relational rules (Section 2) and later on learning fuzzy ontol-
ogy axioms (Section 3).

⇤I would like to thank all my coauthors of the papers cited here.

2 Learning onto-relational rules with ILP
LP and DLs are both based on fragments of First Order Logic
(FOL). However, they are characterized by different seman-
tic assumptions [Motik and Rosati, 2010]. Though a partial
overlap exists between LP and DLs, even more interesting
is a combination of the two via several integration schemes
that are aimed at designing very expressive FOL languages
and ultimately overcoming the aforementioned semantic mis-
match (see, e.g., [Drabent et al., 2009] for a survey). A pop-
ular example of this class of hybrid KR formalisms is AL-
LOG [Donini et al., 1998] which tightly integrates DATALOG
and ALC. Several works in ILP testify the great potential of
these formalisms also from the perspective of machine learn-
ing and inductive reasoning [Rouveirol and Ventos, 2000;
Kietz, 2003; Lisi, 2008; 2010; 2014]. Originally motivated
by a spatial data mining application [Appice et al., 2003;
Lisi and Malerba, 2004] and inspired by WARMR, AL-
QUIN [Lisi, 2011] is an ILP system for mining association
rules at multiple levels of granularity by performing taxo-
nomic reasoning in the KR framework of AL-LOG.

3 Learning fuzzy ontology axioms with ILP
Spatial notions such as the distance between two sites can be
naturally represented with fuzzy sets if one is interested in
their human perception rather than in precise measurements.
In order to deal with imprecision in Ontology Reasoning sev-
eral fuzzy extensions of DLs have been proposed (see, e.g.,
[Straccia, 2015] for an overview). However, the problem of
automatically managing the evolution of fuzzy DL ontolo-
gies still remains relatively unaddressed [Konstantopoulos
and Charalambidis, 2010; Iglesias and Lehmann, 2011]. Lisi
and Straccia [2013] propose SoftFOIL, a FOIL-like method
for learning fuzzy EL GCI axioms from fuzzy DL asser-
tions. In [Lisi and Straccia, 2014], the same authors present
FOIL-DL, another FOIL-like method which, conversely, is
designed for learning fuzzy EL(D) GCI axioms from crisp
DL assertions. As opposite to SoftFOIL, FOIL-DL has been
implemented and tested [Lisi and Straccia, 2015], notably in
a real-world tourism application. More recently, a granular
computing method for OWL 2 ontologies has been proposed
in [Lisi and Mencar, 2018] with the ultimate goal of optimiz-
ing the learning process when dealing with a huge number of
relations, e.g., those concerning the distance between places.
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Abstract
The processes within a wireless telecommunication
system are spatio-temporal and context dependent.
For example, the root cause of a failure needs to be
identified in terms of where, when and why it hap-
pened. To identify and resolve errors in the system,
human telecommunication operators need to be as-
sisted by decision support tools which the opera-
tors can understand, trust, and where they can input
their expert knowledge. In this paper we describe
our ongoing work and some of the challenges we
are facing when designing such tools.

1 Introduction
To maintain a high quality of service is crucial for wireless
telecommunication networks. However, identifying degrada-
tions of service in these complex systems, before they man-
ifest themselves into noticeable problems, is a challenging
task that is part of the everyday work of human telecommuni-
cation operators. Since each telecommunication base station
keeps track of a multitude of different network runtime vari-
ables, data is available for automatic process recognition and
anomaly detection. Hence, telecommunication companies are
to date investigating how to incorporate machine learning into
a decision support system that aids the human operator to
monitor and analyze the telecommunication systems.

The processes within a telecommunication system are
highly context sensitive, however, typical patterns can be ob-
served in the data. Yet, what can be regarded as normal net-
work traffic depends on many context variables (e.g. time
of the day, day of the week, season, weather conditions, so-
cial events such as festivals, road conditions such as traffic
jams, etc.). To understand if the current behavior of the net-
work is normal or abnormal and, in case of the latter, if it
is in need of intervention is difficult to determine. A good
understanding of how telecommunication networks and pro-
cesses work, together with detailed knowledge of the partic-
ular network at hand and its surrounding context variables is
necessary for efficient and accurate network monitoring and
diagnosis. However, with the increase of network load and
complexity, semi-automated tools are needed to support the
operators with keeping the telecommunication systems func-
tioning with good quality.

Our ongoing work consists of developing a transparent de-
cision support system for monitoring a wireless telecommuni-
cation system where the human operator and the system work
together as a team. Expert and domain knowledge as well as
statistical correlations in the telecommunication data need to
be brought together in order to build a good situation aware-
ness of such a complex system and to monitor and maintain
it successfully. This includes reasoning in space and time and
the presentation of spatio-temporal information in a way that
alleviates the team reasoning approach between the system
and the human operator.

2 Previous work
In our previous research, we applied machine learning and
exploratory data analysis tools to extract useful informa-
tion from the network data. In particular, we used Re-
stricted Boltzmann Machines (RBM) [Smolensky, 1986] for
root cause localization of failures [Steinhauer et al., 2016]
and topic modeling [Blei, 2012] for performance monitoring
[Steinhauer et al., 2017; Helldin et al., 2018] and anomaly
detection [Steinhauer et al., 2018]. For topic modeling we
used the latent Dirichlet allocation (LDA) for exploratory
data analysis, as described in [Helldin et al., 2018]. We also
used the LDAvis visualization [Sievert and Shirley, 2014] for
validation of the model together with a domain expert.

The results obtained so far are promising. In case of topic
modeling for performance monitoring and anomaly detection,
the domain expert could interpret the statistical correlations
found in the data as corresponding to causal dependencies
within the telecommunication processes. This interpretation
comes, of course, with the risk of confirmation bias. In gen-
eral, statistical relationships are difficult for humans to inter-
pret and fuse correctly with their expert knowledge, hence,
our work has also focused on how to present the results from
the statistical analyses to a human operator. For example,
we have designed a dashboard visualization addressing the
various information needs of the operators [Helldin et al.,
2018]. Following the design framework proposed by [Koh et
al., 2011], where early and iterative prototyping together with
domain experts is advocated for, we have continuously eval-
uated our results as well as have given the experts a chance
of understanding what information can be extracted from the
models.

LDAvis is one of the visualization tools used, however, as
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described in [Smith et al., 2017] the results of a topic model
do not necessarily provide meaning to the analysts and man-
ual interpretation together with experts is needed. Several
ways of visualizing topic models have been suggested, where
the most common representations are either graph [Gretars-
son et al., 2012], matrix or text based [Chuang et al., 2012;
Chaney and Blei, 2012]. Especially interesting for our future
work are approaches that focus more on identifying thematic
changes over time (e.g. [Havre et al., 2002]). However, the
choice of visualizations needs to be carefully evaluated to-
gether with novice and experienced operators.

3 Challenges
The temporal, spatial and contextual relationships that occur
in wireless telecommunication networks are manifold. An
anomaly is most often not detected or even noticeable until it
has proliferated within the network, and its cause and/or loca-
tion can be difficult to pinpoint. The anomaly might not man-
ifest itself at one specific time point or place, instead it can,
for example, appear as a slight elevation of certain variables
distributed geographically over several base stations. Further-
more, many so called anomalies correspond in fact, if context
variables are taken into account, to normal network behavior.
For example, a base station undergoing an update will show a
decrease in performance. In the context of the update, this be-
havior is to be considered normal and even indicating a well-
functioning network. However, if no update is underway, this
might indicate a serious problem which needs intervention.

Today, key performance indicators (KPIs) are used to mea-
sure important performance aspects which alert the operator
if the measurements reach certain thresholds. However, due
to situations like the one described above, KPIs need to be ro-
bust enough to not send false positive alerts (as in case of the
update). Unfortunately, this robustness has downsides, such
as decreased sensitivity when it comes to the early detection
of trends in the network.

In our work, there are several challenges to be faced. One is
to build models for normal network traffic that capture the de-
velopment of network behavior over time, space (geographi-
cal as well as conceptual) and context. There are several ap-
proaches to investigate that have a temporal component, for
example, time series analysis, evolutionary topic modeling
and recurrent neural networks (RNN) with long short term
memory (LSTM). The second challenge is hence to include
spatial, contextual and expert knowledge into the model. Be-
sides that, a third challenge lies in being able to convey the
information needed to the human operators and at the same
time allow them to follow their own chain of reasoning when
investigating the network problems as well as add their expert
knowledge into the reasoning and analysis performed.
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