
A

Trust and Matching Algorithms for Selecting Suitable Agents

NARDINE OSMAN and CARLES SIERRA, Artificial Intelligence Research Institute (IIIA-CSIC)
FIONA MCNEILL, School of Informatics, the University of Edinburgh
JUAN PANE, Department of Information Engineering and Computer Science, University of Trento
JOHN DEBENHAM, Centre for Quantum Computation & Intelligent Systems, University of Technology
Sydney

This paper addresses the problem of finding suitable agents to collaborate with for a given interaction in
distributed open systems, such as multiagent and P2P systems. The agent in question is given the chance
to describe its confidence in its own capabilities. However, since agents may be malicious, misinformed,
suffer from miscommunication, and so on, one also needs to calculate how much trusted is that agent. This
paper proposes a novel trust model that calculates the expectation about an agent’s future performance in
a given context by assessing both the agent’s willingness and capability through the semantic comparison
of the current context in question with the agent’s performance in past similar experiences. The proposed
mechanism for assessing trust may be applied to any real world application where past commitments are
recorded and observations are made that assess these commitments, and the model can then calculate one’s
trust in another with respect to a future commitment by assessing the other’s past performance.

Categories and Subject Descriptors: I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Artificial Intelli-
gence—Multiagent Systems

General Terms: Algorithms

Additional Key Words and Phrases: semantic matching, trust and reputation

ACM Reference Format:
Osman, N., Sierra, C., McNeill, F., Pane, J., and Debenham, J. 2011. Trust & Matching Algorithms for
Selecting Suitable Agents. ACM Trans. Intell. Syst. Technol. V, N, Article A (January YYYY), 40 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
The ability of automated agents to interact online creates enormous potential for fast
and effective information sharing and service provision, without the need for inten-
sive human intervention. However, it also raises many difficulties. One such difficulty
is how to determine whether or not to trust other agents, who may be unable to do
the things they say they can, or may be intentionally dishonest, or may provide infor-
mation or services of a poor quality. Another such difficulty is how agents can com-
municate even when their data sources have been developed independently and may
therefore be very different: how are they to determine exactly what is required of them
in an interaction, and how can they tell if they are able to provide this?

Author’s addresses: N. Osman and C. Sierra, Artificial Intelligence Research Institute (IIIA-CSIC); F. Mc-
Neill, School of Informatics, University of Edinburgh; J. Pane, Department of Information Engineering and
Computer Science, University of Trento; J. Debenham, Centre for Quantum Computation & Intelligent Sys-
tems, University of Technology, Sydney.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0000-0003/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 N. Osman et al.

When an agent wishes1 to perform an action or discover some information, it must
find other agents that are willing and able to provide this information or service, and
it must find some way to determine how this interaction will proceed. For example, an
agent wishing to buy a ticket must find a ticket-selling agent, and there must be some
way for both agents to understand what they are to do in this interaction.

The latter problem is most often solved by engineering models of interactions, and
examples of these approaches are electronic institutions [Arcos et al. 2005] and dis-
tributed dialogues [Robertson 2005]. However, this paper does not address how an
interaction is specified or agreed upon (which may require some argumentation). It
assumes an interaction model exists, and tries to find suitable collaborators for it.

In other words, it is the former problem that this paper chiefly addresses.2 We be-
lieve that there are two attributes that are particularly suggestive of how well an agent
will be able to perform. The first attribute needs to measure how confident the agent in
question is about its capability to play a given role. In other words, do its capabilities
match what it is required to do? However, answering this question alone is not enough.
This paper focuses on open distributed systems, where the processes and infrastruc-
ture of these agents will not be opaque and their good intentions (or willingness) are
not guaranteed. Any claims these agents make cannot be taken at face value. Agents
may be intentionally fraudulent; may believe they can perform tasks which it later
transpires they cannot perform, or can only perform poorly; may suffer from confused
communication with other agents they interact with and may thus perform their task
in an unexpected manner or with unexpected and undesired outcomes; may be poorly
connected to the network and may therefore vanish in the middle of an interaction;
and so on. As such, there is a need for a second attribute, which answers the question
of whether the agent may be expected to generally perform well in a given role. In
other words, can it be trusted to play that role?

The contributions of this paper are three-fold:

— We introduce our trust algorithm, which aids in selecting collaborators by calculat-
ing trust measures that measure the expected performance of agents by analysing
the agents’ performance in ‘similar’ past experiences. The assessment is made for a
given context, where the given context is defined by the chosen interaction model.
For instance, if a seller has a good reputation in selling beer, then it will be expected
to have a higher probability of performing better in selling wine than selling fish.
The proposed trust model follows both socio-cognitive and experience-based ap-
proaches. In other words, it relies on past experiences to predict whether the agent is
both capable and willing to perform the action it is set to execute. An interesting as-
pect of this algorithm is that it provides a generic mechanism for assessing trust that
may be applied to any real world application where past commitments are recorded
and observations are made that assess these commitments.
We note that the proposed model considers only the degree of capability and will-
ingness of an agent. They do not consider other aspects, such as feelings. Neverthe-
less, although we focus on artificial agents in multiagent systems, the theory may
still be used for human agents too as long as the roles and responsibilities expected
from a human in a given interaction are clearly defined and past performance is
recorded. For example, the same approach may be used in eBay (if past experiences

1We refer to an agent’s wishes and beliefs, although these are in fact the wishes of its designer and the facts
in its knowledge base.
2Although since this is happening in a particular context, we must make decisions about how these inter-
actions are proceeding, which are explained in Section 2. The majority of the work described in this paper
would be wholly or partly applicable to different ways of determining interactions, but our implementation
and evaluation are based on the context we describe in Section 2.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:3

were recorded with greater accuracy) to figure out which seller to trust most when
considering the quality of goods, quality versus price ratio, promptness in shipment,
quality of customer service, etc.

— We discuss our matching algorithm, which allows an agent to assess how well its
own data source matches the capabilities required by a particular role it may wish to
take on. This describes the agent’s self confidence in how well it can play a given role.
This algorithm matches first-order terms, so is applicable to interactions in which
the abilities required of an agent can be represented as first-order terms, and agents
which have structured data which can also be represented as first-order terms. This
is fairly broadly applicable: for example, we have implemented a translation process
to represent WSDL service interfaces appropriately, and it would be straightforward
to do this for database entries. Our algorithm returns a score indicating the quality
of the match.
Note that the extensive details of this algorithm’s implementation and evaluation
have been published elsewhere (full details can be found in [Giunchiglia et al. 2008]).
We include a section on it in this paper because it is important to place it in the
context of finding the best agent to interact, considering both trust and matching.
However, we go into much less detail than we do for the trust algorithm, and point
the interested reader to relevant papers.

— We present our good enough answers algorithms, which combines trust and
matching to provide an estimate of how well an agent will perform in a given sit-
uation. The two scores calculated above are orthogonal, and yet both are important
when determining how well an agent will perform. Determining how such a combi-
nation should be done to provide the best results is difficult and context-dependent,
and we believe that only very extensive testing across a broad range of environments
and requirements can produce a definitive answer. However, we present two algo-
rithms which take different approaches to combining these scores, and justify why
we believe these are likely to produce good estimates of an agent’s overall ability.
We believe that this ‘holistic’ approach (as opposed to focusing only on trust, or only
on data matching) is unique, and that the ability to consider both aspects, and how
they may be combined, is essential to informed agent selection.

The rest of this paper is divided as follows. Section 2 opens with a motivating ex-
ample. Section 3 presents our proposed trust model, Section 4 presents a matching
algorithm that is complementary to the trust one, and Section 5 illustrates how the
trust and matching scores may be combined into one final performance measure. Sec-
tion 6 provides a final discussion on the proposed models and Section 7 presents a
summary of results. Finally, Section 8 provides a background on the related work in
this field, before concluding with Section 9.

2. MOTIVATING EXAMPLE
An area where access to fast, reliable information is essential is that of disaster re-
sponse. In such situations, there may be some information that is highly safety criti-
cal, in which human intervention (for example, permission for an action being granted
by someone high up the chain of command) is necessary. However, sharing informa-
tion only via humans is enormously limiting, and depends on the number of people
available to participate, the possibility of contacting these people, and the awareness
of these people of what data is available (possibly from very large data sources). Many
investigations into the response to disaster events (such as the Pitt Report [Pitt 2007]
into UK flooding in 2007) highlight the failure to effectively share information in a
speedy and appropriate manner as a major hinderance to the success of the response.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 N. Osman et al.

In such situations, there are many difficulties with automated information sharing, of
which we are particularly interested in two:

— Information from different organisations, or even from different branches of the same
organisation, will be organised differently, both semantically (that is, different terms
will be used for the same or similar things) and structurally (for example, fields in
a database record may be in a different order, or one database may have more fields
than another). In order for this information to be mutually comprehensible, matching
is required.

— There may be many responders involved, from large organisations (such as govern-
ments and police departments) to local business and charities and even individuals.
The quality of information that these organisations have will not be equal. Some may
not be in a position to have such accurate or up-to-date information as others; some
may even be deceitful or unreliable. Determining the quality of information therefore
relies on considering the trust which is placed in the information-providing organi-
sation. This is not simply a matter of ranking organisations according to authority,
but is context-dependent. For example, the police department may be the authority
of which roads have been closed, but though they will also have access to weather
information, this is likely to be at least second-hand. An individual on the street
will in general not be considered particularly authoritative, but may have excellent
information on an event which is unfolding right in front of them. It is therefore im-
portant to incorporate a context-dependent notion of trust when determining how
much reliance to place on information.

The combination of these two factors leads us to our notion of good enough answers:
if I pose a particular question, how can I determine the value to place on the an-
swer received from a particular organisation. This depends both on the matching and
the trust score. From the matching point of view, we must consider questions such
as how similar is the response to the question I posed, and were any elements of my
question unmatched? For example, if I am searching for information about the where-
abouts of vulnerable people, posed as location(Person,Coordinates,Vulnerability), then
the response whereabouts(Human,Coordinates,Vulnerability) may be considered a bet-
ter match than the response location(Person,Coordinates) even though it uses slightly
different words, because the second response left out an attribute that may be con-
sidered vital. From the trust point of view, we must consider whether the information
provider is appropriate: for example, the local hospital would be considered more trust-
worthy on this particular subject than an unknown individual. But if the best match
is from the less trusted authority, should we prefer this to a poorer match from a reli-
able authority? This question is very difficult to answer in the general case, but is the
central question we wish to answer in this paper. We present two automated solutions
to this puzzle in Section 5.

We believe that this approach is general purpose, and can be adapted to many differ-
ent situations. However, our current implementation, and the evaluation of this which
we discuss in Section 7, are within the OpenKnowledge project3. We briefly introduce
some central concepts of this project, in order to clarify our approach.

The Open Knowledge project focused on facilitating interactions between agents (or
services, systems, etc.) through the use of explicit, shared interaction models (IMs),
which provide information about what roles must be played in the interactions, what
messages should be passed at each stage, and what actions are required of players.
These IMs are written in the Lightweight Coordination Calculus (LCC) [Robertson
2005]. Figure 1 presents an example IM. The different agents, or roles, are indicated

3www.openk.org

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:5

in the term a(Role Name,Player), and each must have a set of messages they must
send and receive, and the constraints they must satisfy to be able to pass the mes-
sages. Message passing is indicated by a double arrow, whereas the constraints that
must be satisfied in order to allow a particular message to be sent are indicated by
a single arrow. An IM must provide this information for every role, and they must
be compatible across the different roles: in our example, the player of the police role
must send a message water level(Location) to the player of the sensor role; therefore
the sensor role must expect this message from the police role.

The meaning of an LCC interaction is encoded in the constraints. The purpose of
the messages is to share information about the instantiation of variables, and to make
it explicit what stage the interaction is at. It is possible, for example, to relabel wa-
ter level(Location) as message1(Location), and informative names are chosen only to
aid human readability. The naming of constraints, however, is crucial, and encodes
information about what the constraint means. For example, in order to send the first
message, the police agent must satisfy the constraint suitable loc(Entity,Location). If
the police agent has been designed with this particular interaction in mind, or if the
IM was designed by the same person who designed the police agent, it is likely that
this exactly reflects the organisation of data in the police agent’s data source, and it
will be able to unify this constraint with a fact in its database and return the answer.
However, in an open environment, where IMs are often reused by different parties, it
will often happen that the police agent does have information about suitable locations,
but does not represent it in exactly this fashion. Our matching techniques (see Section
4) allow the police agent to match its own representation to that of the constraint, so
that it can still satisfy the constraint. This match will often not be perfect (if the infor-
mation content of the two terms is similar but not identical), so the agent’s ability to
satisfy a constraint will not be perfect. If an agent cannot satisfy a constraint either
through unification or matching, then it is unable to perform the role. Once constraints
have been satisfied, messages are passed automatically.

a(police, P) ::
water level(Location)⇒ a(sensor, S)← drop off (Entity) ∧ suitable loc(Entity, Location) then
water level(Location, Level)⇐ a(sensor, S) then
drop off (Entity, Location)⇒ a(firefighter ,F)← safe level(Level).

a(sensor, S) ::
water level(Location)⇐ a(police, P) then
water level(Location, Level)⇒ a(police, P)← detect(Location, Level).

a(firefighter ,F) ::
drop off (Entity, Location)← drop off (Entity, Location)⇐ a(police, P).

Fig. 1. Sample interaction model scpecified in LCC

The first step in enacting an IM is to determine which agent should take on which
role. Agents must subscribe to roles which they wish (and believe they are able) to
play. Before interaction, they can look at which agents are signed up to other roles and
decide which of these agents, if any, they wish to interact with. Once all agents have
made these decisions, a negotiation agent will assign roles in a way that respects these
issues.

Determining how one can decide which other agents it is most advantageous to in-
teract with is the question that this paper addresses. For example, in the above IM,

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 N. Osman et al.

consider an organisation with an agent which intends to take on the role police. Play-
ing this role will involve interacting with another agent (or service) playing the role
firefighter, as well as agent or agents playing the role sensor. Although these sensors
are likely to be automated, the trust and matching issues remain the same, and the
interaction will only produce a satisfactory outcome if that other agent plays its role
to an acceptable standard. If there are many agents vying for this role then it is use-
ful to be able to rank them according to which is likely to perform the role best; even
if only one agent is interested in playing a role, it is still desirable to check that the
performance of this agent is likely to meet a minimum required standard. The degree
to which an agent can play a role depends on the degree to which it can satisfy all
of the constraints on that role, since message passing is automatic once the relevant
constraint has been satisfied. To judge whether or not an agent can satisfy a constraint
well, we need to consider the following:

— How good do we think this agent is at performing this task? For example, if they are
providing information about the whereabouts of people, is their information about
people’s locations usually of high quality? This score is determined using our trust
algorithm (Section 3).

— How well can the information contained in the agent’s ontology (or knowledge source)
match the constraint? For example, is the agent able to fulfil all aspects of the con-
straint? This score is determined through our matching algorithm (Section 4).4

These scores are combined using our good enough matching algorithm (Section 5),
and then by combining these scores for all pertinent constraints we are able to produce
an automated estimate of which agent is likely to perform best in the given role.

3. THE TRUST MODEL
The proposed trust model follows the most basic definition of socio-cognitive ap-
proaches. In such a model, one agent’s belief about the other’s capability to perform
a given action and its willingness and persistence to actually carry out that action
is crucial in determining whether the latter agent is to be trusted or not by the for-
mer [Castelfranchi and Falcone 1998; 2000]. Furthermore, our model calculates the
belief about another’s capability and willingness as probability measures. In addition
to socio-cognitive approaches, the calculation follows the experience-based trust mod-
els. In other words, to calculate one agent’s belief about another’s capabilities and
willingness in performing various actions depends on observing and learning from its
past performance [Schillo et al. 2000; Abdul-Rahman and Hailes 2000; Sabater and
Sierra 2002]. With this foundational background, we introduce our view on trust and
the resulting trust model.

Our basic tenet on trust is that it may be defined as a cognitive state that an agent
α holds with respect to the expected behaviour of another agent β on some matter ϕ.
We assume that each agent has a fixed5 local ontology O and that ϕ is a correct term

4This score is calculated by the agent which intends to perform the role. The scores are made public but
they are not possible for other agents to replicate because we assume that the knowledge sources of external
agents are private, and therefore the information used to obtain the score is not available. This raises the
possibility that agents may lie about their scores and present themselves as much better at performing the
role than they really are. Whilst we accept that this may happen, we believe that this will be balanced out
by the trust score. If an agent takes on a role which it performs badly, its trust score will be greatly lowered,
so that on subsequent interactions, even if it presents a high matching score, its low trust score will mean
that its combined score is not very high. It is therefore not possible to game the system long-term in this
way.
5Ontologies certainly evolve; however, the process by which an ontology evolves is out of the scope of this
paper. We assume though that it does not change within a particular interaction.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:7

from the set of terms built on top of O, denoted as Term(O).6 Our view is based on a
relation between commitment, what β promises to do, and observation, what α actu-
ally observes happening. In probabilistic terms, this could be naturally modelled as a
conditional probability: P (Observing(α,ϕ)|Committed(β, α, ϕ)), that is, the probability
of α observing ϕ given that β made a commitment to α to perform ϕ. We argue that
probabilities are defined to measure expected behaviour. For instance, the probability
of picking a heart from a deck of cards is 13

52 = 0.25. However, the probability of picking
a second heart from that same deck of cards becomes 12

51 = 0.235..., since the act of
picking the second card is now influenced by the previous act of picking the first heart.
As such, we also use probabilities to measure the expected behaviour of agents, and
we say expected future behaviour is influenced by (or conditional on, in probabilistic
terms) past behaviour.

This section is on how to estimate P (Observing(α,ϕ)|Committed(β, α, ϕ)). As in tra-
ditional socio-cognitive trust models, our view is that calculating the probability of
observing the action ϕ that agent β has committed to perform could be based on the
capability of agent β to perform ϕ as well as its willingness to do so. For instance,
a firefighter might have the capability of picking up people from dangerous locations
and dropping them at safer places, but during a given interaction, the decide not to
drop the people at the designated location because it decides that it wants to rescue its
loved ones first. In other words, to calculate the probability of observing an agent act,
one should calculate the probability of both the agent’s capability and its willingness.
Consequently, P (Observing(α,ϕ)|Committed(β, α, ϕ)) is then defined as:

P (Observing(α,ϕ)|Committed(β, α, ϕ)) =
P (Can(β, ϕ) and Does(β, ϕ)|Committed(β, α, ϕ)) =
P (Can(β, ϕ)|Committed(β, α, ϕ)) · P (Does(β, ϕ)|Committed(β, α, ϕ))

where P (Can(β, ϕ) describes the probability of β having the capability to perform
ϕ, and P (Does(β, ϕ) describes the probability of β having the willingness and ac-
tually performing ϕ. Note that the second equality holds because in probability,
P (A and B) = P (A) · P (B) if A and B are independent. This applies to our case be-
cause we assume capabilities and willingness to be independent, as we illustrate next.

We assume agents may be capable of performing actions they are not willing to per-
form and vice versa. In fact, in our work, we do not only consider rational agents that
only make commitments that they know they can fulfil, but we also consider fraudu-
lent and malicious agents that may lie about their capabilities, or agents that might
be mistaken about their own capabilities. In such systems, not only capabilities are
unrelated to (and independent from) willingness, but they are also unrelated to com-
mitments. One can commit to an action, regardless of whether or not the action can be
performed. A commitment is made based on the motives of the agents. For instance,
a malicious and greedy agent may commit to actions it cannot carry out in order to
fulfil its own goals; a sincere agent that cannot lie or cheat would not commit to ac-
tions they cannot perform, although even a sincere agent may commit to an action
it thinks it can perform, only to realise later that such a performance is not actually
possible. As such, we say one can study whether an agent is capable of performing a
given action independently of the commitments it had made. In probabilistic terms,
P (Can(β, ϕ)|Committed(β, α, ϕ)) = P (Can(β, ϕ)) because the capability is indepen-
dent of the commitments made. Consequently, P (Observing(α,ϕ)|Committed(β, α, ϕ))

6In some cases, the content of a message can be a Cartesian product of terms instead of a single term. All
the ideas of this paper apply naturally to these cases.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 N. Osman et al.

is then defined as:
P (Observing(α,ϕ)|Committed(β, α, ϕ)) =

P (Can(β, ϕ)) · P (Does(β, ϕ)|Committed(β, α, ϕ))
(1)

We will estimate P (Does(β, ϕ)|Committed(β, α, ϕ)) based on past observed behaviour
in similar circumstances (similar commitments). For instance, if the firefighter did fol-
low orders in the past, then the probability that he will be willing to follow orders
in the future should be high. As for P (Can(β, ϕ)), we will estimate it as a match-
ing degree between the capabilities needed now and the capabilities observed in the
past. For instance, if the police officer was capable of knowing at some point in the
past where each entity (such as students, medics, cattle, etc.) should be transported
to in the case of emergency, then the probability of this police officer to still hold this
capability should be high (regardless of whether he is willing to act upon this capa-
bility or not). As such, estimating a capability is based on deciding whether an ob-
served past capability matches (to a certain degree) the one in question. Then, we
shall approximate trust by an entropy measure of the resulting probability distribu-
tion P (Observing(α,ϕ)|Committed(β, α, ϕ)), which we will refer to as P (ϕo | ϕc) for
simplification, where ϕo represents the observed action and ϕc the action committed
to.

We do note that observing, or not observing, an action cannot always be used as
a guarantee on whether the agent did or did not perform the action. For example, a
message (such as when sending one’s payment) may simply be lost on its way. However,
if an agent is known to have a lossy connection, then its computed expected behaviour
should rightly take such errors into consideration. For outsiders, this agent cannot be
trusted. We believe that focusing on the end results is reasonable when computing the
probability of future end results.

In what follows, Section 3.1 provides the preliminaries needed for calculating P (ϕo |
ϕc), whose calculation details are then presented by Section 3.2. Section 3.3 presents
a set of various methods that may be used for calculating trust scores based on the
probability P (ϕo | ϕc). Section 3.4 then provides a summary by presenting a sample
algorithm for calculating trust.

3.1. Preliminaries
Before presenting our approach for calculating P (Observing(α,ϕ)|Committed(β, α, ϕ)),
this section provides some preliminaries that our proposal is based on. Our proposal
is based on the idea that agents can play different roles in several interactions. For
instance, one may play the role of a firefighter in one scenario, and the role of a citizen
in another. When selecting the agent to interact with, this agent is selected to play a
specific role in a given interaction and this specific role and interaction is crucial for
the selection process. For instance, one may be a reputable citizen who is always will-
ing to help, but a terrible firefighter who does not even know how to drive a fire truck.
As such, the context is crucial. Since our proposed model is an experienced based model
that relies on past experiences to predict future performance, calculating the similarity
between experiences is crucial. However, from the point of view of trust (and the prob-
ability distribution P (Observing(α,ϕ)|Committed(β, α, ϕ))), experiences are defined in
terms of one agent’s commitments to perform certain actions, and another agent’s ob-
servation of these actions. As such, the notions of context, commitments, observations,
experiences, and similarity measures are all presented by the following sections, re-
spectively.

3.1.1. Context and Local Ontology. As illustrated earlier, our view is based on having
agents play different roles in different interactions. To compare two different contexts,

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:9

one should compare the interaction scenario (for instance, an emergency response sce-
nario, an e-commerce scenario, an auction scenario, a Black Jack game scenario, and
so on), the role played by the agent (a seller, a buyer, a firefighter, and so on), and the
agent’s commitments with respect to a given role and interaction (for example, in an
e-commerce scenario, the buyer commits to pay for its purchase, the seller commits to
deliver on time, and so on).

To be capable of using the proposed trust model of this paper, what is needed is the
name of the interaction scenario, the role played by the agent, and the set of actions
the agent has committed to in this role. A descriptive text accompanying each may also
be used.

Various approaches in multi-agent systems have been proposed for specifying inter-
action models [Arcos et al. 2005; Robertson 2005]. However, the running example of
this document uses the lightweight coordination calculus (LCC), a process calculus,
which has been briefly introduced earlier in Section 2. The specification of Figure 1 is
an example of a context specified in LCC.

Naturally, each agent has a local ontology that allows it to comprehend the specifi-
cation of the interaction scenario, the roles of a given interaction, and the individual
commitments associated with each role (or agent). Comparing contexts, which is the
basis of our proposed model, is based on comparing commitments, roles, and interac-
tions. This is achieved by analysing one’s ontology and the matching degree between
its terms. For this reason, we first provide a brief introduction to our view of local
ontologies.

We assume an agent’s ontology O consists of some basic (and finite) atomic terms T
with a refinement relation < ⊆ T ×T defining specificity. For example, the refinement
relation can specify that a car is a specific example of a vehicle. We can naturally
extend this relation to tuples of values (t1 × · · · × tn) as well as to terms built from a
function symbol and a set of arguments (f(t)), accordingly:

— If ti < t′i then (t1×· · ·×ti×· · ·×tn) < (t1×· · ·×t′i×· · ·×tn)
— If f :T→T ′, g :T→T ′, and g<f , then ∀t∈T • g(t)<f(t) and ∀t, t′∈T • t<t′ ⇒ f(t)<f(t′)

We denote the free algebra of terms generated from O as Term(O). Note that if
functions are not recursive then the free algebra is finite. We assume finiteness in the
trust computation later on.

The < relation over the set of terms defines a directed acyclic graph. We say, if t <
v then t is a descendant of v. The levels of the free algebra define the parent/child
relationship. In other words, if t < v and there is no w such that t < w and w < v
then v is the father of t. Such graphs can be generated on the fly and locally to a
particular term; that is, all ancestors, siblings, and descendants around the term are
generated for a given distance from the term, so as to focus on a particular region of the
terminology. This on the fly and local generation of graphs is crucial for the efficiency
of our trust algorithm, which makes use of these graphs to calculate the similarity
between terms based on how far they are in the graph.

3.1.2. Commitments. In our proposed model, evaluating an agent’s performance is
based on comparing what the agent has committed to do to what it actually did (or
what has been observed). Hence, the notion of commitment is crucial to our trust mea-
sure. We say there are two different levels of commitments: (1) norms (or the implicit
commitments), which represent restrictions on the agent’s behaviour due to the sim-
ple fact that an agent accepts to play a role in a given interaction model; that is, the
agent commits to following the rules of the interaction model, and (2) agreements (or
explicit commitments), which are explicit additional commitments made by the agent
at the beginning of the interaction. We represent both types of commitments, norms

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 N. Osman et al.

and agreements, as:
Commit(β, α, 〈im, r,m, ϕ〉, t)

where β commits to α (another agent) to play role r in interaction model im and, as part
of playing that role, to send a particular messagem instantiated as ϕ. In other words, ϕ
represents the message that β is committing to. For example, instead of committing to
dropping off people at a given location, the firefighter simply commits to finding some
other colleague who he can delegate the task to.7 The commitment is made at time t.
Making such a commitment results in α expecting β to later on execute im, playing
role r, and instantiating message m as ϕ (or ϕ :m). The trustworthiness of β in α’s view
will be determined by how β keeps its commitments.

The motivation behind the definition above is that in an interaction, actions could
either be message passing actions, illustrating the communication between agents, or
internal agent actions, representing all other actions an agent can perform when it is
not communicating with others (such as driving a truck, making calculations, etc.). We
refer to the latter as the constraints that the agent needs to fulfil. We note that the
only verifiable (or observable) actions of interactions in distributed open systems are
usually the message sending actions.8 This is because there is no control on how agents
will execute internal actions (or constraints) locally. Hence, we say the action that
an agent may observe is the sending of the message m. As a result, an agent should
commit to the sending of a message m, possibly in a specific format (or instantiated as)
ϕ. In general, however, we say that if agents may commit to and observe any action
(including the execution of constraints), then m and ϕ could resemble any such action,
as opposed to message passing actions only.

Nevertheless, while most interaction models might agree that only message sending
actions are observable, not all interaction models agree that an agent should commit
to sending specific messages. For instance, in LCC, even though the only observable
actions are the message passing actions, agents commit to constraints as opposed to
messages (the sending of messages is a mere result of executing constraints locally). As
an example, the sensor agent in the interaction model of Figure 1 is essentially com-
mitting to detect the water level at a given location (detect(Location, Level)). By agree-
ing to engage in this interaction model, the message water level(Location, Level) will
automatically be sent to the police when the measurement is made. In LCC, agents’
commitment to constraints may be viewed as an indirect commitment to a message
passing action, since the execution of constraints directly influences the format of the
messages being passed. For example, after the constraint suitable loc(Entity, Location)
is fulfilled, the message water level(Location) will automatically be instantiated with
the chosen location and sent to the sensor. Hence, in the case of the LCC language,
commitments may be modified as follows:

Commit(β, α, 〈im, r,m, ϕ, cm〉, t)

7Note that instantiations illustrate how a specific action is executed in reality. As the example above illus-
trates, instantiations may or may not follow an agent’s refinement function <. The refinement function, on
the other hand, is used to understand the semantic distance between terms, regardless of agents’ actions
and their chosen instantiations.
8By verifiable, or observable actions, we mean actions that agents can assess by simply checking the ex-
ecuted interactions. For example, actions verifiable in the real world, such as delivering goods, cannot be
verified against the interaction model’s specification. The interaction model may ask the sender agent to
inform the receiver agent of the delivery of goods. When performing an automated diagnosis of the sender
agent’s performance, one cannot confirm whether the goods have actually been physically delivered, but
only whether the sender has abided to the interaction model and did not violate its rules, or whether the
receiving agent is satisfied with the sender’s performance (since agents can rate each other).

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:11

where cm is the set of constraints being committed to, and ϕ :m is determined by the set
of constraints cm. We note that the remainder of this paper will use the latter format
of commitments.

Last, but not least, we remind the reader that our current implementation makes
use of the LCC specified context. As such, norms are considered to be specified by the
LCC interaction model itself, while agreements are varying instantiations (or possibly
modifications) of different terms of the interaction model. However, we would like to
point out that the proposed trust model of this paper may easily be applied to other
systems in which the context is specified in a different approach than LCC. Service
level agreements (SLA) [Lamanna et al. 2003] are then one alternative method that
may be used for formalising commitments. The only requirement imposed by our model
is that the context (defined by both norms and agreements) may be translated into a
set of commitments, as described in this section.

3.1.3. Observations. For calculating trust, it is crucial to observe the results of previ-
ous commitments and decide whether they have been honoured or not. In practice,
this implies that for any observable action we want to be able to automatically de-
termine whether the observable action maps to the agent’s corresponding commit-
ment. To do this, we assume the existence of a function g : MSG × OBS 7→ {>,⊥}
that checks whether the expected messages of the set MSG map to the observed
messages of the set OBS or not, returning true (>) or false (⊥), respectively. Note
that for a given interaction im, the set MSG is defined accordingly: MSG(im) =
{ϕ|Commit(, 〈im, , , ϕ, 〉,)}. The function g(ϕ,ϕ′) then checks whether ϕ ∈ MSG
has been satisfied by comparing it to the observed message ϕ′ ∈ OBS.

Additionally, we say that the execution of an interaction can possibly generate new
commitments for future behaviour in ulterior interactions. For example, agents in one
scenario may agree on the product to buy and at what price, and then commit on some
conditions for the ulterior negotiation of the payment method: For instance, one agent
may say “I’ll not charge any bank commissions if you decide to pay by credit card”.
Hence, one can naturally think of the execution of one interaction as an ‘operation’
that consumes commitments9 and generates new ones. This leads us to our basic unit
representing the observation made by an agent α about the behaviour of agent β in a
given context (described through an interaction model im), which is:

µ=〈β,im,{〈Commit(β,α,〈im,r,m,ϕ,cm〉,t),ϕ′, g(ϕ,ϕ′), d〉}ϕ∈MSG(im), C〉
where β engages in the execution of im with a set of commitments
{〈Commit(. . .), . . .〉}ϕ∈MSG(im), and C is the new set of commitments generated
during the execution of interaction im.10 Note that the third element of the tuple µ
describes a set of tuples, each of which records the observed performance of β for a
particular message ϕ committed to in interaction im (ϕ ∈ MSG(im)). We also note
that the observable execution of ϕ is denoted by ϕ′, α’s subjective evaluation of β’s
performance in executing ϕ is denoted by d ∈ D (for instance, D may be the qualitative
set {bad, neutral, good, v.good}), and the objective evaluation of β’s performance is
automatically calculated by the function g(ϕ,ϕ′) (where the range of g may be the
numerical scale [0, 1]).11

9There might be more than one commitment affecting different messages of an interaction.
10If one assumes that an interaction im may be divided into a set of sub-interactions {im1, . . . , imn}, then
we have µ = 〈β,im,{〈Commit(β,α,〈imi,r,m,ϕ,cm〉,t),ϕ′, g(ϕ,ϕ′), d〉}m∈{messages(imi)|imi∈im}, C〉, where
the set of initial commitments is the set of commitments corresponding to each message m of each sub-
interaction imi.
11The definition above assumes user feedback to be on the level of messages. However, it is more realistic
(and practical) to have users give feedback on entire interactions. In such cases, this feedback will then

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 N. Osman et al.

We denote the set of all existing µs, which we refer to as experiences, as M . For
simplification, in the rest of the document we will often view any of the recorded expe-
riences from the perspective of a single message commitment: in other words, we will
abuse notation and write µ = (ϕ′, ϕ) to describe the experience when ϕ was committed
to and ϕ′ was observed. We will note the database of experiences of agent α as Mα.

3.1.4. Experiences. This section addresses the issue of how are databases of experi-
ences built. We say there are two types of past experiences, resulting in two different
methods of obtaining them: (1) personal experiences, which are the agent’s personal
and trusted experiences that are obtained through observations (introduced above),
and they are dealt with by the agent as if they are facts; and (2) gossip, which are
obtained through the transmission of experiences between agents. An example of a
gossip is the following message, in which agent α informs agent γ about its past ex-
perience with agent β (in the interaction labelled negotiation), where β committed to
α to sending a bottle of wine, but instead sent a bottle of whiskey which kept agent α
satisfied with the interaction and rating β’s performance as V ery good:

Gossip(α, γ, 〈β, negotiation,
{〈Commit(β, α, negotiation, seller,

send(product), send(wine), {product(wine)}〉, 3/12/07),
send(whisky),⊥, V ery good〉}, {}〉)

We note that gossip may be viewed as representing some notions of reputation, i.e.
a way of sharing the group’s opinion. With gossip, an agent in the network passes
information about a previous experience, that is, a particular µ. The main problem
in this approach is the reliability of the source. Thus, the question is: given a piece
of information µ = (φ′, φ) passed from agent β to agent α, what does α think of β’s
reliability in assessing the experience µ, defined as Rt(α, β, µ)? One way of calculating
this reliability measure can be based on social network analysis as exploited in the
REGRET system [Sabater and Sierra 2002]. We do not explore this in detail here as
it is outside the scope of this paper.

3.1.5. Similarity Measures. Our trust measure is based on using concrete past
commitments over 〈im, r,m, ϕ, cm〉 (recall that a commitment is defined as
Commit(β, α, 〈im, r,m, ϕ, cm〉, t)) and their results to update the expectation of future
behaviour over semantically close commitments. Hence, we need to define similarities
between commitments. In our example, we say interaction models (im) may be tagged
with a set of keywords or terms from O. Roles (r), messages (m), messages committed
to (ϕ), and constraints committed to (cm) are usually specified as (possibly complex)
terms or simple keywords from O. Hence, in what follows, we first define our general
equation for computing similarity between terms and keywords. This is followed by
the equations needed for computing the similarity between the various elements of
commitments (im, r, m, ϕ, and cm). Finally, the equation used to compare two commit-
ments is presented.

Similarity between Terms/Keywords.. The concepts within an agent’s ontology are
closer, semantically speaking, depending on how far away are they in the structure
defined by the ‘<’ relation. The measure we use [Li et al. 2003] calculates the seman-
tic similarity between two concepts based on the path length induced by ‘<’ (more
distance in the ‘<’ graph means less semantic similarity), and the depth of the sub-
sumed concept (common ancestor) in the shortest path between the two concepts (the

be propagated to the different commitments over the different messages, so that the performance w.r.t any
message is assumed to be of the same value as the performance of the whole interaction im.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:13

entity,
something

life form,
being, ...

animal,
beast, ...

person,
human, ...

male,
male person

female,
female person

juvenile,
juvenile person

adult,
grownup

male child,
boy, child

female child, girl,
child, little girl

child, kid,
minor, ...

professional,
professional person

educator,
pedagogue

teacher,
instructor

Fig. 2. A portion of an ontology, as presented by [Li et al. 2003]

deeper in the hierarchy, the closer the meaning of the concepts). For example, consid-
ering the fragment of the ontology presented by Figure 2, we notice that the shortest
path between boy and girl is boy −male − person − female − girl with a length of 4, and
that minimum path length between boy and teacher is 6. Thus, we could say girl is
more similar to boy than teacher is to boy. When multiple paths may exist between
two terms/keywords, then only the shortest path is used in calculating semantic sim-
ilarity. However, we note that words at upper layers of the ontology have more gen-
eral concepts and less semantic similarity between words than words at lower layers.
Therefore, in addition to the shortest path between terms/keywords, [Li et al. 2003]
also considers the depth of the deepest concept subsuming both concepts. In the above
example, the deepest concept subsuming both boy and girl is person, human, ..., and its
depth is 2.

As such, and following [Li et al. 2003]’s proposal, we say that for agent α, the seman-
tic similarity between the terms/keywords θ and θ′ is then defined as:

Sim1(θ, θ′) = e−κ1l · e
κ2h − e−κ2h

eκ2h + e−κ2h
(2)

where l is the length of the shortest path between the concepts, h is the depth of the
deepest concept subsuming both concepts, and κ1 and κ2 are parameters scaling the
contribution of shortest path length and depth, respectively. Essentially, κ1 and κ2 are
parameters that α could use to customise the weight given to l and h, respectively.
The function Sim1 is symmetric (i.e. Sim1(θ, θ′) = Sim1(θ′, θ)), and its range is [0, 1].
In fact, the symmetric nature and the range [0, 1] are properties of all the similarity
functions presented in this section (Equations 2–5).

Finally, we note that we provide Equation 2 just as an example, and that our work
does not define semantic similarity, but reuses existing approaches. As such, we refer
the interested reader to [Li et al. 2003] for further details on Equation 2, and we stress

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 N. Osman et al.

that alternative approaches can easily be used to replace this equation. There is no
universal measure for semantic similarity, and this usually depends on the structure
of the ontology amongst other things. Different contexts and different ontologies may
require different approaches and equations. Similarly, different agents may also prefer
different equations for their own ontologies. This is outside the scope of this paper and
deserves a dedicated line of work.

Similarity between Elements of Commitments.. Recall that commitments are usually
made with respect to a given interaction, about playing a specific role, sending specific
messages, etc. As such, before illustrating how commitments may be compared and
their similarity measured, we first illustrate how to measure the similarity between
elements of a commitment (i.e. the interaction model im, the role r, the message m,
the committed message ϕ, or the committed constraints cm). We note that each ele-
ment of a commitment, say the interaction model im, may be defined through more
than one term. For example, to measure the similarity between two interaction mod-
els, we say one needs to measure the similarity between all the keywords of the first
with all the keywords of the second, and vice versa; and only the terms resulting with
maximum similarity are then considered. As such, the similarity between elements of
commitments becomes:

Sim2(x, x′) =
1

2
·

0@ X
φ∈terms(x)

max
φ′∈terms(x′)

{Sim1(φ′, φ)}

| terms(x) | +
X

φ∈terms(x′)

max
φ′∈terms(x)

{Sim1(φ′, φ)}

| terms(x′) |

1A (3)

where (x, x′) ∈ {(im, im′), (r, r′), (m,m′), (ϕ,ϕ′), (cm, c′m)}.
For example, consider two interaction models im1 and im2, where the keywords de-

scribing the first are terms(im1) = {e-response, flood} and the keywords describing the
second are terms(im2) = {emergency}. The similarity between the interaction models
becomes:

Sim2(im1, im2) = 1
2 ·
(max{Sim1(e-response, emergency)}

2
+

max{Sim1(flood, emergency)}
2

+
max{Sim1(emergency, e-response), Sim1(emergency, flood)}

1
)

In other words, Equation 3 essentially states that the average of the similarity mea-
sures of the first set of keywords (or terms) with respect to the second set of keywords
(or terms) is considered. As the example above highlights, and to maintain symme-
try for the similarity function (i.e. Sim2(x, x′) = Sim2(x′, x)), the average should be
repeated to consider the similarity measures of the second set of keywords (or terms)
with respect to the first.

But what is the motivation behind choosing this approach for calculating Sim2? The
basic idea behind this approach is that when considering the similarity of two enti-
ties, we need to consider how do the elements composing each entity relate to that
entity. For example, is the entity composed of a disjunction of elements, a conjunction
of elements, or something in between conjunction and disjunction? In other words, if
the keywords describing an interaction model are {e-response,flood}, does this mean
that the interaction model cannot be described except by all of these keywords and not
just a subset (i.e. a conjunction of keywords is needed)? Or does this mean that any of
these keywords is sufficient in describing the entire interaction model (i.e. a disjunc-
tion of keywords is needed)? Or is it more like something in between those two cases
(i.e. an average of keywords is needed)? In mathematical terms, the average falls in
between the conjunction and disjunction, each category can have various degrees, and

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:15

averaging
operators

disjunctive
operators

conjunctive
operators

product
(∏)

minimum
(min)

maximum
(max)

arithmetic average
(∑n / |n|)

probabilistic sum
(sum)

Fig. 3. The classification of operators as conjunctive, average, and disjunctive

different operators are used to express those degrees, as illustrated by Figure 3. Note
that the minimum operator (min) separates between conjunctive operators and aver-
age ones, while the maximum operator (max) separates between disjunctive operators
and average ones. In the Equation 3, when considering keywords describing an entity,
we argue that we want to capture the notion of what the average of these keywords
conveys to us. We do not want to treat them neither as a set of conjunctive terms nor
as a set of disjunctive terms, as both would be too restricting. However, in scenarios
where a conjunction or a disjunction would better capture the notion of these terms,
then the average operator (

∑
φ∈terms(x) / | terms(x) |) may easily be replaced with

another conjunctive or disjunctive operator appropriately, such as the minimum (min)
for a conjunction or the maximum (max) for a disjunction.

For instance, in the case of LCC, a constraint cm may represent a conjunctive set
of sub-constraints (e.g. drop off (Entity) ∧ suitable loc(Entity, Location) of the interac-
tion model of Figure 1). In this case, and as illustrated above, we modify Equation 3
appropriately, replacing the average operator with the minimum.

Sim2(x, x′) =
1

2
·
„

min
φ∈x
{max
φ′∈x′

{Sim1(φ, φ′)}} + min
φ∈x′
{max
φ′∈x
{Sim1(φ, φ′)}}

«
(4)

Of course, using the minimum operator describes an optimistic approach. For in-
stance, if we are comparing a ∧ b to c and Sim(a, c) = 0.3 and Sim(b, c) = 0.2,
then we have min{Sim1(a, c), Sim1(b, c)} = 0.2. For a more pessimistic approach,
one can even replace the minimum operator (min) with the product operator (

∏
).

In this case,
∏
{Sim1(a, c), Sim1(b, c)} = 0.06, which is drastically smaller than con-

sidering the minimum. Note that in this example, we are only considering the mini-
mum from the point of view of the first constraint (a ∧ b). To maintain symmetry (i.e.
Sim2(x, x′) = Sim2(x′, x)), and as illustrated by Equation 4 above, one also needs to
consider the minimum from the point of view of the second constraint (c).

Similarity between Commitments.. Finally, we define the similarity between two
commitments as an aggregation of several similarity measures (note that for sim-
plification, we refer to a commitment Commit(β, α, 〈im, r,m, ϕ, cm〉, t) simply as
〈im, r,m, ϕ, cm〉):

Sim (〈im, r,m, ϕ, cm〉, 〈im′, r′,m′, ϕ′, c′m〉) =
Sim2(im, im′)γim ·Sim2(r, r′)γr ·Sim2(m,m′)γm ·Sim2(ϕ,ϕ′)γϕ ·Sim2(cm, c

′
m)γcm

(5)

Equation 5 essentially models the aggregation as a weighted combination depending
on parameters γim, γr, γϕ, γm and γcm . In other words, the parameters are used to
help customise the weight given to each part of the commitment. For instance, in some
cases, the agent might simply be interested in whether the description of the interac-
tion models and roles are similar (i.e. setting γr, γϕ, γm and γcm to 0). In other cases, the
agent might be interested to give more weight to the exact capabilities of the agent,
described through their constraints (i.e. giving more weight to γcm than the others).
However, how the values assigned to these weights are decided by the agent perform-
ing the computation is outside the scope of this paper.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 N. Osman et al.

In the remainder of this paper, we will simplify notation and will represent
Sim(〈im, r,m, ϕ, cm〉, 〈im′, r′,m′, ϕ′, cm〉) by Sim(ϕ,ϕ′).

3.2. Calculating Expectations
As illustrated earlier by Equation 1, calculating the expectation (or probability) of an
agent’s future performance in performing ϕ′ given that it committed to ϕ is defined as
P (ϕi|ϕ) = P (Can(ϕi)) · P (Does(ϕi)|Committed(ϕ)). In what follows we illustrate how
P (Can(ϕi)) and P (Does(ϕi)|Committed(ϕ)) may be assessed, respectively. This is then
followed by a brief discussion of how the general expectation P (ϕi|ϕ) loses its value
with time.

3.2.1. Calculating Abilities. We say experience will tell us in which different contexts
the agent has been capable of performing a given action. In the case of LCC, where
commitments are made on fulfilling constraints, agent α can define the constraints it
knows agent β can deal with as:

Hβ = {c | c∈cm ∧ 〈β, , {...〈Commit(β, , 〈im, r,m, ϕ, cm〉,), ϕ, 1, 〉...}, 〉∈Mα} (6)

The above states that the set of constraints that agent β is known to perform are those
constraints that β has committed to in the past and fulfilled (where the performance
has been automatically computed by the function g and its value is 1, which represents
a successful performance).

Thus, given Commit(β, α, 〈im, r,m, ϕ, cm〉), α needs to assess whether β is capable of
doing ϕ. We propose to look into the history of past experiences for all the actions that
have been performed. Then, we compute the similarity between current commitments
and previously satisfied commitments. In the particular case of LCC, the commitment
is on the constraints cm (recall that cm could represent a set of constraints, as opposed
to a single constraint), hence we say:

P (Can(β, 〈im, r,m, ϕ, cm〉)) = min
φ∈cm

{ max
φ′∈Hβ

{Sim(φ′, φ)}} (7)

To motivate our choice behind this equation, we remind the reader that what is needed
here is to aggregate the similarities between the current constraint and the set of past
constraints. The question then arises about which aggregation function to use. Since
LCC constraints are composed of a conjunction of terms, we believe a conjunctive oper-
ator is needed. We choose the minimum operator (min) for a more optimistic approach.
The product operator (

∏
) can easily replace the min operator is a more pessimistic

approach is required. (Section 3.1.5, especially the subsection entitles “Similarity be-
tween Elements of Commitments” along with Figure 3, has provided a thorough dis-
cussion on choosing such an operator and the pessimistic/optimistic nature of each.)

3.2.2. Calculating Willingness. We now move to assess P (Does(ϕi)|Committed(ϕ)),
which compares the current context (ϕi, ϕ) to previous experiences. Suppose
that α has an experience µ = (φi, φ). Now assume that the µ implies that
P (Does(ϕi)|Committed(ϕ)) should take a new value (say, Rt(α, β, µ), where t repre-
sents the current time). However, before learning about the experience µ at time t, α
used to think that P t−1(Does(ϕi)|Committed(ϕ)) = ~p. The question then is: how much
credibility (or influence) should the new experience have on calculating the new value
P t(Does(ϕi)|Committed(ϕ))? To answer this question, we need to compare the previ-
ous commitment φ to the current commitment ϕ, the previous commitment φ to its
observed execution φi, and the current commitment ϕ to its expected observed execu-
tion ϕi. Then the similarity between the previous context and the current context (or
its degree of influence, to be more precise) becomes:

S(φi, φ, ϕi, ϕ) = (1− |Sim(φi, φ)− Sim(ϕiϕ)|) · Sim(ϕ, φ) (8)

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:17

where Sim(,) follows Equation 5. For instance, take the overly simplified exam-
ple where a police agent once promised to find a suitable safe location for resi-
dents (suitable loc(Residents, Location), which we simply refer to as r) and deliv-
ers a suitable safe location for students (suitable loc(Students, Location), which we
refer to as s), and the same agent is now promising to find a suitable safe loca-
tion for residents (suitable loc(Cattle, Location), which we simply refer to as c), and
we need to calculate the probability of delivering a suitable safe location for goats
(suitable loc(Goats, Location), which we refer to as g). If the similarity between what it
promised and delivered in the past is equal to the similarity between and it is promis-
ing and might deliver now, then the influence of this past experience on this new expe-
rience is Sim(c, r) (since Sim(s, r) = Sim(g, c)⇒ Sim(s, r)− Sim(g, c) = 0). However, if
the similarity between what it promised and delivered in the past is not equal to the
similarity between what it is promising and might deliver now, then the influence of
the past experience on the new experience will lessen the measure Sim(c, r) by tak-
ing this difference into consideration (Sim(c, r) is essentially decreased by an amount
decided by Sim(s, r)− Sim(g, c)).

The new P (Does(ϕi)|Committed(ϕ)) is then calculated as follows:

P t(Does(ϕi)|Committed(ϕ)) = S(φi, φ, ϕi, ϕ) ·Rt(α, β, µ) + (1− S(φi, φ, ϕi, ϕ)) · ~p (9)

where ~p describes the past expectation of P t−1(Does(ϕi)|Committed(ϕ)) that did
not take the new experience µ into account, Rt(α, β, µ) describes the expectation
based on the single personal experience µ alone, and S(φi, φ, ϕi, ϕ) decides which
of the previous two measures should have more influence on the new expectation
P t(Does(ϕi)|Committed(ϕ)) (i.e. it specifies the weight given to each of those two mea-
sures when aggregating them). As for Rt(α, β, µ), it is calculated as follows:12

Rt(α, β, µ) = ζ · ~pµ + (1− ζ) · ~p
ζ = 1− | Trustt−1(α, β, 〈im, r,m, ϕ, cm〉)− d |

(10)

where Trustt−1 represents α’s trust in β with respect to the current commitment (see
Section 3.3), d is α’s subjective assessment of the current observation µ (which was
defined earlier in Section 3.1.3), and ~pµ is the probability distribution describing the
value d (an example on how to translate a number in the range [0, 1] into a distribution
is presented by [Pinyol et al. 2007]; naturally, other approaches may also be used).

Equation 10 essentially states that Rt takes the value of the probability distribu-
tion describing d (~pµ) when its previous trust measure (Trustt−1) is equivalent to its
assessment of the currently observed new experience µ (d). Otherwise, Rt becomes
an aggregation of the probability distribution describing d (~pµ) and its past expecta-
tion that did not consider the new experience µ (~p), where the difference between its
previous trust measure (Trustt−1) and its assessment of the currently observed new
experience (d) decides how much weight is given to each of ~pµ and ~p.

In summary, Rt reflects α’s level of personal caution with what this experience
means for the future. The motivation behind this equation is that if the results of the
current observation and the past trust score are very different, then the experience is
perhaps a mistake and should not be taken too seriously, or too strongly into account.
However, if there is a slight deviation of the current expected value, this might indicate
a tendency in behavioural change.

3.2.3. Decay. P (ϕ′, ϕ) is calculated following Equation 1 by multiplying the results of
Equations 7 and 9. However, we say the integrity of percepts decreases with time. In

12If the experience is not personal, but obtained through gossip, then other mechanisms are used for calcu-
lating Rt(α, β, µ), such as those of the REGRET system [Sabater and Sierra 2002].

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 N. Osman et al.

summary, everything should lose its value, and decay towards some default value (like
the uniform distribution). We refer to this default value as the decay limit distribution.

Calculating the decay limit distribution is outside the scope of this paper, although
we argue that α may have background knowledge concerning the expected integrity of
a precept as t→∞. Such background knowledge will be expressed in terms of α’s own
knowledge, and is represented as a decay limit distribution D(Xi), where Xi describes
the specific context (ϕ′, ϕ), or the situation in which an agent promises ϕ and delivers
ϕ′. If the background knowledge is incomplete then one possibility is for α to assume
that D(Xi) has maximum entropy whilst being consistent with the data.

In summary, given a distribution, P (Xi), and a decay limit distribution D(Xi), P (Xi)
decays by:

P t+1(Xi) = ∆i(D(Xi), P
t(Xi)) (11)

where ∆i is the decay function for the Xi satisfying the property:

lim
t→∞

P t(Xi) = D(Xi)

For example, ∆i could be linear:

P t+1(Xi) = (1− νi)× D(Xi) + νi × P t(Xi)

where νi < 1 describes the decay rate.
Additionally, one might also think of either the decay function or the decay limit

distribution to be also a function of time: ∆t
i and Dt(Xi).

3.2.4. Initialisation. It may be argued that in distributed open systems, new agents with
no performance history will have low chances to be chosen, compared to those with a
good performance history. This is definitely an important issue in open systems. How-
ever, we believe that if all agents kept selecting the top agents (or the most trustworthy
ones) for collaborating with, then either these selected agents will become more expen-
sive, or they will become a bottleneck that cannot keep up with the demand. In other
words, if the top agents are always selected by all others, then with time, these top
agents will start providing services of less and less quality, as they may not be able
to keep up with the demand. This automatically opens the doors for other agents to
be chosen, since we assume agents to consider a variety of aspects when selecting its
future collaborator, such as its cost, the quality of the service provided, the efficiency
of the service, and so on.

We also note that a new agent’s expected performance (P 0) is initially set to the
decay limit distribution D, before P t starts getting shaped by the agent’s actual per-
formance. One way to further encourage interacting with new agents, is to set the
initial probability distribution describing a new agent’s expected performance (P 0) to
a distribution that describes above average performances. Of course, this raises other
security issues, such as the exposure to whitewashing attacks, where malicious agents
re-enter the system with different identifiers so that their negative history is no longer
considered and their new identity allows them to be selected for future interactions.
The question then is, do we want the system to encourage new users with no history, or
would we rather give more importance to an agent’s performance history? Naturally,
this is a tradeoff that may be addressed differently for different application scenar-
ios. For instance, the severity of the whitewashing attack changes from one system to
another based on how expensive or difficult it is for the same agent to obtain a new
identifier. Similarly, the minimum P 0 that provides new agents with a chance to be
chosen may also vary from one application to another, based on the minimum require-
ments of the users of that specific application.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:19

3.3. Trust Equations
3.3.1. Trust Measures. After calculating P (Observing(α,ϕ′)|Committed(β, α, ϕ)) at a

given time t, which we simply refer to as P t(ϕ′|ϕ), the question now is: How do we
interpret such expectations? Or in other words: How do we calculate a trust measure
given an expectation specified as a probability distribution?

In what follows, we define three different trust equations that can be implemented,
or chosen, depending on the particular personality of the agent. In the first, the ex-
pected performance, which we refer to as the expected enactment, is compared to an
ideal performance (or ideal enactment), which simply specifies what the ideal outcome
would be. In the second, the expected performance is compared to what other outcomes
(or enactments) are preferred. In the third, the focus is on the certainty of the new ex-
pectation.

(1) Ideal enactments: Consider a distribution of enactments that represent α’s “ideal”
in the sense that it is the best that α could reasonably expect to happen: P tI (ϕ′|ϕ).
For example, even if β has committed to sending wine, α’s ideal outcome would be
for β to actually send whiskey instead. Trust is then computed by measuring the
relative entropy between this ideal distribution, P tI (ϕ′|ϕ), and the distribution of
expected enactments, P t(ϕ′|ϕ):

Trust(α, β, 〈im, r,m, ϕ, cm〉) = 1−
X
ϕ′

P tI (ϕ′|ϕ) · log
P tI (ϕ′|ϕ)

P t(ϕ′|ϕ)
(12)

where “1” is an arbitrarily chosen constant being the maximum value that this
measure may have, and ϕ′ represents the potential outcome (or observed results).
It may be questioned whether it is fair to allow agents to set ideal enactments
that are different from what was agreed upon, resulting in one having its trust
measure be less than perfect even when the it always does exactly what it agreed
to do. This may easily be solved by restricting agents from defining their own ideal
enactments and assuming an ideal enactment to describe the case when the agent
in question simply fulfils its promises. Nevertheless, we say it is also possible (if
needed) to permit agents to describe their own ideal enactments because it may
also be argued that one can always do better than what they promise, and there
should be means for capturing that. For instance, a seller who promises to deliver
an item in 7 days and ends up delivering it in 2 is always preferred to a seller who
promises to deliver an item in 7 days and does deliver it in 7.
Last, but not least, we note that although we use the equation of relative en-
tropy (Equation 12) to measures the distance between two probability distribu-
tions, we note that alternative methods for calculating this distance may also be
considered. For instance, Equation 12 may be replaced by the earth mover’s dis-
tance (Trust(α, β, 〈im, r,m, ϕ, cm〉) = 1−EMD(P tI (ϕ′|ϕ), P t(ϕ′|ϕ))), where the earth
mover’s distance (specified through the functionEMD) is a measure of the distance
between two probability distributions [Rubner et al. 1998].13

(2) Preferred enactments: This measures the extent to which the enactment ϕ′ is
preferable to the commitment ϕ. It requires α to specify its preferences with re-
spect to enactments via the predicate Prefer(c1, c2), meaning that α prefers c1 to c2.

13If probability distributions are viewed as piles of dirt, then the earth movers distance measures the min-
imum cost for transforming one pile into the other. This cost is equivalent to the amount of dirt times the
distance by which it is moved, or the distance between elements of the region E. The range of EMD is [0, 1],
where 0 represents the minimum distance and 1 represents the maximum possible distance. However, we
note that to use the earth mover’s distance, one also needs to determine what the distance between the terms
of the ordered region E is. That is one needs to define the matrix D = {dij}i,j∈E , where dij represents the
distance between the elements i and j of the region E.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 N. Osman et al.

Prefer(c1, c2) is then transformed into a normalised probabilistic measure, defined
as P t(Prefer(c1, c2)). As such, the final trust measure is then simply an aggregation
of the various expected outcomes (P t(ϕ′ | ϕ)), where the weight of each is decided
by the agent’s predefined preferences. This is expressed accordingly:

Trust(α, β, 〈im, r,m, ϕ, cm〉) =
X
ϕ′

P t(Prefer(ϕ′, ϕ)) · P t(ϕ′ | ϕ) (13)

(3) Certainty in enactment: This measures the consistency in expected acceptable en-
actment of commitments, or in other words, “the lack of expected uncertainty in
those possible enactments that are better than the commitment as specified”. We
use entropy to measure uncertainty, and we note that the minimal the uncer-
tainty (or the minimal the entropy) then the maximal trust is. As such, we say
let Φ+(ϕ, κ) = {ϕ′ | P t(Prefer(ϕ′, ϕ)) > κ} for some constant κ, and:

Trust(α, β, 〈im, r,m, ϕ, cm〉) = 1 +
1

B∗
·

X
ϕ′∈Φ+(ϕ,κ)

P t+(ϕ′|ϕ) · logP t+(ϕ′|ϕ) (14)

where P t+(ϕ′|ϕ) is the normalisation of P t(ϕ′|ϕ) for ϕ′ ∈ Φ+(ϕ, κ), and:

B∗ =
{

1 if |Φ+(ϕ, κ)| = 1
log |Φ+(ϕ, κ)| otherwise

3.3.2. Aggregating Trust Measures. In the previous section, we have illustrated
how trust measures may be computed for specific commitments by calculating
P (Observing(α, β, ϕ)|Committed(β, α, ϕ)) for a particular im, r, m and ϕ. If we are in-
terested in trust measures for more general cases, then all past experiences that fit
this general case are used. For instance Trust(α, β, 〈im, r〉) will be computed by look-
ing into all experiences for im and r in the database. Measures that take into account
the importance of certain commitments (or ims or rs) are also easy to define. Imagine
a normalised function that gives the importance of terms f : Terms → [0, 1], where
Terms is the set of terms built on top of the ontology O. We can then define an aggre-
gation as:

Trust(α, β, 〈im, r〉) = 1−
X
ϕ

P tβ(ϕ) · f(ϕ) · [1− Trust(α, β, 〈im, r,m, ϕ, cm〉)] (15)

where P tβ(ϕ) is a probability distribution over the space of commitments that the next
commitment β will make to α is ϕ. We note that building P tβ(ϕ) is not a straightforward
task; it is something learned over time. We say P tβ(ϕ) may be built by learning what
the other agent does. In other words, this equation may be applied when agent α has
a good knowledge of the patterns followed by agent β.

3.4. Trust Algorithm
We now give, as an example of a default trust algorithm, one that uses the ‘preferred
enactments’ trust equations (Algorithm 1). We assume decay is linear and the decay
limit distributions are equiprobable distributions. Other algorithms may be similarly
defined. A generic version of the algorithm, where functions like Sim(·) or distributions
like D(·) are parameters, is also straightforward.

The algorithm has parameter η that determines how much of the semantic space
is explored. By fixing it to a high value, we can have more efficient implementations.
By reducing it progressively, we can have a more realistic and fine grained implemen-
tation. Also, techniques like memorising can help in increasing the efficiency of the
algorithm.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:21

Trust is calculated on demand following Algorithm 1. Other implementations that
pre-compute probability distributions are possible but not considered here.

We note that the complexity of the trust algorithm is linear over the following con-
stants: (1) the size n of an agent’s ontology; (2) the size m of an agent’s history of past
experiences; and (3) the size p of the dialogue (or interaction model) in question. The
algorithm has several loops that go over the elements of the ontology, the history of
past experiences, and the dialogue. However, the most complex loop is the final one,
which calculates the trust measure. This loop iterates over elements of the agent’s
history m and elements of the dialogue p (in terms of commitments made by a given
dialogue). The loop then contains two sub-loops that iterate over the agent’s ontology
n. The complexity then becomes O(m · p · n). As such, we that for reasonably sized
ontologies and dialogues, trust can then be computed in real time as the history can
always be limited to the most recent experiences.

4. MATCHING ALGORITHM
The capability of an agent has been assessed in the previous section through observ-
ing whether or not an agent did in fact perform the action in question in some past
experience. This information, however, is not always enough. Agents’ capabilities are
dynamic and continuously evolving. Agents may want to take on roles similar - or even
rather different - roles to those they have already played. Different IMs (see Section 2
for an explanation of these) may be used, so that a task that is essentially the same as
they have previously played may have slightly different data matching requirements.
Therefore, even if the trust algorithm can give useful information about an agent’s
ability to perform a particular task in general, we require more information to help us
decide if the agent can meet the technical specifications of the current implementation.
This is provided by the matching algorithm.

We present a method for obtaining a value M ∈ [0, 1], which describes the ability of
an agent to perform a role (where the value 0 would describe complete disability, and
the value 1 would describe full ability). This value is calculated by the agent itself to
determine whether or not it wishes to perform the role (and, if so, how best to do that).
The value can then be shared with other agents which may be considering interacting
with it, so that they can see how the agent evaluates its own ability to perform that
role.

An obvious drawback of this process is that it is not possible to verify the score that
an agent gives of its own ability. The mappings are between the requirements of the
role, which are public, and the particular abilities of an agent, which are private; hence,
they cannot be replicated by any other agents. However, this is valuable information
about an agent’s ability to perform a role which is highly pertinent when choosing
agents to interact with and which cannot be drawn from any other source, so even
though it may be unreliable it is still potentially very useful information. Fortunately,
this problem can be mitigated against to a large extent by combining these matching
scores with trust scores. An agent that frequently oversells its ability to perform a role
will frequently under-perform, and thus have low trust scores associated with it. An
agent that has a high trust score can be assumed to generally give honest information
about its ability.

Within an IM, the ability to perform role is determined purely through the ability
to satisfy constraints on that role (as explained in Section 2). The agent wishing to
perform that role must therefore ascertain whether it can solve those particular con-
straints. If an agent has been specifically designed for a given specification of a role,
it can be assumed that it is capable of adequately performing those tasks. But if an
agent is attempting to perform a different specification of the role it usually plays, or a

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 N. Osman et al.

ALGORITHM 1: Calculating Trust(α, β, 〈im, r,m, ϕ, cm〉)
Input: O (agent’s finite local ontology), κ1, κ2 : Real [Default 1.0] (parameters of the similarity

function, Equation 2), η : [0, 1] [Default 0.8] (min. sem. similarity in the computation),
ν : [0, 1] [Default 0.95] (decay parameter), Prefer : Terms(O)× Terms(O)→ [0, 1]
[Default Prefer(x, y) = if x = y then 1 else 0] (a prob. distribution for preference over terms
represented as a square matrix), Mα ⊆M (α’s log of experiences sorted by time),
Rt(α, β) : M → [0, 1] [Default Rt(α, β, µ) = 1− | Trustt−1(α, β, 〈im, r,m, ϕ, cm〉)− d |)]
(reliability measure of experiences, by default D = [0, 1]).

Output: Calculating the trust measure Trust(α, β, 〈im, r,m, ϕ, cm〉)
Focus← ∅ ; /* Focus is the set of ontology terms that this run should focus on */
forall the ϕ′ ∈ Terms(O) do /* This builds Focus set, assuming Terms(O) is finite */

if Sim1(ϕ′, ϕ) ≥ η then
Focus← Focus ∪ {ϕ′};

end
end
forall the ϕ′ ∈ Focus do /* This defines the decay limit distribution D */

D(ϕ′ | ϕ)← 1/size(Focus);
end
Hβ = ∅;
forall the µ = 〈β, im, PC,C〉 ∈Mα ∧ 〈Commit(β, , 〈im, r,m, ϕ′, c′m〉, t), ϕ′′, 1, d〉 ∈ PC do

Hβ = c′m ∪Hβ ; /* This populates the set of all actions Hβ that β can perform */
end
Pcan ← 1;
forall the φ ∈ cm do /* This calculates P (Can(β, ϕ)), specified here as Pcan */

MAX ← 0;
forall the φ′ ∈ Hβ do

MAX ← max{MAX,Sim(φ, φ′)};
end
Pcan ← min{MAX,Pcan};

end
t← 0 ; Trustt ← 0 ; /* Initially, time is set to 0, and trust score is set to 0 */

P t = D ; /* Initially, P (Does(ϕ)|Committed(ϕ)), specified as P, is set to D */
forall the ϕ′ ∈ Focus do /* The trust score is based on the initial value of P */

Trustt ← Trustt + Prefer(ϕ′, ϕ) ∗ P t(ϕ′ | ϕ);
end
forall the µ = 〈β, im, PC,C〉 ∈Mα ∧ 〈Commit(β, , 〈im, r,m, ϕc, cm〉, t), ϕ′′, , d〉 ∈ PC do

if Sim(ϕc, ϕ) ≥ η then /* For each subsequent timestep, and for each past experience
that is considered relevant to the current experience in question, the value of P is
updated, following Equations 8, 9, and 11 */

forall the ϕ′ ∈ Focus do
T ← (1− | Sim(ϕ′′, ϕc)− Sim(ϕ′, ϕ) |) · Sim(ϕc, ϕ);
Q(ϕ′ | ϕ)← Pcan · (T · (Rt(α, β, µ) · d+(1−Rt(α, β, µ) ·P t(ϕ′ | ϕ)))+ (1−T) ·P t(ϕ′ | ϕ));
P t+1(ϕ′ | ϕ)← (1− ν)D(ϕ′ | ϕ) + ν ·MRE(P t−1, Q) ; /* MRE is the Minimum relative

entropy distribution from P t−1 satisfying Q */

end
end
t← t+ 1;
Trustt ← 0;
forall the ϕ′ ∈ Focus do /* The trust score is updated at each timestep */

Trustt ← Trustt + Prefer(ϕ′, ϕ) ∗ P t(ϕ′ | ϕ);
end

end
return Trust;

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:23

slightly different role, it will need to assess whether or not the tasks in that role are a
good match to its abilities by matching the constraints in that role to its own abilities.

This matching will not be a simple word-to-word matching; rather, since constraints
are structured, first-order terms, we will require structured matching.

We describe an algorithm, which has been implemented within the OpenKnowledge
system, which matches first-order constraints to a first-order description of an agent’s
abilities. For example, if a WSDL service description is translated into a first-order
term (such a translation process is already implemented within the OpenKnowledge
system), this process could match expected input with actual input. For each constraint
i in the role, the algorithm finds the ability of the agent which best matches it and
returns a value Mi ∈ [0, 1] describing the quality of this match: 1 represents a seman-
tically perfect match, while 0 is returned if there is no matching ability at all. As part
of this process, the algorithm also develops a map that maps a constraint to an ability,
to help the agent determine how to satisfy this constraint using its ability. The process
is repeated for all constraints for a given role in a given interaction. These scores are
then combined, and a single value M ∈ [0, 1] is returned, describing the overall abil-
ity of the agent to perform that role. The remainder of this section is dedicated to the
calculation of this measure M .

4.1. Introducing Structure-preserving Semantic Matching
Value M ∈ [0 1] is calculated by the Structure-preserving Semantic Matching (SPSM)
algorithm [Giunchiglia et al. 2008]. This algorithm is designed to map two trees to one
another, so the first step is to convert our first-order terms to trees, with the predicate
name becoming the root of the tree and the arguments becoming the children. For
example, consider a constraint concerning the reporting on the water-level. One
agent role that could use such a constraint could be the role describing the role of a
sensor agent in an emergency response flooding scenario. For example, the first-order
constraint could be:
measurement(location(ReporterID,Node),Level,date(Month,Day,Hour,Minute))
and the first-order ability of the sensor agent might be:
reading(ReporterID,Node,date(Day,Month,Year,Time),Water-level).14

These would be converted into trees and mapped as illustrated in Figure 4.1.
SPSM allows us to detect good enough matches by producing this score M ∈ [0, 1]

which can then be compared with a threshold value. Any match which exceeds this
value is considered to be acceptable; any match which is lower than this value is
rejected, and the two terms are considered not to match. Since the concept of good
enough is very context dependent – in safety critical situation perhaps only a near-
perfect match will do but in other situations a much weaker match may suffice – this
threshold is set by the user according to the particular interaction [Giunchiglia et al.
2008]. This algorithm can be performed quickly on-the-fly, during run-time.

Since the details of the matching process have already been published elsewhere, we
merely outline the process in this section and direct the interested reader to the paper
by Giunchiglia et al. [2008] for further information.

4.2. The SPSM algorithm
Matching is performed in two steps: node matching and tree matching. During node
matching, all nodes in the first tree are matched to all nodes in the second tree, re-
gardless of their positions within those trees. This is done using adapted conventional

14Note that in such formulae, and in Figure 4.1, the names of the variables indicate the types expected, with
an initial upper-case letter indicating that they are variables. For example, the second level argument Level
indicates that the argument is a variable that should be instantiated with a value of type ‘level’.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 N. Osman et al.

Figure 2.Two approximately matched web services as trees – T1:
reading(ReporterID,Node,date(Time,Day,Month,Year),Water_level) and T2:

measurement(Level,location(ReporterID,Node),
date(Month,Day,Hour,Minute).

Functions are in rectangles with rounded corners; they are connected to their arguments by
dashed lines. Node correspondences are indicated by arrows.

Service descriptions that are not written in WSDL will need to have the conversion step
to turn them into trees built for them, but we believe that it is possible to view most
service descriptions as tree structures and that this conversion process will generally be
straightforward. An example of two service descriptions, which have been converted into
trees, being approximately mapped, can be seen in Figure 2.

Once the conversion to tree has taken place, the SPSM algorithm consists of two stages:

 Node Matching – this matches the nodes in one tree to the nodes of another tree. This

will often be matching single words to one another, although nodes may be more
complex (for example, they can be composed of more than one word) and our
techniques are able to deal with this. These terms may be annotated with
references to ontologies so that it is easier to determine their semantic meaning
and, if so, our matching techniques take advantage of this. If there is no additional
information then our matching techniques rely on syntactic properties of the terms
(for example, suffixes and prefixes) and standard ontologies such as WordNet

Fig. 4. Two approximately matched first-order terms — T1:reading(reporterID,node,date(time,day,
month,year),water-level) and T2:measurement(level,location(reporterID,node),date(month,day,
hour,minute)) — are specified as trees. Predicates are in rectangles with rounded corners; they are
connected to their arguments by lines. Node correspondences are indicated by arrows.

ontology matching techniques, and is based on the S-Match system [Giunchiglia and
Shvaiko 2003]. The tree-matching step then exploits the results of the node-matching
step to provide a global match for the overall trees, taking into account the structures
of the trees.

4.2.1. Abstraction Operations. Our structural matching techniques are based on the the-
ory of abstraction, as developed by Giunchiglia and Walsh [1992]. This describes the
three ways in which a first-order term may be more general than another first-order
term:

— Predicate abstraction: The predicate of term 1 may be more general than the predi-
cate of term 2: e.g. reading(X) is mapped to water-reading(X)

— Domain abstraction: One of the arguments within term 1 may be more general
than the corresponding argument in term 2: e.g. reading(Level,Date) is mapped to
reading(Water-Level,Date)

— Propositional abstraction: Term 1 may have fewer arguments than term 2: e.g.
reading(Level) is mapped to reading(Level,Date)

We invert these to form the equivalent refinements (where a refinement is the in-
verse of an abstraction), and allow, for both matches between predicates and matches
between arguments, the possibility of equivalence and of disjunction (no match). This
results in the full set of matches that we allow. This set preserves the desirable prop-
erty that functions are only mapped to functions and variables are only mapped to
variables.

4.2.2. Tree Edit Distance via Abstraction Operations. The matching of the trees is done us-
ing a tree edit distance algorithm [Tai 1979]. However, we restrict the formulation of
the tree edit distance problem in order to reflect the semantics of the first-order terms.
We do this by redefining the tree edit distance operations so that they have one-to-one
correspondence with the abstraction/refinement operations. Any forbidden alignment
can be assigned an infinite cost. This allows us to alter the conditions depending on
requirements: for example, if we wish to only allow a perfect match or a more precise

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:25

match, then any alignments that include a generalisation can be assigned an infinite
cost.

One undesired aspect of tree edit distance matching is that horizontal node ordering
is preserved. We do not believe that there is much semantic value to the ordering of
arguments in a predicate, and so wish to allow horizontal ordering to be changed as
necessary. We facilitate this by allowing reordering of the nodes as desired, without
cost.

4.2.3. Global similarity between trees. We calculate an overall cost of mapping one tree
(or first-order term) into another using the following equation:

Cost = min
∑
t∈S

ki ∗ Costi (16)

where S stands for the set of the allowed tree edit operations; ki stands for the number
of ith operations necessary to convert one tree into the other; and Costi defines the
cost of the ith operation. Our goal here is to define the Costi in a way that models the
semantic distance.

The similarity of these two trees (or first-order terms) is then calculated using:

TreeSim = 1− Cost

max(T1, T2)
(17)

where Cost is taken from Equation 16 and is normalised by the size of the biggest tree.
Note that for the special case of Cost equal to∞, TreeSim is estimated as 0.

4.2.4. User- and domain- specific matching. The SPSM algorithm is generic, and does
not consider any user- and domain-specific requirements. However, there are circum-
stances in which such requirements could be usefully incorporated into the matching
algorithm.

These user- and domain-specific requirements fall into two types:

— Preferences about nodes: for example, when matching reading(Date,Level), it may be
very important that Date is matched accurately, but Level is much less important.
These kinds of preferences could be added to the algorithm, by allowing the user to
input weightings for each node. If only a perfect match is acceptable for a particular
node, an infinite weight can be assigned to it. The calculation of similarity will then
multiply the value of similarity between each node by its weighting, and thereby
produce an overall matching score which takes such preferences into account. Thus
the matching cost for a node with an infinite weighting will only finite if the match-
ing score is zero (i.e., a perfect match).

— Domain-specific information: for example, Water is a subtype of Liquid, so the
matching penalty for equating these types would be fairly low (as a subtype re-
lation implies quite a high level of similarity), but non-zero. But perhaps in this
situation, the words Water and Liquid are used more or less interchangeably, so
it would be better to have a zero penalty for this match, even though these words
would not normally be considered interchangeable. In some domains, this kind of
domain-specific equivalence (or possibly domain-specific near-equivalence) may be
desirable with words that would not normally be considered to be related at all. A
way to incorporate this kind of information would be to allow users to input domain-
specific information, such as that Water and Liquid should be considered equivalent.
The matcher would then check the specific information that has been added to see
if that will tell it, in this particular domain, how good this match is before it would
try its generic matching approaches (such as dictionary look-up). Developing an au-
tomated approach that would be able to determine such domain-specific matches

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 N. Osman et al.

would be very difficult, though perhaps some kind of statistical observation of co-
occurrence could help here.

Implementing these extensions is a straightforward task. This paper, however, dis-
cusses a generic approach to the problem, and we believe that in most situations the
generic approach is adequate and requires less overhead from a human user. Imple-
menting the extensions is left for future work.

5. GOOD ENOUGH ANSWERS (GEA) ALGORITHM
Section 3 has presented a trust algorithm that calculates the trust in an agent to carry
out a given action by analysing the agent’s past experiences and deducing the probabil-
ity of the agent to be both capable and willing to perform the action. Section 4, on the
other hand, provides a mechanism that allows an agent to calculate its true capability
measure for a particular specification by matching the action in question with its own
concrete capabilities, and share this measure with others upon their request.

As a result, a final measure on the expected performance of an agent should be
based on both the matching and trust scores obtained above. But how may we combine
such scores? The trust scores gives us an indication of intention and general ability;
the matching score gives us information about whether the precise requirements of
the role are a good enough match to the agents abilities. We need to combine these
to determine whether the agent is likely to provide good enough answers in this role:
that is, will the information provided by the agent during this interaction - or more
generally, the actions the agent is required to take - be of a standard that is likely to be
acceptable, and if there are many agents competing to perform the role, which of these
would we expect to perform it best?

The good enough answers (GEA) algorithm is therefore a tool for an agent (agent 1)
intending to interact with other agents within a specific interaction, to allow it to de-
termine which, if any, of those other agents (for example, agent 2) it wishes to interact
with. Agent 1 will calculate its trust score for agent 2, and will be able to access the
matching score presented by agent 2. It can then use the GEA algorithm to combine
these two scores to enable it to estimate how well agent 2 will perform, and then to
compare it to the other agents, before commencing (or refusing to commence, if the
scores of all other agents are too low) on the interaction. Note that the method of com-
bining these two scores is decided pragmatically rather than theoretically, as there is
no fixed way in which this should happen. In what follows, we propose two different
methods/algorithms for achieving this:

(1) Combining matching and trust scores: This approach, illustrated in Algo-
rithm 2, first removes all agents with a matching score below a certain threshold
and then, for the remaining agents, calculates their trust scores. The best agent
is the one for which the combination of the trust and matching scores is highest,
calculated according to the equation tα · ν +mα · (1− ν), where tα is the trust score
for agent α, mα is α’s matching score and ν is a parameter. In the simplest case,
ν = 1

2 , in which case this equation represents taking the average of tα and mα. The
value of ν must be determined empirically. Nevertheless, it may be that a linear
combination of the two scores is not the best approach.

(2) Determining intervals: This approach, illustrated in Algorithm 3, sorts agents
into bands of width ψ (ψ ∈ [0...1]) according to their matching scores. Thus the first
band would contain agents with perfect matching; the second band would contain
agents with matching scores (1 − ψ) ≤ mα < 1, and so on. Once this sorting has
been done, matching scores are ignored and further choice is made on the basis of
the trust scores alone. The best agent is the one from the highest matching band
that has the best trust score, assuming that this trust score exceeds some basic

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:27

ALGORITHM 2: Agent Selection — Finding the best agent for a role r in interaction model
IM by combining matching and trust scores, as calculated by agent β

Input: A (the set of agents subscribed to the role), ∀α ∈ A · mα ∈ [0, 1] (where mα is the
matching score declared by α on subscribing to the role r in interaction model IM),
ξ : [0, 1] (the matching threshold), and ν : [0, 1] (trust/matching weighting variable).

Output: The most suitable agent best agent is selected.
poss agents← ∅;
forall the α ∈ A do

if mα ≥ ξ then
poss agents← poss agents ∪ α;

end
end
highest score← 0;
best agent← ∅;
forall the α ∈ poss agents do

tα = trust(β, α, IM, r);
α score = tα · ν +mα · (1− ν);
if α score > highest score then

highest score← α score;
best agent← α;

end
end
return best agent;

threshold ζ. If the highest trust score for an agent from the highest matching band
does not exceed this threshold, these agents are rejected and the next matching
band is inspected, until a suitable agent is found.

In developing these algorithms, a pragmatic priority is to minimise the number of
agents for which it is necessary to calculate trust scores, because this is time con-
suming, whereas considering matching scores is trivial, because these are calculated
by each agent themselves. If agents can be eliminated on the basis of their matching
scores alone, this saves the necessity to find a trust score for them. Trust scores can
then be calculated only for those agents that have a high potential of being suitable.

Of course, these two algorithms are only a sample of how one could use both trust
and matching scores for selecting a suitable agent. Further testing is needed to eval-
uate their relative merits on their performance. This could indicate that neither of
the approaches is optimal and point us towards an improved method of integration of
matching and trust scores.

6. NOTES ON THE REQUIRED PARAMETERS
Before we conclude the presentation of our proposed trust, matching, and GEA models,
we discuss their required parameters. We understand that at first sight, the param-
eters might seem numerous in this proposal, raising questions such as whether the
parameters influence each other. However, a careful inspection illustrates that the pa-
rameters may be divided into five main independent categories:

— Similar terms parameters (ST). These parameters (κ1, κ2, and η) control which
terms are considered similar in a given ontology. The parameters κ1 and κ2 are
parameters that one could use when calculating the similarity between terms to
customise the weight given to the length of the shortest path between two terms in
an ontology and the depth of the deepest term in the ontology subsuming both terms
in question (see Equation 2 for details). The parameter η specifies the threshold for

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 N. Osman et al.

ALGORITHM 3: Agent Selection — Finding the best agent for a role r in interaction model
IM through threshold lowering, as calculated by agent β

Input: A (the set of agents subscribed to a role), ∀α ∈ A · mα ∈ [0, 1] (where mα is the
matching score declared by α on subscribing to the role r in interaction model IM),
ψ : [0, 1] (threshold lowering interval), and ζ : [0, 1] (trust threshold).

Output: The most suitable agent best agent is selected.
poss agents← ∅;
threshold← 1;
highest trust← 0;
best agent← ∅;
while best agent = ∅ do

while poss agents = ∅ do
forall the α ∈ A do

if mα ≥ threshold then
poss agents← poss agents ∪ α;

end
end
threshold← threshold− ψ;

end
forall the α ∈ poss agents do

tα = trust(β, α, IM, r);
if tα ≥ ζ then

if tα > highest trust then
highest trust← tα;
best agent← α;

end
end

end
end
return best agent;

similarity measures and it determines how much of the semantic space is explored
(see Section 3.4 for details).

— Interaction’s components preference parameters (IC). These parameters
(γim, γr, γϕ, γm and γcm) determine the weight given to each element of an interac-
tion model. For instance, they decide whether the user is more interested in similar
interactions, roles, or specific actions (see Equation 5 for details).

— Decay limit distribution (DD). This parameter (D) describes the default knowl-
edge we form about others’ expected performance when there isn’t sufficient past
experience to build our measure on. The basic idea is that information loses its
value with time, and with the lack of new experience, past expected performances
lose their value by decaying towards the decay limit distribution D (see Equation 11
for details).

— Decay rate parameter (DR). This parameter (ν) determines the rate of decay.
It specifies how fast does the expected performance decay towards the decay limit
distribution D (see Equation 11 for details).

— Trust/Matching preference parameters (TM). These parameters (ν and ξ of Al-
gorithm 2, or ψ and ζ of Algorithm 3) describe how the trust and matching scores
may be combined. In the first approach, agents whose matching score is below a
certain threshold ξ are discarded, and the rest are ranked according to the aggre-
gation of their trust and matching scores, where ν decides the weight given to each.
In the second approach, agents are sorted into bands of width ψ, and the agent with

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:29

the highest trust score above the threshold ζ from the highest matching band is
selected.

Concerning the interdependence amongst the different parameter sets, we note that
the parameters of one category do not influence (and are not influenced by) the pa-
rameters of another. The only thing the parameters ST affect is defining the semantic
space to be explored. A richer semantic space results in more informative computa-
tions, and the scarcer the semantic space results in more efficient computations. In
any case, the parameters of ST do not impact any of the other parameters.

The parameters of IC influence the aspects that are given a priority when predicting
future performance. For instance, one might be interested in comparing performance to
similar interactions (say, all e-commerce interactions), without caring about the details
of the specific agent actions (say, did the seller deliver the item on time, or was he
helpful in answering buyers’ questions, etc.). Again, these parameters cannot influence
those of ST, DD, DR and TM. However, if they give any aspect a very low weight, then
the computation effort spent on that aspect may be wasted.

The decay limit distribution DD defines ‘the default’ in specific applications (for in-
stance, it states that all agents are by default good, bad, average, or somewhere else
in between). As such, this parameter also cannot influence other parameters.

The decay rate DR specifies how quickly information loses its value. This parameter
too cannot influence other parameters, as it simply states how quickly is the decay
limit distribution DD reached. However, if the decay rate is set to an unreasonable
measure where the value of information is lost very fast, then the computational effort
spent on computing the trust measure may be wasted. This includes the computational
effort plus the effort spent on tuning the parameters of ST and IC.

Finally, the parameters of TM decide how the trust and matching measures are com-
bined, and they cannot influence the parameters used in computing those measures.
However, we note that if the trust measure becomes almost negligible (i.e. Algorithm 2
is used and its parameter ν is set to a low value that is close to zero), then the effort
spent on computing the trust measure may be wasted. This includes the computational
effort, plus the effort spent on tuning the parameters of ST, IC, DD, and DR.

As for how to decide what values are assigned to each parameter, the procedure
needed to do so will differ from one domain (or application) to another. Furthermore,
outlining such a procedure requires a detailed study of the domain description, and
neither does this paper have the space to do so, nor is an exhaustive analysis of such a
procedure part of the scope of this research. Nevertheless, in what follows we provide
a brief and general set of guidelines that would help set the interested reader in the
correct direction for assigning the parameters’ values.

First, we note that there is a need to run a number of simulations, each focusing on
tuning the parameters of a different category of the above. Then, for each category, the
tuning of the parameters will be based on the domain description. For example,

— in domains where ontologies are more specialised, the depth between two terms
that is used in calculating the similarity of terms becomes less important than in
broader ontologies; in other words, the more specialised an ontology, then the higher
the value of parameter κ2 (we refer the reader to Equation 2 and [Li et al. 2003] for
further details on this parameter)

— an agent that scarcely interacts with others will require lower values for the param-
eter η, which implies that a larger semantic space is explored (we refer the reader
to Section 3.4 for further details on this parameter)

— a trusting agent will require a high default expectation (specified through the decay
limit distribution D), whereas a distrustful agent will require a low default expec-
tation; in other words, the probability distribution D must reflect good behaviour

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 N. Osman et al.

when the agent expects others to behave properly unless proven otherwise, and it
must reflect bad behaviour when the agent expects others to behave poorly unless
they prove themselves (we refer the reader to Section 3.2.3 for further details on
this parameter)

— agents may consider a high decay rate ν in scenarios where agent behaviour is con-
tinuously changing, whereas they may consider lower decay rate in scenarios where
agent behaviour rarely changes (we refer the reader to Section 3.2.3 for further de-
tails on this parameter)

As illustrated above, based on the application and its requirements, the simulations
will show which values are appropriate for the given application scenario in question.

It may be noted that cases may arise where simulations are not enough for learning
how parameters should be set for a given scenario, since real systems may bring about
new challenges. This is natural, and we concur that we cannot prevent such situations
from arising. This is in fact an inherent problem in simulation, which can never be
guaranteed to cover exactly an unknown and dynamic real-world event, and is not
specific to our approach. However, what can be done is to have engineers tweaking the
parameters at deployment time accordingly.

7. EVALUATION: CHOOSING AGENTS IN AN E-RESPONSE SCENARIO
We have designed an e-response experiment where various agents try to collaborate to
overcome a flood disaster scenario. Amongst the agents are sensor agents, which are
responsible for measuring the water-level in meters, and the Civilian Protection Unit,
which collects water level readings from sensor agents at various locations. In this
scenario, several agents can play the role of sensor; therefore, it is crucial to select the
best agent to interact with in order to retrieve the most accurate water level reading
at each location. Note that we only provide a summary of our results in this section,
while we refer the interested reader to our technical document [Pane et al. 2008], for
a more detailed description.

7.1. Selection Strategies
The Civilian Protection Unit needs to periodically select the most accurate sensor
agents every time (denoted as a timestep) it wishes to check the water level. There can
be different selection strategies which can be adopted by the Civilian Protection Unit.
In what follows, we present the three strategies that we choose to test and compare in
our experiment.

— Random Strategy: this strategy is the simplest one. The selecting agent (the Civil
Protection Unit in our case) first groups the sensor agents according to their loca-
tions. Then, for each location, it picks up an agent in a random fashion. This strategy
does not take into account any information about the behavior assumed by an agent
in the past interactions: all agents are regarded as good agents for the interaction
to come.

— Trust Strategy: this strategy takes into account the trust scores of the sensor agents.
As before, all the agents are grouped by location; then, a trust score is computed us-
ing information from past interactions and, finally, the agent with the highest trust
score is selected for each location. Agents having identical highest trust score are
subject to a random selection. This strategy is more sophisticated than the previous
one and provides the selecting agent with a way to choose other agents according
to possible past interactions. In our scenario, these interactions are given by the
history of past interactions that the Civilian Protection Unit stores.

— GEA Strategy: this strategy takes into account both the trust and the matching
scores (as described in Section 5). In the GEA selection strategy, we choose to com-

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:31

pute the GEA score following Algorithm 2 with v = 0.5. As before, the agent with
the highest GEA score is selected for each location, and if more than one agent has
the same highest GEA score, one is selected randomly.

7.2. Experiment Setup
In order to test the selected scenario we have built a system in which we can control
several variables relevant for testing the selection strategies discussed in the previous
section. These variables are:

(1) The correctness of the water level readings. Correct agents always return accurate
water level reading, and incorrect agents always return water level readings with
some error.

(2) The matching score defines how similar the function of a sensor agent is with re-
spect to what the Civilian Protection Unit expects. For example, a sensor agent can
provide a service to read the water level with one more parameter than what the
Civilian Protection Unit expects.

(3) The format of the results returned by the agent. This variable tests the cases in
which an agent, even though it correctly returns the results (no error added) and
perfectly matches expected function signature, returns the results in a format dif-
ferent from what it was expected, e.g. in inches instead of meters.

By considering these variables we define the following types of agents:

— Perfect sensor agent: an agent with correct behavior (therefore not adding any
error to the water-level), a perfect matching score, and a format that is expected.
This is the ideal case where the agent will give correct results.

— Good sensor agent: an agent with a correct behavior, a matching score lower than
1, and a format that is expected. This is the case where the agent will give correct
results, even though it does not have a perfect matching score.

— Damaged sensor agent: an agent with incorrect behavior (e.g., because it’s dam-
aged), perfect matching score, and a format that is expected. In this case the agent
will be giving inaccurate results.

— Foreigner sensor agent: an agent with correct behavior, but with a format that is
unexpected. This case can be understood as if the agent has a correct behavior (the
water-level value is correct), but the agent “speaks a different language”, resulting
in an overall inaccurate water-level value (in the sense the value is not what it was
expected).

— Damaged foreigner sensor agent: an agent with incorrect behavior, and that
“speaks a different language” too. Then the resulting value will be inaccurate.

7.3. Results
Several configurations were defined for the experiments in a way that for each con-
figuration, at least one perfect or good sensor agent was present. The rationale of the
experiment was to test the capability of each of the selection strategies (introduced
earlier by Section 7.1) to correctly and continuously identify the most accurate agents
to interact with; and how the selected variables (introduced earlier by Section 7.2) af-
fected the performance of the Selection Strategies. Each experiment configuration ran
15 times in order to get statistically significant results. This document presents only
the most relevant results, while we refer the reader to our technical document [Pane
et al. 2008] for more comprehensive results.

In order to evaluate the results of a given selection strategy, we defined a quality
metric. We used the mean absolute error metric defined in Equation 18. This error
measures how accurate a given selection strategy is in selecting agents with correct

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 N. Osman et al.

Fig. 5. Mean absolute error for Experiment A. (6 locations, 20 agents per location, each with one perfect
agent)

results. We can compute this error given that we know the expected water-level of
each location for each timestep.

errort =
1
n
·

(
n∑
i=1

|ei|

)
, (18)

where t denotes the time step, n denotes the number of locations, and ei is the error
of each water level reading as defined in Equation 19. In Equation 19, water levelo de-
notes the obtained water-level (i.e. the result given by a sensor agent), and water levelr
denotes the real water-level, as simulated in our experiment.

ei =
{

0.5 if (water levelo 6= water levelr)
0 otherwise

(19)

Note that the error of each reading (ei) is not defined as a difference between the
real level and the claimed one ((water levelo − water levelr)) as intuitively one might
expect. This is because we wanted to evaluate how many correct agents were selected
by the selection strategy, and not the overall difference between the real water-level
value water levelr and the claimed water-level value water levelo.

Figure 5 shows the results for Experiment A, where 120 agents were generated for
6 locations (20 agents per location) and where each location contained at least one per-
fect agent (see Section 7.2). The experiment ran for 50 timesteps. The results show that
selection strategies that are based on the use of information learned in previous inter-
actions improves agent selection. As we can see, the Trust based selection strategy is
clearly better than the Random selection strategy. In this experiment configuration,
GEA clearly outperforms the other two selection strategies. This means that in a set-
ting where we have at least one perfect agent per location, the use of the additional
information provided by the matching score in GEA contributes to a faster convergence
of the selection strategy.

Figure 6 shows the results for Experiment B. In the definition of this experiment,
we wanted to see the effect of not having perfect agents in the locations. Therefore, we
generated 120 agents also for 6 locations, but in this case, each location contained only
a good agent. The experiment was also run for 50 timesteps. In this experiment there
are no agents with both perfect matching score and correct behavior (perfect agent), but
we do have incorrect behaving agents with perfect matching (damaged sensor agents).

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:33

Fig. 6. Mean absolute error for Experiment B. (6 locations, 20 agents per location, no perfect agents)

The experiment is meant to stress test the selection strategies and to study how the
presence of such damaged sensor agent affects their performance. The question we
want to answer is how much would it take (in terms of timesteps) a selection strategy
to realize the agents with perfect matching scores are giving incorrect results.

As we can see from Figure 6, the Random and Trust selection strategies maintain
the same behavior as in Figure 5, while the GEA selection strategy clearly changes
the mean absolute error in the initial time steps. This change can be understood if we
take into account that GEA uses matching information in order to select the agents.
This means that, when there is no previous information (previous interactions with the
agents), GEA will try to select first those agents having higher matching score: that is
all the bad agents (recall that in this experiment the agents with a perfect matching
score have an incorrect behavior). However, during the first time steps GEA learns
(via Trust) how the selected agents behave incorrectly and, as a consequence, starts to
select agents from the second best matching score group. After some time steps, GEA
finds the correct behaving agents and starts to select them, giving results as good as
the ones returned by Trust; finally in subsequent time steps, GEA even outperforms
Trust. This highlights a potential drawback of using matching - and therefore GEA -
information: a perfect matching score does not guarantee a good performance, because
even though the requirements of the role were well understood and interpreted, the
process used to produce the results were faulty. However, this is a potential problem
with any agent, and we would in general expect an agent with a better approximation
to the required abilities to produce a better outcome. This experiment represents a
worst-case scenario, in which the agents with the best matching scores in fact produce
the worst results, and in which no trust information is available about any of the
agents prior to interaction, but must be gathered as the interactions proceed. This
allows us to demonstrate the strength of GEA: even in such a worst-case scenario,
the combination of the matching and trust means that the algorithm is quickly able
to identify damaged or erratic agents and filter them, leading to results better than
using trust scores alone within only a few time steps. In this case, using trust alone
is an advantage because it is initially picking agents randomly. Experiments A and
B therefore demonstrate that GEA gives better results than trust scores alone if and
only if the agents with a higher matching score do, in fact, perform better. When this
is not the case, GEA does still appear to ultimately perform better than trust, but will
perform worse in the first few time steps, as it is learning to disregard the misleading
matching information.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 N. Osman et al.

Experiment B also provides interesting insight into how GEA would perform with
dishonest agents. Although none of the agents in the experiment were dishonest, the
behaviour of an agent with good matching but a broken method of producing results is
the same as an agent with poor matching who is pretending to have a high matching
score: the agent performs much worse than its reported matching score would lead one
to suspect. Since GEA was able to identify and filter out such agents fairly quickly, this
experiment demonstrates our claim in Section sec:ex that it is not possible to game this
system long-term through lying.

Figures 5 and 6 illustrate that the number of time steps needed for a given selection
strategy to converge to an average error of 0 is dependent on the number of agents
they have to select (20 in these cases). This observation might be intuitive, since, in
the worst case, a selection strategy based on the use of past information could first
select all the agents giving incorrect results, and then select agents giving accurate
results.

We have also tested other scenarios with 4, 10 and 40 agents per location, and in
all the cases, Trust and GEA selection strategies comply with the worst case expected
results (i.e. the error is minimized to 0 in a time step that is less than or equal to the
total number of agents per location). The general shape of the curves remains similar.
We have also created experiments increasing the number of locations but in these
experiments the general shape of the mean absolute error curves did not change. In
other words, an increase in the number of locations did not affect the general behaviour
of the selection strategies. The Random selection strategy had, in all the cases, an
average error of 0.5, as expected. For additional information and more detailed results,
we refer the interested reader to [Pane et al. 2008]. Experiments over a different use
case has also been presented by [de Pinninck et al. 2008].

Another consideration is the amount of resources that are necessary to run the dif-
ferent algorithms. We measured this in terms of the amount of time that each inter-
action took to set up and run. There are several stages of this process: locating the
appropriate IM and retrieving the list of agents subscribed to each role; allowing those
agents to provide their matching scores; allowing those agents to decide which other
agents they wish to interact with (using one of the three strategies: choosing randomly,
calculating Trust scores, and calculating GEA scores); ordering the allocation of roles
on this basis; executing the IM with the selected peers. Since only one stage varies as
the selection mechanism varies (the stage in which the agents choose whom they wish
to interact with), we can use the overall runtime as a way of measuring the resources
this step requires for each of the selection strategies. Average results are shown in
Figure 7.15

As expected, the times for random selection remain constant across all timesteps,
and approximately estimate the amount of time required for all the stages other than
that of agent selection (because this stage takes close to zero time when agents are
selected randomly). However, both Trust and GEA required more computational time
to complete the interaction. The improvement in the selection of the peers gained using
Trust or GEA has a significant computational cost, that goes from a few seconds in
the initial time steps to an increase of almost 30s for Trust and 40s for GEA in the
final time steps. The constant increase of the computational time along the time steps
is due to the fact that, at each time step, the Trust selection strategy uses all the
information about the previous interactions to compute the trust score, thus increasing
the amount of computation needed in each time step. This increase in time may not be
acceptable in highly dynamic environments; on the other hand, the increased quality

15Note that these times are for an experiment with slightly different parameters to the ones discussed in
this paper; however, we do not expect that this will make any difference to the trend observed.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:35

experiments. In order to compare the execution time TT for each selection
strategy, three runs for each selection strategy and Experiment 7 were carried
out using only one server (server 1). Average results are shown in Figure 24.

Figure 24: Time comparison between the different selection strategies.

We can observe that the required time in each time step TT for the Ran-
dom selection strategy remains approximately constant in all the time steps.
In order to understand these results we need to consider that many optimiza-
tion techniques were applied during the run of the experiment. For example,
every five time steps we explicitly called the Java Garbage collector, thus
influencing the time needed at that time step. We can see this if we ob-
serve the periodical bumps in all the time lines. We need to consider also
that the required time TT is not only the time consumed by the selection
strategy (TSel), but also the constant time needed for the complete execution
of the interaction model as already mentioned (TQ + TG + TIM); thus, we
need to substract this constant time from the line (which is approximately
25 seconds).

What is important to notice in Figure 24 is that both Trust and GEA re-
quired more computational time to calculate the results. The improvement
in the selection of the peers gained using Trust or GEA has a significant
computational cost (TSel), that goes from a few seconds in the initial time
steps, to an increase of almost 30 seconds for Trust and 40 seconds for GEA
in the final time steps, which may not be acceptable in highly dynamic envi-
ronments. The constant increase of the computational time along the time
steps is due to the fact that, at each time step, the Trust selection strategy
uses all the information about the previous interactions to compute the trust
score, thus increasing the amount of computation needed in each time step.

38

Fig. 7. Time needed for setting up and running the interactions

of the interaction may outweigh the extra time this takes. Such judgements depend on
the context in which the interaction is taking place.

8. RELATED WORK
Different approaches may be used for finding suitable agents to interact with. Exam-
ples of these are formal verification techniques such as model checking for verifying
the suitability of potential collaborators (e.g. [Osman and Robertson 2007]), matching
algorithms for job recruitment in the real world (e.g. [Bizer et al. 2005]), and so on.
In this paper, however, we tackle the problem from a different angle by calculating a
socio-cognitive trust measure that is based on the agent’s performance in similar past
experiences.

In the context of trust, however, we should clarify that the term ‘trust’ is a term that
has been used by different communities to refer to slightly different notions. Ramchurn
et al. [2004] provides an interesting overview of those notions that vary from individ-
ual level trust, where agents may form beliefs about the trustworthiness of others, to
system level trust, where security protocols ensure the trustworthiness of interactions.
According to their categorisation, the proposed trust model in this paper is considered
on the individual level, and it follows socio-cognitive approaches by basing the notion
of trust on the capability and willingness of agents, as well as experience based ap-
proaches, since trust measures are based on past experiences.

The proposed trust model calculates the expectation about an agent’s performance
in a given context by assessing the agent’s willingness and capability through the se-
mantic comparison of the current context with the agent’s history of experiences. The
distinction between willingness and capabilities has been proposed earlier by Castel-
franchi and Falcone [1998; 2000]. Several other approaches, such as those of Şensoy
and Yolum [2006], Teacy et al. [2006], and Rehak et al. [2006], have used a ‘contextual’
approach when dealing with trust, which is also the central theme of this paper.

According to the classification proposed by Sabater and Sierra [2005] the trust model
proposed in this paper is based on direct experiences, is subjective (the trust value,
although might be shared, is local to each individual), is context dependent, it does not
provide means for the exchange of information among agents (e.g. gossiping) but it does
accommodate such exchange, it assumes that the agents may lie, and it incorporates a
reliability measure.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 N. Osman et al.

The proposed model is in coherence with the theory of Castelfranchi and Falcone
[2001] that states that (1) only a cognitive agent endowed with goals and beliefs can
trust another agent, (2) trust is a mental state describing one agent’s attitude towards
another with respect to a given behaviour/action for achieving some goal, and (3) trust
is the mental counter part of delegation. In our model, delegation is defined through
commitments, and trust is then held by one agent about another, assessing its be-
haviour/action in future commitments. The agent assessing the other holds beliefs
about what its goals are and how the other agent behaved in the past. However, we
do not discuss how commitments are brought about (whether through argumentation
or other means). In other words, we do not address Castelfranchi and Falcone [2001]’s
dependence belief which states that the trusting agent believes it needs the trusted
agent and hence delegates its task to it. Furthermore, we also do not address the mo-
tivation belief which states that it is believed that the trusted agent has motives for
fulfilling its commitments as our work does not address the issue of motives. What
we do consider, however, are: (1) the competence belief which states that the trusted
agent has the capability of fulfilling its commitments, and we address this issue in
Section 3.2.1; (2) the disposition/willingness and persistence belief which states that it
is believed that the trusted agent has the willingness and persistence to fulfil its com-
mitments, and we address this issue in Section 3.2.2; and (3) the self confidence belief
which states that the trusted agent has self confidence that it can perform the action
it has been trusted with, and we address this issue through the matching algorithm of
Section 4.

From the large existing literature on trust, the model that can be classified closer to
ours is the early model by Marsh [1994]. Differently from ours, Marsh’s model follows
a utilitarian approach and time decay is modelled as a time window for experiences.
The model by Abdul-Rahman and Hailes [2000] uses a qualitative degree approach
to model trust and takes into account the context as well. However the modelling of
uncertainty is somewhat ad-hoc and not based on probabilistic grounds. The REGRET
model [Sabater and Sierra 2002] has some similarities in the time decay considera-
tion and on the subjective modelling of the experiences. However, the overall notion of
trust does not have a probabilistic meaning and is based on a utility modelling of the
interactions that we depart from (see Debenham and Sierra [2009] for a discussion).
AFRAS [Carbo et al. 2003] offers a model based on fuzzy sets with a similar, entropic-
like, notion of uncertainty on the behaviour of other agents. Ramchurn et al. [2004]
also based reputation on similarity between new contexts and past ones. However,
their approach uses the concept of fuzzy sets to compute one’s confidence, based on the
notion of assigning utilities to the different aspects of a context. Trust is then built
on the concept of the maximum expected loss in utility. Sierra and Debenham [2006]
distinguished between trust, which measures the expected deviations of behaviour in
the execution of commitments, and honour, which measures the expected integrity
of the arguments exchanged. They also distinguished between capabilities and trust,
whereas our trust approach incorporates the notion of capabilities.

Sierra and Debenham [2007] uses the same philosophy as this paper, and some gen-
eral equations have first been introduced there. However, there are several distinctions
to be made. This paper: (1) introduces the distinction between capability and willing-
ness (Equation 1); (2) illustrates how trust may be combined with self confidence (i.e.
the matching score) to result in a better selection mechanism; (3) elaborates further on
the notion of ontology; (4) provides a richer description of context (in terms of interac-
tion model, the roles, the messages, the messages committed to, and the constraints),
resulting in richer descriptions of commitments, observation, and experiences, as well
as richer similarity measures; (5) provides a new approach for aggregating trust (Equa-

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:37

tion 15); and (6) presents a sample trust algorithm, which has not been presented
before.

Simari et al. [2008]’s approach is also similar to ours in the sense that it compares
what the agent has committed to to what is actually delivered (which we refer to as ob-
served). Similar to us, trust is then context dependent and based on past performances,
and we both account for partial fulfillments or fulfillments of variants of commitments,
although we achieve that through our similarity measures and breaking commitments
into a conjunctive set (disjunctive sets may easily be accommodated for, as it has been
illustrated by Section 3.1.5). However, to account for late commitments, we require
time to be defined as part of the commitment. Unlike Simari et al. [2008], our simi-
larity measures are based on semantic matching. Furthermore, we not only define a
comparison with past performance to compute trust, but we use it to distinguish ca-
pabilities from willingness. We also introduce the notion of information decay, which
accounts for change in behaviour over time.

Schillo et al. [2000]’s approach does not consider dependence on the context. Their
approach focuses on the trustworthiness of the source of a gossip, which we do not
focus on. As such, at first sight, their proposed approach may be thought of as comple-
mentary to ours as it may be used for calculating the reliability of the source providing
a trust measure (this has been addressed in Section 3.1.4 and the reliability measure
Rt(α, β, µ) was referred to in Section 3.2.2). However, we note that Schillo et al. [2000]’s
approach assumes that the details of past commitments and their observations are not
communicated during gossip, making it impossible to pinpoint correlated gossip. Our
approach, on the other hand, assumes that the details of past observations are com-
municated during gossip.

Lastly, Dondio and Barrett [2007]’s approach is a more general approach that tries
to understand the application domain and the structure of the trust model in order to
match trust models with application domains. Their model may be adapted to incorpo-
rate ours as one example of their trust schemes.

9. CONCLUSION
This paper addressed the problem of finding suitable collaborators in open distributed
systems. When choosing an agent to interact with, one needs the agent to declare how
well it can perform its role. This represents the self confidence of the agent in ques-
tion, as described by Castelfranchi and Falcone [2001]. For this, this paper suggests a
matching algorithm that would match the agent’s capabilities to those it is planning
to commit to. Nevertheless, agents cannot always be trusted. They may be malicious,
misinformed, suffer from miscommunication, and so on. As such, there is also a need
to combine this matching score with a score describing how much trusted is the agent
in performing the given role. For this, a novel trust model has been proposed, which is
the main contribution of this document. The novelty of the proposed trust model is that
it calculates the expectation about an agent’s future performance in a given context by
assessing both the agent’s willingness and capability (as suggested by Castelfranchi
and Falcone [2001]) through the semantic comparison of the current context in ques-
tion with the agent’s performance in past similar experiences.

The proposed model is generic enough to be applied to a variety of scenarios. It
may compute the trust in both human agents or software agents. In short, this pa-
per essentially provides a mechanism for assessing trust that may be applied to any
real world application where past commitments are recorded and observations are
made that assess these commitments. In such scenarios, the proposed model can be
used to calculate one’s trust in another with respect to a future commitment by as-
sessing the other’s past performance. Other than the e-response flood scenario pre-
sented in this paper, this work has already been applied to the field of supplier rela-

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 N. Osman et al.

tionship management by evaluating past orders to support future supplier selection
(http://www.iiia.csic.es/SRM/) [Fabregues et al. 2009]. It is also currently being applied
to the incondicionales.com football forum (a member of the international fanscup.com
football social network). In the case of incondicionales.com, the proposed trust model
is used to help assess the trust in a forum member (whether s/he was a normal user, a
moderator, an administrator, and so on) based on how well they have been complying
to previous commitments, where commitments are defined by the forum’s rules and
regulations.

Acknowledgements
This work is supported by the OpenKnowledge project (funded by the EU under grant
FP6-027253), Agrement Technologies project (funded by the Spanish ministry of sci-
ence and innovation under grant CONSOLIDER CSD2007-0022, INGENIO 2010),
ACE project (recommended for national funding by the EU CHIST-ERA program), and
CBIT project (funded by the Spanish ministry of science and innovation under grant
TIN2010-16306).

REFERENCES
ABDUL-RAHMAN, A. AND HAILES, S. 2000. Supporting trust in virtual communities. In Proceedings of

the 33rd Hawaii International Conference on System Sciences-Volume 6 - Volume 6. HICSS ’00. IEEE
Computer Society, Washington, DC, USA, 6007–.

ARCOS, J. L., ESTEVA, M., NORIEGA, P., RODRÍGUEZ-AGUILAR, J. A., AND SIERRA, C. 2005. Engineer-
ing open environments with electronic institutions. Engineering Applications of Artificial Intelligence
Journal 18, 191–204.

BIZER, C., HEESE, R., MOCHOL, M., OLDAKOWSKI, R., TOLKSDORF, R., AND ECKSTEIN, R. 2005. The
impact of semantic web technologies on job recruitment processes. In Wirtschaftsinformatik 2005, O. K.
Ferstl, E. J. Sinz, S. Eckert, and T. Isselhorst, Eds. Physica-Verlag HD, Berlin, 1367–1381.

CARBO, J., MOLINA, J., AND DAVILA, J. 2003. Trust management through fuzzy reputation. International
Journal of Cooperative Information Systems 12, 1, 135–155.

CASTELFRANCHI, C. AND FALCONE, R. 1998. Principles of trust for mas: Cognitive anatomy, social impor-
tance, and quantification. In ICMAS ’98: Proceedings of the 3rd International Conference on Multi Agent
Systems. IEEE Computer Society, Washington, DC, USA, 72.

CASTELFRANCHI, C. AND FALCONE, R. 2000. Trust is much more than subjective probability: Mental com-
ponents and sources of trust. In HICSS ’00: Proceedings of the 33rd Hawaii International Conference on
System Sciences-Volume 6. IEEE Computer Society, Washington, DC, USA, 6008.

CASTELFRANCHI, C. AND FALCONE, R. 2001. Social trust: A cognitive approach. Trust and deception in
virtual societies 2005, 11 July, 55–90.

ŞENSOY, M. AND YOLUM, P. 2006. A context-aware approach for service selection using ontologies. In AA-
MAS ’06: Proceedings of the fifth international joint conference on Autonomous agents and multiagent
systems. ACM, New York, NY, USA, 931–938.

DE PINNINCK, A. P., SIERRA, C., WALTON, C., DE LA CRUZ, D., ROBERTSON, D., GERLOFF, D., JAEN, E.,
LI, Q., SHARMAN, J., ABIAN, J., SCHORLEMMER, M., BESANA, P., WAI LEUNG, S., , AND QUAN, X.
2008. Summative report on bioinformatics case studies. Project Deliverable D6.4, The OpenKnowledge
project. URL: http://www.cisa.inf.ed.ac.uk/OK/Deliverables/D6.4.pdf.

DEBENHAM, J. AND SIERRA, C. 2009. An agent supports constructivist and ecological rationality. In Pro-
ceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelli-
gent Agent Technology - Volume 02, R. Baeza-Yates, J. Lang, S. Mitra, and Simon, Eds. WI-IAT ’09. IEEE
Computer Society, Washington, DC, USA, 255–258.

DONDIO, P. AND BARRETT, S. 2007. Presumptive selection of trust evidence. In Proceedings of the 6th inter-
national joint conference on Autonomous agents and multiagent systems. AAMAS ’07. ACM, New York,
NY, USA, 166:1–166:8.

FABREGUES, A., MADRENAS-CIURANA, J., SIERRA, C., AND DEBENHAM, J. 2009. Supplier performance
in a digital ecosystem. In Proceedings of the IEEE International Conference on Digital Ecosystems and
Technologies (IEEE-DEST 2009). 466–471.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Trust & Matching Algorithms for Selecting Suitable Agents A:39

GIUNCHIGLIA, F., MCNEILL, F., YATSKEVICH, M., PANE, J., BESANA, P., AND SHVAIKO, P. 2008. Approxi-
mate structure-preserving semantic matching. In 7th International Conference on Ontologies, Databases
and Applications of Semantics (ODBASE 2008). Springer, Berlin, Heidelberg.

GIUNCHIGLIA, F. AND SHVAIKO, P. 2003. Semantic matching. Knowledge Engineering Review 18, 3, 265–
280.

GIUNCHIGLIA, F., SIERRA, C., MCNEILL, F., OSMAN, N., AND SIEBES, R. 2008. Deliverable 4.5: Good
enough answers algorithm. Tech. rep., OpenKnowledge Project.

GIUNCHIGLIA, F. AND WALSH, T. 1992. A theory of abstraction. Artificial Intelligence 57, 323–389.
LAMANNA, D. D., SKENE, J., AND EMMERICH, W. 2003. Slang: A language for defining service level agree-

ments. In FTDCS ’03: Proceedings of the The Ninth IEEE Workshop on Future Trends of Distributed
Computing Systems. IEEE Computer Society, Washington, DC, USA, 100.

LI, Y., BANDAR, Z. A., AND MCLEAN, D. 2003. An approach for measuring semantic similarity between
words using multiple information sources. IEEE Trans. on Knowl. and Data Eng. 15, 871–882.

MARSH, S. 1994. Formalising trust as a computational concept. Ph.D. thesis, Department of Mathematics
and Computer Science, University of Stirling.

OSMAN, N. AND ROBERTSON, D. 2007. Dynamic verification of trust in distributed open systems. In Pro-
ceedings of the 20th international joint conference on Artifical intelligence. Morgan Kaufmann Publish-
ers Inc., San Francisco, CA, USA, 1440–1445.

PANE, J., SIERRA, C., TRECARICHI, G., MARCHESE, M., BESANA, P., AND MCNEILL, F. 2008. Summative
report on gea, trust and reputation: Integration and evaluation results. Project Deliverable D4.9, The
OpenKnowledge project. URL: http://www.cisa.inf.ed.ac.uk/OK/Deliverables/D4.9.pdf.

PINYOL, I., SABATER-MIR, J., AND CUNÍ, G. 2007. How to talk about reputation using a common ontology:
From definition to implementation. In Proceedings of the Ninth Workshop on Trust in Agent Societies.
Hawaii, USA. 90—101.

Pitt 2007. The Pitt review: Lessons learned from the 2007 floods. HMSO, London.
RAMCHURN, S., SIERRA, C., GODO, L., AND JENNINGS, N. R. 2004. Devising a trust model for multi-

agent interactions using confidence and reputation. International Journal of Applied Artificial Intelli-
gence 18, 9-10, 833–852.

RAMCHURN, S. D., HUYNH, D., AND JENNINGS, N. R. 2004. Trust in multi-agent systems. Knowl. Eng.
Rev. 19, 1–25.

REHAK, M., GREGOR, M., PECHOUCEK, M., AND BRADSHAW, J. M. 2006. Representing context for mul-
tiagent trust modeling. In IAT ’06: Proceedings of the IEEE/WIC/ACM international conference on
Intelligent Agent Technology. IEEE Computer Society, Washington, DC, USA, 737–746.

ROBERTSON, D. 2005. A lightweight coordination calculus for agent systems. In Declarative Agent Lan-
guages and Technologies II, J. A. Leite, A. Omicini, P. Torroni, and P. Yolum, Eds. Lecture Notes in
Computer Science Series, vol. 3476. Springer, Berlin, Heidelberg, 183–197.

RUBNER, Y., TOMASI, C., AND GUIBAS, L. J. 1998. A metric for distributions with applications to image
databases. In Proceedings of the Sixth International Conference on Computer Vision. ICCV ’98. IEEE
Computer Society, Washington, DC, USA, 59–.

SABATER, J. AND SIERRA, C. 2002. Reputation and social network analysis in multi-agent systems. In
Proceedings of the first international joint conference on Autonomous agents and multiagent systems:
part 1. AAMAS ’02. ACM, New York, NY, USA, 475–482.

SABATER, J. AND SIERRA, C. 2005. Review on computational trust and reputation models. Artificial Intelli-
gence Review 24, 1, 33–60.

SCHILLO, M., FUNK, P., AND ROVATSOS, M. 2000. Using trust for detecting deceitful agents in artificial
societies. Applied Artificial Intelligence 14, 8, 825–848.

SIERRA, C. AND DEBENHAM, J. 2006. Trust and honour in information-based agency. In Proceedings of the
fifth international joint conference on Autonomous agents and multiagent systems. AAMAS ’06. ACM,
New York, NY, USA, 1225–1232.

SIERRA, C. AND DEBENHAM, J. K. 2007. Information-based agency. In IJCAI 2007, Proceedings of the 20th
International Joint Conference on Artificial Intelligence, M. M. Veloso, Ed. 1513–1518.

SIMARI, G. I., BROECHELER, M., SUBRAHMANIAN, V. S., AND KRAUS, S. 2008. Promises kept, promises
broken: An axiomatic and quantitative treatment of fulfillment. In Principles of Knowledge Representa-
tion and Reasoning: Proceedings of the Eleventh International Conference, G. Brewka and J. Lang, Eds.
AAAI Press, 59–69.

TAI, K.-C. 1979. The tree-to-tree correction problem. Journal of the ACM 26, 422–433.
TEACY, W. T. L., PATEL, J., JENNINGS, N. R., AND LUCK, M. 2006. Travos: Trust and reputation in the

context of inaccurate information sources. Autonomous Agents and Multi-Agent Systems 12, 2, 183–198.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 N. Osman et al.

Received February 2012; revised ; accepted

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

