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Abstract. Over the recent years there is a growing move towards ex-
plainable AI (XAI). The widespread use of AI systems in a large variety
of applications that support humans decisions leads to the imperative
need for providing explanations regarding the AI systems functionality.
That is, explanations are necessary for earning the users trust regard-
ing the AI systems. At the same time, recent legislation such as GDPR
regarding data privacy require that any attempt towards explainability
shall not disclose private data and information to third-parties. In this
work we focus on providing privacy-aware explanations in the realm of
team formation scenarios. We propose the means to analyse whether an
explanation leads an explainability algorithm to incur in privacy breaches
when computing explanation for a user.
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1 Introduction

Over the past decades there is wide interest in using artificial intelligence (AI)
to aid humans to carry out complex, hard, and time-consuming tasks. As AI
systems pervade our lifes, people are becoming curious regarding the rationale
and the methodology of these systems; thus we observe a new surge of interest
towards explainable AI (XAI) [10, 22]. XAI provides “inside information” re-
garding the inner functionality of an AI system in an attempt to be transparent,
and earn in this way the users’ trust. More and more applications turn to AI
in order to ease and automate complex procedures, and demand understanding
the solutions recommended by such systems. Besides the growing need for ex-
planations, Goodman and Flaxman [15] point out that legislation such as the
GDPR recently put forward by the EU leads to the right to explanation. That
is, a user providing personal information as input data to some AI algorithm,
has the right to know why the algorithm makes a decision with their input data
instead of another one.
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Doilovi et al. in [10] thoroughly discuss the intererpretability and the ex-
plainability of supervised machine learning models. The main focus of recent
literature in explainability lies on machine learning (ML) models [1, 8, 10, 16, 23,
28, 29] and recommender systems [4, 17, 20, 21, 24, 33], which are usually consid-
ered as ‘black-boxes’, and transparency is a necessity. Beyond ML, Borg and
Bex [6] recently introduced a general framework to provide contrastive expla-
nations for (abstract) argumentation-based conclusions; Nardi et al. in [25] and
Boixel and Endriss in [5] developed algorithms to justify outcomes (i.e., win-
ners) in voting settings; and Georgara et al. in [13] propose a general algorithm
to deliver explanations in team formation scenarios.

Recently, Kraus et al. [19] have raised awareness on the need for explana-
tions in multiagent environments (xMASE), and they have identified the key
challenges towards xMASE. Among other challenges—such as the development
of appropriate algorithms for generating explanations and the user modelling to
appropriately tailor explanations and increase user satisfaction—Kraus et al. re-
fer to the issue of non-disclosing private data and information. Note that in any
AI system that assists people in making a decision or solve a problem, individuals
need to feed the system with information (possibly private), which is therefore
utilised by the system to reach a solution. As such, within environments where
explanations need to justify solutions involving many individuals, it is of utmost
importance to ensure that private information remain private.

Need for privacy-awareness has risen as more and more data become available
to AI systems. Considering the online social networks, we find privacy issues as
people may expose data not only about themselves bat also about others (e.g.,
via pictures, check-ins, etc.). Such and Criado in [32] discuss the multi-party
privacy problem on online social networks, and highlight the need for mechanism
that preven privacy violations in such environments. [18] works towards privacy
in social networks, and develops a tool for detecting privacy violations in such
settings using an agent-based representation for social networks. In a different to
social media domain, Sörries et al. in [30] study privacy preserving technologies
by design within the domain of healthcare. Now in XAI, Puiu et al. in [26]
present recent developments on explainability and interpretability along with
the limitation of data accessibility due to ethical constraints in cardiovascular
diagnosis; while Sorvano et al. in [31] make a separation between explainable (X-)
and explanatory (Y-) AI, and propose a model for YAI under GPDR guidelines.

In this paper we address the challenge of preserving privacy upon providing
explanation within multi-agent environments, and specifically in team formation
scenarios. Specifically, we argue that an AI system should only offer explanations
that are guaranteed not to breach privacy. To the best of our knowledge this
is the first work tackling this challenge in team formation. As such here we
propose a privacy breach detector capable of finding whether a given explanation
is bound to lead to privacy breaches. That is, we describe how our privacy
breach detector interacts with a team formation algorithm (AI system) and
an explanatory algorithm (XAI system) to approve or disapprove explanations
within a general framework for privacy-aware explanations in team formation.
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2 Background: Team Formation and Explanations

A team formation problem [2, 9, 3, 7, 12, 14] deals with situations where individ-
uals must be grouped in teams to work on some task(s). In general, in such a
problem there is a set of tasks that need to be tackled; while each task is assigend
to a team of agents (denoted as A) who collectively work towards the task. There
is a plethora of team formation algorithms, referred to as TFA, that solve the
team formation problem. A TFA takes as input data regarding agents’ character-
istics along with data regarding tasks’ descriptions, and outputs a team-to-task
allocation (denoted as g), i.e., a mapping from tasks to teams of agents. The
team-maker is the one who invokes the TFA to generate an allocation. Through-
out the paper we will be using as a running example the “classroom scenario”:
a teacher needs to split their students into teams that work on different projects
each. As such, we will be considering algorithms as the one proposed in [14, 12],
since it applies best in our classroom scenario.

In the context of team formation, Georgara et al. [13] propose a general
scheme that demonstrates explanations using a many teams to many tasks TFA.
Specifically, [13] proposes a general explanatory algorithm that wraps existing
team formation algorithms in order to build contrastive explanations regarding
a team-to-tasks allocation. As highlighted in [22], contrastive explanations are
based on findings in the philosophical and cognitive sciences literature indicating
that people are not interested in the causes leading to a particular outcome
(in our case an allocation) per se, but, on the contrary, they are interested in
the causes that explain a non-occurring outcome. In other words, people are
interested in (and also tend to give) explanations regarding questions of the
type “Why X instead of Y?”. As such, a contrastive explanation provides the
reasons why outcome X is preferred to another outcome Y.

A contrastive explanation within team-to-tasks allocation problems corre-
sponds to information coming from the comparison between two allocations that
justify why one is preferred to the other. In [13], the authors build explanations
of the form: “If team A was assigned to task τ instead of B, it would result in
task τ being assigned to a team (A) that is worse than its current team (B) with
respect to property f”. According to [13] the TFA at hand forms teams based
on some desired properties, while there is a way to measure the matching quality
of a team being assigned to a task toward some desired property. Therefore,
they exploit these desired properties in order to justify why one task assignment
⟨team1,task1⟩ in an allocation is better than a task assignment ⟨team2,task2⟩
in an alternative allocation. Now, in our classroom example, we consider the
following four desired properties:(1) a team shall be skilled for its assigned task,
(2) a team shall be diverse in terms of individuals’ personalities, (3) a team shall
be satisfied with their assigned task, and (4) a team shall be socially coherent.
As such, here we use individuals’ features (skills, personality) and individuals’
preferences (over projects, over potential team-mates) in order to measure the
matching quality of a team with a task wrt. each one of the desired properties.

With this desired properties in mind, the teacher uses the TFA which forms a
teams-to-tasks allocation. Then a student, namely Beth, challenges the explana-
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Fig. 1. General Framework for Privacy-Aware Explanations for Team Formation

tory algorithm (e.g., the one in [13]) with the following query: “Why is Jack in
my team instead of Alex?”. Given the query, the EA (according to [13]) com-
putes an alternative allocation that enforces Beth and Alex to work together.
Then the EA computes the differences between the teams in both allocations for
Beth. That is, let according to the current allocation Beth be working with Jack
on project Maths Game, while according to the alternative allocation Beth is
working with Alex on project Creative Writing. The EA would compare ⟨Beth
and Jack, Maths Game⟩ against ⟨Beth and Alex, Creative Writing⟩ with respect
to the properties: each team being (a) skilled for their assigned project; (b) di-
verse in terms of personality; (c) satisfied with their assigned project in terms of
individuals’ preferences over projects; and (d) socially coherent in terms of indi-
viduals’ preferences over team-mates. Then the explanation that the EA builds
would be: “If Alex was on your team instead of Jack, then you would be in a
less diverse team in terms of personality than the the team you are currently
in”. Notably, according to the EA, the desired property that justifies best why
Beth should be working with Jack and not with Alex, is that of personality.

3 A General Framework for Privacy-Aware Explainable
Team Formation

In this section we describe a general framework that combines team formation so-
lutions, explanations over these solutions, and a mechanism for checking whether
some explanation may cause a privacy breach. Assume we have a team formation
scenario and a set of agents along with a set of task in our disposal. Moreover, let
o be the ‘orchestrator’ or team-maker, i.e., the person who requests the forming
of a team-to-tasks allocation using some team formation algorithm. A user is
someone that challenges the teams-to-tasks allocation, and is either the team-
maker or an agent. In this work we assume that each agent holds a view of the
world which consists of: (i) known facts such as their own private information,
the description of the tasks, and the teams-to-tasks allocation; and (ii) beliefs
over other agents’ private information. Similarly, the team-maker also holds their
own view of the world, consisting of some known facts and their beliefs over the
agents’ private information. Figure 3 illustrates our proposed framework, which
in a nutshell consists of the following components:
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1. A team formation algorithm (TFA) that forms a teams-to-tasks allocation.
2. An explanatory algorithm (EA)—interacting with the TFA—that generates

explanations regarding a teams-to-tasks allocation.
3. A privacy breach detector (PBD) that assesses whether an explanation may

incur in privacy breaches. The PBD is composed of:
(a) a belief updater (BU) that computes posterior beliefs that the user is

expected to form upon receiving an explanation; and
(b) a privacy checker (PC) that assesses whether the user’s expected poste-

rior beliefs exceed a belief threshold.

In more details, the team-maker uses the TFA to solve a team formation problem
and form an allocation; while the TFA notifies the team-maker and the agents
with the allocation formed. As we mentioned in Section 2, there is a plethora
of TFAs solving different team formation problems, as such depending on the
problem at hand, one shall use the corresponding TFA. For example, a teacher in
a classroom acts as the team-maker and uses a TFA to group their students (who
correspond to agents) into teams in order to work on their mid-term projects
(which correspond to tasks). The TFA computes the teams along with their
allocation to projects. Thereafter, the TFA communicates the resulting teams
and allocations to both the teacher and the students.

Then, say that some user challenges the TFA’s result. That is, a user may
argue that there is a better allocation than the one yielded by the TFA. Hence,
the user poses a question to the explanatory algorithm. For example, student
Beth asks why Jack is in her team instead of her friend Alex. The EA processes
the user’s question and, by interacting with the TFA, builds an appropriate
explanation. For example, the EA builds the following explanation: “If Alex was
on your team instead of Jack, then you would be in a less diverse team in terms
of personality than the the team you are currently in”.

Next, the EA passes the generated explanation to the privacy breach detec-
tor, and in particular to the belief updater. As mentioned before, each agent
holds knowledge regarding the world, and beliefs over other agents’ private in-
formation. The BU is responsible for exploiting the information conveyed by
an explanation, combining it with the user’s knowledge and current beliefs in
order to extract valuable conclusions. Specifically, the BU follows a theory of
mind [11] on the user to simulate the reasoning that the user is expected to
follow (based on the user’s knowledge and beliefs). As a result, the BU forms an
updated version of beliefs which the user is expected to reach after receiving the
explanation. For example, Beth is expected to update her beliefs on Alex’s and
Jack’s personalities based on the explanation from the EA.

After that, the BU passes the expected posterior beliefs to the privacy checker.
The PC is responsible for assessing whether the user’s expected posterior be-
liefs exceeds the belief threshold ε. The belief threshold corresponds to a maxi-
mum probability with which a user may believe that some agent’s information is
true, without violating this agent’s privacy. For example, with a belief threshold
ε = 0.5, if Beth is expected to update her beliefs that Alex is of personality role
‘leader’ to 0.3, then this causes no violation of Alex’s privacy. On the other hand,
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if Beth is expected to update her beliefs that Jack is of personality ‘implementer’
to 0.7, then this causes a violation of Jack’s privacy.

Finally, the privacy checker outputs an answer for the explanatory algorithm.
Specifically, the PC responds with an appropriate message indicating whether
the explanation is safe if our PBD detected no privacy breaches on private infor-
mation, or otherwie. Depending on the PC’s response, the explanatory algorithm
either provides the explanation to the user, or handles this situation by e.g. com-
puting a different explanation or denying to answer due to a privacy breach.

4 Representing knowledge and beliefs

In this section we discuss how to represent knowledge and beliefs used within
our framework (see Figure 3). Recall that, as mentioned in Section 3, both the
agents and the team-maker hold a view of the team formation problem which
consists of known facts and beliefs. Knowledge corresponds to known facts that an
agent has over the team formation scenario. Such known facts include the tasks’
description and the team-to-tasks allocation published by the TFA. Moreover,
for an agent, known facts also include their own personal characteristics, i.e.,
this agent’s features and preferences. Besides knowledge, an individual can form
over others. Specifically, an individual forms beliefs regarding knowledge they
do not own, i.e., beliefs over another agent’s personal characteristics.
Agent’s Knowledge. An agent holds knowledge that can be either private or
public. Given an agent a ∈ A, their private knowledge refers to characteristics
that comprise agent’s a own profile i..e, their features and preferences. Each
agent holds their own private knowledge, withheld from anyone else. For exam-
ple, “John is capable in Maths” corresponds to agent John’s private knowledge.
Public knowledge refers to the tasks made public by the team-maker and the
team-to-tasks allocations received from the TFA. All agents at the outset share
the same public knowledge, i.e. public knowledge is common to all agents. For
example, “John has been allocated to work on the Maths-Game task” is an
example of public knowledge.

We represent knowledge using first-order predicates with ground terms. For
an agent a ∈ A we denote the private knowledge of a as Γa corresponding to a set
of first-order predicates with ground terms referring to a. For instance, predicate
acquire(John,maths) ∈ ΓJohn corresponds to some of John’s private knowledge.
In our running example, the predicates that exist in agent’s a private knowl-
edge are: acquires(a, skill), personality(a, role), wants_to_work_on(a, τ), and
wants_to_work_together(a, b), where skill is some skill that agent a acquires,
role is agent’s a personality role, τ is some task that a wants to work on, and
b ∈ A is some agent that a wants to work with. We denote with Γτ the pub-
lic knowledge that each agent initially holds regarding task τ—for example,
size(Maths−Game, 3) ∈ ΓMaths−Game; and with Γg the public knowledge that
each agent initially holds regarding the team-to-tasks allocation—for example,
worksOn(g, John, τ) ∈ Γg, which is read as “According to allocation g, John is
assigned to work on the Maths-Game task”.
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Team-Maker’s Knowledge The team maker only holds public knowledge re-
garding the tasks’ description and team-to-tasks allocations. Thus, the team-
maker’s knowledge is Γo ≡ Γτ ∪ Γg.
Agents’ Beliefs. Each agent holds beliefs over other agents’ private knowledge.
That is, an agent sets a probability with which they believe that some private
knowledge of another agent is true. For example, let Beth believe that John is
knowledgeable in maths with probability 0.7, this comprises Beth’s belief over
some of John’s private knowledge. This belief is in fact a probability over a
predicate in ΓJohn, i.e., P [acquires(John,maths)] = 0.7. Thus, an agent’s a
beliefs correspond to a probability function over predicates in

∪
b∈A Γb.

Team-maker’s Beliefs. The team-maker holds beliefs over the agents’ private
information as well. Similarly, the team-maker’s beliefs correspond to a proba-
bility function over predicates in

∪
a∈A Γa.

5 Inference Rules

Here we discuss about the inference rules used by our model within the pri-
vacy breach detector (see Figure 3). We use ‘IF-THEN’ rules that guide the
BU component to reason over new information deriving from an explanation.
Specifically, we discern rules that (i) determine when a team satisfies a desired
property, and (ii) interpret a comparison described in an explanation.

Considering our classroom example, we have one rule per desired property
to determine when a team satisfies this property. For example, such a rule is:
“IF the team members are of different personality roles THEN the team is di-
verse”, which using first order predicates is written as: ∀ x, y ∀p inTeam(x,A)∧
inTeam(y,A)∧personality(x, p)∧¬personality(y, p) ⇒ isDiverse(A). We also
have rules for interpreting a comparison described in explanations. The compar-
ison of an explanation is in the form of “team A assigned to τ satisfies property
f , while team B assigned to σ does not” or “both team A assigned to τ and
team B assigned to σ (do not) satisfy property f”; which using first-order pred-
icates is written as: isAssigned(A, τ)∧ isAssigned(B, σ)∧ isBetter(A,B, f) ⇒
satisfies(A, τ, f)∧¬satisfies(B, σ, f) and isAssigned(A, τ)∧isAssigned(B, σ)∧
isEqual(A,B, f) ⇒

(
satisfies(A, τ, f)∧satisfies(B, σ, f)

)
∨
(
¬satisfies(A, τ, f)∧

¬satisfies(B, σ, f)
)
.

Given these rules, we can handle the process of inference with a rule-based
forward reasoner [27]; while the inference is used to update the beliefs that the
explainee holds over private information of the agents appearing in the explana-
tion, following a theory of mind approach [11].

6 Conclusions

In this paper we tackled the challenge of preserving privacy when providing
explanations within the multi-agent setting of team formation. We argue that
providing explanations should guarantee that agents’ private information is not
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disclosed. Towards this, we propose a general framework that combines team
formation solutions and explanations over these solutions, while it detects po-
tential privacy breaches upon offering explanations. In particular, we put forward
a privacy breach detector that complements an explanatory algorithm as the one
proposed in [13], and assesses the explanations built wrt. privacy breaches.
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