
A Distributed Architecture for Norm-Aware

Agent Societies

A. Garćıa-Camino1, J. A. Rodŕıguez-Aguilar1, C. Sierra1, and W. Vasconcelos2

1Institut d’Investigació en Intel·ligència Artificial, CSIC
Campus UAB 08193 Bellaterra, Catalunya, Spain

{andres, jar, sierra}@iiia.csic.es
2Dept. of Computing Science, Univ. of Aberdeen, Aberdeen AB24 3UE, UK

wvasconcelos@acm.org

Abstract. We propose a distributed architecture to endow multi-agent
systems with a social layer in which normative positions are explicitly
represented and managed via rules. Our rules operate on a representation
of the states of affairs of a multi-agent system. We define the syntax and
semantics of our rules and an interpreter; we achieve greater precision
and expressiveness by allowing constraints to be part of our rules. We
show how the rules and states come together in a distributed architecture
in which a team of administrative agents employ a tuple space to guide
the execution of a multi-agent system.

1 Introduction

Norms (i.e., obligations, permissions and prohibitions) capture an important
aspect of heterogeneous multi-agent systems (MASs) – they constrain and in-
fluence the behaviour of individual agents [1–3] as they interact in pursuit of
their goals. In this paper we propose a distributed architecture built around an
explicit model of the norms associated with a society of agents, consisting of:

– an information model storing the normative positions of MASs’ individuals.
– a rule-based representation of how normative positions are updated during

the execution of a MAS.
– a distributed architecture with a team of administrative agents to ensure

normative positions are complied with and updated.

A normative position [4] is the “social burden” associated with an agent, that
is, their obligations, permissions and prohibitions.
We show in Fig. 1 our proposal and how its com-
ponents fit together. Our architecture provides
a social layer for multi-agent systems specified
via electronic institutions (EI, for short) [5]. EIs
specify the kinds and order of interactions among
software agents with a view to achieving global
and individual goals – although our study here
concentrates on EIs we believe our ideas can be
adapted to alternative frameworks. In our dia-
gram we show a tuple space in which information

IAg

GAg GAg

EAg EAg

Electronic Institution

Institutional Agent

. . . Tuple Space
10

Governor Agents

. . .

. . .

External Agents

Fig. 1: Proposed Architecture

models ∆0, ∆1, . . . are stored – these models are called institutional states (ex-

plained in Section 3) and contain all norms and other information that hold in
specific points of time during the EI enactment.

The normative positions of agents are updated via institutional rules (de-
scribed in Section 4). These are constructs of the form LHS RHS where LHS

describes a condition of the current information model and RHS depicts how it
should be updated, giving rise to the next information model. Our architecture
is built around a shared tuple space [6] – a kind of blackboard system that can
be accessed asynchronously by different administrative agents. In our diagram
our administrative agents are shown in grey: the institutional agent updates the
institutional state using the institutional rules; the governor agents work as “es-
corts” or “chaperons” to the external, heterogeneous software agents, writing
onto the tuple space the messages to be exchanged.

In the next Section we introduce electronic institutions. In Section 3 we in-
troduce our information model: the institutional states. In Section 4 we present
the syntax and semantics of our institutional rules and how these can be imple-
mented as a logic program; in that section we also give practical examples of
rules. We provide more details of our architecture in Section 5. In Section 6 we
contrast our proposal with other work and in Section 7 we draw some conclu-
sions, discuss our proposal, and comment on future work.

1.1 Preliminary Concepts

We need to initially define some basic concepts. Our building blocks are first-
order terms (denoted as T) and implicitly universally quantified atomic formulae
(denoted as A) without free variables. We make use of numbers and arithmetic
functions to build terms; arithmetic functions may appear infixed, following their
usual conventions. We adopt Prolog’s convention [7] and use strings starting with
capital letters to represent variables and strings starting with lowercase letters
to represent constants. We also employ arithmetic relations (e.g., =, 6=, and so
on) as predicate symbols, and these will appear in their usual infix notation
with their usual meaning. Atomic formulae with arithmetic relations represent
constraints on their variables:

Def. 1. A constraint C is of the form T ⊳ T′, where ⊳∈ {=, 6=, >,≥, <,≤}.

We shall denote as B those atomic formulae that are not constraints.

2 Electronic Institutions

Our work expands electronic institutions (EIs) [5], providing them with an ex-
plicit normative layer. There are two major features in EIs – the states and
illocutions (i.e., messages) uttered (i.e., sent) by those agents taking part in the
EI. We define below the class of illocutions we aim at:

Def. 2. Illocutions I are terms p(Ag,R,Ag ′,R′, T, T) where p is an illocutionary
particle (e.g., inform, ask); Ag,Ag ′ are agent identifiers; R, R′ are role labels;
T is a term with the actual content of the message and T ∈ IN is a time stamp.

We shall refer to illocutions that may have uninstantiated variables as illocution
schemes, denoted by Ī. Another important feature in EIs are the agents’ roles :

these are labels that allow agents with the same role to be treated collectively
thus helping engineers to abstract away from individuals.

Another important concept in EIs we employ here is that of a scene. Scenes
are means to break down larger protocols into smaller ones with specific pur-
poses. We can uniquely refer to the point of the protocol where an illocution I

was uttered by the pair (s, w) where s is a scene name and w is the state from
which an edge labelled with Ī leads to another state. An EI is specified as a set
of scenes connected by transitions – these are points where agents synchronise
their movements between scenes [5].

An EI specification can be used to synthesise agents that conform to the
specification [8]. The synthesised agents are called governor agents : although
correct (that is, we guarantee they will follow the protocol since we provide their
definition), they cannot make decisions on which messages to send (if there are
different choices) nor on which values any unspecified variable ought to have.
These choices should be made by external agents – these are heterogeneous
agents that connect to a dedicated governor agent. The governor agent ensures
the protocol is followed, whereas the external agent makes decisions as to which
message to send (if there is a choice of messages) and any particular values
illocutions ought to have.

Our architecture adds a social layer to the governor agents/external agents
pairing. Although all illocutions of a protocol are permitted some of them may be
deemed inappropriate in certain circumstances. For instance, although a protocol
contemplates agents leaving a virtual auction room at any point, it may be
inappropriate to do so if the agent has not yet paid what it owes. Our norms
further restrict the expected behaviour of agents, prohibiting them from uttering
an illocution or adding constraints on the values of variables of illocutions. Norms
can be triggered by events involving any number of agents and their effects must
persist until they are fulfilled or retracted by a rule.

3 Institutional States

Our states of affairs are called institutional states. Intuitively, they store global
information on the enactment of an EI, such as utterances, agents’ attributes,
and so on, also keeping a record of all obligations, permissions and prohibitions
associated with the agents. They are represented as a set of atomic formulae:

Def. 3. An institutional state ∆ = {A0, . . . , An} is a a finite and possibly empty
set of implicitly universally quantified atomic formulae Ai, 0 ≤ i ≤ n, without
free variables.

We differentiate five kinds of atomic formulae in our institutional states:

1. ground formulae att(s, w, I) – I was attempted at state w of scene s.
2. ground formulae utt(s, w, I) – I was a legal utterance at state w of scene s.
3. obl (S, W, Ī) – Ī ought to be uttered at state W of scene S.
4. per(S, W, Ī) – Ī is permitted to be uttered at state W of scene S.
5. prh(S, W, Ī) – Ī is prohibited at state W of scene S.

We only allow fully ground illocutions in cases 1 and 2 above. We use formulae 3–
5 above to represent normative positions of agents. We do not “hardwire” deontic

notions in our semantics: the predicates above represent deontic modalities but
not their relationships, that is, we do not specify how obligations, permissions
and prohibitions relate. These are captured with rules, conferring generality on
our approach as different deontic relationships can be forged, as we show below.

We differentiate between attempts to utter (att formulae) and actual utter-
ances (utt formulae). Since we aim at heterogeneous agents whose behaviour
we cannot guarantee, we create a “sandbox” where agents can utter whatever
they want via att formulae. However, not everything agents say may be in accor-
dance with the EI – illegal utterances should be appropriately dealt with, that
is, they can be discarded and/or may cause sanctions, depending on the deontic
notions we want or need to implement. The utt formulae are confirmations of
att formulae.

We show in Fig. 2 a sample institutional state. The utterances show a portion

∆ =

utt(agora, w2, inform(ag
4
, seller , ag

3
, buyer , offer(car, 1200), 10)),

utt(agora, w3, inform(ag
3
, buyer , ag

4
, seller , buy(car, 1200), 13)),

obl(payment, w4, inform(ag
3
, payer , ag

4
, payee, pay(Price), T1)),

prh(payment, w2, ask(ag
3
, payer , X , adm, leave, T2))

oav(ag
3
, credit, 3000), oav(car, price, 1200),

1200 ≤ Price, Price ≤ 1200, 13 < T1

Fig. 2. Sample Institutional State

of the dialogue between a buyer agent and a seller agent – the seller agent ag4

offers to sell a car for 1200 to buyer agent ag3 who accepts the offer. The order
among utterances is represented via time stamps (10 and 13 in the constructs
above). In our example, agent ag3 has agreed to buy the car so it is assigned an
obligation to pay 1200 to agent ag4 when the agents move to scene payment;
agent ag3 is prohibited from asking the scene administrator adm to leave the
payment scene. We employ a predicate oav (standing for object-attribute-value)
to store attributes of our state: these concern the credit of agent ag3 and the
price of the car. The constraints define the minimum value for Price, and the
earliest time T1 ag3 is obliged to pay.

4 Institutional Rules

Institutional rules are constructs of the form LHS RHS. LHS contains refer-
ences to parts of the current institutional state which, if they hold, will cause
the rule to be triggered; RHS depicts how the next institutional state is built:

Def. 4. An institutional rule, denoted as R, is defined as:

R ::= LHS RHS

LHS ::= A ∧ LHS | ¬LHS |A
RHS ::= U ∧ RHS |U

U ::= ⊕A | ⊖ B

Intuitively the LHS depicts the conditions on the institutional state for the rule to
apply. The RHS depicts the updates to the institutional state, yielding the next
state of affairs. The updates U add (via ⊕) and remove (via ⊖) atomic formulae
A but constraints C cannot be removed – our semantics works by refining an
institutional state, always adding constraints. Recall that B are atomic formulae
which are not constraints. We provide examples of rules in Section 4.3.

4.1 Semantics of Institutional Rules

We now define the semantics of our institutional rules as relationships between
institutional states. However, constraints have a special status when they appear
both in rules and in institutional states. We start off defining a means to extract
the constraints of an institutional state:

Def. 5. constrs(∆, Γ), Γ ⊆ ∆, holds iff Γ is the smallest set containing all
constraints C ∈ ∆.

We also need to define how constraints are checked for their satisfiability – we do
so via relationship satisfy , defined below. In the definition below ⊳,⊳′∈ {<,≤}
are generic means to refer to constraint operators1. For simplicity in dealing with
all different cases, we assume our constraints to be in a preferred format: T > T

′

and T ≥ T′ are changed to, respectively, T′ < T and T′ ≤ T.

Def. 6. satisfy(Γ, Γ ′) holds, for two sets of constraints Γ, Γ ′ iff Γ can be satisfied
and Γ ′ is the smallest set obtained from Γ such that:

– if both (T ⊳ X), (X ⊳′ T′) ∈ Γ then (T ⊳ X ⊳′ T′) ∈ Γ ′.
– if (X ⊳ T) ∈ Γ then (−∞ < X ⊳ T) ∈ Γ ′.
– if (T ⊳ X) ∈ Γ then (T ⊳ X <∞) ∈ Γ ′.

Γ ′ contains a syntactic variation of the elements in Γ in which the constraints
of each variable are expanded to be within an interval – two limits, −∞,∞,
represent the lowest and highest value any variable may have. Our work builds
on standard technologies for constraint solving – in particular, we have been
experimenting with SICStus Prolog [9] constraint satisfaction libraries [10, 11].
We can define satisfy/2 via SICStus Prolog built-in call residue/2:

satisfy({C1, . . . , Cn}, Γ
′)← call residue((C1, . . . , Cn), Γ ′)

Predicate call residue/2 takes as its first parameter a sequence of constraints
and, if the constraints are satisfiable, returns in its second parameter a list of
partially solved constraints. For instance, using SICStus Prolog prefix “#” to
operate the finite domain constraint solver, we query and obtain the following:

?- call residue((X + 50 #< Y,Y #< Z + 20,Y #> Z+5,Z #=< 100,Z #> 30),Γ).

Γ = [[X]-(X in inf..68),[Y]-(Y in 37..119),[Z]-(Z in 31..100)]

The representation LimInf..LimSup is a syntactic variation of our expanded
constraints. We can thus translate Γ above as {−∞ < X < 68, 37 < Y < 119, 31 <
Z < 100}. Our proposal hinges on the existence of the satisfy relationship that
can be implemented differently: it is only important that it should return a
set of partially solved expanded constraints. The importance of the expanded
constraints is that they allow us to precisely define when the constraints on the
LHS of the rule hold in the current institutional state, as captured by ⊑:

Def. 7. Γ1 ⊑ Γ2 holds iff satisfy(Γ1, Γ
′
1) and satisfy(Γ2, Γ

′
2) hold and for every

constraint (⊥1 ⊳ X ⊳ ⊤1) in Γ ′1, there is a constraint (⊥2 ⊳ X ⊳ ⊤2) in Γ ′2,
such that max (⊥1,⊥2) ≥ ⊥1 and min(⊥1,⊥2) ≤ ⊥1, where ⊥i,⊤i, i = 1, 2 are
arbitrary values.

1 The remaining operators =, 6= can be defined in terms of ≤, that is, X = T is
T ≤ X ≤ T and X 6= T is ¬(T ≤ X ≤ T).

That is, all variables in Γ1 must be in Γ2 (with possibly other variables not in
Γ1) and i) the maximum value for these variables in Γ1, Γ2 must be greater than
or equal to the maximum value of that variable in Γ1; ii) the minimum value for
these variables in Γ1, Γ2 must be less than or equal to the minimum value of that
variable in Γ1. We make use of this relationship to define that constraints of a
rule hold in an institutional state if they further limit the values of the existing
constrained variables.

We now proceed to define the semantics of an institutional rule. In the defi-
nitions below we rely on the concept of substitution, that is, the set of values for
variables in a computation [7, 12]:

Def. 8. A substitution σ is a finite, possibly empty set of pairs Xi/Ti, 0 ≤ i ≤ n.

The application of σ to a formula A follows the usual definition [12]:

1. c · σ = c for a constant c.
2. X · σ = T · σ if X/T ∈ σ; if X/T 6∈ σ then X · σ = X .
3. pn(T0, . . . , Tn) · σ = pn(T0 · σ, . . . , Tn · σ).

We now define when the LHS matches an institutional state:

Def. 9. sl(∆, LHS, σ) holds depending on the format of LHS:

1. sl(∆, A ∧ LHS, σ1 ∪ σ2) holds iff sl(∆, A, σ1), sl(∆, LHS, σ2) hold.
2. sl(∆,¬LHS, σ) holds iff sl(∆, LHS, σ) does not hold.
3. sl(∆, B, σ) holds iff B · σ ∈ ∆, constrs(∆, Γ) and satisfy(Γ · σ, Γ ′).
4. sl(∆, C, σ) holds iff constrs(∆, Γ) and {C · σ} ⊑ Γ .

Case 1 depicts how substitutions are combined to provide the semantics for
conjunctions in the LHS. Case 2 addresses the negation operator. Case 3 states
that an atomic formula (which is not a constraint) holds in ∆ if it is a member
of ∆ and the constraints on the variables of ∆ hold under σ. Case 4 deals with
a constraint: we apply σ to it (thus reflecting the values of matchings of other
atomic formula), then check whether the constraint can be included in the state.

We want our institutional rules to be exhaustively applied on the institutional
state. We thus need relationship s∗l (∆,LHS , Σ) which uses sl above to obtain in
Σ = {σ0, . . . , σn} all possible matches of the left-hand side of a rule:

Def. 10. s∗l (∆, LHS, Σ) holds, iff Σ = {σ1, . . . , σn} is the largest non-empty set
such that sl(∆, LHS, σi), 1 ≤ i ≤ n, holds.

We must define the application of a set of substitutions Σ = {σ1, . . . , σn} to a
term T: this results in a set of substituted terms, T·{σ1, . . . , σn} = {T·σ1, . . . , T·
σn}. We now define the semantics of the RHS of a rule as a mapping between
the current institutional state ∆ and its successor state ∆′:

Def. 11. sr(∆, RHS, ∆′) holds depending on the format of RHS:

1. sr(∆, (U ∧ RHS), ∆1 ∪∆2) holds iff sr(∆, U, ∆1) and sr(∆, RHS, ∆2) hold.
2. sr(∆,⊕B, ∆ ∪ {B}) holds.
3. sr(∆,⊖B, ∆ \ {B}) holds.
4. sr(∆,⊕C, ∆ ∪ {C}) holds iff constrs(∆, Γ) and satisfy(Γ ∪ {C}, Γ ′) hold.

Case 1 decomposes a conjunction and builds the new state by merging the partial
states of each update. Cases 2 and 3 cater for the insertion and removal of atomic
formulae B which do not conform to the syntax of constraints. Case 4 defines
how a constraint is added to an institutional state: the new constraint is checked
for its satisfaction with constraints Γ ⊆ ∆ and then added to ∆. We assume the
new constraint is merged into ∆: if there is another constraint that subsumes it,
then the new constraint is discarded. For instance, if X > 20 belongs to ∆, then
attempting to add X > 15 will yield the same ∆.

In the usual semantics of rules of production systems [13, 14], the values
to variables obtained when matching the LHS to the institutional state must be
passed on to the RHS. We capture this by associating the RHS with a substitution
σ obtained when matching the LHS against ∆ via sl. Def. 11 above should
actually be used as sr(∆, RHS ·σ, ∆′), that is, we have a version of the RHS with
ground variables whose values originate from the matching of the LHS to ∆. We
now define how a rule maps two institutional states:

Def. 12. s∗(∆, LHS RHS, ∆′) holds iff s∗l (∆, LHS, {σ1, . . . , σn}) and sr(∆,
RHS · σi, ∆

′), 1 ≤ i ≤ n, hold.

That is, two institutional states ∆, ∆′ are related by LHS RHS iff we obtain
all different substitutions {σ1, . . . , σn} that make the LHS match ∆ and apply
these substitutions to RHS in order to build ∆′. Finally we extend s∗ to handle
sets of rules: s∗(∆, {R1, . . . , Rn}, ∆

′) holds iff s∗(∆, Ri, ∆
′), 1 ≤ i ≤ n, hold.

4.2 Implementing Institutional Rules

The semantics above provides a basis for an interpreter for institutional rules,
shown in Fig. 3 as a logic program, interspersed with built-in Prolog predicates;
for easy referencing, we show each clause with a number on its left. Clause 1

1. s
∗(∆, Rs, ∆′)←
findall(〈RHS, Σ〉, (member((LHS RHS), Rs), s∗

l
(∆, LHS, Σ)), RHSs),

s
′

r
(∆, RHSs, ∆′)

2. s
∗

l
(∆, LHS, Σ)← findall(σ, sl(∆, LHS, σ), Σ)

3. sl(∆, (A ∧ LHS), σ1 ∪ σ2)← sl(∆, A, σ1), sl(∆, LHS, σ2)
4. sl(∆,¬LHS, σ)← ¬sl(∆, LHS, σ)
5. sl(∆, B, σ)← member(B · σ, ∆), constrs(∆, Γ), satisfy(Γ · σ, Γ ′)
6. sl(∆, C, σ)← constrs(∆, Γ), {C · σ} ⊑ Γ

7. s
′

r
(∆, RHSs, ∆′)←
findall(∆′′, (member(〈RHS, Σ〉, RHSs), member(σ, Σ), sr(∆, RHS · σ, ∆′′)), AllDeltas),
merge(AllDeltas, ∆′)

8. sr(∆, (U ∧ RHS), ∆1 ∪∆2)← sr(∆, U, ∆1), sr(∆, RHS, ∆2)
9. sr(∆,⊕B, ∆ ∪ {B}))←

10. sr(∆,⊖B, ∆ \ {B}))←
11. sr(∆,⊕C, ∆ ∪ {C})← constrs(∆, C), satisfy([Constr|C], C′)

Fig. 3. An Interpreter for Institutional Rules

contains the topmost definition: given a ∆ and a set of rules Rs, it shows how we
can obtain the next state ∆′ by finding (via the built-in findall predicate2) all
those rules in Rs (picked by the member built-in) whose LHS holds in ∆ (checked

2 ISO Prolog built-in findall/3 obtains all answers to a query (2nd argument), record-
ing the values of the 1st argument as a list stored in the 3rd argument.

via the auxiliary definition s∗l). This clause then uses the RHS of those rules with
their respective sets of substitutions Σ as the arguments of s′r to finally obtain
∆′.

Clause 2 implements s∗l : it finds all the different ways (represented as indi-
vidual substitutions σ) that the left-hand side LHS of a rule can be matched in
an institutional state ∆ – the individual σ’s are stored in sets Σ of substitutions,
as a result of the findall/3 execution. Clauses 3-6 are adaptations of Def. 9.

Clause 7 shows how s′r computes the new state from a list RHSs of pairs
〈RHS, Σ〉 (obtained in the second body goal of clause 1): it picks out (via predi-
cate member/2) each individual substitution σ ∈ Σ and uses it in RHS to compute
via sr a partial new institutional state ∆′′ which is stored in AllDeltas . AllDeltas
contains a set of partial new institutional states and these are combined together
via the merge/2 predicate – it joins all the partial states, removing any repli-
cated components. A garbage collection mechanism can be also added to the
functionalities of merge/2 whereby constraints whose variables are not referred
in ∆ are discarded. Clauses 8-11 are adaptations of Def. 11.

Our interpreter shows how we deal with constraints in our institutional rules:
we could not simply refer to standard rule interpreters [13, 14] since these do not
handle constraints. Our combination of Prolog built-ins and abstract definitions
provides a precise account of the complexity of the computation, yet it is very
close to the mathematical definitions.

4.3 Sample Institutional Rules

In this section we give examples of institutional rules and explain the computa-
tional behaviours they capture. These examples illustrate what can be achieved
with our proposed formalism.

To account for the passing of time, we shall simulate a clock using our insti-
tutional rules. Our clock is used by the governor and institutional agents when
they are writing terms onto the tuple space (see discussion in Section 5 below).
We shall represent our clock as the term now(T) where T is a natural number.
This term can either be provided in the initial state or a “bootstrapping” rule
can be supplied as ¬now (T) ⊕now(1), that is, if now(T) is not present in
the state, the rule will add now(1) to the next state. Similar rules can be used
whenever new terms need to be added to the state, but once added they only
need to be updated.

We can simulate the passing of time in various ways. A reactive approach
whereby an event triggers a rule to update the now term is captured as:

(now (T) ∧ att(S, W, P (A1, R1, A2, R2, M, T)) (⊖now(T) ∧ ⊕now(T + 1)))

That is, if an event (an attempt to utter something) related to the current
time step has happened then the clock is updated. It is important to notice
that if there is more than one utterance, the exhaustive application of the rule
above will carry out the same update for each utterance. Although this might
be unnecessary or inefficient, it will not cause multiple now/1 formulae to be
inserted in the next institutional state, as the same unification for T is used in
all updates, rendering the same T + 1.

If external agents fail to provide their messages (via their governor agents,
as explained below), this can be then neatly captured by a “dummy” message.
Governor agents can be defined to wait a predefined amount of time and then
write out in the institutional state that a timeout took place – this can be
represented by utt(S, W, P (A, R, adm , admin , timeout , T)), stating that agent A
failed to say what it should have said.

We can also define relationships among permissions, prohibitions and obliga-
tions via our institutional rules. Such relationships should capture the pragmatics
of normative aspects – what exactly these concepts mean in terms of agents’ be-
haviour. We start by looking at those illocutions that external agents attempted
to utter, i.e., att(S, W, I):

(att(S, W, I) ∧ per (S, W, I)) (⊖att(S, W, I) ∧ ⊕utt(S, W, I))

That is, permitted attempts become utterances – any constraints associated with
S, W and I should hold for the left-hand side to match the current state.

Attempts and prohibitions can be related together by the schematic rule

(att(S, W, I) ∧ prh(S, W, I)) Sanction

Where Sanction stands for sanctions on the agents who tried to utter a prohib-
ited illocution. If we represent the credit of agents as oav (Ag, credit ,V), we can
apply a 10% fine on those agents who attempt to utter a prohibited illocution:

(

att(S, W, P (A1, R1, A2, R2, M, T))∧
prh(S, W, P (A1, R1, A2, R2, M, T))

)

⊖oav(A1, credit, C)∧
⊕oav(A1, credit, C − C/10)∧

⊖att(S, W, P (A1, R1, A2, R2, M, T))

Another way of relating attempts, permissions and prohibitions is when a per-
mission granted in general (e.g., to all agents or to all agents adopting a role)
is revoked for a particular agent (e.g., due to a sanction). We can ensure that a
permission has not been revoked via the rule

(att(S, W, I) ∧ per(S, W, I) ∧ ¬prh(S, W, I)) (⊖att(S, W, I) ∧ ⊕utt(S, W, I))

That is, only permitted attempts which are not prohibited become utterances.
We can also capture other relationships among deontic modalities. For in-

stance, the rule below states that all obligations are also permissions:

obl(S, W, I) ⊕per(S, W, I)

Such a rule would add to the institutional state a permission for every obligation.
Another relationship we can forge concerns how to cope with the situation when
an illocution is an obligation and a prohibition – this may occur when an obliga-
tion assigned to agents in general (or to any agents playing a role) is revoked for
individual agents (for instance, due to a sanction). In this case, we can choose
to ignore/override either the obligation or the prohibition. For instance, the rule
below overrides the obligation and ignores the attempt to fulfil the obligation:

(att(S, W, I) ∧ obl(S, W, I) ∧ prh(S, W, I)) ⊖att(S, W, I)

The rule below ignores the prohibition and transforms an attempt to utter the
illocution I into its utterance:

(att(S,W, I) ∧ obl(S, W, I) ∧ prh(S, W, I)) (⊖att(S, W, I) ∧ ⊕utt(S, W, I))

A third possibility is to raise an exception via a term which can then be dealt
with at the institutional level. The following rule could be used for this purpose:

(att(S,W, I) ∧ obl(S, W, I) ∧ prh(S, W, I)) ⊕exception(S,W, I)

We do not want to be prescriptive in our discussion and we are aware that
the sample rules we present can be given alternative formulations. Furthermore,
we notice that when designing institutional rules, it is essential to consider the
combined effect of the whole set of rules over the institutional states – these
should be engineered in tandem.

The rules above provide a sample of the expressiveness and precision of our
institutional rules. As with all other formalisms to represent computations, it is
difficult to account for the pragmatics of institutional rules. Ideally, we should
provide a list of programming techniques engineers are likely to need in their
day-to-day activities, but this lies outside the scope of this paper.

5 An Architecture for Norm-Aware Agent Societies

We now elaborate on the distributed architecture which fully defines our nor-
mative (or social) layer to EIs. We refer back to Fig 1, the initial diagram de-
scribing our proposal. We show in the centre of the diagram a tuple space [6] –
this is a blackboard system with accompanying operations to manage its entries.
Our agents, depicted as a rectangle (labelled IAg), circles (labelled GAg) and
hexagons (labelled EAg) interact (directly or indirectly) with the tuple space,
reading and deleting entries from it as well as well as writing entries onto it. We
explain the functionalities of each of our agents below. The institutional states
∆0, ∆1, . . . are recorded in the tuple space; we propose a means to represent
institutional states with a view to maximising asynchronous aspects (i.e., agents
should be allowed to access the tuple space asynchronously) and minimising
housekeeping (i.e., not having to move information around).

The topmost rectangle in Fig. 1 depicts our institutional agent IAg, respon-
sible for updating the institutional state, applying s∗. The circles below the
tuple space represent the governor agents GAgs, responsible for following the
EI “chaperoning” the external agents EAgs. The external agents are arbitrary
heterogeneous software or human agents that actually enact an EI to ensure
that they conform to the required behaviour, each external agent is provided
with a governor agent with which it communicates to take part in the EI. Gov-
ernor agents ensure that external agents fulfil all their social duties during the
enactment of an EI. In our diagram, we show the access to the tuple space as
black block arrows; communication among agents are the white block arrows.

We want to make the remaining discussion as concrete as possible so as to
enable others to assess, reuse and/or adapt our proposal. We shall make use of
SICStus Prolog [9] Linda Tuple Spaces [6] library in our discussion. A Linda
tuple space is basically a shared knowledge base in which terms (also called
tuples or entries) can be asserted and retracted asynchronously by a number of
distributed processes. The Linda library offers basic operations to read a tuple
from the space (predicates rd/1 and its non-blocking version rd noblock/1),
to remove a tuple from the space (predicates in/1 and its non-blocking version
in noblock/1), and to write a tuple onto the space (predicate out/1). Messages
are exchanged among the governor agents by writing them onto and reading
them from the tuple space; governor agents and their external agents, however,
communicate via exclusive point-to-point communication channels.

In our proposal some synchronisation is necessary: the utterances utt(s, w, I)
will be written by the governor agents and the external agents must provide
the actual values for the variables of the messages. However, governor agents
must stop writing illocutions onto the space so that the institutional agent
can update the institutional state. We have implemented this via the term
current state(N) (N being an integer) that works as a flag: if this term is
present on the tuple space then governor agents may write their utterances onto
the space; if it is not there, then they have to wait until the term appears. The
institutional agent is responsible for removing the flag and writing it back, at
appropriate times.

We show in Fig. 4 a Prolog implementation for the institutional agent IAg.
It bootstraps the architecture by creating an initial value 0 for the current state
(lines 2-3); the initial institutional state is empty. In line 3 the institutional agent
obtains via time step/1 a value T, an attribute of the EI enactment setting up
the frequency new institutional states should be computed.

The IAg agent then enters a loop (lines 5-14) where it initially (line 6) sleeps
for T milliseconds – this guarantees that the frequency of the updates will be
respected. IAg then checks via no one updating/0 (line 7) that there are no
governor agents currently updating the institutional state with their utterances
– no one updating/0 succeeds if there are no updating/2 tuples in the space.
Such tuples are written by the governor agents to
inform the institutional agent it has to wait until
their utterances are written onto the space.

When agent IAg is sure there are no more
governor agents updating the tuple space then it
removes the current state/1 tuple (line 8) thus
preventing any governor agent from trying to up-
date the tuple space (the governor agent checks in
line 7 of Fig. 5 if such entry exists – if it does not,
then the flow of execution is blocked on that line).
Agent IAg then obtains via predicate get state/2
all those tuples pertaining to the current institu-
tional state N and stores them in Delta; the insti-

1 main:-

2 out(current state(0)),
3 time step(T),
4 loop(T).

5 loop(T):-

6 sleep(T),
7 no one updating,

8 in(current state(N)),
9 get state(N,Delta),

10 inst rules(Rules),

11 s
∗(Delta,Rules,NewDelta),

12 write onto space(NewDelta),

13 NewN is N + 1,
14 out(current state(N)),

15 loop(T).

Fig. 4: Institutional Agent

tutional rules are obtained in line 10 – they are also stored in the tuple space so
that any of the agents can examine them. In line 11 Delta and Rules are used
to obtain the next institutional state NewDelta via predicate s∗/2 (cf. Def. 12
and its implementation in Fig 3). In line 12 the new institutional state NewDelta
is written onto the tuple space, then the tuple recording the identification of the
current state is written onto the space (line 14) for the next update. Finally, in
line 15 the agent loops3.

Distinct threads will execute the code for the governor agents GAg shown
in Fig. 5. Each of them will connect to an external agent via predicate

3 For simplicity we did not show the termination conditions for the loops of the insti-
tutional and governor agents. These conditions are prescribed by the EI specification
and should appear as a clause preceding the loop clauses of Figs. 4 and 5.

connect ext ag/1 and obtain its identification Ag, then find out (line 3) about
the EI’s root scene (where all agents must initially report to [5]) and that
scene’s initial state (line 4) – we adopt here the representation for EIs pro-
posed in [8]. In line 5 the governor agent makes the initial call to loop/1:
the Role variable is not yet instantiated at that point, as a role is assigned
to the agent when it joins the EI. The governor agents then will loop through
lines 6-15, initially checking in line 7 if
they are allowed to update the current
institutional state, adding their utter-
ances. Only if the current state/1 tu-
ple is on the space then does the flow
of execution of the governor agent move
to line 8, where it obtains the identifier
Ag from the control list Ctl; in line 9
a tuple updating/2 is written out onto
the space. This tuple informs the insti-
tutional agent that there are governors
updating the space and hence it should
wait to update the institutional state. In

1 main:-

2 connect ext ag(Ag),
3 root scene(Sc),
4 initial state(Sc,St),

5 loop([Ag,Sc,St,Role]).

6 loop(Ctl):-
7 rd(current state(N)),

8 Ctl = [Ag|],
9 out(updating(Ag,N)),

10 get state(N,Delta),

11 findall([A,NC],(p(Ctl):-A,p(NC)),ANCs),
12 social analysis(ANCs,Delta,Act,NewCtl),

13 perform(Act),
14 in(updating(Id,N)),
15 loop(NewCtl).

Fig. 5: Governor Agent

line 10 the governor agent reads all those tuples pertaining to the current in-
stitutional state. In line 11 the governor agent collects all those actions send/1
and receive/1 in the EI specification which are associated with its current con-
trol [Ag,Sc,St,Role]. In line 12, the governor agent interacts with the external
agent and, taking into account all constraints associated with Ag, obtains an
action Act that is performed in line 14 (i.e., a message is sent or received). In
line 14 the agent removes the updating/2 tuple and in line 15 the agent starts
another loop.

Although we represented the institutional state as boxes in Fig 1 they are
not stored as one single tuple containing ∆. If this were the case, then the
governors would have to take turns to update the institutional state. We have
used instead a representation for the institutional state that allows the governors
to update the space asynchronously. Each element of ∆ is represented by a tuple
of the form t(N,Type,Elem) where N is the identification of the institutional
state, Type is the description of the component (i.e., either a rule, an atf, or a
constr) and Elem the actual element.

Using this representation, we can easily obtain all those tuples in the space
that belong to the current institutional state. Predicate get state/2 is thus:

get state(N,Delta):- bagof rd noblock(t(N,T,E),t(N,T,E),Delta).

That is, the Linda built-in [9] bagof rd noblock/3 (it works like the findall/3
predicate) finds all those tuples belonging to institutional state N and stores
them in Delta.

5.1 Norm-Aware Governor Agents

We can claim our resulting society of agents is endowed with norm-awareness
because their behaviour is regulated by the governor agents depicted above. The
social awareness of the governor agent, in its turn, stems from two features: i) its

access to the institutional state where obligations, prohibitions and permissions
are recorded (as well as constraints on the values of their variables); ii) its access
to the set of possible actions prescribed in the protocol. With this information,
we can define various alternative ways in which governor agents, in collaboration
with their respective external agents, can decide on which action to carry out.

We can define predicate social analysis(ANCs,Delta,Act,NewCtr) in line
12 of Fig. 5 in different ways – this predicate should ensure that an action Act

(sending or receiving a message) with its respective next control state NewCtr

(i.e., the list [Ag,Sc,NewSt,Role]) is chosen from the list of options ANCs,
taking into account the current institutional state Delta. This predicate must
also capture the interactions between governor and external agents as, together,
they choose and customise a message to be sent.

We show in Fig. 6 a definition for predicate social analysis/4. Its first
subgoal removes from the list ANCs all those utterances that are prohib-
ited from being sent, obtaining the list ANCsWOPrhs. The second subgoal en-
sures that obligations are given ade-
quate priority: the list ANCsWOPrhs is
further refined to get the obligations
among the actions and store them in
list ANCsObls – if there are no obliga-

social analysis(ANCs,Delta,Act,NewCtr):-
remove prhs(ANCs,Delta,ANCsWOPrhs),

select obls(ANCsWOPrhs,Delta,ANCsObls),
choose customise(ANCsObls,Delta,Act,NewCtr).

Fig. 6: Definition of Social Analysis

tions, then ANCsWOPrhs is the same as ANCsObls. Finally, in the third subgoal,
an action is chosen from ANCsObls and customised in collaboration with the
external agent. This definition is a rather “draconian” one in which external
agents are never allowed even to attempt to utter a prohibited illocution; other
definitions could be supplied instead.

We use a “flat” structure to represent atomic formulae. For instance,
utt(agora , w2, inform(ag4, seller , ag3, buyer , offer(car , 1200), 10))

is represented as
t(N,atf,[utt,agora,w2,[inform,ag4,seller,ag3,buyer,offer(car,1200),10]])

Governor agents are able to answer queries by their external agents such as
“what are my obligations at this point?”, encoded as:
findall([S,W,[I,Id|R]],member(t(N,atf,[obl,S,W,[I,Id|R]]),Delta),MyObls)

These interactions enrich the definition of predicate choose customise/4 above.

6 Related Work

Apart from classical studies on law, research on norms and agents has been ad-
dressed by two different disciplines: sociology and philosophy. On the one hand,
socially oriented contributions highlight the importance of norms in agent be-
haviour (e.g., [15–17]) or analyse the emergence of norms in multi-agent systems
(e.g., [18, 19]). On the other hand, logic-oriented contributions focus on the de-
ontic logics required to model normative modalities along with their paradoxes
(e.g., [20–22]). The last few years, however, have seen significant work on norms
in multi-agent systems, and norm formalisation has emerged as an important
research topic in the literature [1, 23–25].

Vázquez-Salceda et al. [24, 26] propose the use of a deontic logic with dead-
line operators. In their approach, they distinguish norm conditions from violation

conditions. This is not necessary in our approach since both types of conditions
can be represented in the LHS of our rules. Their model of norm also separates
sanctions and repairs (i.e., actions to be done to restore the system to a valid
state); these can be expressed in the RHS of our rules without having to differ-
entiate them from other normative aspects of our states. Our approach has two
advantages over [24, 26]: i) we provide an implementation for our rules; and ii)
we offer a more expressive language with constraints over norms.

Fornara et al. [25] propose the use of norms partially written in Object Con-
straint Language (OCL). Their commitments are used to represent all normative
modalities; of special interest is how they deal with permissions: they stand for
the absence of commitments. This feature may jeopardise the safety of the sys-
tem since it is less risky to only permit a set of safe actions thus forbidding other
actions by default. Although this feature can reduce the amount of permitted
actions, it allows unexpected actions to be carried out. Their within , on and if
clauses can be encoded as LHS of our rules as they can all be seen as conditions
when dealing with norms. Similarly, “foreach in” and “do” clauses can be en-
coded as RHS of our rules since they are the actions to be applied to a set of
agents.

López y López et al. [27] present a model of normative multi-agent system
specified in the Z language. Their proposal is quite general since the normative
goals of a norm do not have a limiting syntax as is the case with the rules of
Fornara et al. [25]. However, their model assumes that all participating agents
have a homogeneous, predetermined architecture. No agent architecture is im-
posed on the participating agents in our approach, thus allowing for heterogene-
ity.

Artikis et al. [28] use event calculus for the specification of protocols. Obli-
gations, permissions, empowerments, capabilities and sanctions are formalised
by means of fluents (i.e., predicates that may change with time). Prohibitions
are not formalised in [28] as a fluent since they assume that every action not
permitted is forbidden by default. Although event calculus models time, their
deontic fluents are not enough to inform an agent about all types of duties. For
instance, to inform an agent that it is obliged to perform an action before a
deadline, it is necessary to show the agent the obligation fluent and the part of
the theory that models the violation of the deadline.

Michael et al. [29] propose a formal scripting language to model the essen-
tial semantics, namely, rights and obligations, of market mechanisms. They also
formalise a theory to create, destroy and modify objects that either belong to
someone or can be shared by others. Their proposal is suitable to model and im-
plement market mechanisms. However, it is not as expressive as other proposals:
for instance, it cannot model obligations with a deadline.

7 Conclusions, Discussion and Future Work

We have proposed a distributed architecture to provide MASs with an explicit
social layer: the institutional states store information on the execution of the
MAS as well as the normative positions of its agents – their obligations, pro-
hibitions and permissions. The institutional states capture the dynamics of the

execution and are managed via institutional rules: these are a kind of production
system depicting how the states are updated when certain situations arise.

An important contribution of this work concerns the rule-based language to
explicitly manage normative positions of agents. We achieve greater flexibility,
expressiveness and precision by allowing constraints to be part of our rules –
such constraints associate further restrictions with permissions, prohibitions and
obligations. Our language is general-purpose, allowing various kinds of deontic
notions to be captured.

The institutional states and rules are put to use within a distributed archi-
tecture, supported by a team of administrative agents implemented as Prolog
programs sharing a tuple space. We propose means to store the institutional
state that allows maximum distributed access. The “norm-awareness” of our
proposal stems from the fact that the governor agents, part of our team of ad-
ministrative agents, can regulate the behaviour of external agents taking part in
the MAS execution. The regulation takes into account the normative position of
individual external agents stored in the institutional state. We provide a detailed
implementation of governor agents that hinges on the notion of social analysis:
this is a decision procedure which can be defined differently, for distinct scenarios
and solutions.

We would like to investigate the verification of norms (along the lines of our
work in [30]) expressed in our rule language, with a view to detecting, for in-
stance, obligations that cannot be fulfilled, prohibitions that prevent progress,
inconsistencies (i.e., when an illocution is simultaneously permitted and prohib-
ited) and so on. We also want to provide engineers with means to analyse their
rules, so that they can, for instance, assess the “social burden” associated with
individual agents and whether any particular agent has too important a role in
the progress of an electronic institution.

If the verification and analysis are done during the design, that is, as the
rules are prepared, then this could prevent problems from being propagated to
latter parts of the MAS development. We are currently working on tools to
help engineers prepare and analyse their rules; these are norm editors that will
support the design of norm-oriented electronic institutions.

References

1. Dignum, F.: Autonomous Agents with Norms. A. I. & Law 7 (1999) 69–79
2. López y López, F., Luck, M., d’Inverno, M.: Constraining Autonomy Through

Norms. In: Procs. AAMAS 2002, ACM Press (2002)
3. Verhagen, H.: Norm Autonomous Agents. PhD thesis, Stockholm University (2000)
4. Sergot, M.: A Computational Theory of Normative Positions. ACM Trans. Com-

put. Logic 2 (2001)
5. Esteva, M.: Electronic Institutions: from Specification to Development. PhD thesis,

Universitat Politècnica de Catalunya (UPC) (2003) IIIA monography Vol. 19.
6. Carriero, N., Gelernter, D.: Linda in Context. Comm. of the ACM 32 (1989)
7. Apt, K.R.: From Logic Programming to Prolog. Prentice-Hall, U.K. (1997)
8. Vasconcelos, W.W., Robertson, D., Sierra, C., Esteva, M., Sabater, J., Wooldridge,

M.: Rapid Prototyping of Large Multi-Agent Systems through Logic Programming.
Annals of Mathematics and Artificial Intelligence 41 (2004) 135–169

9. Swedish Institute of Computer Science: SICStus Prolog. (2005) http://www.sics.
se/isl/sicstuswww/site/index.html, viewed on 10 Feb 2005 at 18.16 GMT.

10. Jaffar, J., Maher, M.J., Marriott, K., Stuckey, P.J.: The Semantics of Constraint
Logic Programs. Journal of Logic Programming 37 (1998) 1–46

11. Holzbaur, C.: ÖFAI clp(q,r) Manual, Edition 1.3.3. TR-95-09, Austrian Research
Institute for Artificial Intelligence, Vienna, Austria (1995)

12. Fitting, M.: First-Order Logic and Automated Theorem Proving. Springer-Verlag,
New York, U.S.A. (1990)

13. Kramer, B., Mylopoulos, J.: Knowledge Representation. In Shapiro, S.C., ed.:
Encyclopedia of Artificial Intelligence. Volume 1. John Wiley & Sons (1992)

14. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. 2 edn. Pren-
tice Hall, Inc., U.S.A. (2003)

15. Conte, R., Castelfranchi, C.: Understanding the Functions of Norms in Social
Groups through Simulation. In: Artificial Societies. The Computer Simulation of
Social Life, UCL Press (1995)

16. Conte, R., Castelfranchi, C.: Norms as Mental Objects: From Normative Beliefs
to Normative Goals. In: Procs. of MAAMAW’93, Neuchatel, Switzerland (1993)

17. Tuomela, R., Bonnevier-Tuomela, M.: Norms and Agreement. European Journal
of Law, Philosophy and Computer Science 5 (1995) 41–46

18. Walker, A., Wooldridge, M.: Understanding the emergence of conventions in multi-
agent systems. In: Procs. ICMAS 2005, San Francisco, USA (2005)

19. Shoham, Y., Tennenholtz, M.: On Social Laws for Artificial Agent Societies: Off-
line Design. Artificial Intelligence 73 (1995) 231–252

20. von Wright, G.: Norm and Action: A Logical Inquiry. Routledge and Kegan Paul,
London (1963)

21. Alchourron, C., Bulygin, E.: The Expressive Conception of Norms. In Hilpinen,
R., ed.: New Studies in Deontic Logics, London, D. Reidel (1981) 95–124

22. Lomuscio, A., Nute, D., eds.: Procs. of DEON 2004. Volume 3065 of LNAI. Springer
Verlag (2004)

23. Boella, G., van der Torre, L.: Permission and Obligations in Hierarchical Normative
Systems. In: Procs. ICAIL 2003, ACM Press (2003)

24. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Implementing Norms in Multi-
agent Systems. Volume 3187 of LNAI., Springer-Verlag (2004)

25. Fornara, N., Viganò, F., Colombetti, M.: A Communicative Act Library in the
Context of Artificial Institutions. In: Procs. EUMAS. (2004)

26. Vázquez-Salceda, J., Aldewereld, H., Dignum, F.: Norms in Multiagent Systems:
Some Implementation Guidelines. In: Procs. EUMAS. (2004)

27. López y López, F., Luck, M.: A Model of Normative Multi-Agent Systems and
Dynamic Relationships. Volume 2934 of LNAI., Springer-Verlag (2004)

28. Artikis, A., Kamara, L., Pitt, J., Sergot, M.: A Protocol for Resource Sharing in
Norm-Governed Ad Hoc Networks. Volume 3476 of LNAI. Springer-Verlag (2004)

29. Michael, L., Parkes, D.C., Pfeffer, A.: Specifying and monitoring market mecha-
nisms using rights and obligations. In: Proc. AMEC VI. (2004)

30. Vasconcelos, W.W.: Norm Verification and Analysis of Electronic Institutions.
Volume 3476 of LNAI. Springer-Verlag (2004)

