
Computation of skeptical outputs in P-DeLP satisfying
indirect consistency: a level-based approach

Teresa Alsinet
Dept. of Computer Science

University of Lleida
Lleida, Spain

tracy@diei.udl.cat

Carlos I. Chesñevar
Dept. of Computer Science

Universidad Nacional del Sur
Bah́ıa Blanca, Argentina

cic@cs.uns.edu.ar

Llúıs Godo
Artificial Intelligence

Research Institute, CSIC
Bellaterra, Spain
godo@iiia.csic.es

Abstract

Recent research has identified the
notion of indirect consistency as
a rationality postulate that ev-
ery rule-based argumentation frame-
works should satisfy. Possibilistic
Defeasible Logic Programming (P-
DeLP) is an argumentation frame-
work based on logic programming
which incorporates a treatment of
possibilistic uncertainty at object-
language level, in which indirect con-
sistency does not hold. In this pa-
per we consider a novel approach to
computing warranted arguments in
P-DeLP which ensures the above ra-
tionality postulate and we describe
a procedure to effectively compute
them.

Keywords: argumentation, uncer-
tainty handling, possibilistic logic

1 Introduction and motivation

Over the last few years, argumentation has
been gaining increasing importance in several
AI-related areas, mainly as a vehicle for facil-
itating rationally justifiable decision making
when handling incomplete and potentially in-
consistent information. Recently Caminada
& Amgoud have defined several rationality
postulates [6] which every rule-based argu-
mentation system should satisfy. One of such
postulates (called Indirect Consistency) in-
volves ensuring that the closure of warranted

conclusions be guaranteed to be consistent.
Failing to satisfy this postulate implies some
anomalies and unintuitive results (e.g. the
modus ponens rule cannot be applied based
on justified conclusions). A number of rule-
based argumentation systems are identified in
which such postulate does not hold (includ-
ing DeLP [10] and Prakken & Sartor’s [12],
among others). As an alternative to solve this
problem, the use of transposed rules is pro-
posed to extend the representation of strict
rules. For grounded semantics, the use of a
transposition operator ensures that all ratio-
nality postulates are satisfied.

Possibilistic Defeasible Logic Programming
(P-DeLP) [2] is an argumentation framework
based on logic programming which incorpo-
rates the treatment of possibilistic uncer-
tainty at the object-language level. Indeed, P-
DeLP is an extension of Defeasible Logic Pro-
gramming (DeLP) [10], a logic programming
approach to argumentation which has been
successfully used to solve real-world problems
in several contexts such as knowledge distri-
bution [4] and recommendations systems [9],
among others. As in the case of DeLP, the
P-DeLP semantics is skeptical, based on a
query-driven proof procedure which computes
warranted (justified) arguments. Following
the terminology used in [6], P-DeLP can be
seen as a member of the family of rule-based
argumentation systems, as it is based on a log-
ical language defined over a set of (weigthed)
literals and the notions of strict and defea-
sible rules, which are used to characterize a
P-DeLP program.

L. Magdalena, M. Ojeda-Aciego, J.L. Verdegay (eds): Proceedings of IPMU’08, pp. 497–504
Torremolinos (Málaga), June 22–27, 2008

In [1] the authors have presented a novel level-
based approach to computing warranted argu-
ments in P-DeLP which ensures the above ra-
tionality postulate without requiring the use
of transposed rules. In this paper, after sum-
marizing in Sections 2, 3 and 4 the main
elements of P-DeLP, the role of Caminada
and Amgoud’s rationality postulate of indi-
rect consistency and the new approach intro-
duced in [1] respectively, we further build on
this new approach in Section 5 by identifying
situations in which a given program may yield
multiple outputs, and considering for such a
case a skeptical output which is the intersec-
tion of the possible outputs. We also provide
an effective procedure to compute the skep-
tical set of warranted arguments for a given
P-DeLP program.

2 Argumentation in P-DeLP: an
overview

In order to make this paper self-contained,
we will present next the main definitions that
characterize the P-DeLP framework. For de-
tails the reader is referred to [2]. The lan-
guage of P-DeLP is inherited from the lan-
guage of logic programming, including the
usual notions of atom, literal, rule and fact,
but over an extended set of atoms where a new
atom “∼ p” is added for each original atom
p. Therefore, a literal in P-DeLP is either an
atom p or a (negated) atom of the form ∼p,
and a goal is any literal.

A weighted clause is a pair of the form (ϕ, α),
where ϕ is a rule Q ← P1 ∧ . . . ∧ Pk or a fact
Q (i.e., a rule with empty antecedent), where
Q,P1, . . . , Pk are literals, and α ∈ [0, 1] ex-
presses a lower bound for the necessity degree
of ϕ. We distinguish between certain and un-
certain clauses. A clause (ϕ, α) is referred as
certain if α = 1 and uncertain, otherwise. A
set of P-DeLP clauses Γ will be deemed as
contradictory, denoted Γ % ⊥, if , for some
atom q, Γ % (q, α) and Γ % (∼ q, β), with
α > 0 and β > 0, where % stands for de-
duction by means of the following particular
instance of the generalized modus ponens rule:

(Q ← P1 ∧ · · · ∧ Pk , α)
(P1, β1), . . . , (Pk, βk)
(Q,min(α, β1, . . . , βk))

[GMP]

A P-DeLP program P (or just program P) is
a pair (Π,∆), where Π is a non-contradictory
finite set of certain clauses, and ∆ is a finite
set of uncertain clauses. Formally, given a
program P = (Π,∆), we say that a set A
⊆ ∆ of uncertain clauses is an argument for a
goal Q with necessity degree α > 0, denoted
〈A, Q, α〉, iff:

1. Π ∪ A is non contradictory;
2. α = max{β ∈ [0, 1] | Π∪A % (Q, β)}, i.e.

α is the greatest degree of deduction of
Q from Π ∪ A;

3. A is minimal wrt set inclusion, i.e. there
is no A1 ⊂ A such that Π ∪ A1 % (Q,α).

Moreover, if 〈A, Q, α〉 and 〈S, R, β〉 are two
arguments wrt a program P = (Π,∆), we say
that 〈S, R, β〉 is a subargument of 〈A, Q, α〉,
denoted 〈S, R, β〉 , 〈A, Q, α〉, whenever S ⊆
A. From the definition of argument, it follows
that if 〈S, R, β〉 , 〈A, Q, α〉 then (i) β ≥ α,
and (ii) if β = α, then S = A iff R = Q.

Let P be a P-DeLP program, and let
〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 be two argu-
ments wrt P. We say that 〈A1, Q1, α1〉 coun-
terargues 〈A2, Q2, α2〉1 iff there exists a sub-
argument (called disagreement subargument)
〈S, Q, β〉 of 〈A2, Q2, α2〉 such that Q1 = ∼
Q. In such a case, we say that 〈A1, Q1, α1〉
is a proper (resp. blocking) defeater for
〈A2, Q2, α2〉 when α1 > β (resp. α1 = β).

In P-DeLP, as in other argumentation sys-
tems [8, 13], argument-based inference in-
volves a dialectical process in which argu-
ments are compared in order to determine
which beliefs or goals are ultimately accepted
(or justified or warranted) on the basis of
a given program. This is formalized in
terms of an exhaustive dialectical analysis
of all possible argumentation lines rooted in
a given argument. An argumentation line

1In what follows, for a given goal Q, we will write
∼Q as an abbreviation to denote “∼q”, if Q ≡ q, and
“q”, if Q ≡ ∼q.

498 Proceedings of IPMU’08

starting in an argument 〈A0, Q0, α0〉 is a
sequence of arguments λ = [〈A0, Q0, α0〉,
〈A1, Q1, α1〉, . . . , 〈An, Qn, αn〉, . . .] such that
each 〈Ai, Qi, αi〉 is a defeater for the previous
argument 〈Ai−1, Qi−1, αi−1〉 in the sequence,
i > 0. In order to avoid fallacious reasoning
additional constraints are imposed, namely:

1. Non-contradiction: given an argumen-
tation line λ, the set of arguments of
the proponent (respectively opponent)
should be non-contradictory wrt P. 2

2. Progressive argumentation: (i) every
blocking defeater 〈Ai, Qi, αi〉 in λ with
i > 0 is defeated by a proper defeater3

〈Ai+1, Qi+1, αi+1〉 in λ; and (ii) each ar-
gument 〈Ai, Qi, αi〉 in λ, with i ≥ 2, is
such that Qi .=∼Qi−1.

An argumentation line satisfying these con-
straints is called acceptable, and can be proven
to be finite. The set of all possible acceptable
argumentation lines forms a structure called
dialectical tree. Given a program P = (Π,∆),
we say that a goal Q is warranted wrt P with
a maximum necessity degree α, written P |∼w

〈A, Q, α〉, whenever there exists an argument
〈A, Q, α〉 such that: (i) every acceptable ar-
gumentation line starting with 〈A, Q, α〉 has
an odd number of arguments; and (ii) there
is no other argument of the form 〈A1, Q, β〉,
with β > α, satisfying (i).

3 Indirect consistency and
transposition of strict rules

In a recent paper Caminada and Amgoud [6]
have characterized three rationality postulates
that, according to the authors, any rule-based
argumentation system should satisfy in order
to avoid anomalies and unintuitive results.
Their formalization is intentionally generic,
based on a defeasible theory T = 〈S,D〉,
where S is a set of strict rules and D is a
set of defeasible rules. The notion of negation
is modelled in the standard way by means of

2Non-contradiction for a set of arguments is defined
as follows: a set S =

⋃n

i=1
{〈Ai, Qi, αi〉 } is contradic-

tory wrt P iff Π ∪
⋃n

i=1
Ai is contradictory.

3It must be noted that the last argument in an
argumentation line is allowed to be a blocking defeater
for the previous one.

a function “−”. An argumentation system is
a pair 〈Args,Def〉, where Args is a set of ar-
guments (based on a defeasible theory) and
Def ⊆ Args×Args is a defeat relation. The
closure of a set of literals L under the set S,
denoted CLS(L) is the smallest set such that
L ⊆ CLS(L), and if φ1, . . . , φn → ψ ∈ S,
and φ1, . . . , φn ∈ CLS(L), then ψ ∈ CLS(L).
A set of literals L is consistent iff there not
exist ψ, φ ∈ L such that ψ = −φ, other-
wise it is said to be inconsistent. An argu-
mentation system 〈Args,Def〉 can have dif-
ferent extensions E1, E2, . . . , En (n ≥ 1) ac-
cording to the adopted semantics. The con-
clusions associated with those arguments be-
longing to a given extension Ei are defined as
Concs(Ei), and the output of the argumenta-
tion system is defined skeptically as Output =⋂

i=1...n Concs(Ei).

On the basis of the above concepts, Cami-
nada and Amgoud [6] present three impor-
tant postulates: direct consistency, indirect
consistency and closure. Let T be a defea-
sible theory, 〈Args,Def〉 an argumentation
system built from T , Output the set of justi-
fied (warranted) conclusions, and E1, . . . , En

its extensions under a given semantics. Then
these three postulates are defined as follows:

• 〈Args,Def〉 satisfies closure iff (1) for
each i, Concs(Ei) = CLS(Concs(Ei)),
and (2) Output = CLS(Output).

• 〈Args,Def〉 satisfies direct consis-
tency iff (1) for each i, Concs(Ei) is con-
sistent, and (2) Output is consistent.

• 〈Args,Def〉 satisfies indirect consis-
tency iff (1) for each i, CLS(Concs(Ei))
is consistent, and (2) CLS(Output) is
consistent.

They show that many rule-based argumen-
tation systems fail to satisfy indirect con-
sistency, in particular DeLP. The same ap-
plies for P-DeLP, as illustrated next. Con-
sider the program P = (Π,∆), where Π =
{(y, 1), (∼y ← a ∧ b, 1)} and ∆ = { (a, 0.9),
(b, 0.9) }. It is easy to see that arguments
〈{(a, 0.9)}, a, 0.9〉 and 〈{(b, 0.9)}, b, 0.9〉 have
no defeaters wrt P. Thus {y, a, b} = Output
turns out to be warranted, but y,∼ y ∈

Proceedings of IPMU’08 499

CLΠ({y, a, b}), so that indirect consistency
does not hold.

Caminada and Amgoud propose as a solution
the definition of a special transposition oper-
ator Cltp for computing the closure of strict
rules. This accounts for taking every strict
rule r = φ1, φ2, . . . , φn → ψ as a material im-
plication in propositional logic which is equiv-
alent to the disjunction φ1∨φ2∨ . . . , φn∨¬ψ.
From that disjunction different rules of the
form φ1, . . . , φi−1,¬ψ, φi+1, . . . , φn → ¬φi can
be obtained (transpositions of r). If S is a set
of strict rules, Cltp is the minimal set such
that (1) S ⊆ Cltp(S) and (2) if s ∈ Cltp(S)
and t is a transposition of s, then t ∈ Cltp(S).
The use of such an operator allows the three
rationality postulates to be satisfied in the
case of the grounded extension [6, pp. 294]
(which corresponds to the one associated with
systems like DeLP or P-DeLP).

4 A level-based approach to
computing warranted arguments

Although Caminada and Amgoud’s proposal
of using transposed rules is indeed valu-
able for rule-based argumentation systems to
overcome the problem of indirect inconsis-
tency, we have provided in [1] a new for-
mal definition of warranted goal with max-
imum necessity degree which takes into ac-
count direct and indirect conflicts between ar-
guments without explicitly transposing strict
rules. This new approach distinguishes be-
tween warranted and blocked goals, which al-
lows for a more refined criterion and has some
other advantages (see [1] for a discussion), in
particular it will allow us to define in next sec-
tion an efficient top-down procedure for their
computation.

The idea is the following. While direct
conflicts between arguments refer to the case
of both proper and blocking defeaters, as
described in Section 2, indirect conflicts be-
tween arguments refer to the case when there
exists an inconsistency emerging from the set
of certain (strict) clauses of a program and
arguments with no defeaters. For instance,
consider the program P = (Π,∆) with Π =

{(∼y ← a ∧ b, 1), (y, 1), (∼x ← c ∧ d , 1), (x, 1)}
and ∆ = {(a, 0.7), (b, 0.7), (c, 0.7), (d, 0.6)}.
In the original P-DeLP, 〈{(a, 0.7)}, a, 0.7〉
and 〈{(b, 0.7)}, b, 0.7〉 are arguments with
no defeaters and therefore their conclu-
sions would be warranted. However, since
Π ∪ {(a, 0.7), (b, 0.7)} % ⊥, arguments
〈{(a, 0.7)}, a, 0.7〉 and 〈{(b, 0.7)}, b, 0.7〉 ex-
press (indirect) contradictory information.
Moreover, as both goals are supported by
arguments with the same necessity degree
0.7, none of them should be neither war-
ranted nor rejected: we will refer to them
as (indirect) blocked goals. On the other
hand, a similar situation appears with
〈{(c, 0.7)}, c, 0.7〉 and 〈{(d, 0.6)}, d, 0.6〉. As
before, Π ∪ {(c, 0.7), (d, 0.6)} %⊥ , but in
this case the necessity degree of goal c is
greater than the necessity degree of goal d.
In such a case, c can be indeed considered as
a warranted goal (to the degree 0.7).

According to [1], an output for a P-DeLP
program P is a pair (Warr, Block), where
Warr and Block, denote respectively a set
of warranted and blocked goals (together with
their degrees) fulfilling a set of conditions, for-
malized in the next definition, that ensure
a proper handling of the problem of global
inconsistency. The intended construction of
the sets Warr, Block is done level-wise, start-
ing from the highest level and iteratively go-
ing down from one level to next level be-
low. If 1 ≥ α1 > . . . > αp > 0 are the
weights appearing in the set of arguments
ARG(P) = {〈A, Q, α〉 |A is an argument
for Q with necessity α wrt P}, one can write
Warr = Warr(α1) ∪ . . . ∪ Warr(αp) and
Block = Block(α1) ∪ . . . ∪ Block(αp), where
Warr(αi) and Block(αi) are respectively the
sets of the warranted and blocked goals to
the (maximum) degree αi. We will also
write Warr(> αi) to denote ∪β>αiWarr(β),
and analogously for Block(> αi), assuming
Warr(> α1) = Block(> α1) = ∅. In what
follows, given a program P = (Π,∆) we will
denote by rules(Π) and facts(Π) the set of
strict rules and strict facts of P respectively.

Definition 1 (Output for P-DeLP program)
An output for a program P = (Π,∆)is a

500 Proceedings of IPMU’08

pair (Warr, Block) where the sets Warr(αi)
and Block(αi), for i = 1 . . . p are required to
satisfy the following recursive constraints:

1. An argument 〈A,Q,αi〉 ∈ ARG(P) is
called acceptable if it satisfies the following
three conditions:

(i) for any β > αi, neither (∼ Q, β) nor
(Q, β) are in Warr(> αi) ∪Block(> αi)

(ii) if 〈B, R, β〉 , 〈A,Q,αi〉 with R .= Q, then
(R, β) ∈ Warr(β)

(iii) rules(Π) ∪ Warr(> αi) ∪ {(R,αi) |
〈B, R, αi〉 , 〈A,Q,αi〉} .% ⊥.

2. For each acceptable 〈A,Q,αi〉 ∈ ARG(P),
(Q,αi) ∈ Block(αi) whenever

(i) either there exists an acceptable argument
〈B,∼Q,αi〉 ∈ ARG(P); or

(ii) there exists G ⊆ {(P, αi) | 〈C, P, αi〉 ∈
ARG(P) is acceptable with ∼ P /∈
Block(αi)} such that G ∪Warr(> αi) ∪
rules(Π) .% ⊥ but G ∪ Warr(> αi) ∪
rules(Π) ∪ {(Q,αi)} %⊥ ;

otherwise, (Q,αi) ∈ Warr(αi).

The intuition underlying this definition is as
follows: an argument 〈A, Q, α〉 is either war-
ranted or blocked whenever each subargument
〈B, R, β〉 , 〈A, Q, α〉, with Q .= R, is war-
ranted; then it is finally warranted if it in-
duces neither direct nor indirect conflicts, oth-
erwise it is blocked.

It is shown in [1] that if (Warr, Block) is an
output of a P-DeLP program, the set Warr of
warranted goals is indeed non-contradictory
and satisfies indirect consistency with respect
to the set of strict rules.

Proposition 2 (Indirect consistency)
Let P = (Π,∆) be a P-DeLP program and let
(Warr, Block) be an output for P. Then:

(i) facts(Π) ⊆ Warr
(ii) Warr .% ⊥, and
(iii) if rules(Π) ∪Warr % (Q,α) then

(Q, β) ∈ Warr for some β ≥ α

5 Skeptical level-based approach

In this section we will come to the open ques-
tion formulated in [1] of whether a program

P always has a unique output (Warr, Block)
according to Def. 1. In general, the answer
is yes, although there are some recursive sit-
uations that might lead to different outputs.
These recursive situations can be produced by
both direct and indirect conflicts between ar-
guments. For instance, consider the program
P1 = (Π1,∆1), with

Π1 = {(y, 1)} and
∆1 = {(p, 0.9), (q, 0.9)

(∼p ← q , 0.9), (∼q ← p, 0.9)}.
Then, according to Def. 1, p is a warranted
goal iff q and ∼ q are a pair of blocked goals
and viceversa, q is a warranted goal iff p
and ∼ p are a pair of blocked goals. Hence,
in that case we have two possible outputs:
(Warr1, Block1) and (Warr2, Block2) where
Warr1 = {(y, 1), (p, 0.9)},
Block1 = {(q, 0.9), (∼q, 0.9)},
Warr2 = {(y, 1), (q, 0.9)} and
Block2 = {(p, 0.9), (∼p, 0.9)}.

In such a case, either p or q can be warranted
goals (but just one of them) and the indeter-
minacy is due to a direct conflict between ar-
guments in P since there exists an argument
for ∼p which depends on q and an argument
for ∼q which depends on p. A different recur-
sive situation is due to indirect conflicts be-
tween arguments. For instance, consider the
program P2 = (Π2,∆2), with

Π2 = {(y, 1),
(∼y ← p ∧ r , 1), (∼y ← q ∧ s, 1)}

∆2 = {(p, 0.9), (q, 0.9),
(r ← q , 0.9), (s ← p, 0.9)}.

According to Def. 1, p is a warranted goal iff q
and s are a pair of blocked goals and viceversa,
q is a warranted goal iff p and r are a pair
of blocked goals. Then, in this case we also
have two possible outputs: (Warr1, Block1)
and (Warr2, Block2) where
Warr1 = {(y, 1), (p, 0.9)},
Block1 = {(q, 0.9), (s, 0.9)},
Warr2 = {(y, 1), (q, 0.9)} and
Block2 = {(p, 0.9), (r, 0.9)}.

Again, either p or q can be warranted (but just
one of them) but now the indeterminacy is
due to an indirect conflict between arguments
in P2: the warranty of p depends on r which

Proceedings of IPMU’08 501

in turn depends on q, and the warranty of q
depends on s which in turn depends on p.

The above examples show that, although our
approach is skeptical, we can get alterna-
tive extensions for warranted beliefs whenever
some recursive situation, due to direct or in-
direct conflicts, occurs between the literals of
a P-DeLP program. A natural solution for
this problem would be adopting the intersec-
tion of all possible outputs in order to define
the set of those literals which are ultimately
warranted.

Definition 3 (Skeptical ouput) Let P be
a P-DeLP program, and let outputi(P) =
(Warri, Blocki) for i = 1, . . . , n denote all
possible outputs for P. Then, the skeptical
output for P is defined as outputskep(P) =
(Warr, Block) where Warr =

⋂
i=1...n Warri

and Block =
⋂

i=1...n Blocki.

Given a program P, it is always possible to
consider another program P ′ whose output
is unique and corresponds with the skeptical
output of P. Indeed, let W ′ =

⋃
i=1...n Warri,

B′ =
⋃

i=1...n Blocki, let ∆′ be defined as

∆′ = ∆\{(ϕ, α) ∈ ∆ | for some
Q ∈ (W ′\Warr)

⋃
(B′\Block)

either Q or ∼Q occurs in ϕ},

and let P ′ = (Π,∆′) be called the determin-
istic P-DeLP program for P. Then we have:

Proposition 4 Let P be a P-DeLP program,
let (Warr, Block) be the skeptical output for
P, and let P ′ be the deterministic P-DeLP
program for P. Then, (Warr, Block) is the
unique output for P ′ and hence satisfies indi-
rect inconsistency.

Proof: By construction each acceptable argu-
ment in P ′ is an acceptable argument in P.
But since acceptable arguments in P ′ only in-
volve literals in Warr∪Block, (Warr, Block)
is an output for P ′ as well. Now, by Defi-
nition 1, each acceptable argument is either
blocked or warranted, hence, by construction
of Warr and Block, (Warr, Block) is the only
output for P ′. !

For instance, the skeptical outputs for

the above P-DeLP programs P1 and P2

are outputskep(P1) = outputskep(P2) =
({(y, 1)}, ∅), and the corresponding determin-
istic P-DeLP programs are P ′

1 = (Π1,∆′
1) and

P ′
2 = (Π2,∆′

2) with ∆′
1 = ∆′

2 = ∅.

Given a P-DeLP program P the following al-
gorithm determines whether the output of P
is unique and computes the skeptical output
for P together with the deterministic P-DeLP
program whenever some recursive situation
leads to different outputs.

Algorithm 5 Skeptical output
Input P = (Π, ∆): A P-DeLP program

Output
unicity: Boolean
P′ = (Π, ∆′): Deterministic P-DeLP program
(Ws, Bs): Skeptical output for P

Auxiliary variables
α: Necessity degree ∈ [0, 1]
C: Set of arguments
A: Set of goals
G: Set of goals
(We, Be): Union of outputs for level α

Method
unicity := true
∆′ := ∆
Ws := {(Q, 1) | Π " (Q, 1)}
Bs := ∅
α := maximum level degree(∆′)
while (α $= 0) do

C : = {〈A,Q, α〉 | A ⊆ ∆′ is an argument
for Q with necessity α and it is
acceptable untill the α-level }

A := {Q | 〈A,Q, α〉 ∈ C is acceptable }
(Ws, Bs, We, Be) :=

level warrant(α, C, A, Ws, Bs, ∅)
∆′ := ∆′\{(ϕ, β) ∈ ∆′ | for some

P ∈ ((We\Ws) ∪ (Be\Bs))
either P or ∼P occurs in ϕ }

α := next level degree(∆′, α)

end while
return(unicity, Ws, Bs, ∆′)

First the algorithm computes the set of war-
rants form the set of certain clauses Π. Then,
for each level α < 1 of uncertain clauses in
∆, it determines the set C of “almost” ac-
ceptable arguments to the α-level4 and the
set A of goals with ultimately accepted ar-
guments in C. Finally, the algorithm com-
putes, by means of the recursive function
level warrant, the skeptical output (Ws, Bs)
for each level α. In case of indeterminacy the
function level warrant updates the unicity
variable and computes the extended set of
warranted and blocked arguments (We, Be),
i.e. the union of all outputs of level α. Then,
from (Ws, Bs) and (We, Be), the algorithm

4An argument 〈A,Q, α〉 is called “almost” accept-
able to the α-level if it satisfies the three conditions
of acceptability described in Def. 1 relative to the sets
Ws and Bs, that is, whenever: (i) (Q, β) &∈ Ws ∪ Bs

and (∼ Q, β) &∈ Ws ∪ Bs for all β > α, (ii) if
〈B, R, β〉 (〈A,Q, α〉 with β > α then (R, β) ∈ Ws,
and (iii) rules(Π) ∪Ws ∪ {(Q, α)} &) ⊥.

502 Proceedings of IPMU’08

updates the deterministic set of uncertain
clauses ∆′. Note that for each level α the
skeptical output is computed form the up-
dated set of uncertain clauses ∆′, and thus,
the indeterminacy at level α is propagated to
the rest of levels lower than α.

function level warrant
Input

α: Necessity degree ∈ [0, 1]
C: Set of arguments
A: Set of acceptable goals
W : Set of warranted goals
B: Set of blocked goals
G: Set of goals

Output
(Ws, Bs): Skeptical output
(We, Be): Union of outputs

Auxiliary variables
I, D, S: Set of goals
CQ1 , . . ., CQn : Set of arguments
AQ1 , . . ., AQn : Set of goals

W
Q1
s , . . ., W Qn

s : Set of skeptical warranted goals

B
Q1
s , . . ., BQn

s : Set of skeptical blocked goals

W
Q1
e , . . ., W Qn

e : Union of warranted goals

B
Q1
e , . . ., BQn

e : Union of blocked goals

Method
while (A $= ∅ or G $= ∅) do

repeat
for each Q ∈ A such that ∼Q ∈ A do

B := B ∪ {(Q, α), (∼Q, α)}
A := A\{Q,∼Q}
C : = C\{〈A, P, α〉 ∈ C | 〈B, R, α〉

* 〈A,P, α〉 with R = Q or R =∼Q}
end for

repeat
for each Q ∈ A such that 〈A,∼Q, α〉 $∈ C do

G := G ∪ {Q}
A := A\{Q}
C : = C\{〈A, Q, α〉}

end for
I := {Q ∈ G | indirect block(α,Q,G,W , ∅) }
B := B ∪ {(Q, α) | Q ∈ I}
G := G\I
C : = C\{〈A, P, α〉 ∈ C | 〈B, R, α〉

* 〈A,P, α〉 with R ∈ I or ∼R ∈ I}
until C does not vary
for each Q ∈ G do

D: = compute dependencies(α,Q,C,A)
if (¬ indirect block(α, Q,G,W , D)) then

W := W ∪ {(Q, α)}
G := G\{Q}
C := C\{〈A, Q, α〉}

end if
end for
A := A ∪ {Q | 〈A,Q, α〉 ∈ C is acceptable }

until A does not vary
S := direct indeterminacy(α, A, C)

if (S $= ∅) then
unicity := false
for each Q ∈ S do

BQ := B ∪ {(Q, α), (∼Q, α)}
AQ := A\{Q}
CQ : = C\{〈A, P, α〉 ∈ C | 〈B, R, α〉

* 〈A,P, α〉 with R = Q or R =∼Q}
(W Q

s , BQ
s , W Q

e , BQ
e) :=

level warrant(α, CQ, AQ, W , BQ, G)
end for
(Ws, Bs) := (∩Q∈SWQ,∩Q∈SBQ)

(We, Be) := (∪Q∈S(W Q
s ∪ W Q

e),∪Q∈S(BQ
s ∪ BQ

e))
return(Ws, Bs, We, Be)

else
S:= indirect indeterminacy(α, A, C, W , G)
if (S $= ∅) then

unicity := false
for each Q ∈ S do

WQ := W ∪ {(Q, α)}
GQ := G\{Q}
CQ := C\{〈A, Q, α〉}
AQ := A ∪ {Q | 〈A,Q, α〉 ∈ CQ is acceptable }
(W Q

s , BQ
s , W Q

e , BQ
e) :=

level warrant(α, CQ, AQ, WQ, B, GQ)
end for

(Ws, Bs) := (∩Q∈SWQ,∩Q∈SBQ)

(We, Be) := (∪Q∈S(W Q
s ∪ W Q

e),∪Q∈S(BQ
s ∪ BQ

e))

return(Ws, Bs, We, Be)
end if

end while
(Ws, Bs) := (W , B)
(We, Be) := (W , B)
return(Ws, Bs, We, Be)

The function level warrant first checks di-
rect conflicts between acceptable goals of A
and computes the set G of acceptable goals
which do not produce direct conflicts. Then
the function indirect block checks possi-
ble indirect conflicts between the goals of
G and the set of warranted goals W and,
for each goal Q ∈ G, Q is warranted iff Q
does not produce indirect conflicts between
the goals of G, the set of warranted goals
W , and the set of goals D which do not de-
pend on Q. For each Q ∈ G, the function
compute dependencies computes, from the
arguments in C and the set of acceptable goals
A, the set of goals D which do not depend on
Q. Finally functions direct indeterminacy
and indirect indeterminacy check possible
recursive situations between the goals of A
and G, respectively, and compute the set of
goals S = {Q1, . . . , Qn} which lead to the in-
determinacy. When the indeterminacy occurs
between the goals of A, i.e. when S ⊆ A, the
function level warrant recursively computes
the output obtained for each goal Qi ∈ S by
setting Qi as a blocked goal. Similarly, when
the indeterminacy occurs between the goals
of G, the function level warrant computes
the output obtained for each goal Qi ∈ S
by setting Qi as a warranted goal. Finally
the skeptical output (Ws, Bs) and the ex-
tended output (We, Be) are computed by tak-
ing the intersection and union, respectively,
of the set of all possible outputs for each goal
Qi ∈ S. When the output is unique the func-
tion level warrant processes all goals in A
and G and the extended output corresponds
with the skeptical output.

function indirect block
Input

α: Necessity degree ∈ [0, 1]
Q: Goal

G: Set of goals
W : Set of warranted goals
D: Set of goals which do not depend on Q

Output conflict: Boolean
Method

conflict := ∃ S ⊆ (G\{Q}) ∪ D such that
rules(Π) ∪ W ∪ {(P, α) | P ∈ S} $" ⊥
and rules(Π) ∪ W ∪ {(P, α) | P ∈ S}∪
{(Q, α)} " ⊥

return(conflict)

function compute dependencies
Input

α: Necessity degree ∈ [0, 1]

Proceedings of IPMU’08 503

Q: Goal
C: Set of arguments
A: Set of goals

Output D: Set of goals
Method

D := {P ∈ A | 〈A,∼P, α〉 ∈ C and Q is not a subgoal of A}∪
{P | 〈A, P, α〉 ∈ C and Q is not a subgoal of A}

return(D)

The function indirect block determines
whether there exists an indirect conflict be-
tween the goal Q and the set of goals S ⊆
(G\{Q}) ∪D which do not depend on Q and
which could be warranted. And the func-
tion compute dependencies computes, from
A and C, the set of goals D which do not
depend on Q and which could be warranted.

function direct indeterminacy
Input

α: Necessity degree ∈ [0, 1]
A: Set of goals
C: Set of arguments

Output S: Set of goals
Method

if (∃ S ⊆ A such that, for all Q ∈ S,
〈A,∼Q, α〉 ∈ C and R is a subgoal of A,
for all R ∈ S with R $= Q) then return(S)

else return(∅)

The function direct indeterminacy checks
whether, for some set of goals S ⊆ A, war-
ranting each goal Q ∈ S depends on warrant-
ing ∼Q which in turn depends on warranting
the rest of goals in S.

function indirect indeterminacy
Input

α: Necessity degree ∈ [0, 1]
A: Set of goals
C: Set of arguments
W : Set of warranted goals
G: Set of goals

Output S: Set of goals
Method

if (∃ S ⊆ G such that for all Q ∈ S,
∃ DQ ⊆ compute dependences(α, Q, C, A)
such that indirect block(α, Q, G, W , DQ)
with DQ minimal w.r.t. set inclusion and,
for all P ∈ DQ, the warranty of P depends on
the warranty of R ∈ S and, for all R ∈ S with R $= Q,
the warranty of P ∈ DQ depends on the warranty of R) then
return(S)

else return(∅)

The function indirect indeterminacy
checks whether for some set of goals S ⊆ G
warranting each goal Q ∈ S depends
on warranting the set of goals DQ ⊆
compute dependences(α, Q, C, A) which in
turn depends on warranting the rest of goals
in S.

Acknowledgements. This research was par-
tially supported by the Spanish CICYT Projects
MULOG2 (TIN2007-68005-C04-01/02) and IEA
(TIN2006-15662-C02-01/02), by CONICET (Ar-
gentina), and by the Secretaŕıa General de Ciencia
y Tecnoloǵıa de la Universidad Nacional del Sur
(Project PGI 24/ZN10).

References

[1] T. Alsinet, C. I. Chesñevar and L. Godo.
A Level-based Approach to Computing War-
ranted Arguments in Possibilistic Defeasible
Logic Programming. In Proc. of COMMA-
2008 Conference, 2008 (in press).

[2] T. Alsinet, C. I. Chesñevar, L. Godo, and
G. Simari. A logic programming framework
for possibilistic argumentation: Formaliza-
tion and logical properties. Fuzzy Sets and
Systems, 159(10):1208–1209, 2008.

[3] P. Besnard and A. Hunter. A logic-based the-
ory of deductive arguments. Artif. Intell.,
128(1-2):203–235, 2001.

[4] R. Brena, J. Aguirre, C. Chesñevar,
E. Ramı́rez, and L. Garrido. Knowledge and
information distribution leveraged by intelli-
gent agents. Knowl. Inf. Syst., 12(2):203–227,
2007.

[5] M. Caminada and L. Amgoud. An axiomatic
account of formal argumentation. In Proc. of
AAAI-2005 Conference, pp. 608–613.

[6] M. Caminada and L. Amgoud. On the eval-
uation of argumentation formalisms. Artif.
Intell., 171(5-6):286–310, 2007.

[7] C. Cayrol and M. Lagasquie-Schiex. Gradu-
ality in argumentation. J. Artif. Intell. Res.
(JAIR), 23:245–297, 2005.

[8] C. Chesñevar, A. Maguitman, and R. Loui.
Logical Models of Argument. ACM Comput-
ing Surveys, 32(4):337–383, December 2000.

[9] C. Chesñevar, A. Maguitman, and G. Simari.
Argument-Based Critics and Recommenders:
A Qualitative Perspective on User Support
Systems. Journal of Data and Knowledge En-
gineering, 59(2):293–319, 2006.

[10] A. Garćıa and G. Simari. Defeasible Logic
Programming: An Argumentative Approach.
Theory and Practice of Logic Programming,
4(1):95–138, 2004.

[11] J. Pollock. Defeasible reasoning with variable
degrees of justification. Artif. Intell., 133(1-
2):233–282, 2001.

[12] H. Prakken and G. Sartor. Argument-based
extended logic programming with defeasible
priorities. Journal of Applied Non-classical
Logics, 7:25–75, 1997.

[13] H. Prakken and G. Vreeswijk. Logical
Systems for Defeasible Argumentation. In
D. Gabbay and F.Guenther (eds.), Handbook
of Phil. Logic, pp. 219–318. Kluwer, 2002.

504 Proceedings of IPMU’08

