
Improving SAT-Based Weighted MaxSAT

Solvers

Carlos Ansótegui1, Maria Luisa Bonet2, Joel Gabàs1, and Jordi Levy3

1 DIEI, Univ. de Lleida
carlos@diei.udl.cat

joel.gabas@diei.udl.cat
2 LSI, UPC

bonet@lsi.upc.edu
3 IIIA-CSIC

levy@iiia.csic.es

Abstract. In the last few years, there has been a significant effort
in designing and developing efficient Weighted MaxSAT solvers. We
study in detail the WPM1 algorithm identifying some weaknesses
and proposing solutions to mitigate them. Basically, WPM1 is based
on iteratively calling a SAT solver and adding blocking variables
and cardinality constraints to relax the unsatisfiable cores returned
by the SAT solver. We firstly identify and study how to break
the symmetries introduced by the blocking variables and cardinality
constraints. Secondly, we study how to prioritize the discovery of
higher quality cores. We present an extensive experimental investigation
comparing the new algorithm with state-of-the-art solvers showing that
our approach makes WPM1 much more competitive.

1 Introduction

Many combinatorial optimization problems can be modelled as Weighted Partial
MaxSAT formulas. Therefore, Weighted Partial MaxSAT solvers can be used
in several domains as: combinatorial auctions, scheduling and timetabling
problems, FPGA routing, software package installation, etc.

The Maximum Satisfiability (MaxSAT) problem is the optimization version
of the satisfiability (SAT) problem. The goal is to maximize the number of
satisfied clauses in a SAT formula, in other words, to minimize the number of
falsified clauses. The clauses can be divided into hard and soft clauses, depending
on whether they must be satisfied (hard) or they may or may not be satisfied
(soft). If our formula only contains soft clauses it is a MaxSAT formula, and
if it contains both, hard and soft clauses, it is a Partial MaxSAT formula. The
Partial MaxSAT problem can be further generalized to the Weighted Partial
MaxSAT problem. The idea is that not all soft clauses are equally important.
The addition of weights to soft clauses makes the formula Weighted, and lets
us introduce preferences between them. The weights indicate the penalty for
falsifying a clause. Given a Weighted Partial MaxSAT problem, our goal is to

find an assignment that satisfies all the hard clauses, and the sum of the weights
of the falsified clauses is minimal. Such an assignment will be optimal in this
context.

SAT technology has evolved to a mature state in the last decade. SAT solvers
are really successful at solving industrial decision problems. The next challenge is
to use this technology to solve more efficiently industrial optimization problems.
Although there has been important work in this direction, we have not reached
the success of SAT solvers yet. The present work is one more step in MaxSAT
technology to achieve full industrial applicability.

Originally, MaxSAT solvers such as WMaxSatz [12], MiniMaxSat [10],
IncWMaxSatz [13] and akmaxsat where depth-first branch and bound based.
Recently, there has been a development of SAT based approaches which
essentially iteratively call a SAT solver: SAT4J [5], WBO and MSUNCORE [14],
WPM1 [1], WPM2 [2], BINC and BINCD [11] and maxHS [8]. While branch
and bound based solvers are competitive for random and crafted instances, SAT
based solvers are better for industrial instances.

The WPM1, WBO and MSUNCORE solvers implement weighted versions
of the Fu and Malik’s algorithm [9]. Essentially, they perform a sequence of
calls to a SAT solver, and if the SAT solver returns an unsatisfiable core, they
reformulate the problem by introducing new auxiliary variables and cardinality
constraints which relax the clauses in the core. Further details are given in
section 3 and 5. In this work, we analyze in more detail the WPM1 algorithm
to identify and mitigate some weaknesses. The first weakness we have observed
is that the addition of the auxiliary variables naturally introduce symmetries
which should be broken to achieve better performance. The second weakness
has to do with the quality of the cores returned by the SAT solver. Since the
SAT solver is used as a black box, we need to come up with new strategies to
lead the solver to find better quality cores.

We have conducted an extensive experimental investigation with the best
solvers at the last MaxSAT evaluation and other solvers that did not take part
in the evaluation, but have been reported to show very good performance. We
can see that our current approach can boost radically the performance of the
WPM1 becoming the most robust approach.

This paper proceeds as follows: Section 2 introduces some preliminary
concepts; Section 3 presents the Fu and Malik’s algorithm; Section 4 describes
the problem of symmetries and shows how to break them; Section 5 presents the
WPM1 algorithm and describes the problem of the quality of the cores; Section 6
introduces an stratified approach to come up with higher quality cores; Section 7
presents some previous concepts needed to describe a general stratified approach
discussed in Section 8 and finally Section 9 presents the experimental evaluation.

2 Preliminaries

We consider an infinite countable set of boolean variables X . A literal l is either
a variable xi ∈ X or its negation xi. A clause C is a finite set of literals, denoted

2

as C = l1 ∨ · · · ∨ lr, or as for the empty clause. A SAT formula ϕ is a finite
set of clauses, denoted as ϕ = C1 ∧ · · · ∧ Cm.

A weighted clause is a pair (C,w), where C is a clause and w is a natural
number or infinity, indicating the penalty for falsifying C. A clause is called hard
if the corresponding weight is infinity, otherwise the clause is called soft.

A (Weighted Partial) MaxSAT formula is a multiset of weighted clauses

ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}

where the first m clauses are soft and the last m′ clauses are hard. The set of
variables occurring in a formula ϕ is noted as var(ϕ).

A total truth assignment for a formula ϕ is a function I : var(ϕ) → {0, 1},
that can be extended to literals, clauses, SAT formulas and MaxSAT formulas,
the following way:

I(xi) = 1− I(xi)
I(l1 ∨ . . . ∨ lr) = max{I(l1), . . . , I(lr)}
I({C1, . . . , Cm}) = min{I(C1), . . . , I(Cm)}
I({(C1, w1), . . . , (Cm, wm)}) = w1 · (1− I(C1)) + . . .+ wm · (1− I(Cm))

We define the optimal cost of a MaxSAT formula as

cost(ϕ) = min{I(ϕ) | I : var(ϕ) → {0, 1}}

and an optimal assignment as an assignment I such that I(ϕ) = cost(ϕ).
We also define partial truth assignments for ϕ as a partial function I :

var(ϕ) → {0, 1} where instantiated falsified literals are removed and the formula
is simplified accordingly.

Example 1. Given ϕ = {(y, 6), (x ∨ y, 2), (x ∨ z, 3), (y ∨ z, 2)} and I : {y, z} →
{0, 1} such that I(y) = 0 and I(z) = 0, we have I(ϕ) = {(x, 5), (, 2)}. We also
have cost(I(ϕ)) = 2 and cost(ϕ) = 0.

Notice that, for any MaxSAT formula ϕ and partial truth assignment I, we
have cost(ϕ) ≤ cost(I(ϕ)). Notice also that when w is finite, the pair (C,w) is
equivalent to having w copies of the clause (C, 1) in our multiset.

We say that a truth assignment I satisfies a literal, clause or a SAT formula
if it assigns 1 to it, and falsifies it if it assigns 0. A SAT formula is satisfiable
if there exists a truth assignment that satisfies it. Otherwise, it is unsatisfiable.
Given an unsatisfiable SAT formula ϕ, an unsatisfiable core ϕc is a subset of
clauses ϕc ⊆ ϕ that is also unsatisfiable. A minimal unsatisfiable core is an
unsatisfiable core such that any proper subset of it is satisfiable.

The Weighted Partial MaxSAT problem for a weighted partial MaxSAT
formula ϕ is the problem of finding an optimal assignment. If the optimal cost
is infinity, then the subset of hard clauses of the formula is unsatisfiable, and
we say that the formula is unsatisfiable. The Weighted MaxSAT problem is the
Weighted Partial MaxSAT problem when there are no hard clauses. The Partial
MaxSAT problem is the Weighted Partial MaxSAT problem when the weights of

3

soft clauses are all equal. The MaxSAT problem is the Partial MaxSAT problem
when there are no hard clauses. Notice that the SAT problem is equivalent to
the Partial MaxSAT problem when there are no soft clauses.

3 The Fu and Malik’s Algorithm

The first SAT-based algorithm for Partial MaxSAT algorithm was the Fu and
Malik’s algorithm described in [9]. It was implemented in the MaxSAT solver
msu1.2 [17, 18], and its correctness was proved in [1].

The algorithm consists in iteratively calling a SAT solver on a working
formula ϕ. This corresponds to the line (st, ϕc) := SAT ({C | (Ci, wi) ∈ ϕ}).
The SAT solver will say whether the formula is satisfiable or not (variable st),
and in case the formula is unsatisfiable, it will give an unsatisfiable core (ϕc).
At this point the algorithm will produce new variables, blocking variables (BV

in the code), one for each soft clause in the core. The new working formula ϕ

will consist in adding the new variables to the soft clauses of the core, adding
a cardinality constraint saying that exactly one of the new variables should be
true (CNF (

∑

b∈BV b = 1) in the code), and adding one to the counter of falsified
clauses. This procedure is applied until the SAT solver returns sat.

For completeness, we reproduce the code of the Fu and Malik’s algorithm in
Algorithm 1.

Algorithm 1: The pseudo-code of the FuMalik algorithm (with a minor
correction).

Input: ϕ = {(C1, 1), . . . , (Cm, 1), (Cm+1,∞), . . . , (Cm+m′ ,∞)}
1: if SAT({Ci | wi = ∞}) = (unsat,) then return (∞, ∅)

⊲Hard clauses are unsatisfiable

2: cost := 0 ⊲Optimal

3: while true do
4: (st, ϕc) := SAT({Ci | (Ci, wi) ∈ ϕ}) ⊲Call to the SAT solver without weights

5: if st = sat then return (cost, ϕ)
6: BV := ∅ ⊲Set of blocking variables

7: foreach Ci ∈ ϕc do
8: if wi 6= ∞ then ⊲If the clause is soft

9: b := new variable()
10: ϕ := ϕ \ {(Ci, 1)} ∪ {(Ci ∨ b, 1)} ⊲Add blocking variable

11: BV := BV ∪ {b}

12: ϕ := ϕ ∪ {(C,∞) | C ∈ CNF(
∑

b∈BV
b = 1)}

⊲Add cardinality constraint as hard clauses

13: cost := cost+ 1

Next we present an example of execution that will be used in the next section.

4

Example 2. Consider the pigeon-hole formula PHP 5
1 with 5 pigeons and one

hole where the clauses saying that no two pigeons can go to the same hole are
hard, while the clauses saying that each pigeon goes to a hole are soft:

ϕ = {(x1, 1), (x2, 1), (x3, 1), (x4, 1), (x5, 1), (x1 ∨ x2,∞), . . . , (x4 ∨ x5,∞)}

In what follows, the new b variables will have a super-index indicating the
number of the unsatisfiable core, and a subindex indicating the index of the
original soft clause.

Suppose that applying the FuMalik
algorithm, the SAT solver computes
the (minimal) unsatisfiable core C1 =
{1, 2}. Here we represent the core by
the set of indexes of the soft clauses
contained in the core. The new formula
will be as shown on the right. At this
point, the variable cost takes value 1.

ϕ1 = { (x1∨ b11 , 1),
(x2∨ b12 , 1),
(x3 , 1),
(x4 , 1),
(x5 , 1) } ∪
{(xi ∨ xj ,∞) | i 6= j} ∪
CNF (b11 + b12 = 1,∞)

If the next unsatisfiable cores found by the SAT solver are C2 = {3, 4} and
C3 = {1, 2, 3, 4}, then the new formula will be:

ϕ2 = { (x1∨ b11 , 1),
(x2∨ b12 , 1),
(x3∨ b23 , 1),
(x4∨ b24 , 1),
(x5 , 1) } ∪
{(xi ∨ xj ,∞) | i 6= j} ∪
CNF (b11 + b12 = 1,∞) ∪
CNF (b23 + b24 = 1,∞)

ϕ3 = { (x1∨ b11∨ b31, 1),
(x2∨ b12∨ b32, 1),
(x3∨ b23∨ b33, 1),
(x4∨ b24∨ b34, 1),
(x5 , 1) } ∪
{(xi ∨ xj ,∞) | i 6= j} ∪
CNF (b11 + b12 = 1,∞) ∪
CNF (b23 + b24 = 1,∞) ∪
CNF (b31 + b32 + b33 + b34 = 1,∞)

After the third iteration, the variable cost has value 3. Finally, after finding
the core C4 = {1, 2, 3, 4, 5} we get the following satisfiable MaxSAT formula:

ϕ4 = { (x1∨ b11∨ b31∨ b41 , 1),
(x2∨ b12∨ b32∨ b42 , 1),
(x3∨ b23∨ b33∨ b43 , 1),
(x4∨ b24∨ b34∨ b44 , 1),
(x5∨ b45 , 1) } ∪
{(xi ∨ xj ,∞) | i 6= j} ∪
CNF (b11 + b12 = 1,∞) ∪
CNF (b23 + b24 = 1,∞) ∪
CNF (b31 + b32 + b33 + b34 = 1,∞) ∪
CNF (b41 + b42 + b43 + b44 + b45 = 1,∞)

At this point cost is 4. The algorithm will now call the SAT solver on ϕ4, and
the solver will return the answer “satisfiable”. The algorithm returns cost = 4.

5

4 Breaking Symmetries

It is well known that formulas that contain a great deal of symmetries cause
SAT solvers to explore many redundant truth assignments. Adding symmetry
breaking clauses to a formula has the effect of removing the symmetries, while
keeping satisfiability the same. Therefore it is a way to speed up solvers by
pruning the search space.

In the case of executions of the FuMalik algorithm, symmetries can appear
in two ways. On one hand, there are formulas that naturally contain many
symmetries. For instance, in the case of the pigeon-hole principle we can permute
the pigeons or the holes, leaving the formula intact. On the other hand, in each
iteration of the FuMalik algorithm, we modify the formula adding new variables
and hard constraints. In this process we can also introduce symmetries. In the
present paper, we are no concerned with eliminating natural symmetries of a
MaxSAT formula as in [16], since that might be costly, and it is not the aim of
the present work. Instead we will eliminate the symmetries that appear in the
process of performing the algorithm. In this case, it is very efficient to extract
the symmetries given our implementation of the algorithm.

Before we formally describe the process of eliminating the symmetries, we
will see an example.

Example 3. Consider again the pigeon-hole formula PHP 5
1 of Example 2. The

working formula ϕ3 from the previous section is still unsatisfiable, this is the
reason to find a fourth core C4. However, if we do not consider the clause x5 the
formula is satisfiable, and has 8 distinct models (two for each variable among
{x1, . . . , x4} set to true). Here, we show 2 of the models, marking the literals set
to true (we do not include the clauses xi ∨ xj , for i 6= j and put the true literals
in boxes):

x1∨ b11 ∨ b31

x2∨ b12∨ b32

x3∨ b23 ∨ b33

x4 ∨ b24∨ b34

b11 + b12 = 1

b23 + b24 = 1

b31 + b32 + b33 + b34 = 1

x1∨ b11∨ b31

x2∨ b12 ∨ b32

x3∨ b23 ∨ b33

x4 ∨ b24∨ b34

b11 + b12 = 1

b23 + b24 = 1

b31 + b32 + b33 + b34 = 1

The previous two models are related by the permutation b11 ↔ b12, b
3
1 ↔ b32. The

two ways of assigning values to the b variables are equivalent. The existence of
so many partial models makes the task of showing unsatisfiability of the formula
(including x5) much harder.

The mechanism to eliminate the symmetries caused by the extra variables
is as follows: suppose we are in the s iteration of the FuMalik algorithm, and

6

we have obtained the set of cores {ϕ1, . . . , ϕs}. We assume that the clauses in
the cores follow a total order. For clarity we will name the new variables of core
ϕl for l such that 1 ≤ l ≤ s as bli, where i is an index in ϕl. Now, we add the
clauses:

bsi → b
l

j for l = 1, . . . , s−1 and i, j ∈ ϕl ∩ ϕs and j > i

This clauses implies that in Example 3 we choose the model on the left rather
than the one on the right.

Example 4. For the Example 3, after finding the third unsatisfiable core C3,
we would add the following clauses to break symmetries (written in form of
implications):

b31 → b
1

2

b33 → b
2

4

Adding these clauses, instead of the 8 partial models, we only have 4, one for
each possible assignment of xi to true.

After finding the fourth core C4, we also add (written in compact form):

b41 → (b
1

2 ∧ b
3

2 ∧ b
3

3 ∧ b
3

4)

b42 → (b
3

3 ∧ b
3

4)

b43 → (b
2

4 ∧ b
3

4)

5 The WPM1 Algorithm

Algorithm 2 is the weighted version of the FuMalik algorithm described in
section 3 [1, 14] In this algorithm, we iteratively call a SAT solver with a
weighted working formula, but excluding the weights. When the SAT solver
returns an unsatisfiable core, we calculate the minimum weight of the clauses of
the core (wmin in the algorithm.). Then, we transform the working formula in
the following way: we duplicate the core having on one of the copies, the clauses
with weight the original minus the minimum weight, and on the other copy we
put the blocking variables and we give it the minimum weight. Finally we add
the cardinality constraint on the blocking variables, and we add wmin to the
cost.

The process of doubling the clauses might imply to end up converting clauses
with weight say w into w copies of the clause of weight 1. When this happens,
the process becomes very inefficient. In the following we show a (tiny) example
that reflects this situation.

Example 5. Consider the formula ϕ = {(x1, 1), (x2,m), (x2,∞)}.
Assume that the SAT solver always includes the first soft clause in the

returned unsatisfiable core, even if this makes the core not minimal. After one
iteration, the new formula would be:

ϕ1 = {(x1 ∨ b11, 1), (x2 ∨ b12, 1), (x2,m− 1), (x2,∞), (b11 + b12 = 1,∞)}

7

Algorithm 2: The pseudo-code of the WPM1 algorithm.

Input: ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}
1: if SAT({Ci | wi = ∞}) = (unsat,) then return (∞, ∅) ⊲Hard clauses are

unsatisfiable

2: cost := 0 ⊲Optimal

3: while true do
4: (st, ϕc) := SAT({Ci | (Ci, wi) ∈ ϕ}) ⊲Call to the SAT solver without weights

5: if st = sat then return (cost, ϕ)
6: BV := ∅ ⊲Blocking variables of the core

7: wmin := min{wi | Ci ∈ ϕc ∧ wi 6= ∞} ⊲Minimum weight

8: foreach Ci ∈ ϕc do
9: if wi 6= ∞ then

10: b := new variable()
11: ϕ := ϕ \ {(Ci, wi)} ∪ {(Ci, wi − wmin), (Ci ∨ b, wmin)}

⊲Duplicate soft clauses of the core

12: BV := BV ∪ {b}

13: ϕ := ϕ ∪ {(C,∞) | C ∈ CNF (
∑

b∈BV
b = 1)}

⊲Add cardinality constraint as hard clauses

14: cost := cost+ wmin

If from now on, at each iteration i, the SAT solver includes the first clause along
with {(x2,m− i+ 1), (x2,∞)} in the unsatisfiable core, then at iteration i, the
formula would be:

ϕi = { (x1 ∨ b11 ∨ · · · ∨ bi1, 1), (x2 ∨ b12, 1), . . . , (x2 ∨ bi2, 1), (x2,m− i), (x2,∞),
(b11 + b12 = 1,∞), . . . , (bi1 + bi2 = 1,∞)}

The WPM1 algorithm would need m iterations to solve the problem.

Obviously, a reasonable good SAT solver would return a better quality core
than in previous example. However, unless it can guarantee that it is minimal,
a similar example (but more complicated) could be constructed.

6 A Stratified Approach for WPM1

In Algorithm 3 we present a modification of the WPM1 algorithm that tries
to prevent the situation described in Example 5 by carrying out a stratified
approach. The main idea is to restrict the set of clauses sent to the SAT solver
to force it to concentrate on those with higher weights. As a result, the SAT
solver returns unsatisfiable cores with clauses with higher weights. These are
better quality cores and contribute to increase the cost faster. When the SAT
solver returns SAT, then we allow it to use clauses with lower weights.

In Algorithm 3 we use a variable wmax, and we only send to the SAT solver
the clauses with weight greater or equal than it. As in Algorithm 2, we start
by checking that hard clauses are satisfiable. Then, we initialize wmax to the

8

Algorithm 3: The pseudo-code of the stratified approach for WPM1
algorithm.

Input: ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}
1: if SAT({Ci | wi = ∞}) = (unsat,) then return (∞, ∅)
2: cost := 0 ⊲Optimal

3: wmax := max{wi | (Ci, wi) ∈ ϕ ∧ wi < wmax}
4: while true do
5: (st, ϕc) := SAT({Ci | (Ci, wi) ∈ ϕ ∧ wi ≥ wmax}) ⊲Call without weights

6: if st = sat and wmax = 0 then return (cost, ϕ)
7: else
8: if st = sat then wmax := max{wi | (Ci, wi) ∈ ϕ ∧ wi < wmax}
9: else

10: BV := ∅ ⊲Blocking variables of the core

11: wmin := min{wi | Ci ∈ ϕc ∧ wi 6= ∞} ⊲Minimum weight

12: foreach Ci ∈ ϕc do
13: if wi 6= ∞ then
14: b := new variable()
15: ϕ := ϕ \ {(Ci, wi)} ∪ {(Ci, wi − wmin), (Ci ∨ b, wmin)}

⊲Duplicate soft clauses of the core

16: BV := BV ∪ {b}

17: ϕ := ϕ ∪ {(C,∞) | C ∈ CNF (
∑

b∈BV
b = 1)}

⊲Add cardinality constraint as hard clauses

18: cost := cost+ wmin

highest weight smaller than infinite. If the SAT solver returns SAT, there are
two possibilities. Either wmax is zero (it means that we have already sent all
clauses to the SAT solver) and we finish; or it is not yet zero, and we decrease
wmax to the highest weight smaller than wmax, allowing the SAT solver to use
clauses with smaller weights. If the SAT solver returns UNSAT, we proceed like
in Algorithm 2. This algorithm was submitted to the MaxSAT evaluation 2011
as WPM1 (version 2011). It was the best performing solver for the weighted
partial industrial category. The description of the solver was never published in
a paper before.

We can use better strategies to decrease the value of wmax. Notice that, in the
worst case, we could need more executions of the SAT solver than Algorithm 2,
because the calls that return SAT but wmax > 0 do not contribute to increase
the computed cost. Therefore, we need to find a balance between the number
of those unproductive SAT calls, and the minimum weight of the cores. For
example, one of the possible strategies is to decrease wmax until the following
condition is satisfied

|Ci | (Ci, wi) ∈ ϕ ∧ wi < wmax}|

|{wi | (Ci, wi) ∈ ϕ ∧ wi < wmax}|
> α

9

or wmax = 0. This strategy tends to send more new clauses to the SAT solver
when they have bigger diversity of weights. In our implementation of WPM1
submitted to the MaxSAT evaluation 2012, we use this strategy, called diversity
heuristic, with α = 1.25.

The proof of the correctness of this algorithm is like the proof for WPM1.
The only additional point is that the new algorithm is forcing the SAT solver to
find some cores before others. In the proof of correctness of WPM1 there is no
assumption on what cores the SAT solver finds first.

7 MaxSAT Reducibility

Our algorithms solve a MaxSAT formula by successively transforming it until
we get a satisfiable formula. To prove the soundness of the algorithms it suffices
to prove that these transformations preserve the cost of the formula. However,
apart from this notion of cost-preserving transformation, we can define other
(stronger) notions of formula transformation, like MaxSAT equivalence and
MaxSAT reducibility.

Definition 1.

We say that ϕ1 and ϕ2 are cost-equivalent if cost(ϕ1) = cost(ϕ2).
We say that ϕ1 and ϕ2 are MaxSAT equivalent if, for any assignment
I : var(ϕ1) ∪ var(ϕ2) → {0, 1}, we have cost(I(ϕ1)) = cost(I(ϕ2)).
We say that ϕ1 is MaxSAT reducible to ϕ2 if, for any assignment I :
var(ϕ1) → {0, 1}, we have cost(I(ϕ1)) = cost(I(ϕ2)).

Notice that the distinction between MaxSAT equivalence and MaxSAT
reduction is the domain on the partial assignment. In one case it is var(ϕ1) ∪
var(ϕ2), and in the other var(ϕ1).

The notion of cost-preserving transformation is the weakest of all three
notions, and suffices to prove the soundness of the algorithms. However, it does
not allow us to replace sub-formulas by cost-equivalent sub-formulas, in other
words cost(ϕ1) = cost(ϕ2) does not imply cost(ϕ1 ∪ ϕ3) = cost(ϕ2 ∪ ϕ3). On
the other hand, the notion of MaxSAT equivalence is the strongest of all three
notions, but too strong for our purposes, because the formula transformations
we use does not satisfy this notion. When ϕ2 has variables not occurring in ϕ1,
it is convenient to use the notion of MaxSAT reducibility, that, in these cases,
is weaker than the notion of MaxSAT equivalence.

In the following we show some examples of the notions of Definition 1.

Example 6. The following example shows a formula transformation that
preserves the cost, but not MaxSAT reducibility. Consider ϕ1 = {(x, 2), (x, 1)}
and ϕ2 = {(, 1)}. We have cost(ϕ1) = cost(ϕ2) = 1, hence the transformation
of ϕ1 into ϕ2 is cost-preserving. However, ϕ1 is not MaxSAT reducible to ϕ2,
because the assignment I : {x} → {0, 1} with I(x) = 0, makes cost(I(ϕ1)) =
2 6= 1 = cost(I(ϕ2)).

10

On the contrary, ϕ2 is MaxSAT reducible to ϕ1, because there is a unique
assignment I : ∅ → {0, 1}, and it satisfies cost(I(ϕ1)) = cost(I(ϕ2)). Hence,
MaxSAT reducibility is not a symmetric relation.

The following example shows that MaxSAT reducibility does not imply
MaxSAT equivalence. Consider ϕ1 = {(x, 2), (x, 1)} and ϕ3 = {(, 1), (x, 1), (x∨
y, 1), (x ∨ z, 1), (y ∨ z,∞)}. We have that ϕ1 is MaxSAT reducible to ϕ3.
To prove this, we must consider two interpretations I1 and I2, defined by
I1(x) = 0 and I2(x) = 1. In the first case, we obtain I1(ϕ1) = {(, 2)} and
I1(ϕ3) = {(, 2), (y, 1), (y ∨ z,∞)} that have the same cost 2. In the second
case, we obtain I2(ϕ1) = {(, 1)} and I2(ϕ3) = {(, 1), (z, 1), (y ∨ z,∞)} that
have also the same cost 1. However, ϕ1 and ϕ3 are not MaxSAT equivalent
because for I : {x, y, z} → {0, 1} defined by I(x) = I(y) = I(z) = 1 we have
cost(I(ϕ1)) = 1 6= ∞ = cost(I(ϕ3)).

Finally, ϕ1 is MaxSAT equivalent to ϕ4 = {(, 1), (x, 1)}.

The notion of MaxSAT equivalence was implicitly defined in [7]. In this paper
a MaxSAT resolution rule that preserves MaxSAT equivalence is defined, and
proved complete for MaxSAT.

For lack of space we state without proof:

Lemma 1. (1) If ϕ1 is MaxSAT-reducible to ϕ2 and var(ϕ2) ∩ var(ϕ3) ⊆
var(ϕ1), then ϕ1 ∪ ϕ3 is MaxSAT-reducible to ϕ2 ∪ ϕ3.

(2) MaxSAT-reducibility is transitive: if ϕ1 is MaxSAT-reducible to ϕ2, ϕ2 is
MaxSAT-reducible to ϕ3, and var(ϕ1) ∩ var(ϕ3) ⊆ var(ϕ2), then ϕ1 is
MaxSAT-reducible to ϕ3.

Example 7. Notice that the side condition of Lemma 1 (1) is necessary. For
instance, if we take ϕ1 = {(, 1)}, ϕ2 = {(x, 1), (x,∞)} and ϕ3 = {(x, 1)},
where the side condition var(ϕ2) ∩ var(ϕ3) = {x} 6⊆ ∅ = var(ϕ1) is violated, we
have that ϕ1 is MaxSAT reducible to ϕ2, but ϕ1 ∪ ϕ3 is not MaxSAT reducible
to ϕ2 ∪ ϕ3.

Similarly, the side condition in Lemma 1 (2) is also necessary. For instance, if
we take ϕ1 = {(x, 1), (x, 1)}, ϕ2 = {(, 1)} and ϕ3 = {(x, 1), (x,∞)}, where the
side condition var(ϕ1)) ∩ var(ϕ3) = {x} 6⊆ ∅ = var(ϕ2) is also violated, we have
that ϕ1 is MaxSAT reducible to ϕ2 and this to ϕ3. However, ϕ1 is not MaxSAT
reducible to ϕ3.

There are two side conditions in Lemma 1 (1) and (2) (see Example 7) that
restrict the set of variables that can occur in the MaxSAT problems. However,
if we ensure that problem transformations only introduce fresh variables, i.e.
when ϕ1 is MaxSAT reduced to ϕ2, all new variables introduced in ϕ2 do not
occur elsewhere, then these conditions are trivially satisfied. In our algorithms,
all formula transformations satisfy this restriction.

8 Generic Stratified Approach

In Algorithm 4 we show how the stratified approach can be applied to any generic
weighted MaxSAT solver WPM. In the rest of the section we will describe what

11

Algorithm 4: The pseudo-code of a generic MaxSAT algorithm that
follows a stratified approach heuristics.

Input: ϕ = {(C1, w1), . . . , (Cm, wm)}
1: cost := 0
2: wmax = ∞
3: while true do
4: ϕwmax

:= {(Ci, wi) ∈ ϕ | wi ≥ wmax}
5: (cost′, ϕsat, ϕres) = WPM(ϕwmax

)
6: cost = cost+ cost′

7: if cost = ∞ or wmax = 0 then return (cost, ϕsat)
8: W =

∑
{wi | (Ci, wi) ∈ ϕ \ ϕwmax

∪ ϕres}
9: ϕsat = {(Ci, harden(wi,W)) | (Ci, wi) ∈ ϕsat}

10: ϕ = (ϕ \ ϕwmax
) ∪ ϕsat ∪ ϕres

11: wmax = decrease(wmax)

12: return (cost, ϕ)

13: function harden(w,W)
14: begin
15: if w > W then return ∞
16: else return w

properties the generic algorithm WPM has to satisfy in order to ensure the
correctness of this approach.

We assume that, given a weighted MaxSAT formula ϕ, WPM(ϕ) returns a
triplet (cost, ϕsat, ϕres) such that ϕ is MaxSAT reducible to {(, cost)}∪ϕsat∪
ϕres, ϕsat is satisfiable (has cost zero), and clauses of ϕres have cost strictly
smaller than wmax. Given ϕ, WPM1 return a pair (cost, ϕ′) where ϕ is MaxSAT
reducible to {(, cost)}∪ϕ′ and ϕ is satisfiable, hence satisfies the requirements
taking ϕres = ∅. Moreover, we can also think of WPM as an algorithm that
partially solves the formula, and returns a lower bound cost, a satisfiable part
of the formula ϕsat, and an unsolved residual ϕres.

The algorithm uses a variable wmax to restrict the clauses sent to the
MaxSAT solver. The first time wmax = ∞, and we run WPM only on the hard
clauses. Then, in each iteration we send clauses with weight wmax or bigger to
WPM. We add the return cost to the current cost, and decrease wmax, until
wmax is zero.

Algorithm 3 is an instance of this generic schema where WPM is a partial
execution of WPM1 where clauses generated during duplication with weight
smaller than wmax are put apart in ϕres.

Lines 8 and 9 are optional and can be removed from the algorithm without
affecting to its correctness. They are inspired in [15]. The idea is to harden all
soft clauses with weight bigger than the sum of the weights of the clauses not
sent to the WPM plus the clauses returned in ϕres. The proof of the correctness
of these lines is based in the following lemma (not proved for lack of space).

12

Lemma 2. Let ϕ1 = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)} be
a satisfiable MaxSAT formula, ϕ2 = {(C ′

1, w
′

1), . . . , (C
′

r, w
′

r)} be a MaxSAT
formula without hard clauses and W =

∑r

j=1
w′

j. Let

harden(w) =

{

w if w ≤ W

∞ if w > W

and ϕ′

1 = {(Ci, harden(wi)) | (Ci, wi) ∈ ϕ1}. Then cost(ϕ1∪ϕ2) = cost(ϕ′

1∪ϕ2).

Notice that we check the applicability of this lemma dynamically,
recomputing the value W in every iteration in line 8 of Algorithm 4.

Theorem 1. Assuming that WPM, given a formula ϕ, returns a triplet
(cost, ϕsat, ϕres) such that ϕ is MaxSAT reducible to {(, cost)} ∪ ϕsat ∪ ϕres,
ϕsat is satisfiable, and ϕres only contain clauses with weight strictly smaller
than wmax, Algorithm 4 is a correct algorithm for Weighted Partial MaxSAT.
Moreover, when for a formula ϕ, the algorithm returns (c, ϕ′), then c = cost(ϕ)
and any assignment satisfying ϕ′ is an optimal assignment of ϕ.

9 Experimental Results

We conducted our experimentation on the same environment as the MaxSAT
evaluation [4] (processor 2 GHz).We increased the timeout from half hour to two
hours, and the memory limit from 0.5G to 1G.The solvers that implement our
Weighted Partial MaxSAT algorithms are built on top of the SAT solver picosat
(v.924) [6]. The solver wpm1 implements the original WPM1 algorithm [1]. The
cardinality constraints introduced by WPM1 are translated into SAT through
the regular encoding [3]. This encoding assures a linear complexity on the size
of the cardinality constraint. This is particularly important for the last queries
where the size of the cores can be potentially close to the number of soft clauses.
We use the subscript b to indicate that we break symmetries as described in
section 4, s to indicate we apply the stratified approach and d to indicate that
we apply the diversity heuristic to compute the next wmax, both described
in section 6. wpm1 was the solver submitted to the 2009 and 2010 MaxSAT
evaluations, and wmp1s the one submitted to the 2011 evaluation. The hardening
soft clauses (lines 8 and 9 in Algorithm 4) had not impact in our implementations’
performance.

In the following we present results for the benchmarks of the Weighted Partial
MaxSAT categories of the MaxSAT 2011 evaluation. We compare our solvers
with the best three solvers of the evaluation, and other solvers which did not
compete but have been reported to exhibit good performance, such as, binc and
bincd [11], maxhs [8] and the Weighted CSP solver toulbar2 [19].

We present the experimental results following the same classification criteria
as in the MaxSAT evaluation. For each solver and set of instances, we present
the number of solved instances in parenthesis and the mean time required to

13

set # wpm1bsd wpm1bs wpm1s wpm1b wbo1.6 wpm1 bincd maxhs sat4j binc toulbar2

haplotyping 100 423(95) 425(95) 378(88) 376(79) 93.4(72) 390(65) 196(21) 1247(35) 108(20) 408(27) 383(5)

timetabling 26 685.60(9) 683(9) 585(8) 992(9) 776(4) 1002(7) 766(6) 2388(5) 0(0) 1350(4) 0(0)

upgradeability 100 35.8(100) 37.2(100) 36.5(100) 36.9(100) 63.3(100) 114(100) 637(78) 28.4(50) 844(30) 0(0) 0(0)

Total 226 204 204 196 188 176 172 105 90 50 31 5

(a) Weighted Partial - Industrial

set # wpm1bsd
incw
maxsatz

ak
maxsat

toulbar2 wpm1bs
wmax
satz09z

maxhs sat4j wpm1s bincd binc wpm1 wbo1.6 wpm1b

auc-paths 86 274(53) 7.59(86) 4.6(86) 28.8(86) 332(53) 570(80) 72.2(86) 994(44) 22(33) 1828(2) 0(0) 0(0) 0(0) 0(0)

auc-sched 84 11.9(84) 220(84) 123(84) 133(84) 12.2(84) 92(84) 1125(69) 716(80) 7.6(80) 130(50) 103(45) 0(0) 0(0) 0(0)

planning 56 27.9(52) 92.2(38) 354(40) 149(41) 26.3(56) 220(50) 306(29) 3.27(55) 12.5(54) 59.5(47) 51.1(46) 1.46(28) 1.33(30) 3.63(29)

warehouses 18 44(14) 1184(18) 37(2) 0.03(1) 571(3) 0.32(1) 0.37(1) 1.34(1) 1644(3) 7.03(1) 8.67(1) 4.23(18) 0.51(4) 0.88(12)

miplib 12 1187(4) 1419(5) 0.47(2) 63.2(3) 1165(4) 266(3) 0.07(1) 693(4) 34(3) 618(3) 699(3) 0.21(1) 0(0) 1507(1)

random-net 74 241(39) 1177(1) 1570(2) 0(0) 0(0) 0(0) 2790(6) 0(0) 0(0) 0(0) 0(0) 615(27) 63(37) 439(12)

spot5dir 21 257(10) 1127(5) 1106(5) 217(5) 383(10) 11.5(2) 199(6) 1.95(2) 1.41(5) 66.7(11) 51.7(6) 1.03(4) 2.60(5) 12.8(6)

spot5log 21 532(14) 0.63(4) 200(5) 170(5) 574(14) 15.6(2) 710(6) 6.04(3) 44.4(6) 124(11) 79.3(7) 21.5(6) 25.5(6) 131(7)

Total 372 270 241 226 225 224 222 204 189 184 125 108 84 82 67

(b) Weighted Partial - Crafted

Instance set # maxhs wbo1.6 wpm1b wpm1bsd wpm1 wpm1bs wpm1s bincd sat4j binc toulbar2

Table4 [8] 13 4.41(13) 5.03(13) 5.54(13) 8.84(13) 18.92(13) 534.13(13) 559.23(13) 56.69(11) 3485.52(6) 19.50(1) 0.00(0)

Total 13 13 13 13 13 13 13 13 11 6 1 0

(c) Table 4 from [8]. Linux upgradibility family forcing diversity of weights

Table 1. Experimental results.

14

solve them. Solvers are ordered from left to right according to the total number
of instances they solved. We present in bold the results for the best performing
solver in each set. ’# ’ stands for number of instances of the given set.

Table 1(a) presents the results for the industrial instances of the Weighted
Partial MaxSAT category. As we can see, our original solver wpm1 would have
ranked as the second best solver after wbo1.6. By breaking symmetries (wpm1b)
we solve 12 more instances than wbo1.6, and 20 more if we apply the stratified
approach. Combining both, we solve 28 more instances. The addition of the
diversity heuristic to the stratified approach has no impact for the instances of
this category. We do not present any result on branch and bound based solvers
since they typically do not perform well on industrial instances.

Table 1(b) presents the results for the crafted instances of the Weighted
Partial MaxSAT category. The best ranked solvers in this category for the
MaxSAT 2011 evaluation were: incwmaxsatz, akmaxsat and wmaxsatz09, in
this order. All are branch and bound based solvers, which typically dominate
the crafted and random categories. We can see that our solver wpm1 shows a
poor performance in this category. However, by applying the stratified approach
(wpm1s) we jump from 84 solved instances to 184. If we also break symmetries
(wpm1bs) we solve 224 instances, ranking as the third best solver respect to
the participants of the MaxSAT 2011 evaluation, very close to akmaxsat. If we
compare carefully the results of wpm1 and wpm1bs, we notice that there are
two sets where wpm1 behaves much better (warehouses and random-net). This
suggests that we must make our stratified approach more flexible, for example,
by incorporating the diversity heuristic (wpm1bsd). Using wpm1bsd we solve up
to 270 instances, outperforming all the branch and bound solvers.

In [8] it is pointed out that instances with a great diversity of weights can be
a bottleneck for some Weighted MaxSAT solvers. To test this hypothesis they
generate 13 instances from the Linux upgradibility set in the Weighted Partial
MaxSAT industrial category preserving the underlying CNF but modifying the
weights to force a greater diversity. We have reproduced that experiment in
Table 1(c). As we can see, wpm1 compares well to the best performing solvers,
and by breaking symmetries (wpm1b) we reach the performance of maxhs and
wbo1.6. On the other hand, the stratified approach impacts negatively (wpm1s
or wpm1bs), but the diversity heuristic fixes this problem.

Taking into consideration the experimental results obtained in the different
categories, we can see that our approach wpm1bsd is the most robust solver
for Weighted Partial MaxSAT instances. We also checked the effectiveness of
breaking symmetries for Unweighted Partial MaxSAT instances. For industrial
instances we improve from 181 to 262 solved instances, and for crafted from 55
to 115.

References

1. Ansótegui, C., Bonet, M.L., Levy, J.: Solving (weighted) partial MaxSAT through
satisfiability testing. In: Proc. of the 12th Int. Conf. on Theory and Applications
of Satisfiability Testing (SAT’09). pp. 427–440 (2009)

15

2. Ansotegui, C., Bonet, M.L., Levy, J.: A new algorithm for weighted partial
MaxSAT. In: Proc. the 24th National Conference on Artificial Intelligence
(AAAI’10) (2010)

3. Ansótegui, C., Manyà, F.: Mapping problems with finite-domain variables to
problems with boolean variables. In: Proc. of the 7th Int. Con. on Theory and
Applications of Satisfiability Testing (SAT’04). pp. 1–15 (2004)

4. Argelich, J., Li, C.M., Manyà, F., Planes, J.: MaxSAT evaluations (2006, 2007,
2008, 2009, 2010, 2011), http://www.maxsat.udl.cat

5. Berre, D.L.: SAT4J, a satisfiability library for java (2006), www.sat4j.org
6. Biere, A.: PicoSAT essentials. Journal on Satisfiability 4, 75–97 (2008)
7. Bonet, M.L., Levy, J., Manyà, F.: Resolution for max-sat. Artif. Intell. 171(8-9),

606–618 (2007)
8. Davies, J., Bacchus, F.: Solving MaxSAT by solving a sequence of simpler SAT

instances. In: Proc. of the 17th Int. Conf. on Principles and Practice of Constraint
Programming (CP’11). pp. 225–239 (2011)

9. Fu, Z., Malik, S.: On solving the partial Max-SAT problem. In: Proc. of the 9th Int.
Conf. on Theory and Applications of Satisfiability Testing (SAT’06). pp. 252–265
(2006)

10. Heras, F., Larrosa, J., Oliveras, A.: MiniMaxSat: A new weighted Max-SAT solver.
In: Proc. of the 10th Int. Conf. on Theory and Applications of Satisfiability Testing
(SAT’07). pp. 41–55 (2007)

11. Heras, F., Morgado, A., Marques-Silva, J.: Core-guided binary search algorithms
for maximum satisfiability. In: Proc. the 25th National Conference on Artificial
Intelligence (AAAI’11) (2011)

12. Li, C.M., Manyà, F., Mohamedou, N.O., Planes, J.: Exploiting cycle structures
in Max-SAT. In: Proc. of the 12th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT’09) (2009)

13. Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound
computation in Max-SAT solving. In: Proc. the 23th National Conference on
Artificial Intelligence (AAAI’08). pp. 351–356 (2008)

14. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for weighted boolean
optimization. In: Proc. of the 12th Int. Conf. on Theory and Applications of
Satisfiability Testing (SAT’09). pp. 495–508 (2009)

15. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic
optimization: algorithms & applications. Ann. Math. Artif. Intell. 62(3-4), 317–
343 (2011)

16. Marques-Silva, J., Lynce, I., Manquinho, V.M.: Symmetry breaking for maximum
satisfiability. In: LPAR. pp. 1–15 (2008)

17. Marques-Silva, J., Manquinho, V.M.: Towards more effective unsatisfiability-based
maximum satisfiability algorithms. In: Proc. of the 11th Int. Conf. on Theory and
Applications of Satisfiability Testing (SAT’08). pp. 225–230 (2008)

18. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum
satisfiability. CoRR abs/0712.1097 (2007)

19. Sanchez, M., Bouveret, S., Givry, S.D., Heras, F., Jgou, P., Larrosa, J., Ndiaye,
S., Rollon, E., Schiex, T., Terrioux, C., Verfaillie, G., Zytnicki, M.: Max-CSP
competition 2008: toulbar2 solver description (2008)

16

