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Abstract

Nilpotent Mininum logic (NML) is a substructural algebraizable logic
that is a distinguished member of the family of systems of Mathematical
Fuzzy logic, and at the same time it is the axiomatic extension of Nelson
and Markov’s Constructive logic with strong negation with the prelinear-
ity axiom. In this paper our main aim is to characterise and axiomatise
paraconsistent variants of NML and its extensions defined by (sets of)
logical matrices over linearly ordered NM-algebra with lattice filters as
designated values, with special emphasis on those that only exclude the
falsum truth-value, called non-falsity preserving logics. We also consider
turning these non-falsity preserving logics into Logics of Formal Inconsis-
tency by expanding them with a consistency operator, and we axiomatise
them as well. Finally, we provide a full description of the logics defined
by finite products of matrices over finite NM-chains.

1 Introduction

Mathematical fuzzy logic (MFL) is a discipline of mathematical logic that aims
at studying systems of fuzzy logic in narrow sense (see the classical book [32]
and the handbook [12]), i.e. systems of many-valued (truth-funcional) logics
intented to reason with vague or gradual properties or predicates, where truth-
values are interpreted as degrees of truth. In this sense, MFL can be seen as a
degree-based approach to vagueness [45].
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It should be observed that, because of its nature, vague reasoning has to deal
with gaps (undetermination of truth) and gluts (overdetermination of truth).
Hence, given a proposition P , a gap indicates that neither P nor its negation
are true, whereas a glut represents that both P and its negation are true. The
latter suggests that a fuzzy negation should be paraconsistent, that is, tolerant
to contradictions. However, in general MFL adopts the (full) truth-preserving
notion of consequence relation, usual in algebraic logic. Under this perspective,
a formula is a consequence of set of premises if, for every algebraic evaluation
that interprets the premises as (fully) true, it also interprets the conclusion as
(fully) true. Within this paradigm, most (if not all) fuzzy logics associated
to well-studied algebraic structures such as  Lukasiewicz and Gödel logics are
not paraconsistent: no contradictory theory can be (fully) satisfied, hence it is
always logically trivial.

Besides this feature, the truth-preserving paradigm has also been criticized
since it neglects, in some sense, the many degrees of truth available in the
semantical structures: after all, only the maximum value 1 (absolute truth) is
relevant for the consequence relation. In [50] it was proposed the notion of
degree-preserving consequence relation, in which a formula follows from a given
set of premises if, for all algebraic evaluations, the truth-degree of the conclusion
(under such evaluation) is not lower than those of the premises, see also [27, 6]
for further investigations on this weaker notion of logical consequence. It can
be argued that this approach to consequence relation is more coherent with the
commitment of many-valued logics to truth-degree semantics. Indeed, under
this definition, each truth-value (seen as a degree of truth) plays an equally
important role in the corresponding notion of consequence (for a discussion on
this topic see [26]).

Other than the degree-preserving logic associated to a class of algebraic
structures, it is interesting to consider (families of) lattice filters as sets of des-
ignated values. As particular cases, taking simply the filter {1} corresponds to
the truth-preserving paradigm, while the degree-preserving consequence relation
is the logic associated to the family of all the lattice filters [6]. The lattice filters
approach produces an ample class of intermediate logics between the truth and
the degree preserving consequence relations, some of them being paraconsistent.
We analysed in [15] some intermediate systems for  Lukasiewicz logics, while the
intermediate Gödel logics with an involution were discussed in [17].

The aim of this paper is the development of a similar study for intermedi-
ate logics defined by lattice filters in the case of the Nilpotent Minimum logic
(NML). Nipotent Minimum logic is a substructural logic at the crossroad of
two different non-classical logic traditions. On the one hand, NML is a distin-
guished member of the family of formal systems of mathematical fuzzy logic,
introduced by two of the authors of this paper in [23] as a particular extension
of the Monoidal t-norm based Logic MTL, a very general logic whose equivalent
algebraic semantics is the variety of prelinear (commutative, bounded, integral)
residuated lattices, also known as MTL-algebras. This variety is generated by
the subclass of algebras with domain the real unit interval [0, 1] and defined by
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left-continuous t-norms1, see [34]. In fact, the logic NM was originally defined in
[23] as the axiomatic extension of MTL by the following two axioms, requiring
the negation to be involutive and the weak nilpotent minimum condition:

(INV) ¬¬φ→ φ
(WNM) (ψ ∗ φ→ ⊥) ∨ (ψ ∧ φ→ ψ ∗ φ).

NML is an algebraizable logic, as all the axiomatic extensions of MTL, and the
corresponding variety of NM-algebras is generated by a single algebra on real
unit interval [0, 1], called standard NM-algebra, see Section 2.

On the other hand, NML can also be considered as deriving from the well-
known Constructive logic with strong negation introduced independently by Nel-
son [38] and Markov [36], also known as Nelson logic or even as the logic N3, as
a result of the observation by Rasiowa [42] about the non-constructive property
of intuitionistic negation, namely that the derivability of the formula ¬(φ ∧ ψ)
in an intuitionistic logic does not imply that at least one of the formulas ¬φ,
¬ψ is derivable. Although Nelson algebras, the algebraic semantics of Nelson
logic developed by Rasiowa [42, 43], were not originally presented as a subclass
of residuated lattices, Spinks and Veroff proved in [44, 46] that Nelson logic
is indeed a substructural logic by showing that Nelson algebras are termwise
equivalent to certain involutive, bounded, commutative and integral residuated
lattices, called Nelson (residuated) lattices, see also [7]. In the latter paper, the
authors also show that prelinear Nelson lattices are nothing but NM-algebras,
or in other words, the NM logic can also be obtained as the axiomatic extension
of Nelson logic with the prelinearity axiom

(Lin) (φ→ ψ) ∨ (ψ → φ).

The NM logic together with all their axiomatic and finitary extensions has
been exhaustively studied by Gispert in [29, 30]. They are all explosive, as any
(full) truth-preserving substructural logic with respect to its residual negation
¬φ = φ→ 0.

In this paper our main aim is to characterise and axiomatise paraconsis-
tent variants of NML and extensions defined by (sets of) logical matrices over
linearly ordered NM-algebras with lattice filters as sets of designated values,
with special emphasis on those whose lattice filters that only exclude the falsum
truth-value, that will be called non-falsity preserving. Moreover, the introduc-
tion of consistency operators (in the sense of the paraconsistent logics known as
logics of formal inconsistency, see [11, 10]) over the real unit interval [0, 1] with
the non-zero designated values will also be considered, along the lines of the
study we developed in [14] in the framework of Monoidal t-norm based fuzzy
logic (MTL).

The approach followed in this paper is related to the one developed in [16]
for the case of finite-valued  Lukasiewicz logics and the one in [17] for the case
of the logic G∼, i.e. Gödel logic expanded with an involutive negation, already

1A t-norm ∗ is a binary operation in [0, 1] which is commutative, associative, non-decreasing
and having 1 as neutral element and 0 as absorbent elements.
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mentioned above. Actually, NML is interpretable in G∼, and the n-valued NM
logics NMLn are interpretable in the n-valued  Lukasiewicz logics  Ln, since for
instance Baaz-Monteiro’s projection operator ∆ is definable both in G∼ (by
letting ∆φ := ¬∼φ) and in  Ln for each n, while it is neither definable in NML
nor in NMLn. Also in a related approach, more recently, Esteva et al. [21] have
considered the paraconsistent degree-preserving logics of distributive involutive
residuated lattices expanded with a consistency operator ◦ in order to get logics
of formal inconsistency (LFIs) in the sense of [18, 11], and in particular the cases
of the subvarieties of Nelson lattices and of NM-algebras are explored.

More specifically, the outline of this paper is as follows. After this introduc-
tion, in Section 2 we provide the needed logic preliminaries about NML itself
and the variety of NM-algebras, as well as the basic definitions and notations
of logics defined by a given NM-algebra with a lattice filter. In Section 3 we
focus on the logics defined by matrices over the standard NM-algebra [0,1]NM

and with a lattice filters F of this algebra and we show that they basically lead
to only four different logics: the truth-preserving logic NML when F = {1},
the well-known 3-valued  Lukasiewicz logic  L3 when F = (1/2, 1], the also well-
known 3-valued paraconsistent logic J3 when F = [1/2, 1], and the non-falsity
preserving companion of NML, nf-NML, when F = (0, 1]. We present general
axiomatisations and completeness results. In Section 4, we study the expansion
of the paraconsistent nf-NML with a consistency operator ◦. Section 5 gener-
alises the results of Sections 3 and 4 to the case of logics defined by matrices
over general NM-chains with lattice filters. Section 6 is devoted to the full study
and characterisation of the logics defined by matrices over finite products of fi-
nite NM-chains, and moreover, among them, the maximal paraconsistent ones
are identified. Finally, we conclude in Section 7 with some final remarks and
prospects for future research.

2 Preliminaries: NM logic and some of its
sublogics defined by matrices with lattice fil-
ters

The nilpotent minimum logic, NML for short, was firstly introduced by Esteva
and Godo in [23] in order to formalize the logic of the nilpotent minimum t-
norm, defined by Fodor in [25] as an example of an involutive left continuous
t-norm which is not continuous.2

The language of NML consists of countably many propositional variables
p1, p2, . . ., binary connectives ∧, ∗,→, and the truth constant ⊥. Formulas,
which will be denoted by lower case greek letters φ,ψ, χ, . . ., are recursively
defined from propositional variables, connectives and truth-constant as usual.
Further definable connectives and constants are as follows: ¬φ stands for φ→ ⊥,
φ ∨ ψ stands for ¬(¬φ ∧ ¬ψ), and ⊤ stands for ¬⊥.

2Actually, Pei showed later in [41] that NML and NM-algebras are equivalent to Wang’s
L∗ logic and R0-algebras, respectively [48, 49].

4



NML is obtained from the monoidal t-norm logic MTL introduced also in
[23], by adding the involutive condition axiom

(INV) ¬¬φ→ φ

and the (weak) nilpotent minimum condition axiom

(WNM) (ψ ∗ φ→ ⊥) ∨ (ψ ∧ φ→ ψ ∗ φ).

It is worth observing that NML enjoys the following form of deduction theorem:
Γ ∪ {φ} ⊢NM ψ iff Γ ⊢NM φ → (φ → ψ). It is well known that NML is alge-
braizable and the class NM of all nilpotent minimum algebras is its equivalent
algebraic quasivariety semantics [23].

A nilpotent minimum algebra (NM-algebra) A = ⟨A, ∗,→,∧,∨,0,1⟩, is an
involutive MTL-algebra (i.e. a bounded, commutative, integral, involutive, pre-
linear residuated lattice) that satisfies the following equation

(WNM) (x ∗ y → 0) ∨ (x ∧ y → x ∗ y) ≈ 1.

We say that an NM-algebra is an NM-chain provided that its underlying
lattice order (defined as x ≤ y if x→ y = 1) is total. Since the class NM of all
NM-algebras is a proper subvariety of MTL-algebras it inherits the subdirect
representation of MTL-algebras, and thus each NM-algebra is representable as
a subdirect product of NM-chains (see [23, Proposition 3]).

NM-chains can be easily characterised. Namely, given a bounded totally
ordered set (A,≤), with upper bound 1 and lower bound 0, equipped with an
involutive negation ¬ dually order preserving, denoting by ∧ and ∨ the meet
and join in (A,≤), and defining for every a, b ∈ A,

a ∗ b =

{
0, if b ≤ ¬a
a ∧ b, otherwise

and a→ b =

{
1, if a ≤ b
¬a ∨ b, otherwise

,

it follows that A = ⟨A, ∗,→,∧,∨,0,1⟩ is an NM-chain. And moreover, every
NM-chain is of this form.

From the standard completeness theorem for NM in [23], it follows that the
variety of NM-algebras NM is generated by the canonical standard NM-chain

[0,1]NM = ⟨[0, 1], ∗,→,∧,∨, 0, 1⟩

where the above operations boil down to:

a ∗ b =

{
0, if b ≤ 1 − a
min{a, b}, otherwise

, a→ b =

{
1, if a ≤ b
max{1 − a, b} otherwise .

As for finite NM-chains, we define the canonical (2n+1)- and 2n-element
NM-chains respectively as follows:

NM2n+1 = ⟨[−n, n] ∩ Z, ∗,→,∧,∨,−n, n⟩, for every n ≥ 0, and
NM2n = ⟨NM2n+1 ∖ {0}, ∗,→,∧,∨,−n, n⟩, for every n > 0.
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Notice that NM1 is the trivial algebra, NM2 the 2-element Boolean algebra,
and NM3 the 3-element MV-algebra. Furthermore, every numerable NM-chain
is embeddable into [0,1]NM. For the finite NM-chain NMn, sometimes we will
also use the set {0, 1

n−1 ,
2

n−1 , . . . ,
n−2
n−1 , 1} as the universe of NMn as a subalgebra

of [0,1]NM.
From the above it follows that:

(1) All the NM-algebras over [0, 1] are isomorphic, since all the involutive
order-reversing mappings n : [0, 1] → [0, 1] are in turn isomorphic due to
a result by Trillas [47].

(2) Also, up to isomorphism, for each n ∈ N∖{0}, there is only one NM-chain
NMn with exactly n elements.

Given an NM-algebra A, we recall that a ∈ A is a negation fixpoint (or just
fixpoint, for short) if, and only if, ¬a = a. Any NM-algebra has at most one
fixpoint [33]. Clearly, both the algebra [0,1]NM and the algebras NM2n+1, for
any n, have fixpoint, while the algebras NM2n have not. It is easy to see that if
A is an NM-chain with a negation fixpoint a ∈ A then A∖{a} is the universe of
a NM-subalgebra of A, which we denote by A−. Notice that NM2n = NM−

2n+1.

Notation: Given an NM-algebra A and a lattice filter F ⊆ A,3 the pair M =
⟨A, F ⟩ is called a logical matrix and induces a logic, denoted by |=M, that is
defined as follows: for any set of formulas Γ ∪ {φ},

Γ |=M φ if, for any A-evaluation e, e(ψ) ∈ F for all ψ ∈ Γ implies e(φ) ∈ F .

The lattice filter F plays the role of set of designated values for the logic
|=M. Given a set of matrices K = {Mi}i∈I , the logic induced by K is the
intersection of the family of logics {|=Mi

}i∈I . Moreover, a matrix M′ = ⟨B, G⟩
is a submatrix of another matrix M = ⟨A, F ⟩ if B is a subalgebra of A and
G = F ∩ B, and in that case, |=M ⊆ |=M′ .4 Finally, we recall that the logic
|=M is called explosive when from a pair of contradictory formulas everything
follows, i.e. for every φ,ψ it holds that {φ,¬φ} |=M ψ. Otherwise, the logic
|=M is called paraconsistent.

For any NM-chain A and for every a ∈ A∖{0}, consider the lattice filters
Fa = {x ∈ A | a ≤ x} and F(a = {x ∈ A | a < x}. Then, the finitary
logics corresponding to the matrices ⟨A, Fa⟩ and ⟨A, F(a⟩, denoted ⊢Aa and ⊢A(a
respectively, are defined as follows.

Definition 1. For any finite set of formulas Γ ∪ {φ}, we define:

- Γ ⊢Aa φ if, for any A-evaluation e, if e(ψ) ≥ a for all ψ ∈ Γ, then e(φ) ≥ a.
- Γ ⊢A(a φ if, for any A-evaluation e, if e(ψ) > a for all ψ ∈ Γ, then e(φ) > a.

3F is a lattice filter of A if it is a non-empty upset of A closed by ∧.
4For a modern algebraic treatment of logical matrices see e.g. [13].
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As costumary, we extend these definitions for arbitrary sets of formulas Γ∪{φ}
by stipulating that Γ ⊢ φ, for ⊢ ∈ {⊢Aa ,⊢A(a}, whenever there exists a finite set
Γ0 ⊆ Γ such that Γ0 ⊢ φ.

Notice that if A is finite, then any matrix logic |=⟨A,F ⟩ is finitary and thus,
in particular, |=⟨A,Fa⟩ and |=⟨A,F(a⟩ coincide with ⊢Aa and ⊢A(a respectively.

It is very easy to check that ⊢Aa is paraconsistent iff a ≤ ¬a, while ⊢A(a is
paraconsistent iff a < ¬a.

At this point, let us recall three well-known particular cases of such log-
ics, where with NM3 we denote the three element NM-chain (over the carrier
{0, 1/2, 1}):

• By the standard completeness of NML, the logic of the matrix

⟨[0,1]NM, {1}⟩ coincides with ⊢[0,1]
1 and with the logic NM itself.

• The logic of the matrix ⟨NM3, {1}⟩ coincides with the 3-valued
 Lukasiewicz logic  L3, since in fact the chain NM3 is term-equivalent to
the 3-element MV-algebra MV3.

• The (paraconsistent) logic of the matrix ⟨NM3, {1/2, 1}⟩ coincides (up to
language) with D’Ottaviano and da Costa’s three-valued logic J3 [19].

For a given a NM-chain A, we can also consider its corresponding finitary
degree-preserving logic ⊢≤

A as defined next, following [6].

Definition 2. (c.f. [6]) For any finite set of formulas Γ∪{φ}, we define Γ ⊢≤
A φ if,

for any A-evaluation e, and for all a ∈ A, if e(ψ) ≥ a for all ψ ∈ Γ, then e(φ) ≥ a.

In other words, Γ ⊢≤
A φ if, for any A-evaluation e, inf{e(ψ) | ψ ∈ Γ} ≤ e(φ).

Moreover, if V is a variety of NM-algebras, one can define its corresponding
degree-preserving logic ⊢≤

V by stipulating Γ ⊢≤
V φ whenever Γ ⊢≤

A φ for every

chain A ∈ V. Finally, we extend the above definitions of ⊢≤
A and ⊢≤

V for an
arbitrary set of premises Γ as in Definition 1.

It is easy to check that ⊢≤
A is indeed the intersection of all the finitary matrix

logics ⟨A, Fa⟩ for all a ∈ A, namely, Γ ⊢≤
A φ iff Γ ⊢Aa φ holds for any a ∈ A. It

also directly follows that ⊢≤
A is paraconsistent.

As a matter of fact, the logic ⊢≤
A is strongly related to the 1-preserving logic

⊢A1 . Indeed, on the one hand, it holds that ⊢≤
A φ iff ⊢A1 φ, so both logics share

the set of valid formulas. Moreover, if for any finite set of formulas Γ we let
Γ∧ = ∧{ψ | ψ ∈ Γ}, we can observe that

Γ ⊢≤
A φ iff ⊢A1 Γ∧ → φ,

and hence, iff ⊢≤
A Γ∧ → φ. This property can be seen as a sort of deduction

theorem for ⊢≤
A. Furthermore, since the variety NM is generated by the standard

NM-algebra [0,1]NM, it also follows that ⊢≤
NM = ⊢≤

[0,1]NM
.
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It has been shown in [6] that in the case the logic ⊢A1 has a complete ax-

iomatisation with Modus Ponens as the only inference rule, then the logic ⊢≤
A

admits a complete axiomatisation as well, having as axioms the axioms of ⊢A1
and as inference rules the rule of adjunction:

(Adj)
φ, ψ

φ ∧ ψ
,

and the following restricted form of the Modus Ponens rule

(r-MP)
φ, φ→ ψ

ψ
, if ⊢A1 φ→ ψ.

If the logic ⊢A1 has additional inference rules

(Ri)
Γi
φ

for i ∈ I, then [20, Proposition 1] shows that ⊢≤
A is axiomatised with the above

axioms and rules together with the following restricted forms of the rules (Ri):

(r-Ri)
Γi
φ
, if ⊢A1 Γi.

Finally, let us consider the subalgebra [0,1]−NM of the standard NM-algebra
[0,1]NM, where [0, 1]−NM = [0, 1] \ {1/2}. We recall that the logic defined by
the matrix ⟨[0, 1]−NM , {1}⟩ can be syntactically characterised as the axiomatic
extension of NML with the following axiom [29]:

(BP ) ¬(¬φ2)2 ↔ (¬(¬φ)2)2,

where φ2 is a shorthand for φ ∗φ. We will call this axiomatic extension NML−

and its corresponding variety of algebras NM−, which is generated by the algebra
[0,1]−NM. Actually, in the frame of NML, the above axiom can be simplified
and equivalently expressed as

(BP ) ¬((φ↔ ¬φ)2).

We will assume this form when referring to the axiom (BP) in the rest of the
paper. Note that the axiom (BP) is not only valid in [0,1]−NM but also in any
NM-chain without fixpoint. Even more, a NM-chain validates (BP) if, and only
if, the chain has no negation fixpoint [29].

3 Logics defined by matrices over [0,1]NM: com-
pleteness results

In this section we pay attention to the the matrix logics ⊢Aa and ⊢A(a introduced

in the last section in the particular case A = [0,1]NM, that is, to the logics
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⟨[0,1]NM, Fa⟩ for any a ∈ (0, 1] and ⟨[0,1]NM, F(a⟩ for any a ∈ [0, 1). Among all
these logics we will show that there are only four different logics, two explosive
and two paraconsistent.

For the sake of a simpler notation, in what follows we will omit the super-
script A and will simply write ⊢a, ⊢(a without danger of confusion. Moreover,

we will also use the notation ⊢≤ instead of ⊢≤
[0,1]NM

.

Proposition 1. For any a ∈ [0, 1], the logics ⊢a and ⊢(a respectively defined by
the matrices ⟨[0,1]NM, Fa⟩ and ⟨[0,1]NM, F(a⟩ satisfy the following properties:

1. ⊢a, ⊢(a and ⊢1 are the same logic for all a ∈ (1/2, 1),

2. ⊢a, ⊢(a and ⊢(0 are the same logic for all a ∈ (0, 1/2),

3. ⊢(1/2 and ⊢ L3 are the same logic,

4. ⊢1/2 and ⊢J3
are the same logic,

5. ⊢1 ⊊ ⊢(1/2,

6. ⊢(0 ⊊ ⊢1/2, yet ⊢(0 φ iff ⊢1/2 φ,

7. ⊢(1/2 and ⊢1/2 are not comparable,

8. ⊢1 and ⊢1/2 are not comparable,

9. ⊢(1/2 and ⊢(0 are not comparable,

10. ⊢1 and ⊢(0 are not comparable.

Proof. Property 1: Let a ∈ (1/2, 1). Assume {φi | i ∈ I} ̸⊢1 ψ, then there is an
evaluation e such that e(φi) = 1 and e(ψ) ̸= 1. Then the map h : [0, 1] → [0, 1]
such that

h(x) =

 1, if x = 1;
(2a− 1)x+ 1 − a, if 0 < x < 1;
0, if x = 0.

is a homomorphism and h ◦ e is an evaluation such that h ◦ e(φi) = 1 > a and
h ◦ e(ψ) < a. Thus {φi | i ∈ I} ̸⊢a ψ and {φi | i ∈ I} ̸⊢(a ψ.

If {φi | i ∈ I} ̸⊢a ψ, then there is an evaluation e such that e(φi) ≥ a and
e(ψ) = d < a. Then the map g : [0, 1] → [0, 1] such that

g(x) =

 1, if x ≥ a;
x, if 1 − a < x < a;
0, if x ≤ 1 − a.

is a homomorphism and g ◦ e is an evaluation such that g ◦ e(φi) = 1 and
g ◦ e(ψ) < 1. Thus {φi | i ∈ I} ̸⊢1 ψ.

If {φi | i ∈ I} ̸⊢(a ψ, then using the map f : [0, 1] → [0, 1] such that

f(x) =

 1, if x > a;
x, if 1 − a ≤ x ≤ a;
0, if x < 1 − a.
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it follows that {φi | i ∈ I} ̸⊢1 ψ.

Property 2 is proved analogously as Property 1 with the homomorphisms

h′(x) =

 1, if x = 1;
(1 − 2a)x+ a, if 0 < x < 1;
0, if x = 0.

g′(x) =

 1, if x > 1 − a;
x, if a ≤ x ≤ 1 − a;
0, if x < a.

and f ′(x) =

 1, if x ≥ 1 − a;
x, if a < x < 1 − a;
0, if x ≤ a.

Property 3. Recall that by the completeness theorem of the 3-valued
 Lukasiewicz logic  L3 is complete with respect the matrix logic ⟨MV3, {1}⟩ =
⟨NM3, {1}⟩. Since ⟨NM3, {1}⟩ is a submatrix of ⟨[0,1]NM, F1/2⟩ then {φi |
i ∈ I} ⊢1/2 ψ implies {φi | i ∈ I} ⊢ L3 ψ. Moreover since the map
h : [0, 1] → {0, 1/2, 1} defined by

h(x) =

 1, if x > 1/2;
1/2, if x = 1/2;
0, if x < 1/2,

is a homorphism such that h(F(1/2) = {1}, then {φi | i ∈ I} ⊢ L3
ψ implies

{φi | i ∈ I} ⊢1/2 ψ.

Property 4: Recall that J3 is the logic of the matrix J3 = ⟨MV3, {1/2, 1}⟩ =
⟨NM3, {1/2, 1}⟩. Since ⟨NM3, {1/2, 1}⟩ is a submatrix of ⟨[0,1]NM, F1/2⟩ then
{φi | i ∈ I} ⊢1/2 ψ implies {φi | i ∈ I} ⊢J3

ψ. Moreover since the map
h : [0, 1] → {0, 1/2, 1} defined by

h(x) =

 1, if x > 1/2;
1/2, if x = 1/2;
0, if x < 1/2,

is an onto homorphism such that h(F1/2) = {1/2, 1}, then {φi | i ∈ I} ⊢J3
ψ

implies {φi | i ∈ I} ⊢1/2 ψ.

Property 5 is a consequence of Property 3, since  L3 is a proper axiomatic
extension of NML.

Property 6: Since ⟨[0,1]NM, F1/2⟩ coincides with the logic J3 (Property 4),
and the matrix J3 is a submatrix of ⟨[0,1]NM, F(0⟩, then ⊢(0 ⊆ ⊢1/2. To prove
that they do not define the same logic, it is enough to see that p, q ⊢1/2 (¬p→
p) ∗ q, while p, q ̸⊢(0 (¬p→ p) ∗ q.

Clearly, if ⊢1/2 φ then ⊢(0 φ. For the converse direction, suppose ̸⊢1/2 φ.
Then there exists e such that e(φ) < 1/2. Consider again the homomorphism

10



Figure 1: The lattice of the four different logics in Proposition 1 and their
relation to classical propositional logic CPL and to the degree-preserving com-
panions of  L3 and NML.

h : [0, 1] → {0, 1/2, 1} defined by

h(x) =

 1, if x > 1/2;
1/2, if x = 1/2;
0, if x < 1/2,

Then the evaluation e′ = h◦e is such that e′(φ) = 0. Hence ̸⊢(0 φ.

Finally, by Properties 5 and 6, Properties 7 to 10 hold as well because
φ,¬φ ⊢1 ⊥ while φ,¬φ ̸⊢J3 ⊥, and ⊢(0 φ ∨ ¬φ while ̸⊢ L3 φ ∨ ¬φ.

In the previous section, we have observed that the degree-preserving com-
panion ⊢≤

NM of the logic NM coincides with ⊢≤
[0,1]NM

, that we simply denote

now ⊢≤, that in turn coincides with the intersection of the logics ⊢a, for all

a ∈ (0, 1], that is, ⊢≤
NM=

⋂
a>0 ⊢a. Now, as a consequence of Proposition 1, this

intersection can be significantly simplified.

Lemma 1. ⊢≤ = ⊢1 ∩ ⊢(0.

In Figure 1 there is a graphical representation of the different logics involved
above, where CPL denotes classical propositional logic.

Next lemma is a key observation that, thanks to the involutivity of the NM
negation, tightly relates both logics ⊢1 and ⊢(0 through the negation connective.

Lemma 2. For every formula φ,

ψ ⊢(0 φ if, and only if, ¬φ ⊢1 ¬ψ.

In particular, ⊢(0 φ if, and only if, ⊢1 ¬(¬φ)2.

11



Proof. By definition, ψ ⊢1 φ iff for every [0,1]-evaluation e, if e(ψ) = 1 then
e(φ) = 1; that is, if e(φ) < 1 then e(ψ) < 1, for all e; that is, e(¬φ) > 0 then
e(¬ψ) > 0, for all e; iff ¬φ ⊢(0 ¬ψ.

Therefore, ⊤ ⊢(0 φ iff ¬φ ⊢1 ⊥, and by the deduction theorem for NML,
this holds iff ⊢1 (¬φ)2 → ⊥, that is, ⊢1 ¬(¬φ)2.

Corollary 1. For every formulas ψ1, . . . , ψn, φ,

ψ1, . . . , ψn ⊢(0 φ if, and only if, ⊢1 (ψ1 ∧ . . . ∧ ψn) → ¬(¬φ)2.

Proof. The following chain of equivalences hold: ψ1, . . . , ψn ⊢(0 φ iff ψ1 ∧ . . . ∧
ψn ⊢(0 φ iff ¬φ ⊢1 ¬(ψ1 ∧ . . . ∧ ψn) iff ⊢1 (¬φ)2 → ¬(ψ1 ∧ . . . ∧ ψn) iff ⊢1

(ψ1 ∧ . . . ∧ ψn) → ¬(¬φ)2.

Now we introduce two new inference rules. Consider the following two re-
stricted inference rules, which are intended for the logic axiomatising ⊢(0:

• (r-MP2): From φ and φ→ ¬(¬ψ)2 derive ψ, whenever ⊢NML φ→ ¬(¬ψ)2,

• (r-MP): From φ and φ→ ψ derive ψ, whenever ⊢NML φ→ ψ

Note that both inference rules involve conditions on the derivability of formulas
in the logic NM.

Proposition 2. The rule (r-MP2) is sound for ⊢(0 and the Restricted Modus
Ponens rule (r-MP) is derivable from (r-MP2).

Proof. As for the soundness of (r-MP2), let e be an [0,1]-evaluation, and assume
e(φ) > 0 and that e(φ → ¬(¬ψ)2) = 1, where the latter clearly holds iff
e(φ) ≤ e(¬(¬ψ)2). Therefore 0 < e(¬(¬ψ)2). Hence e((¬ψ)2) < 1. Now
suppose e(ψ) = 0, then it would be e((¬ψ)2) = 1, contradiction. Therefore it
has to be e(ψ) > 0.

The derivability of (r-MP) follows from the fact that ψ → ¬(¬ψ)2 is a
theorem of NML. Therefore, from φ and ⊢NML φ → ψ, we also have ⊢NML

φ→ ¬(¬ψ)2, and by applying (r-MP2), we finally get ψ.

Definition 3. The non-falsity preserving companion of NML, denoted nf-NML,
is the logic defined by the following axioms and rules:

• Axioms: those of NML

• Rules: Adjunction and (r-MP2) .

Next theorem proves that nf-NML defined above syntactically captures the
logic of the matrix ⟨[0,1], F(0⟩.

Theorem 1. nf-NML is a sound and complete axiomatisation of ⊢(0.
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Proof. Soundness follows from the fact that the Adjunction and (r-MP2) rules
are sound as proved above.

As for completeness, suppose ψ1, . . . , ψn ⊢(0 φ (semantically). This is equiv-
alent to ⊢1 (ψ1∧ . . .∧ψn) → ¬(¬φ)2. By completeness of NML, there is a proof
⟨Π1, . . .Πr⟩, where Πr = (ψ1 ∧ . . . ∧ ψn) → ¬(¬φ)2 and where each Πi is either
an axiom of NML, or has been obtained from previous Πk,Πj (k, j < r) and the
application of Modus ponens rule. Note that all the Πi’s are theorems of NML.
Then, in order to get a proof of ψ in nf-NM we only need to do the following:

(i) add a previous step Π0 = ψ1∧ . . .∧ψn that is obtained from the premises
by the Adjunction rule,

(ii) add a final step Πr+1 = ψ that is obtained from Π0 and Πr by application
of the (r-MP2) rule.

Therefore, the sequence Π0,Π1, . . .Πr,Πr+1 is a proof of ψ in the logic nf-
NM with the proviso that the applications of the modus ponens in the proof
Π1, . . .Πr have to be considered as applications of the Restricted Modus ponens
rule (r-MP), which we know it is derivable.

It is interesting to observe that, although the axioms of NML and of nf-NM
are the same, the set of theorems of nf-NM is larger than that of NML. It is
clear that the excluded-middle axiom φ∨¬φ is not a theorem of NML, but is a
theorem of nf-NM. Indeed, φ ∨ ¬φ follows from the application of rule (r-MP2)
by taking φ := ⊤ and ψ := φ ∨ ¬φ, since ⊢NM ¬(¬(φ ∨ ¬φ))2.

As a consequence of the above completeness theorem, for the different logics
appearing in Proposition 1 and their intersections we have the axiomatisations
given in Table 1. In this table we use (V3) to refer to the following axiom

(V 3) (φ1 → φ2) ∨ (φ2 → φ3) ∨ (φ3 → φ4)

that forces the chains of the corresponding variety to be of cardinal less or equal
to 3.

Logics Matrix Axioms Inference Rules

NML: ⊢1 ⟨[0,1]NM, {1}⟩ NM MP
 L3 ⟨[0,1]NM, (1/2, 1]⟩ NM + (V3) MP

J3 ⟨[0,1]NM, [1/2, 1]⟩ NM + (V3) Adj, MP∗
 L3

:
φ, ⊢ L3φ→¬(¬ψ)2

ψ

nf-NML: ⊢(0 ⟨[0,1]NM, (0, 1]⟩ NM Adj, MP∗ : φ, ⊢1φ→¬(¬ψ)2

ψ

 L3 ∩ J3 =  L≤
3 NM + (V3) Adj, r-MP :

φ, ⊢ L3
φ→ψ

ψ

⊢1 ∩ ⊢(0 = ⊢≤ NM Adj, r-MP : φ, ⊢1φ→ψ
ψ

Table 1: Axiomatisations of the logics appearing in Proposition 1 defined by
matrices over [0, 1]NM by a lattice filter.
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4 Expanding the paraconsistent logic nf-NM
with a consistency operator ◦

As mentioned in the Introduction, paraconsistent logics and fuzzy logics are
conceptually related, although not all the systems of MFL are paraconsistent.
In the case of NML, paraconsistency can be obtained by replacing the truth-
preserving consequence relation by the degree-preserving one, or by consequence
relations defined by matrices with suitable lattice filters as designated values.

Let us briefly recall some notions from paraconsistency. A logic has an
explosive negation ¬ when any formula can be derived from a contradiction
{φ,¬φ}.5 A logic L is paraconsistent (w.r.t. ¬) when ¬ is a non explosive
negation, meaning that there are (¬-)contradictory but non-trivial theories in
L. Among the plethora of paraconsistent logics proposed in the literature, one
of the best behaved families of paraconsistent logics are the so-called Logics
of Formal Inconsistency (in short LFIs, see for instance [11] and [10]). The
idea behind LFIs is that explosiveness can be locally recovered by means of a
(primitive or defined) unary connective ◦, in the following sense: in spite of
having formulas φ and ψ such that ψ does not follow from {φ,¬φ} (given that
¬ is a paraconsistent negation), the set {φ,¬φ, ◦φ} is always logically trivial
(or explosive). Within this context, the connective ◦ is called a consistency (or
recovery, or classicality) operator. LFIs generalize the well-known hierarchy of
da Costa’s paraconsistent logics Cn introduced in 1963, in which the calculus
Cn at level n has a defined consistency operator ◦n which ‘tolerates’ n degrees
of contradiction (see [18]).

The non-falsity preserving logic nf-NM introduced in the previous section
is a paraconsistent logic, but it is not an LFI, that is, it can be shown that
a consistent operator in the above sense is not definable (see Proposition 3
below). Therefore, in this section we study the expansion nf-NM with a proper
consistency operator ◦ so that the resulting logic is an LFI.

We start with some basic definitions and algebraic considerations about the
◦ operators before going into more details in the rest of the section.

4.1 Preliminary definitions and some algebraic considera-
tions

Let us first recall the definition of Logics of Formal Inconsistency.

Definition 4. ([11, 10]) Let L be a logic defined in a language containing a
negation ¬ and a unary operator ◦, and whose deduction system is denoted by
⊢. L is a Logic of Formal Inconsistency (with respect to ¬ and ◦) if the following
conditions hold:

(i) φ,¬φ ̸⊢ ψ, for some formulas φ,ψ, i.e. L is not explosive w.r.t. ¬;

5By the way, it may be observed that explosiveness is a basic feature of negation in many
logics.
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(ii) ◦φ,φ ̸⊢ ψ, for some formulas φ,ψ;

(iii) ◦φ,¬φ ̸⊢ ψ, for some formulas φ,ψ; and

(iv) φ,¬φ, ◦φ ⊢ ⊥, for every formula φ.

Condition (i) states that for L to be an LFI, it must be first a paraconsis-
tent logic with respect to the negation ¬, namely: not every theory containing
{φ,¬φ} is logically trivial. In addition, conditions (ii)-(iv) describe the proper-
ties a consistency operator should satisfy, namely: not every theory containing
{◦φ,φ} is logically trivial; analogously, not every theory containing {◦φ,¬φ} is
logically trivial; however, any theory containing {◦φ,φ,¬φ} is logically trivial.
This means that, in an LFI, trivialization always occurs when the three formulas
◦φ, φ and ¬φ are placed together in a theory, but the presence of only two of
them does not guarantee logical trivialization.

A consistency operator in a LFI logic can be primitive or it can be defined
from other connectives of the language. For instance, in the well-known system
C1 of da Costa, consistency is defined by the formula ◦φ = ¬(φ ∧ ¬φ), while
in Cn (for n ≥ 2) a formula ◦nφ obtained by iterating ◦φ in a suitable way
expresses consistency (see [18]). Another example of an LFI logic is the case of
the degree-preserving companion of Gödel logic with an involutive negation G∼
(see [17]), where the Baaz-Monteiro ∆ operator is definable (∆φ = ¬ ∼ φ), and
consistency is defined by the formula ◦φ = ∆(φ ∨ ¬φ). In fact, it is known [23]
that the logic G∼ is equivalent to the expansion of the NM logic with ∆, NM∆,
and hence a consistency operator in the degree-preserving companion of NM∆

keeps being definable as ◦φ = ∆(φ ∨ ¬φ).
Let us now turn our attention to [0,1]NM. Observe that, among the logics

depicted in Fig. 1 defined by matrices ⟨[0,1]NM, F ⟩, where F is a lattice filter,

the only paraconsistent ones are J3, nf-NM = ⊢(0,  L≤
3 = J3 ∩  L3 and NM≤ =

NM ∩ nf-NM. Moreover, the following result can be obtained.

Proposition 3. The logic nf-NM = ⊢(0, defined by the matrix M =
⟨[0,1]NM, (0, 1]⟩, is not an LFI.

Proof. Assume ◦ is definable in NML in such a way that |=M is an LFI, hence
the conditions (ii)-(iv) in the definition above are satisfied. Since the 2-element
Boolean algebra 2 over {0, 1} is a subalgebra of any NM-chain, if ◦ were definable
in NML (by a unary term), the only consistency operator that could be definable
would be the one where ◦(0) = ◦(1) = 1, since this is the only compatible
possibility when restricting ◦ to 2. Thus ◦ satisfies conditions (ii) and (iii). On
the other hand, if we want condition (iv) be satisfied, this implies that, for any
x ∈ [0, 1] the following condition has to be satisfied:

x > 0,¬x > 0 implies ◦(x) = 0. (1)

Now, consider the NM-homomorphism h : [0,1]NM → NM3, where NM3 is
the NM-subalgebra of [0,1]NM on the set {0, 1/2, 1}, defined as h(x) = 1 if
x > 1/2, h(1/2) = 1/2 and h(x) = 0 if x < 1/2. Then, since ◦(x) is a term
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defined over the algebra [0,1]NM, it should be that h(◦(x)) = ◦(h(x)) for all
x ∈ [0, 1]. However, take x such that 1/2 ≥ x > 0, then ¬x ≥ 1/2 > 0 and
thus, by condition (1), ◦(x) = 0. Then, by definition of h and since ◦(x) = 0,
we have h(◦(x)) = h(0) = 0. But this is in contradiction with the fact that
◦(h(x)) = ◦(0) = 1.

Observe that, as a consequence of this proposition, the degree-preserving
logic ⊢≤=⊢1 ∩ ⊢(0 is not an LFI either. On the other hand, as expected, the

cases of the logic J3 = ⊢1/2 and the logic  L≤
3 = J3 ∩  L3 do not fall in the scope

of the proposition. In fact, the term ◦(x) = x2 ∨ (¬x)2 defines a consistency

operator in J3 and in  L≤
3 , and hence they are LFIs.

Nonetheless, similarly to what has been done in the case of fuzzy logics
preserving degrees of truth in [14], we can expand the above paraconsistent but
not LFI logics with a suitable consistency operator ◦ such that they become
an LFI. Actually, as announced, in this section we focus on the case of the
logic nf-NM, and our task will be then to study its expansion with a new unary
connective ◦ so that the resulting logic is an LFI. We will denote by L◦ the
expansion of the language of NML with ◦.

From a semantical point of view, consider a given unary operator ◦ : [0, 1] →
[0, 1],6 and let us consider the following matrices:

M1
◦ = ⟨[0,1]NM◦ , {1}⟩ and M0

◦ = ⟨[0,1]NM◦ , (0, 1]⟩,

where the algebra [0,1]NM◦ is the expansion of [0,1]NM with ◦. We start by
considering the most general semantical conditions on ◦ guaranteeing that the
logic |=M0

◦
is an LFI, in other words, requiring that the following conditions are

satisfied:

• ◦φ,φ,¬φ |=M0
◦
⊥

• φ, ◦φ ̸|=M0
◦
⊥

• ¬φ, ◦φ ̸|=M0
◦
⊥

It immediately follows that these conditions are satisfied if, and only if, in the
algebra [0,1]NM◦ the following conditions are in turn satisfied:

- For all x ∈ [0, 1], x ∧ ¬x ∧ ◦x = 0,

- There exists x ∈ [0, 1], such that x ∧ ◦x ̸= 0,

- There exists x ∈ [0, 1], such that ◦x ∧ ¬x ̸= 0.

It is readily seen that requiring these three conditions amount to require the
next three constraints on ◦:

(C0) ◦x = 0 for all x ∈ (0, 1),

6Without danger of confusion, we will use the same symbol ◦ to denote the connective and
a generic unary operation on the unit real interval [0, 1].
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(1-NZ) ◦1 > 0,

(0-NZ) ◦0 > 0.

We will call an operator basic when satisfying these conditions.

Definition 5. A unary operator ◦ : [0, 1] → [0, 1] that satisfies conditions (C0),
(1-NZ) and (0-NZ) will be called a basic consistency operator.

From conditions (1-NZ) and (0-NZ) above, it is clear that the value of ◦(0)
or ◦(1) can be either

– equal to 1,

– a stricly positive element (SP), i.e. strictly greater than 1
2 and strictly

smaller than 1,

– equal to 1
2 , or

– a strictly negative element (SN), i.e. strictly smaller than 1
2 and strictly

greater than 0.

In fact, one cannot distinguish in [0, 1]NM the case ◦(0) = a from the case
◦(0) = b if both a and b are SP or SN, because there exist an isomorphism f of
[0, 1]NM such that f(a) = b.

Moreover, it is easy to characterise the above cases by equations and inequa-
tions in [0, 1]NM . The proof is easy and thus it is omitted.

Proposition 4. For b ∈ {0, 1}, the following conditions hold:

[b-1] ◦(b) = 1 is equivalently characterised by the equation ¬(◦(b)) = 0,

[b-SP] ◦(b) ∈ (1/2, 1) is characterised by the inequation (◦(b))2 ∧ ¬(◦(b)) > 0,

[b-fix] ◦(b) = 1/2 is characterised by the inequation (◦(b) ↔ ¬(◦(b)))2 > 0,

[b-SN] ◦(b) ∈ (0, 1/2) is characterised by the inequation ◦(b) ∧ (¬(◦(b)))2 > 0.

Combining these four conditions for b = 1 and b = 0, we obtain sixteen
types of basic consistency operators ◦. In particular, the operator satisfying the
conditions [1-1] and [0-1] is the maximal consistency operator ◦max, i.e. the one
such that ◦max(0) = ◦max(1) = 1.

Proposition 5. Two interesting properties of consistency operators are the
following:

(i) The operator ◦max and Baaz-Monteiro’s projection operator7 ∆ are inter-
definable.

7Recall that the so-called Baaz-Monteiro operator ∆ on the unit interval [0, 1] is defined
as ∆(1) = 1 and ∆(x) = 0 for x < 1. From a logical point of view, it has been used in
the frame of mathematical fuzzy logic as a way to specify that a proposition is fully true,
so that, even if φ takes intermediate degrees of truth, ∆φ is Boolean, it can only take two
truth-values: 1 when φ is 1-true, and 0 otherwise. In general, if L is an axiomatic extension
of MTL, then the (conservative) expansion of L with ∆ is axiomatised by adding to L the
axioms (∆1) ∆φ ∨ ¬∆φ, (∆2) ∆(φ ∨ ψ) → ∆φ ∨ ∆ψ, (∆3) ∆φ → φ, (∆4) ∆φ → ∆∆φ,
(∆5) ∆(φ → ψ) → (∆φ → ∆ψ), together with the necessitation rule: (∆-Nec) from φ derive
∆φ. See [12] for details.
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(ii) The maximal consistency operator ◦max (and the ∆ operator) is definable
from any of the sixteen types of consistency operators except from the one
defined by the pair of conditions [0-SN] and [1-SN].

Proof. (i) To prove the first item we only need to check that ∆(x) = ◦max(x)∧x
and also that ◦max(x) = ∆(x ∨ ¬x).

(ii) The second item will be proved by cases:

• Suppose first that both ◦(0), ◦(1) ≥ 1/2 (containing the cases defined by
the nine pairs of conditions ([0-1],[1-1]), ([0-1],[1-SP]), ([0-1],[1-Fix]), ([0-
SP],[1-1]), ([0-SP],[1-SP]), ([0-SP],[1-Fix]), ([0-Fix],[1-1]), ([0-Fix],[1-SP]),
and ([0-Fix],[1-Fix]). In such a case it is easy to check that

◦max(x) = ¬((¬(◦(x)))2) and ∆(x) = ◦max(x) ∧ x.

• Suppose that ◦(1) ≥ 1/2 and ◦(0) ∈ (0, 1/2), that contains the three
consistency operators defined by the pairs of conditions ([0-SN],[1-1]), ([0-
SN],[1-SP]), and ([0-SN],[1-Fix]). In such a case it is easy to check that

∆(x) = ¬((¬(◦(x))2)2) and ◦max(x) = ∆(x ∨ ¬x).

• Finally when ◦(1) ∈ (0, 1/2) and ◦(0) ≥ 1/2, that contains the three
consistency operators defined by the following pairs of conditions ([0-1],[1-
SN]), ([0-SP],[1-SN]), and ([0-Fix],[1-SP]). In such a case it is easy to check
that

∆(x) = ¬((¬(◦(¬x))2)2) and ◦max(x) = ∆(x ∨ ¬x).

• For the remaining case, the one determined by the pair ([0-SN],[1-SN]),
the conjecture is that it is not possible to define the ∆ and ◦max operators.

Remark 1. It is clear that the converse of the previous results does not hold
in the sense that if we add ◦max to the algebra [0,1]NM, it is not possible to
recover the previous consistency operators, of course with the exception of ◦max
itself, because ∆ and ◦max are crisp operators (i.e. they only take values 0 or
1) and the operations of the algebra [0,1]NM are classical when restricted to
{0, 1}.

4.2 The maximal consistent operator and related logics:
Approach 1

In this subsection we will formally define and axiomatise the expansion of the
logic nf-NM with the maximal consistency operator ◦max, i.e. the basic consis-
tency operator ◦ further satisfying:

[1-1] ◦1 = 1
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[0-1] ◦0 = 1

As already noted before, the crucial observation is that, in this case, ◦max and
the Baaz-Monteiro operator ∆ are interdefinable: ∆(x) = ◦max(x) ∧ x, and
◦max(x) = ∆(x ∨ ¬x).

We start by axiomatising first the logic |=Mmax
◦

defined by the logical matrix
Mmax

◦ = ⟨[0,1]NMmax
◦

, {1}⟩. It is worth noting that this logic is not paracon-
sistent, and so in particular it is not an LFI. However, its underlying algebra
[0,1]NMmax

◦
was designed to be able to define an LFI when a suitable filter of

designated values is considered.8

Definition 6. NMLmax
◦ is the logic defined by the following axioms and rules:

• Axioms of NML

• Consistency Axioms:

(C0) ¬(◦φ ∧ φ ∧ ¬φ)

(⊤-1) ◦⊤
(⊥-1) ◦⊥

• Modus ponens: (MP)

• Congruence rule:

(Cong)
(φ↔ ψ) ∨ χ

(◦φ↔ ◦ψ) ∨ χ
.

Observe that axiom (C0) can be equivalently replaced by the axiom

(C0’) (φ ∧ ¬φ ∧ ◦φ) → ψ,

which is characteristic of the LFIs. Moreover, it is easy to check that the
following three inference rules

φ

◦φ
,

¬φ
◦φ

,
φ

∆φ

are derivable in NMLmax
◦ from the axioms (⊤-1) and (⊥-1) and the rule (Cong).

Moreover, one can also check that the formula ◦φ ∨ ¬◦φ, stating that ◦ is a
Boolean operator, can be proved to be a theorem of the logic as well: by applying
the (Cong) rule to the axiom (C0), equivalently expressed as φ ∨ ¬φ ∨ ¬◦φ,
one gets ◦φ ∨ ¬φ ∨ ¬◦φ, and by applying the derived rule ¬φ/◦φ, one gets
◦φ ∨ ◦φ ∨ ¬◦φ, which is equivalent to ◦φ ∨ ¬◦φ. Finally, note that from there,
one can prove that ◦ ◦ φ is a theorem of the logic as well.

8This is the approach to paraconsistency frequently adopted in the realm of MFL, see for
instance [14].
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Remark 2. As already mentioned above, the consistency operator ◦max and the
operator ∆ are interdefinable, and thus it follows that an alternative equivalent
axiomatisation of NMLmax

◦ (where ◦max is primitive and ∆ definable), could
be given by the logic NML∆, the expansion of NML with ∆ [23], where ∆
is primitive and ◦max is definable. Nevertheless, the above axiomatisation of
NMLmax

◦ will be more useful for our purposes of axiomatising all the other types
of consistency operators which allow the definition of the ∆ operator, see the
last part of this subsection.

Proposition 6. NMLmax
◦ is a sound and complete axiomatisation of |=Mmax

◦
.

Proof. Soundness is easy as it reduces to check that, in the matrix Mmax
◦ =

⟨[0,1]NMmax
◦

, {1}⟩, the above three consistency axioms (C0), (⊤-1) and (⊥-1)
are valid and the (Cong) rule preserves truth, and it is immediate that the ◦max
satisfies the corresponding equations and quasi-equation. As for completeness,
note that NMLmax

◦ is an expansion of NM with axioms plus the (Cong) rule,
which is closed by disjunctions. So, by results in [12], the corresponding variety
of NMmax

◦ -algebras keeps being prelinear. Therefore, NMLmax
◦ is complete with

respect to the class of NMmax
◦ -chains. Hence, if Γ ̸⊢ φ, there is an evaluation e

on a NMmax
◦ -chain A such that e(ψ) = 1 for all ψ ∈ Γ and e(φ) < 1. Consider

the NMmax
◦ -subchain A′ generated by the set of elements {e(ψ) | ψ ∈ Γ ∪

{φ}}, which is countable. Now, from the strong standard completeness of NML,
we know that every countable NM-chain embeds into the standard NM-chain
[0,1]NM, and it is very easy to check that every such embedding easily extends
to an embedding h from a countable NMmax

◦ -chain into the standard algebra
[0,1]NMmax

◦
. Therefore, we can always find an evaluation e′ on [0,1]NMmax

◦
such

that e′(ψ) = 1 for all ψ ∈ Γ and e′(φ) < 1, and hence Γ ̸|=Mmax
◦

φ.

It is worth noticing that, from this completeness result, it follows that the
set of axioms for the ∆ operator (defined above as ∆φ := ◦φ ∧ φ), as proposed
e.g. in [32] to syntactically characterising it, are provable in NMLmax

◦ , since they
are obviously valid formulas in Mmax

◦ = ⟨[0,1]NMmax
◦

, {1}⟩.
Now we move from the matrix Mmax

◦ = ⟨[0,1]NMmax
◦

, {1}⟩ defined by the
filter F = {1} to the matrix Mmax 0

◦ = ⟨[0,1]NMmax
◦

, (0, 1]⟩ defined by the filter
F = (0, 1], and consider its corresponding paraconsistent logic |=Mmax 0

◦
.

Note that the logic |=Mmax 0
◦

can be described in terms of the logic |=Mmax
◦

by using the ∆ connective. Namely, it holds that

{φ1, . . . , φn} |=Mmax 0
◦

ψ iff {∇φ1, . . . ,∇φn} |=Mmax
◦

∇ψ,
iff |=Mmax

◦
(∇φ1 ∧ . . . ∧∇φn) → ∇ψ

iff |=Mmax
◦

∇(φ1 ∧ . . . ∧ φn) → ∇ψ,

where ∇ = ¬∆¬. Indeed, by definition of the ∆ operator, for any evaluation e
it holds that e(∇φ) = 1 if e(φ) > 0 and e(∇φ) = 0 otherwise.

Now we introduce an axiomatic system for the the logic |=Mmax 0
◦

.

Definition 7. nf-NML◦max
is the logic defined by the following axioms and

rules:
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• Axioms of NMLmax
◦

• Rule of Adjunction: (Adj)
φ, ψ

φ ∧ ψ

• Restricted Modus Ponens: (r-MP)
φ, φ→ ψ

ψ
, if ⊢NML◦ φ→ ψ

• Restricted Congruence: (r-Cong)
(φ↔ ψ) ∨ χ

(◦φ↔ ◦ψ) ∨ χ
, if ⊢NML◦ (φ↔ ψ)∨χ

• Reversed (r-∇Nec)
∇φ
φ

.

Observe that the rule of necessitation for ∇:

(∇Nec)
φ

∇φ
,

which is the reverse of (r-∇Nec), is derivable. Indeed, it is a direct consequence
of fact that, by definition, ∇φ = ¬∆¬φ = ¬◦¬φ ∨ φ. On the other hand, from
(r-∇Nec) it easily follows that the rule

¬◦¬φ
φ

,

is also derivable since clearly ¬◦¬φ→ ¬◦¬φ ∨ φ is a theorem of NMLmax
◦ .

Theorem 2. nf-NML◦max
is a sound and complete axiomatisation of |=Mmax 0

◦
.

Proof. Suppose {φ1, . . . , φn} |=Mmax 0
◦

ψ. Then, as observed above, this holds
iff |=Mmax

◦
∇(φ1 ∧ . . . ∧ φn) → ∇ψ, and by completeness, iff ⊢NMmax

◦
∇(φ1 ∧

. . . ∧ φn) → ∇ψ. Therefore, in NMmax
◦ there is a proof

Π1, . . . ,Πr = ∇(φ1 ∧ . . . ∧ φn) → ∇ψ,

where each Πi (with 1 ≤ i < r) is either an axiom of NML◦, it has been
obtained from a previous Πk by the (Cong) rule, or has been obtained from
previous Πk,Πj (k, j < r) by the application of Modus ponens rule. Then, in
order to get a proof of φ from ψ1, . . . , ψn in NML0

◦ we only need do the following:

(i) add two previous steps Π1
0 and Π2

0, where

- Π1
0 = φ1 ∧ . . . ∧ φn, obtained from the premises by the (Adj) rule,9

- Π2
0 = ∇(φ1 ∧ . . . ∧ φn), obtained from Π1

0 by the (∇Nec) rule

(ii) add two final steps Πr+1 and Πr+2, where

- Πr+1 = ¬∆¬ψ, obtained by the application of the (r-MP) rule to Π0

and Πr, and

- Πr+2 = ψ, obtained by applying the rule (r-∆Nec) to Πr+1.

9To be precise, it would be necessary to also add n further steps, one for each of the n
premises {φ1, . . . , φn}, but we skip them for simplicity.
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Therefore, the sequence Π1
0,Π

2
0,Π1, . . .Πr,Πr+1,Πr+2 is a proof of ψ from

{φ1, . . . , φn} in the logic NML0
◦, with the proviso that the applications of the

modus ponens and the (Cong) rules in the original proof Π1, . . .Πr in NML◦
have to be replaced now by applications of the corresponding restricted rules
(r-MP) and (r-Cong).

The same kind of approach can be used to define the logics corresponding
to each type of the remaining fourteen basic consistency operators described in
Proposition 4 for which the ∆ operator is definable, see (ii) of Proposition 5.
To do this, one has to:

(1) Replace axioms (⊤-1) and (⊥-1) respectively by suitable axioms corre-
sponding to any pair of the conditions [b-SP], [b-fix] and [b-SN] from Prop.
4, namely:

(k-SP) (◦(k))2 ∧ ¬◦(k),

(k-Fix) (◦(k) ↔ ¬◦(k))2,

(k-SN) ◦(k) ∧ (¬◦(k))2,

one for k = ⊤ and one for k = ⊥, except for the pair {(⊤-SN), (⊥-SN)}.

(2) Suitably change the defining abbreviation of ∆ in terms of ◦ according to
the following cases:

- for the pairs of axioms (⊤-1, ⊥-1), (⊤-1,⊥-SP), (⊤-1,⊥-Fix), (⊤-SP,⊥-1),
(⊤-SP,⊥-SP), (⊤-SP, ⊥-Fix), (⊤-Fix, ⊥-1), (⊤-Fix, ⊥-SP), and (⊤-Fix,
⊥-Fix), define

∆φ := ¬((¬◦φ)2) ∧ φ,

- for the pairs of axioms (⊥-SN, ⊤-1), (⊥-SN, ⊤-SP), and (⊥-SN, ⊤-Fix),
define

∆φ := ¬((¬(◦φ)2)2),

- and for the pairs of axioms (⊥-1, ⊤-SN), (⊥-SP, ⊤-SN), and (⊥-Fix,
⊤-SP), define

∆φ := ¬((¬(◦¬φ)2)2) .

4.3 The logic of basic consistency operators: Approach 2

The approach followed in the previous subsection does not work in the cases of
expansions of nf-NML with a consistency operator ◦ where ∆ is not definable.
This is the case for instance of expansions with a basic consistency operators or
with an operator satisfying the axioms (⊤-SN) and (⊥-SN). In this subsection
we explore an alternative approach.

We start by considering the expansion of the logic NM with a new connective
◦ requiring to satisfy the following axiom
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(C0) ¬(◦φ ∧ φ ∧ ¬φ),

and the following inference rule

(Cong)
(φ↔ ψ) ∨ χ

(◦φ↔ ◦ψ) ∨ χ
.

Call this logic NM◦. Since the rule (Cong) is closed by disjunction, it is readily
seen that NM◦ is sound and complete w.r.t. the class of matrices

Cqcons = {⟨[0,1]NM◦ , {1}⟩ : ◦ satisfies condition (C0)}.

Observe that operators on [0, 1] satisfying condition (C0) can be called quasi-
consistency operators since they can verify ◦(0) = 0 and ◦(1) = 0.

Next we turn to the corresponding paraconsistent logic whose semantics is
given by the class of matrices

C0
qcons = {⟨[0,1]NM◦ , (0, 1]⟩ : ◦ satisfies condition (C0)}.

and introduce the following definition of the non-falsity preserving companion
of NM◦.

Definition 8. We define the logic nf-NM◦ by the following axioms and rules:

• Axioms of NM◦

• Rule of Adjunction: (Adj)
φ, ψ

φ ∧ ψ

• Reverse Modus Ponens: (MPr)
¬ψ ∨ χ

¬φ ∨ ¬(φ→ ψ) ∨ χ

• Restricted Modus Ponens: (r-MPNM◦
)

φ, φ→ ψ

ψ
,

if ⊢NM◦
φ or ⊢NM◦

φ→ ψ

• Reverse Congruence rule: (Congr)
¬((◦φ↔ ◦ψ) ∨ χ) ∨ δ
¬((φ↔ ψ) ∨ χ) ∨ δ

.

In this logic, the following inference rule, which is a restricted form of modus
ponens for the material implication, is derivable:

(Contr)
φ, ψ ∨ ¬φ

ψ
, if ⊢NM◦

φ

Indeed, assume ⊢NM◦
φ. Then ⊢NM◦

¬φ→ ⊥, and hence ⊢NM◦
¬φ→ ψ as well,

and since ⊢NM◦
ψ → ψ, it follows that ⊢NM◦

ψ∨¬φ→ ψ. Finally, applying the
(r-MP) rule to ψ ∨ ¬φ and the theorem ψ ∨ ¬φ→ ψ, we get ψ.

It is straightforward to check that that the logic nf-NM◦ is sound w.r.t. the
class of matrices C0

qcons. Only notice that, on the one hand, if a rule φ/ψ is
sound for a matrix M = ⟨[0,1]NM◦ , {1}⟩ ∈ Cqcons then the rule ¬ψ ∨ χ/¬φ ∨ χ
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is automatically sound for the matrix M′ = ⟨[0,1]NM◦ , (0, 1]⟩ ∈ C0
qcons. On the

other hand, regarding the rule (r-MP), notice that in the case e(φ) = 1 and
e(φ→ ψ) > 0, then e(ψ) = e(φ→ ψ) > 0 as well.

In order to show the logic nf-NM◦ is complete, we first prove the following
proposition, relating proofs in NM◦ and in nf-NM◦.

Proposition 7. If ψ ⊢NM◦
φ then in nf-NM◦ there is a proof of ¬ψ from ¬φ.

Proof. Suppose ψ ⊢NM◦
φ, then there is a proof ⟨Π1, . . .Πr⟩, where Π1 = ψ,

Πr = ψ and where each Πi (with 1 < i ≤ r) either:

- is an axiom of NM◦,

- has been obtained from previous Πk,Πj (k, j < r) by the application of
the Modus ponens rule (MP), or

- has been obtained from a previous Πk (k < i), by the application of the
(Cong) rule.

We show next that we can build a proof for ¬ψ from ¬φ in nf-NM◦. We define:

(1) Σ1 = ¬Πr = ¬φ,

(2) For each i = 1, ..., r− 1 we do the following: by the iterative construction
below, Σi will be of the form Σi = Σ∗ ∨ ¬Πr−i+1 (in the case i = 1 we
take Σ∗ = ⊥). Then we define:

- If Πr−i+1 is an axiom or theorem of NM◦, then Σi+1 = Σi.

- If Πr−i+1 = Ψ has been obtained from previous Πk = Φ,Πj = Φ → Ψ
(k, j < r) by the application of Modus ponens rule, then Σi+1 = Σ∗ ∨
¬Πk ∨ ¬Πj is obtained from Σi by application of (MPr).

- If Πr−i+1 = (◦φ ↔ ◦ψ) ∨ χ has been obtained from a previous Πk =
(φ ↔ ψ) ∨ χ by the application of (Cong) rule, then Σi+1 = Σ∗ ∨ ¬Πk is
obtained from Σi by application of (Congr).

(3) By construction, Σr is of the form ¬Π1 ∨
∨
i=1,n ¬Πki , where for each ki,

Πki is an axiom or theorem of NM◦. Therefore, ¬Π1∨
∨
i=1,n ¬Πki → ¬Π1

is a theorem of NM◦ as well. So we define Σr+1 = Σr → Σ1,10 and thus
by using the restricted Modus Ponens rule (r-MPNM◦

) on Σr and Σr+1

and theorem we finally get Σr+2 = ¬Π1 = ¬ψ

As a consequence, after removing possible duplicates in the sequence
⟨Σ1, ...,Σr,Σr+1,Σr+2⟩, we get a proof of ¬ψ from ¬φ in nf-NM◦.

Example 1. Consider the derivation {φ ∧ ◦ψ ∧ (φ→ (ψ ↔ χ))} ⊢NML◦
◦χ. A

possible proof is the following sequence:

10Actually, to be formally accurate we should replace the proof step Σr+1 itself by a whole
proof of this theorem in NML◦, but for the sake of simplicity we leave it as it is.
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Π1 = φ ∧ ◦ψ ∧ (φ→ (ψ ↔ χ)), premise
Π2 = (φ ∧ ◦ψ ∧ (φ→ (ψ ↔ χ))) → φ, axiom
Π3 = φ, since Π3 = MP (Π1,Π2)
Π4 = (φ ∧ ◦ψ ∧ (φ→ (ψ ↔ χ))) → ◦ψ, axiom
Π5 = ◦ψ, since Π5 = MP (Π1,Π4)
Π6 = (φ ∧ ◦ψ ∧ (φ→ (ψ ↔ χ))) → (φ→ (ψ ↔ χ)), axiom
Π7 = φ→ (ψ ↔ χ), since Π7 = MP (Π1,Π6)
Π8 = ψ ↔ χ, since Π8 = MP (Π3,Π7)
Π9 = ◦ψ → ◦χ, since Π9 = Cong(Π8)
Π10 = ◦χ; since Π10 = MP (Π5,Π9)

Now, according to the procedure defined in the proof of the above proposition,
we obtain the following sequence of proof steps in nf-NM◦:

Σ1 = ¬Π10

Σ2 = ⊥ ∨ ¬Π5 ∨ ¬Π9, since MP r(¬Π10) = ¬Π5 ∨ ¬Π9

Σ3 = ⊥ ∨ ¬Π5 ∨ ¬Π8, ¬Π8 = Congr(¬Π9)
Σ4 = ⊥ ∨ ¬Π5 ∨ ¬Π3 ∨ ¬Π7, since MP r(¬Π8) = ¬Π3 ∨ ¬Π7

Σ5 = ⊥ ∨ ¬Π5 ∨ ¬Π3 ∨ ¬Π1 ∨ ¬Π6, since MP r(¬Π7) = ¬Π1 ∨ ¬Π6

Σ6 = Σ5, since Π6 is an axiom
Σ7 = ⊥ ∨ ¬Π1 ∨ ¬Π4 ∨ ¬Π3 ∨ ¬Π1 ∨ ¬Π6, since MP r(¬Π5) = ¬Π1 ∨ ¬Π4

Σ8 = Σ7, since Π4 is an axiom
Σ9 = ⊥∨¬Π1∨¬Π4∨¬Π1∨¬Π2∨¬Π1∨¬Π6, since MP r(¬Π3) = ¬Π1∨¬Π2

Σ10 = Σ9, since Π2 is an axiom
Σ11 = Σ10 → Σ1, since Σ10 → Σ1 is a theorem of NM◦
Σ12 = ¬Π1, since r-MPNM◦

(Σ10,Σ11)

Therefore, after removing duplicate steps, we have that

⟨Σ1, . . . ,Σ5,Σ7,Σ9,Σ11,Σ12⟩

is a proof of ¬(φ ∧ ◦ψ ∧ (φ→ (ψ ↔ χ))) in nf-NM◦ from ¬◦χ.

Theorem 3. The finitary nf-NM◦ is sound and complete w.r.t. to the class of
matrices C0

qcons.

Proof. Suppose {ψ1, ..., ψn} |=M φ for every M ∈ C0
qcons. This is equivalent to

¬φ |=M′ ¬(ψ1 ∧ ... ∧ ψn) for every M′ ∈ Ccons. By completeness of NM◦, there
is a proof ⟨Π1, . . .Πr⟩, where Π1 = ¬φ, Πr = ¬ψ1 ∨ ... ∨ ¬ψn. Now, by the

above Proposition 7, there is also a proof of ¬¬φ from ¬¬(ψ1∧ ...∧ψn) in NM
0

◦.
Then, if Π1, ...,Πr, with Π1 = ¬¬(ψ1 ∧ ... ∧ ψn) and Πr = ¬¬φ, is a proof of
¬¬φ from ¬¬(ψ1 ∧ ... ∧ ψn), to get a proof of φ from {ψ1, ..., ψn} it is enough
to add:

- a previous step: Π0 = ψ1 ∧ ... ∧ ψn, obtained by n− 1 applications of the
Adjunction rule (Adj) to the premises Γ.11 Then Π1 is obtained by applying
the (r-MP) rule to Π0 and the theorem ψ1 ∧ ... ∧ ψn → ¬¬(ψ1 ∧ ... ∧ ψn).

11The same comment in the proof of Prop. 2 applies here.
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- a final step: Πr+1 = φ, obtained by applying the (r-MPNM◦
) rule to Πr

and the theorem ¬¬φ→ φ.

At this point we emphasize that the logic above introduced nf-NM◦ is indeed
paraconsistent but it is not an LFI, since the operator ◦ is not guaranteed to
be a consistency operator, i.e. it is only required to satisfy axiom (C0) but
neither axiom (⊤-1) nor (⊥-1). This is why we finally introduce the non-falsity
preserving LFI logic nf-NM◦.

Definition 9. We define the logic nf-NM◦ as the axiomatic extension of the
logic nf-NM◦ with the axioms:

(⊤-1) ◦⊤,

(⊥-1) ◦⊥.

Then, as a corollary of the above theorem, it follows that NM0
◦ is in fact

a logic complete w.r.t. the class of matrices over [0,1]NM defined by basic
consistency operators and filter F = (0, 1].

Corollary 2. The logic nf-NM◦ is sound and complete w.r.t. the class of matri-
ces C0

cons = {⟨[0,1]NM◦ , (0, 1]⟩ : ◦ satisfies conditions (C0), (⊤-1) and (⊥-1)}.

Proof. Observe that Γ ⊢NM0
◦
φ iff Γ ∪ {(⊤-1), (⊥-1)} ⊢

NM
0
◦
φ, and by complete-

ness of nf-NM◦, iff Γ ∪ {(⊤-1), (⊥-1)} |=M φ for every M ∈ C0
qcons, that is, iff

Γ |=M φ for every M ∈ C0
cons. As for the latter equivalence, note that, for any

evaluation e on [0, 1]NM◦ , it holds that e(◦⊤) > 0 and e(◦⊥) > 0 iff ◦(1) > 0
and ◦(0) > 0.

Actually, the same kind of proof applies to show completeness of any ax-
iomatic extension of NM0

◦ with any pair of the axioms

(k-SP) (◦(k))2 ∧ ¬(◦(k))

(k-fix) (◦(k) ↔ ¬(◦(k)))2

(k-SN) ◦(k) ∧ (¬(◦(k)))2,

one for k = ⊤ and one for k = ⊥.
We end with two remarks about the approach followed in this section.

Remark 3. The approach followed in this subsection does not go through to
show completeness for instance for the logic of the maximal consistency operator
◦max, since the conditions ◦(1) = ◦(0) = 1 cannot be expressed by adding two
axioms to nf-NM◦, but rather by adding the following two inference rules:

¬◦⊤
⊥

,
¬◦⊥
⊥

.
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5 Logics of matrices over NM-chains by lattice
filters

In this section we are going to show that most of the results we have obtained in
Section 3 can be extended to arbitrary NM-chains. As a matter of illustrative
example we first consider the particular case of the logics defined over the NM-
chain [0,1]−NM, which is the fix-point less subalgebra of [0,1]NM whose the
universe is [0, 1] ∖ {1/2}, and then in the second part we consider the logics
defined by matrices on general NM-chains and lattice filters.

5.1 Logics of matrices over [0,1]−NM

First, as a matter of illustrative example, we recall the NM-chain [0,1]−NM

which is the subalgebra of [0,1]NM where the universe is [0, 1] ∖ {1/2}. Since
[0,1]−NM is a subalgebra of [0,1]NM, for every a ∈ [0, 1], the logic ⟨[0,1]−NM, Fa∖
{1/2}⟩ is a proper extension of the logic ⟨[0,1]NM, Fa⟩ because the rule (p ↔
¬p)2/⊥ holds in ⟨[0,1]−NM, Fa∖ {1/2}⟩ but not in ⟨[0,1]NM, Fa⟩. Using similar
arguments as in the proof of Proposition 1 we obtain the following result:

Proposition 8. For any a ∈ [0, 1], let ⊢−
a and ⊢−

(a be the finitary logics respec-

tively determined by the matrices ⟨[0,1]−NM, Fa ∖ {1/2}⟩ and ⟨[0,1]−NM, F(a ∖
{1/2}⟩. Then the following results hold:

1. ⊢−
a , ⊢−

(a and ⊢−
1 are the same logic for all a ∈ (1/2, 1),

2. ⊢−
a , ⊢−

(a and ⊢−
(0 are the same logic for all a ∈ (0, 1/2),

3. ⊢−
(1/2, ⊢−

1/2 and ⊢CPL are the same logic,

4. CPL is a proper extension of ⊢−
1 and ⊢−

(0,

5. ⊢−
1 and ⊢−

(0 are not comparable.

Definition 10. The degree-preserving companion of the logic ⊢−
NM is defined

as the intersection of the logics ⊢−
a , for all a ∈ (0, 1], that is, ⊢−

≤ =
⋂
a>0 ⊢−

a .

Similarly to Lemma 1, Proposition 8 allows ⊢−
≤ to be expressed in a very

simple way.

Lemma 3. ⊢−
≤ = ⊢−

1 ∩ ⊢−
(0.

In Figure 2 there is a graphical representation of the lattice of the logics
appearing in Proposition 8, which in fact involves only four different logics.

Notice that the same arguments used in the proofs of Lemma 2 and Corollary
1 allow us to prove that for all formulas ψ1, . . . , ψn, φ,

ψ1, . . . , ψn ⊢−
(0 φ if, and only if, ⊢−

1 ψ1 ∧ . . . ∧ ψn → ¬(¬φ)2.
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Figure 2: The lattice of the different logics in Proposition 8 and their relation
to ⊢−

≤ .

We recall that the logic NM−, the axiomatic extension of NML with the axiom
(BP), axiomatises ⊢−

1 . Thus, now we define the non-falsity preserving compan-
ion of NM− with the following axioms and rules:

• Axioms: those of NML plus (BP), that is, those of NML−

• Rules: Adjunction and (r-MP2
NM−)

where the rule (r-MP2
NM−) is similar to (r-MP2) but restricted to theorems of

NM−, that is, the rule such that from φ and φ → ¬(¬ψ)2 derives ψ, whenever
⊢−

1 φ→ ¬(¬ψ)2

Finally, analogously to Theorem 1, we have the following completeness result
for the logic nf-NM−.

Theorem 4. nf-NM− is a sound and complete axiomatisation of ⊢−
(0.

Now, for the different logics appearing in Proposition 8 we have the axioma-
tisations given in Table 2.

Logics Matrix Axioms Inference Rules

NM−: ⊢−
1 ⟨[0,1]−NM, {1}⟩ NM + (BP) MP

nf-NM−: ⊢−
(0 ⟨[0,1]−NM, (0, 1]⟩ NM + (BP) Adj, r-MP2

NM− :
φ, ⊢−

1 φ→¬(¬ψ)2

ψ

CPL ⟨[0,1]−NM, (1/2, 1]⟩ NM + (EM) MP

⊢−
1 ∩ ⊢−

(0 = ⊢−
≤ NM + (BP) Adj, r-MPNM− :

φ, ⊢−
1 φ→ψ
ψ

Table 2: Axiomatisations of the logics appearing in Proposition 8 defined by
matrices over [0, 1]−NM by a lattice filter.

In this table we use (EM) to refer to the excluded-middle axiom

(EM) φ ∨ ¬φ
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and (BP) to refer to the axiom

(BP ) ¬((φ↔ ¬φ)2)

that is satisfied by a NM-chain only if does not contain a negation fixpoint, see
[29, Theorem 2], where the equivalent expression of this axiom mentioned at
the end of Section 2 is used.

Finally, the lattice of the logics appearing in Table 1 and Table 2 is depicted
in Figure 3.

Figure 3: The lattice of the different logics in Table 1 and Table 2

Remark 4. (Adding a consistency operator to the logic nf-NM−) The
question of expanding the paraconsistent non-falsity preserving logic nf-NM−

over the NM-algebra [0,1]−NM has a parallel development as the one studied
in Section 4 for the case of the logic over the standard NM-algebra [0, 1]NM
with small modifications. In fact, one has to consider consistency operators
◦ : [0, 1]− → [0, 1]− satisfying the same conditions as the ones in Section 4 once
we exclude the value 1/2 from both the domain and the image of ◦, a fact that
restricts the number of types of consistency operators from sixteen to nine.

Anyway, if we pay our attention to the maximum consistency operator ◦max
on [0,1]−NM, similarly to what we did in Section 4.2, we can define the logic
nf-NML−

◦max
exactly as in Definition 7 for the logic nf-NML◦max

, only with the
proviso of adding the axiom (BP) to the axioms of NMLmax

◦ . The same proof
of Theorem 2 yields now completeness of LFI logic NMLmax

◦ with respect to the
intended semantics given by the matrix ⟨[0,1]−NMmax

◦
, F(0⟩. Analogous results

can be obtained for the logics expanded with the seven remaining types of
consistency operators where the ∆ is definable as well.

Finally, note that the whole approach developed in Section 4.3 for the case
where ∆ is not definable from ◦ (i.e. when both ◦(1), ◦(0) < 1/2), can be fully
reproduced here for the case of logics over [0,1]−NM.
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5.2 Logics defined by matrices on general NM-chains

Now, we consider logics defined by matrices on general NM-chains A and lattice
filters and first show that, using a similar argument as in the proof of Proposition
1, they also reduce in fact to matrix logics with filters F1 or F(0, where in the
following we will write 1 and 0 to denote the top and bottom element of A
respectively. For any F ⊆ A, as usual we denote by F c the complement of F
on A and by ¬F the set {¬a : a ∈ F}. Since the negation in A is involutive,
we recall that for every proper lattice filter F and any proper lattice ideal I,
¬F and F c are proper ideals while ¬I and Ic are proper filters. Moreover
F = (F c)c = ¬(¬F ) and I = (Ic)c = ¬(¬I). In the following, we will say that
two matrices M1 and M2 are equivalent when the induced logics |=M1 and
|=M2 are the same.

A first result about logics defined by matrices over a NM-chain and a lattice
filter is that, from pragmatic point of view, we can restrict ourselves to consider
only matrices either with {1} or with (0 as lattice filters.

Proposition 9. Let A be an NM-chain and let F be a proper lattice filter on
A. Then there exists a NM-chain B such that the matrix ⟨A, F ⟩ is equivalent
either to the matrix ⟨B, F1⟩ or to the matrix ⟨B, F(0⟩.

In more detail, by letting A+ = {a ∈ A : ¬a < a}, the following conditions
hold:

1. If F ⊆ A+, then ⟨A, F ⟩ is equivalent to ⟨B, F1⟩, where

B = {0} ∪ [A∖ (F ∪ ¬F )] ∪ {1}.

2. If F ̸⊆ A+, then ⟨A, F ⟩ is equivalent to ⟨B, F(0⟩, where

B = {0} ∪ [A∖ (F c ∪ ¬(F c))] ∪ {1}.

In particular, we have:

3. If A has negation fixpoint and F = A+, then ⟨A, F ⟩ is equivalent to
 L3 = ⟨NM3, {1}⟩.

4. If a is the negation fixpoint of A and F = A+ ∪ {a}, then ⟨A, F ⟩ is
equivalent to J3 = ⟨NM3, {1/2, 1}⟩.

5. If A does not have a negation fixpoint and F = A+, then (A, F ) is equiv-
alent to CPL = ⟨NM2, {1}⟩.

Proof. The proof is similar in every case:

1. ⟨B, F1⟩ is a submatrix and also a strong homomorphic image12 of ⟨A, F ⟩.

2. ⟨B, F(0⟩ is a submatrix and also a strong homomorphic image of ⟨A, F ⟩.
12A homomorphism h from ⟨A, F ⟩ to ⟨B, G⟩ is strong if h : A → B is a homomorphism

such that for every a ∈ A, a ∈ F iff h(a) ∈ G.
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3.  L3 is a submatrix and also a strong homomorphic image of ⟨A, F ⟩.

4. J3 is a submatrix and also a strong homomorphic image of ⟨A, F ⟩.

5. ⟨NM2, F1⟩ is a submatrix and also a strong homomorphic image of ⟨A, F ⟩.

The logics of matrices with {1} as a filter are explosive and in the literature
are usually referred as truth-preserving logics (understanding 1 as full truth),
while the logics of matrices with (0 as a filter are paraconsistent (except for the
case CPL) and can be called as non-falsity preserving logics, see e.g. [3].

The truth-preserving logics defined over NM-chains have been fully studied
in [29, 30]. The rest of this section is devoted in general to the non-falsity
preserving logics, and in particular to the axiomatisation of the logics given by
the matrices (A, F(0). We start by characterising the set of tautologies of the
logics ⊢A(0.

Proposition 10. Let A be a non trivial NM-chain.

1. If A has a fixpoint, J3 is an extension of ⊢A(0. Moreover, for every formula

φ, ⊢A(0 φ iff ⊢J3
φ. i.e. Taut(⟨A, F(0⟩) = Taut(J3).

2. If A has no fixpoint, CPC is an extension of ⊢A(0. Moreover, for every

formula φ, ⊢A(0 φ iff ⊢CPL φ. i.e. Taut(⟨A, F(0⟩) = Taut(CPL).

Proof. 1. Let c be the fixpoint of A. Then {0, c,1} is the subuniverse of a
subalgebra of A isomorphic to NM3. Therefore, ⟨NM3, F(0⟩ is embed-
dable as a submatrix into ⟨A, F(0̄⟩, thus J3 = ⟨NM3, F(0⟩ is an extension

of ⊢A(0.

Assume ̸⊢A(0 φ, then there is an A-evaluation e such that e(φ) = 0. More-

over since the map h : A→ {−1, 0, 1} defined by

h(x) =

 1, if x > c;
0, if x = c;
−1, if x < c.

is a homorphism from A onto NM3, then h◦e is an NM3-evaluation such
that h ◦ e(φ) = −1. Thus ̸⊢J3 φ.

2. If A does not have a fixpoint, then the 2-element Boolean algebra B2

is not only a subalgebra of A but also a homomorphic image of A and
a similar argument as in the previous item can be used to prove that
Taut(⟨A, F(0⟩) = Taut(CPL).

As in the case of the matrices over [0,1]NM, thanks to the involutivity of
the NM negation there is a tight relation among truth-preserving logics and
non-falsity preserving logics defined by matrices over NM-chains.
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Lemma 4. Let A be a non trivial NM-chain. For every formula φ,

ψ ⊢A(0 φ if, and only if, ¬φ ⊢A1 ¬ψ.

In particular, ⊢A(0 φ if, and only if, ⊢A1 ¬(¬φ)2.

Corollary 3. Let A be a non trivial NM-chain. For every formulas
ψ1, . . . , ψn, φ,

ψ1, . . . , ψn ⊢A(0 φ if, and only if, ⊢A1 (ψ1 ∧ . . . ∧ ψn) → ¬(¬φ)2.

Finally, we can extend the axiomatisation of ⊢(0 obtained in Theorem 1 to
non-fasilty preserving logics of matrices over NM-chains..

Theorem 5. Let L be a finitary extension of nf-NML defined by a class of
matrices of type ⟨A, F(0⟩ where each A is an NM-chain. Then there is an
axiomatic extension L′ of NML such that L is axiomatised as follows:

• Axioms: those of L′

• Rules: Adjunction and (r-MP2
L′)

Thus, L is exactly nf-L′.

Proof. Let M be a class of non-falsity preserving matrices, meaning matrices
of type ⟨A, F(0⟩. We denote by M1 the associated truth preserving class of
matrices, that is, M1 = {⟨A, F1⟩ : ⟨A, F(0⟩ ∈ M}. By definition, the finitary
logic defined by M is the non-falsity preserving companion of the logic defined
by M1. It follows from the characterisation of finitary extensions of NML in [30],
that the logic obtained by M1 is an axiomatic extension of NML, thus the same
arguments used in the proof of Theorem 1 provide a proof of this theorem.

All axiomatic extensions of NML were described in [29, Theorem 4]. The
following theorem and figure summarize this result. But before let us introduce
first the following notation conventions that will be used in the rest of the paper.

Notation: From now on, with an abuse of language,

• Nn will denote the matrix ⟨NMn, F1⟩

• Jn will denote the matrix ⟨NMn, F(0⟩

Theorem 6. L is an axiomatic extension of NML iff there exists (n,m) ∈
{(n,m) ∈ (ω+)2 : n ≥ m} such that L is the finitary logic defined by the
following finite set of matrices {N2n,N2m+1}, where with an abuse of language
we use N2ω = ⟨[0,1]−NM, {1}⟩ and N2ω+1 = ⟨[0,1]NM, {1}⟩. Moreover L is then
axiomatised relative to NML by the axiom

[BP (φ) ∧ Sn(φ0, . . . , φn)] ∨ Sm(φ0, . . . , φm).
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Figure 4: Lattice of axiomatic extensions of NML.

where

Sn(φ0, . . . , φn) =


⊥, if n = 0;∧
i<n

((φi → φi+1) → φi+1) →
∨

i<n+1

φi, if 0 < n < ω;

⊤, if n = ω,

Figure 4 depicts the lattice of axiomatic extensions of NML. As a corollary
of Theorem 5, we obtain the following result about the lattice of extensions of
the non-falsity preserving logic nf-NML.

Corollary 4. The lattice of finitary extensions of nf-NML defined by a class of
matrices whose algebras are NM-chains is isomorphic to the lattice of axiomatic
extensions of NML of Figure 4.

6 Logics of matrices over finite NM-algebras

In the preceding sections we have dealt with matrix logics over NM-chains
and lattice filters. However, it is clear that there are finitary extensions of
NML and of nf-NML that are not complete w.r.t. matrices over finite NM-
chains, e.g. the 1-preserving logic defined by the matrix ⟨NM2 ×NM3, F1⟩ =
⟨NM2, F1⟩ × ⟨NM3, F1⟩ or the non-falsity preserving logic defined by the ma-
trix J̄3 = ⟨NM2 × NM3, F(0 × F(0⟩ = N2 × J3 = J2 × J3, that is a proper
extension of J3, see e.g. [16].
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It follows from Theorem 5 and Corollary 4 that for matrices over NM-chains,
there is a one-one correspondence among truth preserving logics and non-falsity
preserving logics. Moreover, it is well known (see for instance [16]) that for
the case of the three element NM-chain,  L3 and J3 are equivalent deductive
systems. We are going to see in this section that this is not the case for axiomatic
extensions of NML different from CPL and  L3.

Since the variety of NM-algebras is locally finite any logic defined by ma-
trices over NM-algebras and lattice filters can be reduced to finite matrices.
On the other hand, unlike e.g. the case of case of finite MV-algebras (related
to  Lukasiewicz logics), not every finite NM-algebra is a finite direct product
of finite NM-chains. Actually, it is well-known that every finite algebra is
isomorphic to a direct product of (finite) directly indecomposable algebras,
but directly indecomposable NM-algebras are not necessarily linearly ordered,
for instance, the subalgebra of NM4 ×NM4 given by the following universe
{(n,m) ∈ NM4 × NM4 : either n,m > 0 or n,m < 0} is directly indecompos-
able but not a chain.

For NM-algebras we have a weaker result, in the sense that a matrix logic
over a finite NM-algebra can always be seen as an extension of a logic of a
product of finitely-many (finite) matrices Nni ’s and Jmj ’s. Before presenting
this result, notice that if F is a lattice filter of a finite NM-algebra A, then
it is a principal filter. Indeed, if a =

∧
{x | x ∈ F}, then F = Fa. In the

particular case of A being a product of finite NM-chains NMk1 × · · · ×NMkj

and a = (a1, . . . , ak) ∈ A, then Fa = Fa1
× . . .× Fak .

Lemma 5. Let A be a finite NM-algebra and let F be a lattice filter of A such
that F ̸= A, then |=⟨A,F ⟩ is an extension of |=Nn1

×···×Nnk
×Jm1

×···×Jmr
for some

n1, . . . nk,m1, . . .mr ≥ 2, where r + k > 0.

Proof. Since A is a finite NM-algebra, F ̸= A has a minimum element min(F ) ̸=
0 and F = {b ∈ A : b ≥ min(F )}. By the subdirect representation theorem,
A ⊂sd NMk1 × · · · ×NMkj

for some ki, . . . , kj ≥ 2, and min(F ) = (a1, . . . aj)
for some (a1, . . . aj) ∈ NMk1

× · · · × NMkj . Hence ⟨A, F ⟩ is a submatrix of
⟨NMk1 × · · · × NMkj

, Fa1
× · · · × Faj ⟩. By Proposition 9, ⟨NMk1 × · · · ×

NMkj
, Fa1

× · · · × Faj ⟩ is equivalent to ⟨NMr1 × · · · ×NMrj , Fb1 × · · · × Fbj ⟩,
where ri ≤ ki and the subindexes bi’s are:

bi =

 1, if ai > 0;
(0, if ⊥(NMki

) < ai ≤ 0;
0, if ai = ⊥(NMki

),

where ⊥(NMki
) denotes the bottom element of the chain NMki

. Notice that

⟨NMri , Fbi⟩ =

 Nri and ri ≥ 2, if bi = 1;
Jri and ri ≥ 2, if bi = (0;
N1, if bi = 0.

Finally, we can forget trivial components N1’s in order to obtain the desired
matrix.
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All the above considerations make the task of identifying and classifying all
the logics of matrices over finite NM algebras with lattice filters much more
complex for instance than the case of MV-algebras. Therefore, in the first
subsection we restrict ourselves to this task for logics defined by matrices over
finite products of finite NM-chains. In a second subsection we identify which
logics of matrices over finite NM-algebras are maximal paraconsistent.

Notation: In the following we will write i = 1 ÷ n to denote “for all i ∈
{1, . . . , n}”.

6.1 The case of finite products of finite NM-chains

Our first main result in this section is to show that any logic of a matrix ⟨A, F ⟩,
where A is a finite product of finite NM-chains, can be reduced to a finite set of
matrices from ten different types, each one in turn being a product of at most
three basic components of the form Nni

or Jnj
. This is proved in Theorem

7. Moreover, we also prove that each matrix of that set of ten different types
defines a different logic. This is done in Corollary 8.

Before proving Theorem 7, we need three previous lemmas.

Lemma 6. Let n1, . . . nk,m1, . . . ,mr ≥ 2 where r + k > 0, and consider the
product matrix

M = Nn1
× · · · × Nnk

× Jm1
× · · · × Jmr

.

Then, the following conditions hold:

• The logic |=M is an extension of NML iff either r = 0, or mi = 2 for
every 1 ≤ i ≤ r.

• The logic |=M is an extension of nf-NML iff either k = 0, or ni = 2 for
every 1 ≤ i ≤ k.

Proof. • The right to left implication is immediate since any Nni
is an ex-

tension of NML and N2 = J2. If r ̸= 0 and there is some mi > 2, then
Modus Ponens does not hold in |=M, and hence |=M is not an extension
of NML

• Similarly to previous cases if k = 0 or ni = 2 for every 1 ≤ i ≤ k, then
since any Jmi

is an extension of nf-NML and N2 = J2, |=M is an extension
of nf-NML. If k ̸= 0 and there is some ni > 2, then excluded-middle axiom
(EM) does not hold in |=M. Therefore, |=M is not an extension of nf-NML.

Lemma 7. For every n > 1,

• N2n+1 is embeddable into N2n+1 ×N3

• N2n+1 is embeddable into N2n+1 × J3
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• N2n is embeddable into N2n ×N2 = N2n × J2

Proof. To prove the first two items, it is easy to check that the mapping
h : NM2n+1 → NM2n+1 ×NM3 defined by

h(a) =

 (a, 1), if a > ¬a
(a, 1/2), if a = ¬a
(a, 0), if a < ¬a

is an embedding such that a ∈ F1 iff h(a) = (a, 1), and then a ∈ F1 iff h(a) ∈
F1 × F1 iff h(a) ∈ F1 × F(0.

The third item can be proved using the restriction of h to the domain NM2n

and codomain NM2n ×NM2.

Next lemma is a technical result with a sufficient condition to embed prod-
ucts of matrices.

Lemma 8. Let M1, . . . ,Mn,K1, . . . ,Kk be some logical matrices. Whenever

• For every 1 ≤ i ≤ n, there is 1 ≤ j ≤ k such that Mi is embeddable into
Kj, and

• For every 1 ≤ j ≤ k, there is 1 ≤ i ≤ n such that Mi is embeddable into
Kj,

then M1 × · · · × Mn is embeddable into L1 × · · · × Ll for some integer l ≥ n
where {Li : 1 ≤ i ≤ l} = {Kj : 1 ≤ j ≤ k}, and thus the logic |=M1×···×Mn

is
an extension of the logic |=K1×···×Kk

.

Proof. If both hypothesis hold then there exist mapsm : {1, . . . , n} → {1, . . . , k}
and s : {1, . . . , k} → {1, . . . , n} and embeddings hi,m(i) : Mi ↪→ Km(i) for every
1 ≤ i ≤ n and gs(j),j : Ms(j) ↪→ Kj for every 1 ≤ j ≤ k. Let A = {j1, . . . , jp} =
{1 ≤ j ≤ k : j ̸= m(i) for all i ≤ n} and let l = n+ p. Then for every 1 ≤ i ≤ l,
we define

Li =

{
Km(i), if i ≤ n;
Kjr if i > n where r = i− n.

It is easy to check that the map f :
∏

1≤i≤n

Mi →
∏

1≤j≤l

Lj defined as follows

f ((ai)1≤i≤n) (j) =

{
hj,m(j)(aj), if j ≤ n;
gs(jr),jr (as(j)), if j > n, where r = j − n.

is a matrix embedding

Theorem 7. Let A be a finite product of finite NM-chains and let F ̸= A be
a lattice filter on A. Then the logic defined by the matrix M = ⟨A, F ⟩ can be
reduced to a finite set of the following matrices:

1. Nn for some positive integer n > 1.
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2. N2 ×N2m+1 for some positive integer m.

3. Jn for some positive integer n > 1.

4. Jn × Jk for some positive integers n ̸= k.

5. J2n × J2k × J2l+1 for some positive integers l < n < k.

6. J2n × J2m+1 × J2l+1 for some positive integers m < n and m < l.

7. N2h+1 × J2k for some positive integer h, k such that k > 1.

8. N2h+1 ×J2n ×J2k for some positive integers h, n, k such that 1 < n < k.

9. N3 × J2n × J2m+1 for some positive integers n,m such that n > 1.

10. N3 × J2m+1 for some positive integer m.

Proof. By Lemmas 5 and 6 we may assume that M is:

• a finite product of Nn’s, if |=M is an extension of NML;

• a finite product of Jm’s, if |=M is an extension of nf-NML;

• a finite product of Nn’s and Jm’s if |=M is neither an extension of NML,
nor an extension of nf-NML.

Then we have the following cases:

• If the logic generated by M is an extension of NML, by Lemmas 7 and 8
and as mentioned later in Theorem 9, M can be reduced to

{N2n,N2 ×N2m+1,N2k+1, where n ≥ m ≥ k ≥ 0}.

Notice that these matrices are of type 1. or 2.

• If the logic generated by M is an extension of nf-NML, then we may
assume that M = Jn1

× · · · × Jnk

If all ni’s are even numbers or all ni’s are odd numbers, let
n = min{n1, . . . nk} and let m = max{n1, . . . nk}. Then, by Lemma 8,

Jn × Jm is a submatrix of M and M is a submatrix of (Jn × Jm)
k−1

.
Thus both matrices define the same logic. Notice that if n ̸= m, Jn ×Jm
is of type 4 and if n = m then Jn × Jn can be reduced to Jn of type 3.

When there are even components and odd components in M, with an
analogous argument by Lemma 8, we can reduce M to a product

M′ = J2n × J2k × J2m+1 × J2l+1

where 2n is the minimum of all even components, 2k is the maximum of
all even components, 2m + 1 is the minimum of all odd components and

37



2l+1 is the maximum of all even components. Moreover, since, by Lemma
8,

M1 = J2n × J2m+1 × J2l+1 (type 6)

and
M2 = J2n × J2k × J2l+1 (type 5)

are both submatrices of M′, and M′ is a submatrix of M1 ×M2, there-
fore the logic defined by M′ is the logic defined by the set of matrices
{M1,M2}. Moreover,
- If n ≤ m, M1 can be reduced to J2n × J2l+1.
- If n ≤ l, then M2 can be reduced to

J2n × J2l+1 and J2n × J2k;

- If k ≤ l, then M2 can be reduced to J2n × J2l+1;

• If the logic generated by ⟨A, F ⟩ is neither an extension of NML nor of nf-
NML, then, by Lemma 5 and without loss of generality, we may assume
M can be reduced to

Nn1
× · · · × Nnk

× Jm1
× · · · × Jmr

,

where k, r ≥ 1, n1 > 2, ni > ni+1 ≥ 2 for every i = 1 ÷ k, and
mi > mi+1 > 2 for every i = 1 ÷ r.

If there is some 1 ≤ i ≤ k such that ni is an even positive integer, then by
Lemmas 8 and 7, M can be reduced to

{Nni : 1 ≤ i ≤ k and ni is even}∪

{N2 ×Nni : 1 ≤ i ≤ k and ni is odd}∪{
J2 × Jmj

: 1 ≤ j ≤ r
}
.

Notice that in this case all matrices are of type 1., 2. and 4. A major
reduction can be obtained just by taking

{Nn,N2 ×Nm,J2 × Js,J2 × Jl} ,

where n = max{ni : 1 ≤ k and ni is even}, m = max{ni : 1 ≤
i ≤ k and ni is odd}, s = max{mi : 1 ≤ i ≤ r and mi is even} and
l = max{mi : 1 ≤ i ≤ r and mi is odd}.

If for every 1 ≤ i ≤ k, ni is an odd positive integer, let h be the positive
integer such that 2h + 1 = max{n1, . . . , nk}. Let m, n and k be defined
as follows whenever they exist:

- 2m+ 1 = max{mj : 1 ≤ j ≤ r and mj is odd },

- 2n = min{mj : 1 ≤ j ≤ r and mj is even }, and

- 2k = max{mj : 1 ≤ j ≤ r and mj is even }.

Then M can be reduced to:
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– If m,n, k exist and n < k,

N2h+1 × J2n × J2k (type 8.) and N3 × J2n × J2m+1 (type 9.)

– If m,n, k exist and n = k,

N2h+1 × J2n (type 7.) and N3 × J2n × J2m+1

– If m exists and n, k do not exist.

N2h+1 and N3 × J2m+1 ( type 10.)

– If m does not exists and n, k exist and n < k,

N2h+1 × J2n × J2k

– If m does not exists and n, k exist and n = k,

N2h+1 × J2n

For the particular case of extensions of nf-NML, i.e. when M is of the form
M = Jn1

× · · · × Jnk
, we have the following corollary.

Corollary 5. Let A be a finite product of finite NM-chains and let F ̸= A be a
lattice filter on A such that ⟨A, F ⟩ is an extension of nf-NML. Then the logic
defined by the matrix M = ⟨A, F ⟩ can be reduced to a finite set of the following
matrices:

1. Jn for some positive integer n > 1.

2. Jn × Jk for some positive integers n ̸= k.

3. J2n × J2k × J2l+1 for some positive integers l < n < k.

4. J2n × J2m+1 × J2l+1 for some positive integers m < n and m < l.

Our next task is to show that each of the ten different types of matrices
identified in the above theorem defines in fact a different logic, so all of them
are non-equivalent matrices. In the following we consider a generic matrix M
with k explosive components and r paraconsistent components,

M = ⟨M, F ⟩ = Nn1
× · · · × Nnk

× Jm1
× · · · × Jmr

where k + r > 0, ni ≥ 2 for every i = 1 ÷ k and mi > 2 for every
i = 1 ÷ r, and a number of axioms and rules, together with the conditions
M must satisfy for the corresponding logic to validate them, that will even-
tually allow us univocally determine each one of the above ten types of matrices.

Notation conventions: In the following we will use the following notation con-
ventions regarding the matrix M:
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(i) Abusing the language we will say that a component of M is even (resp.
odd) when the NM-chain of the component has an even (resp. odd) number
of elements.

(ii) Also, we will say that a rule or an axiom is valid in M when it is valid in
the corresponding logic |=M.

(iii) For every i = 1 ÷ k, we will let si be such that ni = 2si or ni = 2si + 1.
For every i = 1 ÷ r, we will let ri be such that mi = 2ri or ni = 2ri + 1.

Next we consider the following axiom and rule:

- Axiom BP: Recall that the axiom

(BP ) ¬
(
(φ↔ ¬φ)2

)
axiomatises ⊢−

1 as an axiomatic extension of NML.

- Rule ∃-EVEN: We introduce the following rule that characterises when M
has some even component:

(∃-EVEN) (φ↔ ¬φ)2

/
⊥

Indeed, the following result shows that (BP ) and ∃-EVEN characterise ma-
trices with all or some even components respectively.

Proposition 11.

1. (BP ) is valid in M iff all the components in M are even.

2. The rule ∃-EVEN is valid in M iff there is an even component in M.

Proof. 1. Assume a ∈M .
If all components of M are even, then for every 1 ≤ i ≤ k + r,
a(i) ̸= 0, recall that 0 is the fixpoint of the i-th component of M . Thus
¬
(
(a↔ ¬a)2

)
= 1 ∈ F . Hence (BP ) is valid in M.

If there is some odd component 1 ≤ i ≤ k + r in M , let b ∈ M be an
element such that b(i) = 0, then

¬
(
(b(i) ↔ ¬b(i))2

)
=

{
−si, if i ≤ k;
−ri, if i > k.

Thus (BP ) is not valid in M.

2. Let a ∈ M . If there is a component 1 ≤ i ≤ n such that ni is even then
(a(i) ↔ ¬a(i))2 = −si, thus (a ↔ ¬a)2 ̸∈ F and the rule ∃-EVEN holds.
Analogously for the case where there is 1 ≤ j ≤ r such that mj is even. If
all components in M are odd, then M has negation fixpoint c = (0, . . . , 0)
and (c ↔ ¬c)2 = (s1, . . . , sk, r1, . . . , rr) = 1 ∈ F . Thus the rule ∃-EVEN
fails in M.
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We continue introducing some additional axioms and rules that are needed
for our task.

- Axiom Vn: Recall the axiom (V 3) (φ1 → φ2) ∨ (φ2 → φ3) ∨ (φ3 → φ4),
that axiomatises  L3 relative to NML. We consider its generalization for any
number n > 0:

(V n)
∨

1≤i≤n

(φi → φi+1)

- Rule MIN0n:

(MIN0n)
∧

1≤i≤n

¬(φi → φi+1)

/
⊥

- Rule MAX0n:

(MAX0n) φ2
1, . . . , φ

2
n, φ1 → ψ, . . . , φn → ψ

/ ∨
1≤i≤n−1

(φi → φi+1) ∗ ¬φi+1

∨ψ

- Rule MIN0even
n : Consider next the following rule

(MIN0evenn )

 ∨
1≤i≤2n+1

(φi ↔ ¬φi)2

 ∨

 ∧
1≤i≤2n

¬(φi → φi+1)

/
⊥

- Rule MAX0odd
n :

(MAX0odd
n )

χ, χ→ γ,¬φ1 → ψ, . . . ,¬φn → ψ,¬φn+1 → ψ,
(
¬(φ2

1)
)2
, . . . ,

(
¬(φ2

n+1)
)2

(¬φ1)2 ∨
(∨

1≤i≤n(φi → φi+1) ∗ φi
)
∨ ψ ∨ γ

- Axiom φMAX1odd

n :

(φMAX1odd

n ) ¬
(
(φ1 ↔ ¬φ1)2

)
∨

∨
1≤i≤n+1

(φi+1 → φi)

Now, for every matrix M = ⟨M, F ⟩ = Nn1
× · · · × Nnk

× Jm1
× · · · × Jmr

,
we introduce the following definitions that will be used in the next proposition:

min1(M) = min{t : Nt is one of the components of M},
min0(M) = min{t : Jt is one of the components of M},
max0(M) = max{t : J2t or J2t+1 is one of the components of M},
min0e(M) = min{t : J2t is one of the components of M},
max0o(M) = max{t > 0 : J2t+1 is one of the components of M},
max1o(M) = max{t > 0 : N2t+1 is one of the components of M}

Then the following characterisation results can be shown to hold.
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Proposition 12. The following characterisations of the validity of the axioms
and rules considered above hold:

• For every n > 1,

– (V n) is a tautology of M iff either k = 0 or min1(M) ≤ n.

– The rule MIN0n is valid in M iff k > 0 or min0(M) ≤ n.

• And for every n > 0,

– The rule MAX0n is valid in M iff either r = 0 or max0(M) ≤ n.

– The rule MIN0even
n is valid in M iff either there is 1 ≤ i ≤ k such

that ni is even, or min0e(M) exists and min0e(M) ≤ n.

– The rule MAX0odd
n is valid in M iff either r = 0, or every mj is

even, or max0o(M) ≤ n.

– (φMAX1odd

n ) is a tautology of M iff either k = 0, or every ni is even,
or max1o(M) ≤ n.

Proof. For the sake of the simplicity and in order to ease the reading of this
paper we only show the proof of first item. The proofs of the remaining items
are similar, although a little bit longer.

• Let a1, . . . , an+1 ∈M . Since n > 1, notice that for every j = 1 ÷ r∨
1≤i≤n

(ai(k + j) → ai+1(k + j)) ̸= −rj .

If k = 0, by the previous remark (V n) is a tautology. Then assume k > 0.
If nj ≤ n, for every component j = 1 ÷ k there is 1 ≤ i ≤ n such that

ai(j) ≤ ai+1(j). Therefore
∨

1≤i≤n

(ai(j) → ai+1(j)) = sj and (V n) is a

tautology of M.
If, without loss of generality, we assume that n1 > n. Then, there exist
c1 > c2 > · · · > cn+1 ∈ NMn1

. Thus, there exist a1, . . . , an+1 ∈ M such

that ai(1) = ci and
∨

1≤i≤n

(ai(1) → ai+1(1)) ̸= s1. Hence, (V n) is not

tautology of M.

With the previous propositions, we can eventually prove that the ten types
of matrices identified in Theorem 7 cannot be reduced any further, in the sense
that they all define different logics.

Theorem 8. Two different matrices of types described in Theorem 7 define
different logics.

Proof. To begin with, notice that Modus Ponens allows us to characterise NML-
extensions while the Excluded-Middle axiom characterises nf-NML-extensions:

42



type EM MP

1 NO YES
2 NO YES
3 YES NO
4 YES NO
5 YES NO
6 YES NO
7 NO NO
8 NO NO
9 NO NO
10 NO NO

For matrices of type 1 and 2, thus NML-extensions, the axioms (BP) and (V s)
together with the rule ∃-EVEN are enough to distinguish them:13

type matrix BP ∃-even Vs

1 N2n YES YES 2n ≤ s
1 N2m+1 NO NO 2m+ 1 ≤ s
2 N2 ×N2m+1 NO YES 2m+ 1 ≤ s

For matrices of type 3, 4, 5 and 6, thus nf-NM extensions, the axiom (BP)
and the rules ∃-EVEN, MIN0s, MAX0s, MIN0evens and MAX0odds are enough
to distinguish them:

matrix BP ∃-even MIN0s

3 J2n YES YES 2n ≤ s
3 J2m+1 NO NO 2m+ 1 ≤ s
4 J2n × J2k YES YES 2n ≤ s
4 J2m+1 × J2l+1 NO NO 2m+ 1 ≤ s
4 J2n × J2l+1 NO YES min{2n, 2l + 1} ≤ s
5 J2n × J2k × J2l+1 NO YES 2l + 1 ≤ s
6 J2n × J2m+1 × J2l+1 NO YES 2m+ 1 ≤ s

matrix MAX0s MIN0evens MAX0odds

3 J2n n ≤ s n ≤ s YES
3 J2m+1 m ≤ s NO m ≤ s
4 J2n × J2k k ≤ s n ≤ s YES
4 J2m+1 × J2l+1 l ≤ s NO l ≤ s
4 J2n × J2l+1 max{n, l} ≤ s n ≤ s l ≤ s
5 J2n × J2k × J2l+1 k ≤ s n ≤ s l ≤ s
6 J2n × J2m+1 × J2l+1 max{n, l} ≤ s n ≤ s l ≤ s

13In the following tables, an inequality in a column, with header an axiom or a rule, stands
for the condition under which the matrix in the same row validates the axiom or the rule. For
instance, in the next table the matrix N2n satisfies the axiom (V s) whenever 2n ≤ s.
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For matrices of type 7, 8, 9 and 10, the axiom φMAX1odd

s and the rules ∃-EVEN,
MIN0s, MAX0s, MIN0evens and MAX0odds are enough to distinguish them:

matrix φMAX1odd

s ∃-even MIN0s

7 N2h+1 × J2k h ≤ s YES 2k ≤ s
8 N2h+1 × J2n × J2k h ≤ s YES 2n ≤ s
9 N3 × J2n × J2m+1 YES YES min{2n, 2m+ 1} ≤ s
10 N3 × J2m+1 YES NO 2m+ 1 ≤ s

matrix MAX0s MIN0evens MAX0odds

7 N2h+1 × J2k k ≤ s k ≤ s YES
8 N2h+1 × J2n × J2k k ≤ s n ≤ s YES
9 N3 × J2n × J2m+1 max{n,m} ≤ s 2n ≤ s m ≤ s
10 N3 × J2m+1 m ≤ s NO m ≤ s

Next, we are in position to prove that, in general, axiomatic extensions of
NML and its non-falsity preserving companions are not equivalent as deductive
systems in the sense of Blok and Pigozzi [4]. We first recall that all finitary
extensions of NML are described in [30]. The following theorem and figure
summarize this result.

Theorem 9. (c.f. [30, Theorem 3.7]) L is a finitary extension of NML iff there
exists (n,m, k) ∈ {(n,m, k) ∈ (ω+)3 : n ≥ m ≥ k} such that L is the finitary
logic defined by the following finite set of matrices {N2n, N2k+1, N2 ×N2m+1}.
Moreover,

– if k = m, then L is the axiomatic extension NML2n,2m+1 defined by {N2n,
N2k+1}.

– if k ̸= m, then L is axiomatised relative to NML2n,2m+1 by the rule

φ↔ ¬φ
Sk(ψ0, . . . , ψk)

.

Figure 5 depicts the dual lattice of finitary extensions of NML.

Proposition 13. Let L be an axiomatic extension of NML different from CPL
and  L3, then L and nf-L are not equivalent deductive systems.

Proof. Assume L and nf-L were equivalent. Since L is algebraizable, so is nf-L.
Moreover, equivalency is inherited for every finitary extension in the following
sense: every finitary extension of L defined by the set of matrices {N2n,N2 ×
N2k+1,N2m+1} is equivalent to the logic defined by the set of matrices {J2n,J2×
J2k+1,J2m+1}. If L is an axiomatic extension of NML such that L̸=CPL and
L ̸=  L3, then |=N4

is an axiomatic extension of L. Thus |=N4
and |=J4

are
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Figure 5: Lattice of finitary extensions of NML.
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equivalent and both lattices of finitary extensions are isomorphic. But, this
leads to a contradiction, because the only consistent proper finitary extension
of |=N4

is CPL, as shown in Theorem 9. While, after Corollary 5 and Corollary
8, CPL and |=N2×N4

are two different consistent proper finitary extensions of
|=J4

.

6.2 Maximal paraconsistent logics of finite matrices

In the previous subsection we have dealt with matrices given by a finite product
of finite NM-chains, but, as already commented, not all finite NM-algebras are
finite products of finite chains. As it is well known, finite NM-algebras are finite
products of finite directly indecomposable NM-algebras. In this section we are
going to characterise finite directly indecomposable NM-algebras and this result
will help us to obtain all maximal paraconsistent logics given by matrices over
finite NM-algebras.

Recall that a NM-filter of an NM-algebra A is any set F ⊆ A such that:

• 1 ∈ F .

• If a ∈ F and a ≤ b, then b ∈ F .

• If a, b ∈ F , then a ∗ b ∈ F .

We say that F is proper if 0 ̸∈ F , and F is a prime if it is proper and for every
a, b ∈ A if a∨ b ∈ F , then a ∈ F or b ∈ F . As usual, Spec(A) denotes the set of
prime filters of A. Since the prelinearity condition holds for every NM-algebra,
if F is an NM-filter of A, F is prime iff A/F is a NM-chain.

Using Zorn’s Lemma one can prove that for any proper NM-filter F there
is a maximal proper NM-filter G such that F ⊆ G. Moreover, every maximal
filter is prime. The radical of A, denoted by Rad(A), is the intersection of all
maximal filters of A. We define coRad(A) = {a ∈ A : ¬a ∈ Rad(A)}. From
the characterisation of the radical of MTL-algebras given in [37], we have that
Rad(A) = {a ∈ A : an > ¬a, for all n ≥ 1}. In the case of NM-algebras, since
every NM-algebra is 3-contractive, then Rad(A) = {a ∈ A : a2 > ¬a}. In the
case of NM-chains it can be reduced to Rad(A) = {a ∈ A : a > ¬a}.

Definition 11. An NM-algebra A is local iff it has a unique maximal filter.

Proposition 14. Let A be a local NM-algebra. Then:

• A = Rad(A) ∪ coRad(A) if A does not have a negation fixpoint;

• A = Rad(A) ∪ {c} ∪ coRad(A) if A has a negation fixpoint c.

Proof. If A is local then let M be its maximal filter, which coincides with
Rad(A). For any a ∈ A, let a/M denote the class of a modulo M . Since
A/M is simple, then either A/M ∼= NM2 or A/M ∼= NM3. If A/M ∼= NM2,
then A = 1/M ∪ 0/M . Notice that 1/M = M and 0/M = (¬1)/M = {a :
¬a ∈ M}, thus A = Rad(A) ∪ coRad(A) and A does not have a negation
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fixpoint. If A/M ∼= NM3, let a ∈ A be such that a/M ̸= 1/M = M and
a/M ̸= 0/M , then a/M = (¬a)/M . By the subdirect representation theorem,

A ⊆SD
∏

F∈Spec(A)

A/F and a = (a/F )F∈Spec(A). Since A is local, a/F ⊆ a/M

and (¬a)/F ⊆ (¬a)/M for every prime filter of A. Since F is prime, A/F is
totally ordered, hence either a/F = ¬a/F , or a/F > (¬a)/F , or a/F < (¬a)/F .
If a/F > (¬a)/F or a/F < (¬a)/F , then either a/F or (¬a)/F belongs to
Rad(A/F ) = M/F which leads to the contradiction that either a ∈ M or
¬a ∈ M . Thus, a/F = ¬a/F for every F ∈ Spec(A). Hence a is the negation
fixpoint of A and a/M = {a}

Proposition 15. Let A be an NM-algebra. A is directly indecomposable iff A
is local.

Proof. Assume A is indecomposable. Recall that an NM-algebra is indecom-
posable iff its only boolean elements are 0 and 1. Let a ∈ A, notice that

2a2 = ¬
(
¬a2

)2
is a boolean element, thus 2a2 = 1 or 2a2 = 0. If 2a2 = 1, then

¬a2 < a2 ≤ a, thus a ∈ Rad(A). If 2a2 = 0, then a2 = 0, so a cannot belong
to any proper filter. This shows that Rad(A) is in fact a maximal filter, so A
is local.

Assume A is local. Let b be a boolean element of A, then b/Rad(A) is
also a boolean element of A/Rad(A). Since A/Rad(A) is a simple algebra, it
is indecomposable, hence the class of b/Rad(A) is either 1 or 0. Thus, either
b ∈ Rad(A) or ¬b ∈ Rad(A), and since b is boolean, this in turn implies b = 1
or b = 0.

Corollary 6. Every finite NM-algebra is a finite product of finite local NM-
algebras.

Theorem 10. The only finite matrices defining maximal paraconsistent logics
are J3, J4 and J3 × J4.

Proof. For practical reasons, in the following proof we will identify a matrix Ji
with its corresponding logic |=Ji

.
Notice that J3, J4 and J3×J4 are not explosive. Let M be a paraconsistent

finite matrix. By Lemmas 5 and 6 we may assume that M = ⟨A, F ⟩ is a
submatrix of Jm1

× · · · × Jmk
where each mi > 2. By Corollary 6, A =

A1 × · · · ×Ar where each Aj is a finite local NM-algebra. Moreover, since F is
a principal lattice filter, let a = (a1, . . . , ar) be the generator of the filter, then
F = Fa1

× · · · × Far . Since the matrix logic ⟨A, F ⟩ is not explosive then for
every j = 1 ÷ r, ⟨Aj , Fj⟩ is also not explosive.

If Aj has a negation fix point, then trivially NM3 is embeddable into Aj

and J3 is a submatrix of ⟨Aj , Fj⟩. If Aj does not have a negation fix point,
let a be the minimum of the elements in Rad(Aj). If a ̸= 1, then {1, a,¬a,0}
is the universe of a subalgebra S of Aj isomorphic to NM4. Since the logic
of ⟨Aj , Fj⟩ is not explosive then Rad(Aj) is not trivial, a ̸= 1 and a,¬a ∈ Fj .
Therefore J4 is a submatrix of ⟨Aj , Fj⟩. Summing all up:
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- If all Aj ’s have a negation fix point then J3 is an extension of the logic
given by M.

- If all Aj ’s do not have a negation fix point then J4 is an extension of the
logic given by M.

- If there is some Aj with a negation fix point and there is some As with no
negation fix point then J3 × J4 is an extension of the logic given by M.

Figure 6: Maximal paraconsistent logics

It is well known (see [17]) that J3 is ideal paraconsistent14 where the defin-
able implication that satisfies deduction theorem (D.T.) is φ ⇒ ψ := (¬φ →
φ)2 → ψ. However we show that both J4 and J3 ×J4 are not ideal paraconsis-
tent.15 Assume J4 is ideal paraconsistent. Then J4 has a definable implication
⇀ satisfying D.T. such that φ ⇀ ψ is classically equivalent to φ → ψ. Then
φ |=J4

ψ iff |=J4
φ ⇀ ψ. By Proposition 10, |=J4

φ ⇀ ψ iff ⊢CPL φ ⇀ ψ iff
φ ⊢CPL ψ. Thus, J4 and CPL coincide, which is a contradiction, since the MP
rule is valid in CPL but not in J4. For the case of J3 × J4, since J2 × J4 is a
proper extension of J3×J4 different from CPL and the tautologies of J2×J4 are
exactly the classical tautologies, J3 ×J4 is not maximal w.r.t. CPL. Therefore,
it is not ideal paraconsistent.

14Recall from [2] that a propositional logic L such that it has an implication connective →
for which the deduction theorem holds, and that is paraconsistent w.r.t. a negation connective
¬, is called ideal ¬-paraconsistent if: (1) there is a presentation of CPL in the same signature
than L such that → and ¬ are interpreted as in CPL; (2) L is a sublogic of CPL; (3) L
is maximal w.r.t. CPL; and (4) every proper extension of L in the same signature is not
¬-paraconsistent.

15Note that the logic defined by the matrix J4, denoted J4 in Figure 6, is not the same
as the logic defined by the matrix ⟨ L4, F1/3⟩ over the 4-valued MV-chain, also denoted J4 in
[16]. Actually, unlike J4, the logic defined by the matrix ⟨ L4, F1/3⟩ was shown in [16] to be
ideal paraconsistent.
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7 Conclusions and future work

In this paper we have considered logics induced by logical matrices defined on
NM algebras with lattice filters, with special attention to those that are paracon-
sistent and preserve the non-falsity. Interestingly enough, as a first main contri-
bution, we have shown that the logic defined by a matrix ⟨A, F ⟩, where A is a
NM-chain and F a lattice filter of A, can be reduced to either to a 1-preserving
logic ⟨B, {1}⟩ for some B subalgebra of A, to the well-known paraconsistent
logic J3, or to a non-falsity preserving (paraconsistent) logic ⟨B, (0,1]⟩ for some
B subalgebra of A. Moreover, we have axiomatised the non-falsity preserv-
ing companion of the logic NM, denoted nf-NM, corresponding to the matrix
⟨[0,1]NM, (0, 1]⟩. A second main contribution is the study of the expansion of
the paraconsistent logic nf-NM with a consistency operator so to obtain a Logic
of Formal Inconsistency (LFI). Several classes of such operators and their logics
have been considered and fully characterised. A final third main contribution
is the full classification and characterisation of all the logics of matrices defined
over finite products of finite NM-chains with lattice filters, where the presence of
the F(0 filters makes the study much more complex than the case of considering
only F1 filters, that was already studied in [29].

Within the class of Mathematical fuzzy logics, the lattice filter-based NM
logics studied in this paper are remarkably related to those over extensions of
 Lukasiewicz logic  L, over Gödel logic with involution G∼ and over Product logic
with involution Π∼, since all of them share a strong or involutive negation, al-
though there are notable differences among them as well. Actually,  Lukasiewicz
and Gödel logics are, together with Product logic, the most prominent BL-logics,
while NM is the most prominent logic among the extensions of the involutive
MTL logic, IMTL, that is not a BL logic. At this point we would like to make
the following remarks about analogies and differences among the logics nf-NM,
nf- L, nf-G∼ and nf-Π∼:

• Since the three-element NM-algebra, MV-algebra and G∼-algebra are
termwise equivalent, we have nf-NM3 = nf- L3 = nf-G∼

3 , which in turn
coincide with the well-known d’Ottaviano and da Costa’s logic J3.

• Both nf-G∼ and nf-Π∼ are interpretable in G∼ and Π∼ respectively by
the double negation transformation. Indeed, in both G and Π the residual
negation ¬φ = φ → 0 is Gödel negation, whose interpretation in [0, 1] is
the mapping defined by ¬x = 1 if x = 0 and ¬x = 0 otherwise. Then,
it holds that, for L ∈ {G∼, Π∼}, φ ⊢L(0 ψ iff ¬¬φ ⊢L ¬¬ψ. Moreover,
it is not difficult to check that if we add to the axioms and rule of L the
following modified modus ponens rule

– (mod-MP): From φ and ¬¬φ→ ¬¬ψ derive ψ

one gets a sound and complete axiomatisation of nf-L. Note that in the
logics nf-G∼ and nf-Π∼, the usual Modus Ponens rule is sound.
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• The study of the lattice of matrix logics defined over finite MV-algebras
and finite G∼-algebras with lattice filters is simpler than in the case of
NM-logics since all finite MV-algebras or G∼-algebras are products of
finite chains, this is not the case with NM-algebras. However, it is an
open problem whether the logics defined over finite NM-algebras that are
not products of NM-chains give raise to different logics.

• About the non-falsity preserving companion of  Lukasiewicz logic, it is
worth noticing that the technique used in Section 4.3 to prove complete-
ness of nf-NM◦ is very general, indeed it can be applied to prove complete-
ness for the non-falsity preserving companion of any axiomatic extension
of a MTL logic with an involutive negation (i.e. an extension of an IMTL
logic), see e.g. [22]. In particular, the non-falsity preserving companion
of the well-known  Lukasiewicz logic  L, nf- L, can be axiomatised by the
following system:

– Axioms of  L

– Rule of Adjunction: (Adj)
φ, ψ

φ ∧ ψ

– Reverse Modus Ponens: (MPr)
¬ψ ∨ χ

¬φ ∨ ¬(φ→ ψ) ∨ χ

– Restricted Modus Ponens: (r-MP)
φ, φ→ ψ

ψ
, if ⊢ L φ→ ψ

Indeed, by applying the proof technique of Proposition 7 and Theorem
3, one readily gets that this logic is (finite strong) complete with re-
spect to the finitary consequence relation defined by the logical matrix
⟨[0,1]MV, (0, 1]⟩.
Remarkably, this logic can be seen as a more genuine paraconsistent coun-
terpart of  L rather than that the logic FT introduced by Avron in [3], since
FT maintains the connectives ∧,∨ and ¬ but replaces  Lukasiewicz impli-
cation by another one that validates Modus Ponens in ⟨[0,1]MV, (0, 1]⟩.

• Finally, about the question of whether the non-falsity preserving logics
are Logics of Formal Inconsistency, there is a difference between nf-NM
and nf- L on the one hand and nf-G∼ and nf-Π∼ on the other, since the
former logics do not have a definable consistency operator, while in the
latter logics one can define such an operator, definable in turn from the
∆ operator (where ∆x = ¬∼x), as ◦x = ∆(x ∨ ¬x). So nf-G∼ and nf-Π∼

are LFIs while nf-NM and nf- L are not.

As for future work, we envisage to extend this work in at least two lines. One
aspect to further analyse is the complexity, expressive power and further prop-
erties from a paraconsistency point of view of the non-falsity preserving logics
nf-L, with L being a finitary extension of NML. Another is to open the scope
and study the definition and axiomatization of non-falsity preserving compan-
ions of MTL extensions in general, deepening the preliminary results [22]. We
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also plan to study some of the logic systems analysed here from a proof-theoretic
perspective.
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