
Reinforcement Learning with Case-Based Heuristics
for RoboCup Soccer Keepaway

Luiz A. Celiberto Jr. and Jackson P. Matsuura

Technological Institute of Aeronautics
São José dos Campos, Brasil.

celibertojr@gmail.com, jackson@ita.br

Ramón López de Màntaras

Artificial Intelligence Research Institute
Spanish National Research Council

Bellaterra, Spain.
mantaras@iiia.csic.es

Reinaldo A. C. Bianchi

Centro Universitário da FEI
São Bernardo do Campo, Brasil.

rbianchi@fei.edu.br

Abstract—In this paper we propose to combine Case-
based Reasoning and Heuristically Accelerated Reinforce-
ment Learning to speed up a Reinforcement Learning algo-
rithm in a Transfer Learning problem. To do so, we propose
a new algorithm called SARSA Accelerated by Transfer
Learning – SATL, which uses Reinforcement Learning to
learn how to perform one task, stores the policy for this
problem as a case-base and then uses the learned case-base as
heuristics to speed up the learning performance in a related,
but different, task. A set of empirical evaluations were
conducted in transferring the learning between two domains
with multiple agents: an expanded version of Littman’s
simulated robot soccer and the RoboCup Soccer Keepaway.
A policy learned by one agent in the Littman’s soccer is used
to speed up the agent learning in the Keepaway soccer. The
results show that the use of this new algorithm can lead to a
significant improvement in the performance of the learning
agents.

Keywords-Artificial Intelligence; Machine Learning;
Transfer Learning; Knowledge based systems

I. INTRODUCTION

Reinforcement Learning (RL) [22] is a paradigm that is

very successful when used by agents trying to maximize

some notion of cumulative reward, as they carry out

sensing, decision, and action in an unknown environment.

Unfortunately, RL tasks encountered in the real world

commonly suffer from very slow learning rates, with the

basic learning algorithms have often requiring a large

number of iterations to converge on a good solution.

Much of the prevailing investigation in the field focuses

on how to speed up RL by taking advantage of domain

knowledge. One way to do this is by making use of a

heuristic function that encodes some expertise, which is

used for selecting appropriate actions to perform in order

to guide exploration during the learning process [2]. Sev-

eral methods have been successfully applied for defining

the heuristic function, including the reuse of previously

learned policies, using a Case-Based Reasoning approach

[3]. Another way to speed up a RL using domain knowl-

edge is by using Transfer Learning techniques: “Transfer

learning can increase RL’s applicability to difficult tasks

by allowing agents to generalize their experience across

learning problems” [25].

This paper investigates the use of a case-base as a

heuristic to transfer the learning acquired by one agent

during its training in one problem to another agent that

has to learn how to solve a similar, but more complex,

problem. To do so we propose a new algorithm, the

SARSA Accelerated by Transfer Learning – SATL, which

is a Case-based, Heuristically Accelerated extension of the

traditional RL algorithm, SARSA [17].

Experiments in this work were conducted in two do-

mains: the source domain, a version of the Littman’s

simulator for robot soccer [11] modified to allow games

with two or more agents in each team; and the target

domain, the RoboCup Soccer Keepaway problem [21].

The paper is organized as follows: Section II briefly

reviews the RL problem and describes the HARL approach

to speed up RL. Section III describes the Case Based

Reasoning technique and Section IV describes the Transfer

Learning problem. Section V describes the proposed algo-

rithm and section VI describes the experiment and result.

Section VII concludes this work.

II. HEURISTICALLY ACCELERATED REINFORCEMENT

LEARNING

Reinforcement Learning (RL) algorithms have been ap-

plied successfully to the on-line learning of optimal control

policies in Markov Decision Processes (MDPs). In RL,

this policy is learned through trial-and-error interactions

of the agent with its environment: on each interaction step

the agent senses the current state s of the environment,

chooses an action a to perform, executes this action,

altering the state s of the environment, and receives a

scalar reinforcement signal r (a reward or penalty).

The RL problem can be formulated as a discrete time,

finite state, finite action Markov Decision Process (MDP).

The learning environment can be modeled by a 4-tuple

〈S,A, T ,R〉, where:

• S: is a finite set of states.

• A: is a finite set of actions that the agent can perform.

• T : S × A → Π(S): is a state transition function,

where Π(S) is a probability distribution over S.

T (s, a, s′) represents the probability of moving from

state s to s′ by performing action a.

• R : S ×A → �: is a scalar reward function.

The goal of the agent in a RL problem is to learn an

optimal policy π∗ : S → A that maps the current state s
into the most desirable action a to be performed in s. One

strategy to learn the optimal policy π∗ is to allow the agent

to learn the evaluation function Q : S × A → R. Each

2012 Brazilian Robotics Symposium and Latin American Robotics Symposium

978-0-7695-4906-4/12 $26.00 © 2012 IEEE

DOI 10.1109/SBR-LARS.2012.9

7

Table I
THE SARSA ALGORITHM [17].

Initialize Q̂t(s, a) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Select an action a.
Execute the action a, observe r(s, a), s′.
Update the values of Q(s, a) using 2.
s← s′.

Until s is terminal.
Until some stopping criterion is reached.

action value Q(s, a) represents the expected cost incurred

by the agent when taking action a at state s and following

an optimal policy thereafter. Several algorithms have been

proposed to learn the optimal policy, like Q–Learning [30],

SARSA and SARSA(λ) [17], Dyna [23] and Prioritized

Sweeping [13], [15]. A compreensive review of RL algo-

rithms can be found in Sutton and Barto [22].

The Q–learning algorithm was proposed by Watkins

[30] as a strategy to learn an optimal policy π∗ when

the model (T and R) is not known in advance. Let Q̂
be the learner’s estimate of Q∗(s, a). The Q–learning

algorithm iteratively approximates Q̂ provided the system

can be modeled as a MDP, the reward function is bounded

(∃c ∈ R; (∀s, a), |R(s, a)| < c), and actions are chosen so

that every state-action pair is visited an infinite number of

times. The Q learning update rule is:

Q̂(s, a)← Q̂(s, a) + α
[
r + γ max

a′
Q̂(s′, a′)− Q̂(s, a)

]
,

(1)

where s is the current state; a is the action performed in

s; r is the reward received; s′ is the new state; γ is the

discount factor (0 ≤ γ < 1); α = 1/(1 + visits(s, a)),
where visits(s, a) is the total number of times this state-

action pair has been visited up to and including the current

iteration.

The SARSA algorithm was proposed by Rummery and

Niranjan [17] as another way to learn an optimal policy

π∗. The main difference between the two algorithms is

that the SARSA is a on-policy control algorithm, while

the Q–Learning is an off-line method. The algorithm is

presented inTable I, using the following update rule is:

Q̂(s, a)← Q̂(s, a) + α
[
r + γQ̂(s′, a′)− Q̂(s, a)

]
, (2)

In RL, learning is carried out online, through trial-

and-error interactions of the agent with the environment.

Unfortunately, convergence of any RL algorithm may only

be achieved after extensive exploration of the state-action

space. In the next section we show one way to speed

up the convergence of RL algorithms, by making use of

a heuristic function in a manner similar to the use of

heuristics in informed search algorithms.

A Heuristically Accelerated Reinforcement Learning

(HARL) algorithm [2] is a way to solve a MDP problem

with explicit use of a heuristic function H : S × A → �
for influencing the choice of actions by the learning agent.

Table II
THE HA-SARSA ALGORITHM.

Initialize Q̂t(s, a) and Ht(s, a) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Update the values of Ht(s, a) as desired.
Select an action a using equation 3.
Execute the action a, observe r(s, a), s′.
Update the values of Q(s, a) according to equation 2.
s← s′.

Until s is terminal.
Until some stopping criterion is reached.

H(s, a) defines the heuristic that indicates the importance

of performing action a when visiting state s. The heuristic

function is strongly associated with the policy indicating

which action must be taken regardless of the action-value

of the other actions that could be used in the state.

The first HARL algorithm proposed was the Heuristi-

cally Accelerated Q–learning (HAQL) [2], as an extension

of the Q–learning algorithm [30]. The only difference

between the two algorithms is that in the HAQL makes

use of a heuristic function H(s, a) in the ε−greedy action

choice rule, that can be written as:

π(s) =

{
arg maxa

[
Q̂(s, a) + ξH(s, a)β

]
if q ≤ p,

arandom otherwise,
(3)

where H(s, a) is the heuristic function that plays a role

in the action choice, ξ and β are design parameters that

control the influence of the heuristic function, q and p are

parameters that define the exploration/exploitation tradeoff

and arandom is an action randomly chosen among those

available in state s.

As a general rule, the value of H(s, a) used in HAQL

should be higher than the variation among the Q̂(s, a)
values for the same s ∈ S, in such a way that it can

influence the choice of actions, and it should be as low as

possible in order to minimize the error. It can be defined

as:

H(s, a) =

{
max

i
Q̂(s, i)− Q̂(s, a) + η if a = πH(s),

0 otherwise.
(4)

where η is a small real value (usually 1) and πH(s) is the

action suggested by the heuristic policy.

Convergence of the HAQL algorithm was presented by

Bianchi, Ribeiro and Costa [2], together with the definition

of an upper bound for the error in the estimation of Q.

Using heuristics to speed up Reinforcement Learning

algorithms has been shown to be effective. Several works

have used heuristics to speed up learning in problems

such as Transfer Learning [4], [5], task allocation [10] and

especially in the domain of the robotic soccer competitions

[1], [6], [7].

Despite these works, the Heuristically Accelerated

SARSA is an algorithm that has not been proposed or

implemented yet. It’s implementation is very similar to

8

the HAQL, with one minor difference: the use of Equa-

tion 2 instead of Equation 1. The complete HA-SARSA

algorithm is presented in Table II.

III. CASE BASED REASONING

According to López de Mántaras et al. [12], solving

a problem by CBR involves “obtaining a problem de-

scription, measuring the similarity of the current problem

to previous problems stored in a case base with their

known solutions, retrieving one or more similar cases, and

attempting to reuse the solution of the retrieved case(s),

possibly after adapting it to account for differences in

problem descriptions”.

Case Based Reasoning [12] is an AI technique that has

been shown to be useful in a multitude of domains. CBR

uses knowledge of previous situations (cases) to solve new

problems, by finding a similar past case and reusing it in

the new problem situation. In the CBR approach, a case

usually describes a problem and its solution, i.e., the state

of the world in a given instant and action to perform to

solve that problem.

In general, in CBR a case is composed of a problem

description (P) and the corresponding description of the

solution (A). Therefore, the case definition is formally

described as a tuple:

case = (P,A). (5)

The case retrieval process consists in obtaining from the

base the most similar case, the retrieved case. Therefore,

it is necessary to compute the similarity between the

current problem and the cases in the base. The similarity

function indicates how similar a problem and a case are. In

this work this function is defined by a Gaussian distance

between the problem and the case

IV. TRANSFER LEARNING

Although the idea of using Transfer Learning to reuse

the learning of one task in another related domain is not a

new (it has been studied in the psychological literature

on transfer of learning since the work of Thorndike

and Woodworth [27]), only recently the use of Transfer

Learning for Reinforcement Learning has gained attention

in the artificial intelligence community.

Is possible to divided the TL in two main categories:

intra-domain transfer, where TL is used to solve a new

tasks within a given domain and cross-domain transfer

where transfer is made between domains. Usually, Intra-

domain transfer uses the same space state and transforms

primitive actions in more complex actions to be uses in

new tasks within this domain. Cross-domain transfer try

to find similar structure between the source and target task

to transfer the learning.

However different assumptions methods in transfer

learning domains may have, an RL agent must at least

perform the following steps [25]: Given a target task,

select an appropriate source task or set of tasks from which

to transfer; Learn how the source task(s) and target task

are related; Effectively transfer knowledge from the source

task(s) to the target task.

Table III
THE SATL ALGORITHM

Initialize Q̂t(s, a) and Ht(s, a) arbitrarily.
Repeat (for each episode):

Initialize s.
Repeat (for each step):

Compute similarity and cost.
If there is a case that can be reused:

Retrieve and Adapt if necessary.
Compute Ht(s, a) using Equation 4 with the

actions suggested by the case selected.
Select an action a using equation 3.
Execute the action a, observe r(s, a), s′.
Update the values of Q(s, a) using 2.
s← s′.

Until s is terminal.
Until some stopping criterion is reached.

Transfer Learning is a very important tool to speed up

RL algorithms because, in RL, even a small change on

the configuration of a problem may requires a complete

new training. With TL, what an agent has learned can

be transferred to a new situation, helping it to learn faster.

Drummond [8] was probably the first to use CBR to speed

up RL, proposing to accelerate RL by transferring parts of

previously learned solutions to a new problem, exploiting

the results of prior learning to speed up the process.

V. SARSA ACCELERATED BY TRANSFER LEARNING

To transfer the cases between learning agents in two

domains, in this work we propose a new algorithm that

expands the SARSA by making use of Transfer Learning,

Case-based reasoning and heuristics, the SARSA Accel-

erated by Transfer Learning – SATL – algorithm.

This algorithm works in 2 phases: first, it is used

to learns how to perform a task in the source domain,

behaving like the traditional SARSA algorithm but also

storing the policy for solving this problem as a case-base;

in the second phase it uses the case-base learned in the first

stage as heuristics in an heuristically accelerated version

of the SARSA algorithm, the SATL.

The main motivation of using cases as heuristics to

transfer the learning is that the heuristic function is an

action policy modifier which does not interfere with the

standard bootstrap like update mechanism of RL the

algorithm: the SATL differs from the SARSA only in

the way exploration is carried out, which allows many

theoretical conclusions obtained for the SARSA to remain

valid for the SATL.

Similar to the model proposed by Ros [16], the cases

used in this work are described by a 3-tuple: case =
(P,A, R) where: P is the description of the problem,

containing all relevant information of the agent state (a

state s ∈ S); A is an action (or a sequence of actions)

that must be performed to solve the problem and; R is the

expected return for performing the action, which indicates

the quality of the action stored in this case.

Case retrieval is in general driven by a similarity mea-

sure between the new problem and the solved problems

in the case base. In this work we use the case retrieval

9

Figure 1. The modified Littman’s Soccer domain used in this work.

method proposed by Ros [16], which considers the sim-

ilarity between the problem and the case (the similarity

is computed using by Gaussian distance between the case

and the problem), the cost of adapting the problem to the

case, and the applicability of the solution of the case. The

cost of adapting the problem to the case is computed as

a function of the euclidean distances between the features

(positions of players and ball) in the problem and the ones

specified in the case. The complete case retrieval algorithm

is described in detail in Ros [16].

After a case is retrieved, a heuristic is computed using

Equation 4 and the action suggested by the case is selected

and executed. If the case base does not contain a case that

can be used in the current situation, the SATL algorithm

will behave as the traditional SARSA algorithm.

Our approach differs from previous research combining

CBR and RL because the policy learned in one domain

is stored as a case base and then used in a new domain

as a heuristic: it is used in the action selection rule to

guide the search in the new domain, in the same way

a heuristic is used in an informed search method. At the

beginning of each learning episode, RL operates as a blind

search method does: in our view, cases can be used to

improve RL from a blind search method to an informed

search one. By doing this, if the case base contains a case

that can be used in a given situation, then there will be

a speed up in the convergence time. But if the case base

does not contain any useful case – or even if it contains

cases that implement wrong solutions to the problem –

the agent will still learn the optimal solution by using

the RL component of the algorithm. The complete SATL

algorithm is presented in Table III.

VI. ONE EXPERIMENT USING THE SATL

In the this section we present an experiment using

the SATL algorithm, where cases acquired in the source

domain, the Littman’s simulator for robot soccer [11]

modified to allow games with two or more agents in each

team (as proposed in [1]), are used to speed up the learning

of the RoboCup Soccer Keepaway domain [21].

The modified Littman’s Soccer domain used in this

work is a game played by two teams, A and B, of two

players each, wich compete in a 5 x 5 grid (figure 1). Each

Figure 2. The Keepaway Soccer domain, with 3 keepers and 2 takers
[20].

team is composed by the defender (d) and the attacker (a).

Each cell can be occupied by one of the players, which

can take an action at a turn. The actions that are allowed

are: keep the agent still, move – north, south, east and

west – or pass the ball to another agent. The action “pass

the ball” from agent ai to aj is successful if there is no

opponent in between them. If there is an opponent, it will

catch the ball and the action will fail.

Actions are taken in turns: all actions from one team’s

agents are executed at the same instant, and then the

opponents actions are executed. The ball is always with

one of the players. When a player executes an action that

would finish in a cell occupied by the opponent, it looses

the ball and stays in the same cell. If an action taken by the

agent leads it out the board, the agent stands still. When a

player with the ball gets into the opponent’s goal, the move

ends and its team scores one point. At the beginning of

each game, the agents are positioned in a random position

and the possession of the ball is randomly determined,

with the player that holds the ball making the first move.

The target domain, the Keepaway Soccer, is a subprob-

lem of RoboCup simulated soccer in which one team, the

keepers, tries to maintain possession of the ball within

a limited region, while the opposing team, the takers,

attempts to gain possession. “Whenever the takers take

possession or the ball leaves the region, the episode

ends and the players are reset for another episode (with

the keepers being given possession of the ball again).

Parameters of the task include the size of the region, the

number of keepers, and the number of takers” [20].

Figure 2 presents the Keepaway Soccer domain. It is

a snapshot of an episode with 3 keepers and 2 takers

playing in a 20m x 20m region. Anyone of the Keepers

can keep the ball or may pass it to one of its teammates by

choosing one of the following macro-actions: Holdball or

PassKThenReceive, where K is the first or second closest

teammate.

The state variables used for learning with three keepers

and two takers is 13 dimension vector, shown in Figure 3.

The reward received by the agents is the time that the ball

is in possession of the keepers. The takers do not have

any kind of learning, and they only choose macro-actions

10

Figure 3. The 13 state variables used by a agent playing with three
keepers and two takers [26].

to block the pass between the keepers, to go to ball or to

hold the ball when have its possession.

As explained in the last section, the SATL algorithm

works in two phases: learning a task in the source domain,

storing the policy as a case-base and using the case-base

as heuristics to speed up the learning in the target domain.

Therefore, in the first phase of the experiment, the

SARSA algorithm is used in the Littman’s domain, with

agents continuously playing soccer games. Acquiring

cases starts at the beginning of the training. A case is

stored every time a player from the opponent team steals

the ball, i.e., an agent was holding ball and lost it or tried

to pass it to another teammate, losing it. At the end of this

training, 600 cases are stored in the case base, and every

case represents a situation in which a player lost the ball.

Each case is described by: The problem description (P),

which is composed by the distance of the agent to all other

players (items ’a’ to ’m’ in Figure 3); the action (A), that

describes the action the player was doing when it lost the

ball (holding it or passing the ball) and the expected return

(R), that indicates how bad was the result of the action.

In the second phase of the learning, cases acquired

in the Littman’s soccer domain are transferred and used

to speed up the learning in the Keepaway domain. A

case is retrieved during the learning if the similarity is

above a certain threshold. After a case is retrieved, a

heuristic is computed with help of a pre-defined action-

mapping (which is trivial in this case, as there are only

two actions in both domains, ’Holdball’ and ’Passball’).

This is achieved by using equation 4 with η = −1. The

heuristic is computed using this negative value, to indicate

that the action that lead the agent to loose the ball must

not be taken.

Two other algorithms were used in the experiment

aimed to verify the hypothesis that the SATL algorithm im-

proves the learning rate: The SARSA algorithm proposed

by Rummery and Niranjan [17], which was presented in

Section 2 and the Heuristically Accelerated SARSA.

Although the Heuristically Accelerated SARSA has

been described as future works in several papers, it is an

Figure 4. The learning curves for the SARSA, HA-SARSA and SATL
algorithms

algorithm that have never been implemented. We use this

algorithm in this work to be able to verify if the speed

up achieved by the SATL algorithm is caused only by the

use of a simple heuristics, or if the use of the case base is

an important factor in the speeding up the learning. The

heuristic used in the HA-SARSA algorithm was defined

using a simple rule: if the agent is holding the ball, pass

it to another agent. This is achieved by using η = −1 and

πH(s) = ’HoldBall’ in equation 4.

Fifteen training sessions were executed, with each ses-

sion consisting of thirty hours of learning. Figure 4 show

the learning curves for all algorithms. It can be see that

the performance of the SARSA is worst than that of the

SATL at the initial learning phase; later the performance

of the two algorithms become more similar, as expected.

It can also be seen that the SATL performs better than

the HA-SARSA, indicating that the speed up was not due

only to the use of a simple heuristic. The parameters used

in the experiments were the same for all the algorithms:

exploration/ exploitation= 0.2, γ = 0.9 and η = −1, to

the Littman used α = 0.9 and to the Keepaway α = 0.125.

The reward used in the source somain was +100 a goal

is made and −100 when the teal concedes a goal. The

reward in the target domain is −100 when the ball is lost.

Student’s t-Test [19] was used to verify the hypothesis

that the transfer of learning speeds up the learning process.

According to Nehmzow [14], if two different control

programs produced two different means of a particular

result, the t-Test can be used to decide whether there is a

significant difference between these two means, in order

to determine whether one of the two programs produces

better results than the other. For the experiments the value

of the module of T was computed for each episode using

the same data presented in Figure 4. The greater the value

of T, more significantly different are the results. The dotted

line indicates 99.995% of level of confidence, i.e. results

above the line are different and the probability of this

statement to be erroneous is less than 1%. The result,

presented in Figure 5 shows that SATL performs clearly

11

Figure 5. Student’s t-Test between SARSA and SATL

better than SARSA until more than 15 hours of training.

After that, the results became closer. Similarly, SATL

performs better than HA-SARSA, as shown in Figure 6.

VII. CONCLUSION

This work proposed two new algorithms, SATL and

HA-SARSA. The first algorithm combines Case-based

Reasoning and Heuristically Accelerated Reinforcement

Learning to speed up the SARSA algorithm, using Trans-

fer Learning. The second algorithm is the Heuristically

Accelerated version of the SARSA algorithm.

This is the first work that implements a Heuristically

Accelerated Reinforcement Learning algorithm based on

an algorithm that is not the Q–Learning: the SARSA algo-

rithm and studies the transfer of learning using heuristics

between domains with multiple agents and this is the first

work in which the case-based used to transfer the learning

is composed by a set of bad cases, i.e., cases that indicate

moments when a wrong decision was made.

The experiments showed that transferring the policy

learned by the agents in one domain to agents in a

different domain by means of the case-base speeds up the

convergence time of the algorithm.

VIII. ACKNOWLEDGMENTS

Reinaldo Bianchi acknowledges the support of the

FAPESP (grants 2011/19280-8 and 2012/04089-3). Ramon

Lopez de Mantaras acknowledges the grant from Gener-

alitat de Catalunya (2009-SGR-1434) and Luiz Celiberto

Jr. acknowledges the support of CAPES.

REFERENCES

[1] Reinaldo A. C. Bianchi and Ramón López de
Màntaras, ‘Case-Based Multiagent Reinforcement
Learning: Cases as heuristics for selection of ac-
tions’, in Proceedings of the 2010 conference on
ECAI 2010: 19th European Conference on Artificial
Intelligence, pp. 355–360, Amsterdam, The Nether-
lands, The Netherlands, (2010). IOS Press.

Figure 6. Student’s t-Test between HA-SARSA and SATL

[2] Reinaldo A. C. Bianchi, Carlos H. C. Ribeiro, and
Anna H. R. Costa, ‘Accelerating autonomous learn-
ing by using heuristic selection of actions’, Journal
of Heuristics, 14(2), 135–168, (2008).

[3] Reinaldo A. C. Bianchi, Raquel Ros, and Ra-
mon López de Mántaras, ‘Improving reinforcement
learning by using case based heuristics’, in Case-
Based Reasoning Research and Development, 8th
International Conference on Case-Based Reasoning,
ICCBR 2009, Seattle, WA, USA, July 20-23, 2009,
Proceedings, eds., Lorraine McGinty and David C.
Wilson, volume 5650 of Lecture Notes in Computer
Science, pp. 75–89. Springer, (2009).

[4] L. A. Celiberto Jr , J. P. Matsuura, R. Lopez de Man-
taras and R. A. C. Bianchi, “Using Cases as Heuris-
tics in Reinforcement Learning: A Transfer Learning
Application” in Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelli-
gence. AAAI Press / IJCAI, 2011. v. 2. p. 1211-
1217.

[5] L. A. Celiberto Jr, J. P. Matsuura, R. Lopez de Man-
taras and R. A. C. Bianchi, “Using Transfer Learn-
ing to Speed-Up Reinforcement Learning: a Cased-
Based Approach” in Proceedings of the 2010
Latin American Robotics Symposium and Intelligent
Robotics Meeting, Los Alamitos: IEEE Computer
Society, 2010. p. 55-60.

[6] L. A. Celiberto Jr, C. H. C. Ribeiro, A. H. R. Costa
and R. A. C. Bianchi “Heuristic Reinforcement
Learning Applied to RoboCup Simulation Agents”
in Lecture Notes in Artificial Intelligence, Berlin :
Springer, 2008. v. 5001. p. 220-227.

[7] L. A. Celiberto Jr , J. P. Matsuura and R. A. C.
Bianchi “Heuristic Q-Learning Soccer Players: A
New Reinforcement Learning Approach to RoboCup
Simulation” in Lecture Notes in Artificial Intelli-
gence, Berlin : Springer, 2007. v. 4874. p. 520-529.

[8] Chris Drummond, ‘Accelerating Reinforcement
Learning by composing solutions of automatically
identified subtasks’, Journal of Artificial Intelligence
Research, 16, 59–104, (2002).

12

[9] Fernando Fernández and Manuela Veloso, ‘Proba-
bilistic policy reuse in a Reinforcement Learning
agent’, in Proceedings of the Fifth International
Joint Conference on Autonomous Agents and Multia-
gent Systems, AAMAS ’06, pp. 720–727, New York,
NY, USA, (2006). ACM.

[10] J. A. Gurzoni Jr, F. Tonidandel and R. A. C. Bianchi
“Market-Based Dynamic Task Allocation using
Heuristically Accelerated Reinforcement Learning”
in Lecture Notes in Artificial Intelligence, Berlin :
Springer, 2011. v. 7026. p. 365-376.

[11] Michael L. Littman, ‘Markov games as a framework
for multi-agent reinforcement learning’, in Proceed-
ings of the Eleventh International Conference on
Machine Learning, pp. 157–163. Morgan Kaufmann,
(1994).

[12] Ramon López de Mántaras, David McSherry, Derek
Bridge, David Leake, Barry Smyth, Susan Craw,
Boi Faltings, Mary Lou Maher, Michael T. Cox,
Kenneth Forbus, Mark Keane, Agnar Aamodt, and
Ian Watson, ‘Retrieval, reuse, revision and retention
in case-based reasoning’, Knowl. Eng. Rev., 20(3),
215–240, (2005).

[13] Andrew W. Moore and Christopher G. Atkeson,
‘Prioritized sweeping: Reinforcement learning with
less data and less time’, Machine Learning, 13, 103–
130, (1993).

[14] Ulrich Nehmzow, Scientific Methods in Mobile
Robotics: quantitative analysis of agent behaviour.,
Springer-Verlag London Limited, London, 2006.

[15] J. Peng and R. J. Williams, ‘Efficient learning and
planning within the dyna framework’, Adaptive Be-
havior, 1(4), 437–454, (1993).

[16] Raquel Ros, Josep Lluis Arcos, Ramon López
de Mántaras, and Manuela Veloso, ‘A case-based ap-
proach for coordinated action selection in robot soc-
cer’, Artificial Intelligence, 173(9-10), 1014–1039,
(2009).

[17] G. Rummery and M. Niranjan. On-line Q-learning
using connectionist systems, 1994. Technical Report
CUED/F-INFENG/TR 166. Cambridge University,
Engineering Department.

[18] Vishal Soni and Satinder Singh, ‘Using homomor-
phisms to transfer options across continuous rein-
forcement learning domains’, in Proceedings of the
21st National Conference on Artificial intelligence -
Volume 1, pp. 494–499. AAAI Press, (2006).

[19] Murray R. Spiegel, Statistics, McGraw-Hill, 1998.

[20] Peter Stone, Gregory Kuhlmann, Matthew E. Taylor,
and Yaxin Liu, ‘Keepaway soccer: From machine
learning testbed to benchmark’, in RoboCup-2005:
Robot Soccer World Cup IX, eds., Itsuki Noda, Adam
Jacoff, Ansgar Bredenfeld, and Yasutake Takahashi,
volume 4020 of Lecture Notes in Artificial Intelli-
gence, 93–105, Springer Verlag, Berlin, (2006).

[21] Peter Stone, Richard S. Sutton, and Gregory
Kuhlmann, ‘Reinforcement Learning for RoboCup-
soccer Keepaway’, Adaptive Behavior, 13(3), 165–
188, (2005).

[22] R. S. Sutton and A. G. Barto, Reinforcement Learn-
ing: An Introduction, MIT Press, Cambridge, MA,
1998.

[23] Richard S. Sutton, ‘Integrated architectures for learn-
ing, planning and reacting based on approximat-
ing dynamic programming’, in Proceedings of the
7th International Conference on Machine Learning,
Austin, TX, (1990). Morgan Kaufmann.

[24] Matthew E. Taylor, Nicholas K. Jong, and Peter
Stone, ‘Transferring instances for model-based re-
inforcement learning’, in Machine Learning and
Knowledge Discovery in Databases, volume 5212 of
Lecture Notes in Artificial Intelligence, pp. 488–505,
2008.

[25] Matthew E. Taylor and Peter Stone, ‘Transfer Learn-
ing for Reinforcement Learning domains: A survey’,
Journal of Machine Learning Research, 10(1), 1633–
1685, (2009).

[26] Matthew Edmund Taylor, Autonomous inter-task
transfer in reinforcement learning domains, Ph.D.
dissertation, University of Texas at Austin, Austin,
TX, USA, 2008.

[27] E. L. Thorndike and R. S. Woodworth, ‘The influ-
ence of improvement in one mental function upon
the efficiency of other functions’, Psychological Re-
view, 8, 247–261, (1901).

[28] Lisa Torrey, Trevor Walker, Jude W. Shavlik, and
Richard Maclin, ‘Using advice to transfer knowledge
acquired in one Reinforcement Learning task to
another’, in ECML, eds., João Gama, Rui Camacho,
Pavel Brazdil, Alı́pio Jorge, and Luı́s Torgo, volume
3720 of Lecture Notes in Computer Science, pp.
412–424. Springer, (2005).

[29] Andreas von Hessling and Ashok K. Goel, ‘Ab-
stracting reusable cases from reinforcement learn-
ing’, in 6th International Conference on Case-Based
Reasoning, ICCBR 2005, Chicago, IL, USA, August
23-26, 2005, Workshop Proceedings, ed., Stefanie
Brüninghaus, pp. 227–236, (2005).

[30] Christopher J. C. H. Watkins, Learning from Delayed
Rewards, Ph.D. dissertation, University of Cam-
bridge, 1989.

13

