
On the Computation of Warranted Arguments
within a Possibilistic Logic Framework with Fuzzy Unification ∗

Teresa Alsinet Carlos Chesñevar
Dept. of Computer Science

University of Lleida
Lleida, SPAIN

{tracy,cic}@eps.udl.es

Lluı́s Godo Sandra Sandri
AI Research Institute (IIIA-CSIC)

Campus UAB
Bellaterra, SPAIN

{godo,sandri}@iiia.csic.es

Guillermo Simari
Dept. of Computer Science and Eng.

Universidad Nacional del Sur
Bahı́a Blanca, ARGENTINA
grs@cs.uns.edu.ar

Abstract

Possibilistic Defeasible Logic Programming (P-DeLP) is a
logic programming language which combines features from
argumentation theory and logic programming, incorporating
the treatment of possibilistic uncertainty at object-language
level. The aim of this paper is twofold: first to present an
approach towards extending P-DeLP in order to incorporate
fuzzy constants and fuzzy unification, and after to propose
a way to handle conflicting arguments in the context of the
extended framework.
Keywords: Possibilistic logic, fuzzy constants, fuzzy unifi-
cation, defeasible argumentation.

Introduction
In the last decade, defeasible argumentation has emerged
as a very powerful paradigm to model commonsense rea-
soning in the presence of incomplete and potentially incon-
sistent information (Chesñevar, Maguitman, & Loui 2000).
Recent developments have been oriented towards integrat-
ing argumentation as part of logic programming languages.
In this context, Possibilistic Defeasible Logic Programming
(P-DeLP) (Chesñevar et al. 2004) is a logic programming
language which combines features from argumentation the-
ory and logic programming, incorporating the treatment of
possibilistic uncertainty at object-language level. Roughly
speaking, in P-DeLP degrees of uncertainty help in deter-
mining which arguments prevail in case of conflict.

In spite of its expressive power, an important limitation in
P-DeLP (as defined in (Chesñevar et al. 2004)) is that the
treatment of imprecise, fuzzy information was not formal-
ized. One interesting alternative for such formalization is the
use of PGL+, a Possibilistic logic over Gödel logic extended
with fuzzy constants. Fuzzy constants in PGL+ allow ex-
pressing imprecise information about the possibly unknown
value of a variable (in the sense of magnitude) modeled as a
(unary) predicate. For instance, an imprecise statement like
“John’s salary is low” can be expressed PGL+ by the for-
mula John salary(low) where John salary is a predicate
and low a fuzzy constant, which will be mapped under a

∗This is a proper extension of the paper “Modeling Defeasible
Argumentation within a Possibilistic Logic Framework with Fuzzy
Unification” to appear in the 11th IPMU International Conference
2006 (Paris, France).

given PGL+ interpretation to a fuzzy set rather to a single
domain element as usually in predicate logics. Notice that
this kind of statements express disjunctive knowledge (mu-
tually exclusive), in the sense that in each interpretation it is
natural to require that the predicate John salary(x) be true
for one and only one variable assignment to x, say u0. Then,
in such an interpretation it is also natural to evaluate to what
extent John salary(low) is true as the degree in which the
salary u0 is considered to be low. Hence, allowing fuzzy
constants in the language leads to treat formulas in a many-
valued logical setting (that of Gödel many-valued logic in
our framework), as opposed to the bivalued setting within
classical possibilistic logic, with the unit interval [0, 1] as a
set of truth-values.

The aim of this paper is twofold: first to define DePGL+,
a possibilistic defeasible logic programming language that
extends P-DeLP through the use of PGL+, instead of (clas-
sical) possibilistic logic, in order to incorporate fuzzy con-
stants and fuzzy unification, and after to propose a way to
handle conflicting arguments in the context of the extended
framework. To this end, the rest of the paper is structured as
follows. First, we present the fundamentals of PGL+. Then
we define the DePGL+ programming language. The next
two sections focus on the characterization of arguments in
DePGL+ and the analysis of the notion of conflict among
arguments in the context of our proposal. Next we discuss
some problematic situations that may arise when trying to
define the notion of warranted arguments in DePGL+, and
propose some solutions. Finally we discuss some related
work and present the main conclusions we have obtained.

PGL+: Overview
Possibilistic logic (Dubois, Lang, & Prade 1994) is a logic
of uncertainty where a certainty degree between 0 and 1,
interpreted as a lower bound of a necessity measure, is at-
tached to each classical formula. In the propositional ver-
sion, possibilistic formulas are pairs (ϕ, α) where ϕ is a
proposition of classical logic and interpreted as specifying a
constraint N(ϕ) ≥ α on the necessity measure of ϕ. Possi-
bilistic models are possibility distributions π : Ω → [0, 1]
on the set of classical (bivalued) interpretations Ω which
rank them in terms of plausibility: w is at least as plau-
sible as w′ when π(w) ≥ π(w′). If π(w) = 1 then w
is considered as fully plausible, while if π(w) = 0 w is

considered as totally impossible. Then (ϕ, α) is satisfied
by π, written π |= (ϕ, α) whenever Nπ(ϕ) ≥ α, where
Nπ(ϕ) = inf{1− π(w) | w(ϕ) = 0}.

In (Alsinet & Godo 2000; 2001) the authors introduce
PGL+, an extension of possibilistic logic allowing to deal
with some form of fuzzy knowledge and with an efficient
and complete proof procedure for atomic deduction when
clauses fulfill two kinds of constraints. Technically speak-
ing, PGL+ is a possibilistic logic defined on top of (a frag-
ment of) Gödel infinitely-valued logic, allowing uncertainty
qualification of predicates with imprecise, fuzzy constants,
and allowing as well a form of graded unification between
them. Next we provide some details.

The basic components of PGL+ formulas are: a set of
primitive propositions (fuzzy propositional variables) Var;
a set S of sorts of constants; a set C of object constants,
each having its sort; a set Pred of unary regular predicates,
each one having a type; and connectives ∧, →. An atomic
formula is either a primitive proposition from Var or of the
form p(A), where p is a predicate symbol from Pred, A is
an object constant from C and the sort of A corresponds to
the type of p. Formulas are Horn-rules of the form p1 ∧
· · · ∧ pk → q with k ≥ 0, where p1, . . . , pk, q are atomic
formulas. A (weighted) clause is a pair of the form (ϕ, α),
where ϕ is a Horn-rule and α ∈ [0, 1].
Remark Since variables, quantifiers and function symbols are
not allowed, the language of PGL+ so defined remains in fact
propositional. This allows us to consider only unary predicates
since statements involving multiple (fuzzy) properties can be al-
ways represented in PGL+ as a conjunction of atomic formulas.
For instance, the statement “Mary is young and tall” can be rep-
resented in PGL+ as age Mary(young) ∧ height Mary(tall)
instead of using a binary predicate involving two fuzzy constants
like age&height Mary(young, tall).

A many-valued interpretation for the language is a struc-
ture w = (U, i,m), where: U = ∪σ∈SUσ is a collection
of non-empty domains Uσ , one for each basic sort σ ∈ S;
i = (iprop, ipred), where iprop : V ar → [0, 1] maps each
primitive proposition q into a value iprop(q) ∈ [0, 1] and
ipred : Pred → U maps a predicate p of type (σ) into a
value ipred(p) ∈ Uσ; and m : C → [0, 1]U maps an object
constant A of sort σ into a normalized fuzzy set m(A) on
Uσ , with membership function µm(A) : Uσ → [0, 1]. 1

The truth value of an atomic formula ϕ under an inter-
pretation w = (U, i,m), denoted by w(ϕ) ∈ [0, 1], is de-
fined as w(q) = iprop(q) for primitive propositions, and
w(p(A)) = µm(A)(ipred(p)) for atomic predicates. The
truth evaluation is extended to rules by means of interpreting
the ∧ connective by the min-conjunction and the → con-
nective by the so-called Gödel’s many-valued implication:
w(p1 ∧ · · · ∧ pk → q) = 1 if min(w(p1), . . . , w(pk)) ≤
w(q), and w(p1 ∧ · · · ∧ pk → q) = w(q) otherwise.

Note that the truth value w(ϕ) will depend not only on the
interpretation ipred of predicate symbols that ϕ may contain,

1Note that for each predicate symbol p, ipred(p) is the one and
only value of the domain which satisfies p in that interpretation and
that m prescribes for each constant A at least one value u0 of the
domain Uσ as fully compatible, i.e. such that µm(A)(u0) = 1.

but also on the fuzzy sets assigned to fuzzy constants by m.
Then, in order to define the possibilistic semantics, we need
to fix a meaning for the fuzzy constants and to consider some
extension of the standard notion of necessity measure for
fuzzy events. The first is achieved by fixing a context. Basi-
cally a context is the set of interpretations sharing a common
domain U and an interpretation of object constants m. So,
given U and m, its associated context is just the set of inter-
pretations IU,m = {w | w = (U, i,m)} and, once fixed the
context, [ϕ] denotes the fuzzy set of models for a formula ϕ
defining µ[ϕ](w) = w(ϕ), for all w ∈ IU,m.

Now, in a fixed context IU,m, a belief state (or possibilis-
tic model) is determined by a normalized possibility distri-
bution on IU,m, π : IU,m → [0, 1]. Then, we say that π
satisfies a clause (ϕ, α), written π |= (ϕ, α), iff the (suit-
able) necessity measure of the fuzzy set of models of ϕ with
respect to π, denoted N([ϕ] | π), is indeed at least α. Here,
for the sake of soundness preservation, we take

N([ϕ] | π) = inf
w∈IU,m

π(w)⇒ µ[ϕ](w),

where⇒ is the reciprocal of Gödel’s many-valued implica-
tion, defined as x ⇒ y = 1 if x ≤ y and x ⇒ y = 1 − x,
otherwise. This necessity measure for fuzzy sets was pro-
posed and discussed by Dubois and Prade (cf. (Dubois,
Lang, & Prade 1994)). For example, according to this se-
mantics, given a context IU,m the formula

(age Peter(about 35), 0.9)
is to be interpreted in PGL+ as the following set of clauses
with imprecise but non-fuzzy constants
{(age Peter([about 35]β), min(0.9, 1− β)) : β ∈ [0, 1]},

where [about 35]β denotes the β-cut of the fuzzy set
m(about 35). As usual, a set of clauses P is said to entail
another clause (ϕ, α), written P |= (ϕ, α), iff every possi-
bilistic model π satisfying all the clauses in P also satisfies
(ϕ, α), and we say that a set of clauses P is satisfiable in the
context determined by U and m if there exists a normalized
possibility distribution π : IU,m → [0, 1] that satisfies all
the clauses in P . Satisfiable clauses enjoy the following re-
sult (Alsinet 2003): If P is satisfiable and P |= (ϕ, α), with
α > 0, there exists at least an interpretation w ∈ IU,m such
that w(ϕ) = 1.

Finally, still in a context IU,m, the degree of possibilis-
tic entailment of an atomic formula (or goal) ϕ by a set
of clauses P , denoted by ‖ϕ‖P , is the greatest α ∈ [0, 1]
such that P |= (ϕ, α). In (Alsinet 2003), it is proved that
‖ϕ‖P = inf{N([ϕ] | π) | π |= P}.

The calculus for PGL+ in a given context IU,m is defined
by the following set of inference rules:

Generalized resolution:
(p ∧ s→ q(A), α),
(q(B) ∧ t→ r, β)

(p ∧ s ∧ t→ r, min(α, β))
[GR], if A ⊆ B

Fusion:
(p(A) ∧ s→ q(D), α),
(p(B) ∧ t→ q(E), β)

(p(A ∪B) ∧ s ∧ t→ q(D ∪ E),min(α, β))
[FU]

Intersection:
(p(A), α), (p(B), β)

(p(A ∩B),min(α, β))
[IN]

Resolving uncertainty:

(p(A), α)
(p(A′), 1)

[UN], where A′ = max(1− α, A)

Semantical unification:
(p(A), α)

(p(B),min(α, N(B | A)))
[SU]

For each context IU,m, the above GR, FU, SU, IN and UN
inference rules can be proved to be sound with respect to the
possibilistic entailment of clauses. Moreover we shall also
refer to the following weighted modus ponens rule, which
can be seen as a particular case of the GR rule

(p1 ∧ ... ∧ pn → q, α),
(p1, β1), . . . , (pn, βn)
(q, min(α, β1, . . . , βn))

[MP]

The notion of proof in PGL+, denoted by `, is that of de-
duction by means of the triviality axiom and the PGL+ infer-
ence rules. Given a context IU,m, the degree of deduction of
a goal ϕ from a set of clauses P , denoted |ϕ|P , is the great-
est α ∈ [0, 1] for which P ` (ϕ, α). Actually this notion of
proof is complete for determining the degree of possibilistic
entailment of a goal, i.e. |ϕ|P = ‖ϕ‖P , for non-recursive
and satisfiable programs P , called PGL+ programs, under
certain further conditions. Details can be found in (Alsinet
& Godo 2001; Alsinet 2003).

The DePGL+ programming language
As already pointed out our objective is to extend the P-DeLP
programming language through the use of PGL+ in order
to incorporate fuzzy constants and fuzzy propositional va-
riables; we will refer to this extension as Defeasible PGL+,
DePGL+ for short. To this end, the base language of P-
DeLP (Chesñevar et al. 2004) will be extended with fuzzy
constants and fuzzy propositional variables, and arguments
will have an attached necessity measure associated with the
supported conclusion.

The DePGL+ language L is defined over PGL+ atomic
formulas together with the connectives {∼,∧, ← }. The
symbol ∼ stands for negation. A literal L ∈ L is a PGL+

atomic formula or its negation. A rule in L is a formula
of the form Q ← L1 ∧ . . . ∧ Ln, where Q, L1, . . . , Ln are
literals in L. When n = 0, the formula Q← is called a fact
and simply written as Q. In the following, capital and lower
case letters will denote literals and atoms in L, respectively.

In argumentation frameworks, the negation connective al-
lows to represent conflicts among pieces of information. In
the frame of DePGL+, the handling of negation deserves
some explanation. In what regards negated propositional
variables ∼p, the negation connective ∼ will not be consid-
ered as a proper Gödel negation. Rather, ∼p will be treated
as another propositional variable p′, with a particular status

with respect to p, since it will be only used to detect contra-
dictions at the syntactical level. On the other hand, negated
literals of the form∼p(A), where A is a fuzzy constant, will
be handled in the following way.

As previously mentioned, fuzzy constants are disjunc-
tively interpreted in PGL+. For instance, consider the for-
mula speed(low). In each interpretation I = (U, i,m),
the predicate speed is assigned a unique element i(speed)
of the corresponding domain. If low denotes a crisp inter-
val of rpm’s, say [0, 2000], then speed(low) will be true iff
such element belongs to this interval, i.e. iff i(speed) ∈
[0, 2000]. Now, since the negated formula ∼ speed(low)
is to be interpreted as “¬[∃x ∈ low such that the engine
speed is x]”, which (under PGL+ interpretations) amounts
to “[∃x 6∈ low such that the engine speed is x]”, it turns
out that∼speed(low) is true iff speed(¬low) is true, where
¬low denotes the complement of the interval [0, 2000] in
the corresponding domain. Then, given a context IU,m, this
leads us to understand a negated literal ∼ p(A) as another
positive literal p(¬A), where the fuzzy constant ¬A denotes
the (fuzzy) complement of A, that is, where µm(¬A)(u) =
n(µm(A)(u)), for some suitable negation function n (usually
n(x) = 1− x).

Therefore, given a context IU,m, using the above interpre-
tations of the negation, and interpreting the DePGL+ arrow
← as the PGL+ implication →, we can actually transform
a DePGL+ program P into a PGL+ program, denoted as
τ(P), and then, we can apply the deduction machinery of
PGL+ on τ(P) for automated proof purposes. From now
on and for the sake of a simpler notation, we shall write
Γ `τ (ϕ, α) to denote τ(Γ) ` τ((ϕ, α)), being Γ and (ϕ, α)
DePGL+ clauses. Moreover, we shall consider that the
negation function n is implicitly determined by each context
IU,m, i.e. the function m will interpret both fuzzy constants
A and their complement (negation) ¬A.

Arguments in DePGL+

In the last sections we formalized the many-valued and the
possibilistic semantics of the underlying logic of DePGL+.
In this section we formalize the procedural mechanism for
building arguments in DePGL+.

We distinguish between certain and uncertain DePGL+

clauses. A DePGL+ clause (ϕ, α) will be referred as
certain when α = 1 and uncertain, otherwise. Given
a context IU,m, a set of DePGL+ clauses Γ will be
deemed as contradictory, denoted Γ `τ ⊥, when

(i) either Γ `τ (q, α) and Γ `τ (∼q, β), with α > 0 and
β > 0, for some atom q in L,

(ii) or Γ `τ (p(A), α) with α > 0, for some predicate
p and some fuzzy constant A such that m(A) is non-
normalized.

Notice that in the latter case, τ(Γ) is not satisfiable and
there exist Γ1 ⊂ τ(Γ) and Γ2 ⊂ τ(Γ) such that Γ1 and Γ2

are satisfiable and |p(B)|Γ1 > 0 and |p(C)|Γ2 > 0, with
A = B ∩ C.

Example 1 Consider the set of clauses Γ = {(q, 0.8),
(r, 1), (p(A)← q , 0.5), (p(B)← q ∧ r , 0.3)}. Then, Γ `τ

(p(A), 0.5) and Γ `τ (p(B), 0.3), and, by the IN inference
rule, Γ `τ (p(A ∩ B), 0.3). Hence, in a particular con-
text IU,m, Γ is contradictory as soon as m(A) ∩m(B) is a
non-normalized fuzzy set whereas, for instance, Γ\{(r, 1)}
is satisfiable.

A DePGL+ program is a set of clauses in L in which
we distinguish certain from uncertain information. As ad-
ditional requirement, certain knowledge is required to be
non-contradictory and the corresponding PGL+ program
(by means of transformation τ) is required to satisfy the
modularity constraint (Alsinet & Godo 2001; Alsinet 2003).
Formally: Given a context IU,m, a DePGL+ program P is
a pair (Π,∆), where Π is a non-contradictory finite set of
certain clauses, ∆ is a finite set of uncertain clauses, and
τ(Π ∪∆) satisfies the modularity constraint.

The requirement of the modularity constraint of a
DePGL+ program ensures that all (explicit and hidden)
clauses of programs are considered. Indeed, since fuzzy
constants are interpreted as (flexible) restrictions on an ex-
istential quantifier, atomic formulas clearly express disjunc-
tive information. For instance, when A = {a1, . . . , an},
p(A) is equivalent to the disjunction p(a1) ∨ · · · ∨ p(an).
Then, when parts of this (hidden) disjunctive information
occur in the body of several program formulas we also have
to consider all those new formulas that can be obtained
through a completion process of the program which is based
on the RE and FU inference rules.

Example 2 (Adapted from (Chesñevar et al. 2004)) Con-
sider an intelligent agent controlling an engine with three
switches sw1, sw2 and sw3. These switches regulate differ-
ent features of the engine, such as pumping system, speed,
etc. The agent’s generic (and incomplete) knowledge about
how this engine works is the following:

– If the pump is clogged, then the engine gets no fuel.
– When sw1 is on, apparently fuel is pumped properly.
– When fuel is pumped, fuel seems to work ok.
– When sw2 is on, usually oil is pumped.
– When oil is pumped, usually it works ok.
– When there is oil and fuel, normally the engine is ok.
– When there is heat, the engine is almost sure not ok.
– When there is heat, normally there are oil problems.
– When fuel is pumped and speed is low, there are

reasons to believe that the pump is clogged.
– When sw2 is on, usually speed is low.
– When sw2 and sw3 are on, usually speed is not low.
– When sw3 is on, normally fuel is ok.

Suppose also that the agent knows some particular facts
about the current state of the engine:

– sw1, sw2 and sw3 are on, and
– the temperature is around 31oC.

This knowledge can be modelled by the program Pengine

shown in Fig. 1. Note that uncertainty is assessed in terms
of different necessity degrees and vague knowledge is repre-
sented by means of fuzzy constants (low, around 31, high).

Next we introduce the notion of argument in DePGL+.
Informally, an argument for a literal (goal) Q with necessity

(1) (∼fuel ok ← pump clog , 1)
(2) (pump fuel ← sw1 , 0.6)
(3) (fuel ok ← pump fuel , 0.85)
(4) (pump oil ← sw2 , 0.8)
(5) (oil ok ← pump oil , 0.8)
(6) (engine ok ← fuel ok ∧ oil ok , 0.6)
(7) (∼engine ok ← temp(high), 0.95)
(8) (∼oil ok ← temp(high), 0.9)
(9) (pump clog ← pump fuel ∧ speed(low), 0.7)
(10) (speed(low)← sw2 , 0.8)
(11) (∼speed(low)← sw2 , sw3 , 0.8)
(12) (fuel ok ← sw3 , 0.9)
(13) (sw1, 1)
(14) (sw2, 1)
(15) (sw3, 1)
(16) (temp(around 31), 0.85)

Figure 1: DePGL+ program Peng (example 2)

degree α is a tentative (as it relies to some extent on uncer-
tain, possibilistic information) proof for (Q,α) .

Definition 3 (Argument) Given a context IU,m and a
DePGL+ program P = (Π,∆), a set A ⊆ ∆ of uncertain
clauses is an argument for a goal Q with necessity degree
α > 0, denoted 〈A, Q, α〉, iff:
(1) Π ∪ A `τ (Q,α);
(2) Π ∪ A is non contradictory; and
(3) A is minimal wrt set inclusion, i.e. there is no A1 ⊂ A
satisfying (1) and (2).

Let 〈A, Q, α〉 and 〈S, R, β〉 be two arguments. We will
say that 〈S, R, β〉 is a subargument of 〈A, Q, α〉 iff S ⊆ A.
Notice that the goal R may be a subgoal associated with the
goal Q in the argument A.

Given a context IU,m, the set of arguments for a DePGL+

program P = (Π,∆) can be found by the iterative applica-
tion of the following construction rules:

1) Building arguments from facts (INTF):

(Q, 1)
〈∅, Q, 1〉

(Q,α), Π ∪ {(Q,α)} 6`τ ⊥, α < 1
〈{(Q,α)}, Q, α〉

for any (Q, 1) ∈ Π and any (Q, α) ∈ ∆.

2) Building Arguments by SU (SUA):

〈A, p(A), α〉
〈A, p(B),min(α, N(m(B) | m(A)))〉

if N(m(B) | m(A)) 6= 0.

3) Building Arguments by UN (UNA):

〈A, p(A), α〉
〈A, p(A′), 1〉

where m(A′) = max(1− α, m(A)).

4) Building Arguments by IN (INA):

〈A1, p(A), α〉, 〈A2, p(B), β〉,
Π ∪ A1 ∪ A2 6`τ ⊥

〈A1 ∪ A2, p(A ∩B),min(α, β)〉

5) Building Arguments by MP (MPA):

〈A1, L1, α1〉 〈A2, L2, α2〉 . . . 〈Ak, Lk, αk〉
(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , 1)

Π ∪
⋃k

i=1Ai 6`τ ⊥
〈
⋃k

i=1Ai, L0, β〉

for any certain rule (L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , 1) ∈ Π,
with β = min(α1, . . . , αk).

〈A1, L1, α1〉 〈A2, L2, α2〉 . . . 〈Ak, Lk, αk〉
(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ), with γ < 1

Π ∪ {(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ)} ∪
⋃k

i=1Ai 6`τ ⊥
〈
⋃k

i=1Ai ∪ {(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ)}, L0, β〉

for any weighted rule (L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ) ∈ ∆,
with β = min(α1, . . . , αk, γ).

The basic idea with the argument construction procedure
is to keep a trace of the set A ⊆ ∆ of all uncertain informa-
tion in the program P used to derive a given goal Q with ne-
cessity degree α. Appropriate preconditions ensure that the
proof obtained always ensures the non-contradictory con-
straint of arguments wrt the certain knowledge Π of the pro-
gram. Given a context IU,m and a DePGL+ program P , rule
INTF allows to construct arguments from facts. An empty
argument can be obtained for any certain fact in P . An ar-
gument concluding an uncertain fact (Q,α) in P can be de-
rived whenever assuming (Q,α) is not contradictory wrt the
set Π in P . Rules SUA and UNA accounts for semantical
unification and resolving uncertainty, respectively. As both
rules do not combine new uncertain knowledge, we do not
need to check the non-contradictory constraint. Rule INA
applies intersection between previously argumented goals
provided that the resulting intersection is non contradic-
tory wrt Π. Rules MPA account for the use of modus po-
nens, both with certain and defeasible rules. Note they as-
sume the existence of an argument for every literal in the
antecedent of the rule. Then, in a such a case, the MPA
rule is applicable whenever no contradiction results when
putting together Π, the sets A1, . . . , Ak corresponding to
the arguments for the antecedents of the rule and the rule
(L0 ← L1 ∧ L2 ∧ . . . ∧ Lk , γ) when γ < 1.

Example 4 Consider the program Peng in Example 2,
where temp(·) is a unary predicate of type (degrees),
speed(·) is a unary predicate of type (rpm), heat and
around 31 are two object constants of type degrees, and
low is an object constant of type rpm. Further, consider the
context IU,m such that:

• U = {Udegrees = [−100, 100] oC, Urpm = [0, 200]};
• m(high) = [28, 30, 100, 100]2,

m(around 31) = [26, 31, 31, 36],
m(low) = [10, 15, 25, 30], and
m(¬low) = 1−m(low).

Then the following arguments can be derived from Peng:

2We represent a trapezoidal fuzzy set as [t1; t2; t3; t4], where
the interval [t1, t4] is the support and the interval [t2, t3] is the core.

1. The argument 〈B, fuel ok, 0.6〉 can be derived as fol-
lows:

i) 〈∅, sw1, 1〉 from (13) via INTF.
ii) 〈B′, pump fuel, 0.6〉 from (2) and i) via MPA.
iii) 〈B, fuel ok, 0.6〉 from (3) and ii) via MPA.

where B′={(pump fuel ← sw1 , 0.6)} and B = B′ ∪
{(fuel ok ← pump fuel , 0.85)}.

2. Similarly, the argument 〈C1, oil ok, 0.8〉 can be derived
using the rules (15), (4) and (5) via INTC, MPA, and
MPA respectively, with: C1 = {(pump oil ← sw2 , 0.8);
(oil ok ← pump oil , 0.8)}.

3. The argument 〈A1, engine ok, 0.6〉 can be derived as fol-
lows:

i) 〈B, fuel ok, 0.6〉 as shown above.
ii) 〈C1, oil ok, 0.8〉 as shown above.
iii) 〈A1, engine ok, 0.6〉 from i), ii), (6) via MPA.

with A1={(engine ok ← fuel ok ∧ oil ok , 0.6)} ∪ B ∪
C1. Note that 〈C1, oil ok, 0.8〉 and 〈B, fuel ok, 0.6〉 are
subarguments of 〈A1, engine ok, 0.6〉.

4. One can also derive the argument 〈C2,∼oil ok, 0.8〉,
where C2 = {(temp(around 31), 0.85), (∼ oil ok ←
temp(high), 0.9)}, as follows:

i) 〈{(temp(around 31), 0.85)}, temp(around 31), 0.85〉
from (16) via INTF.

ii) 〈{(temp(around 31), 0.85)}, temp(high), 0.8〉
from i) via SUA, where N(high | around 31) = 0.8
and 0.8 = min(0.85, 0.8).

iii) 〈C2,∼oil ok, 0.8〉
from i), ii), (6) via MPA.

5. Similarly, an argument 〈A2,∼engine ok, 0.8〉 can be de-
rived using the rules (16) and (7) via INTF, SUA, and
MPA, with
A2 = {(temp(around 31), 0.85);

(∼engine ok ← temp(high), 0.95)}.

Counter-argumentation and defeat in
DePGL+

Given a program and a particular context, it can be the
case that there exist conflicting arguments for one lite-
ral and its negation. For instance, in the above exam-
ple, 〈A1, engine ok, 0.6〉 and 〈A2,∼engine ok, 0.8〉, and
〈C1, oil ok, 0.8〉 and 〈C2,∼oil ok, 0.8〉, and thus, the pro-
gram Peng considering the context IU,m is contradictory.
Therefore, it is necessary to define a formal framework for
solving conflicts among arguments in DePGL+. This is for-
malized next by the notions of counterargument and defeat,
based on the same ideas used in P-DeLP (Chesñevar et al.
2004) but incorporating the treatment of fuzzy constants.

Definition 5 (Counterargument) Let P be a DePGL+

program, let IU,m be a context, and let 〈A1, Q1, α1〉 and
〈A2, Q2, α2〉 be two arguments wrt P in the context IU,m.
We will say that 〈A1, Q1, α1〉 counterargues 〈A2, Q2, α2〉
iff there exists a subargument (called disagreement subargu-
ment) 〈S, Q, β〉 of 〈A2, Q2, α2〉 such that Q =∼Q1

3.

3For a given goal Q, we write∼ Q as an abbreviation to denote
“∼ q” if Q ≡ q (resp.,“∼ q(A)” if Q ≡ q(A)) and “q” if Q ≡∼ q
(resp., “q(A)” if Q ≡ ∼ q(A)).

Since arguments rely on uncertain and hence defeasible
information, conflicts among arguments may be resolved by
comparing their strength and deciding which argument is de-
feated by which one. Therefore, a notion of defeat amounts
to establish a preference criterion on conflicting arguments.
In our framework, following (Chesñevar et al. 2004), it
seems natural to define it on the basis of necessity degrees
associated with arguments.
Definition 6 (Defeat) Let P be a DePGL+ program, let
IU,m be a context, and let 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉
be two arguments wrt P in the context IU,m. We will
say that 〈A1, Q1, α1〉 defeats 〈A2, Q2, α2〉 (or equivalently
〈A1, Q1, α1〉 is a defeater for 〈A2, Q2, α2〉) iff:

(1) the argument 〈A1, Q1, α1〉 counterargues the argument
〈A2, Q2, α2〉 with disagreement subargument 〈A, Q, α〉;
and

(2) either it holds that α1 > α, in which case 〈A1, Q1, α1〉
will be called a proper defeater for 〈A2, Q2, α2〉, or α1 =
α, in which case 〈A1, Q1, α1〉 will be called a blocking
defeater for 〈A2, Q2, α2〉.
Following Examples 2 and 4, we have that argu-

ment 〈A2,∼engine ok, 0.8〉 is a defeater of argument
〈A1, engine ok, 0.6〉 while 〈C2,∼oil ok, 0.8〉 is a block-
ing defeater of 〈C1, oil ok, 0.8〉.

Computing warranted arguments in DePGL+

As in most argumentation systems, a main goal in DePGL+

is to devise a procedure to determine whether a given argu-
ment 〈A,Q, α〉 is warranted (or ultimately accepted) wrt a
program P . Intuitively, an argument 〈A,Q,α〉 is warranted
when

1. it has no defeaters, or
2. every defeater for 〈A,Q,α〉 is on its turn defeated by an-

other argument which is warranted.
In P-DeLP this is done by an exhaustive dialectical anal-

ysis of all argumentation lines rooted in a given argument
(see (Chesñevar et al. 2004) for details) which can be ef-
ficiently performed by means of a top-down algorithm, as
described in (Chesñevar, Simari, & Godo 2005). For in-
stance, given the following simple P-DeLP program P =
{(p, 0.45), (∼ p, 0.7)}, a short dialectical analysis would
conclude that the argument A = 〈{(∼ p, 0.7)},∼ p, 0.7〉
is warranted.

However, even with similar simple programs, the situa-
tion DePGL+ gets more involved. Indeed, in order to pro-
vide DePGL+ with a similar dialectical analysis, due to the
disjunctive interpretation of fuzzy constants and their asso-
ciated fuzzy unification mechanism, new blocking situations
between arguments have to be considered as we show in the
following example.
Example 7 Consider the DePGL+ program

P = {(temp(around 31), 0.45),
(temp(between 25 30), 0.7)}

where temp(·) is a unary predicate of type (degrees), and
the context IU,m with U = {Udegrees = [−100, 100] oC}
and

m(around 31) = [26, 31, 31, 36],
m(between 25 30) = [20, 25, 30, 35],
m(¬around 31) = 1−m(around 31), and
m(¬between 25 30) = 1−m(between 25 30).

Consider the following sets of clauses:
A1 = {(temp(around 31), 0.45)}
A2 = {(temp(between 25 30), 0.7)}.

Within the context IU,m, the arguments
A1 =〈A1, temp(around 31), 0.45〉,
A2 =〈A2, temp(between 25 30), 0.7〉,

can be derived from P , but notice that m(around 31) ∩
m(between 25 30) is a non-normalized fuzzy set. However,
since we have

N(m(¬around 31) | m(between 25 30)) = 0
N(m(¬between 25 30) | m(around 31)) = 0,

using the SUA procedural rule, one can only derive ar-
guments for the negated literals ∼ temp(around 31) and
∼ temp(between 25 30) with necessity degree 0. Hence,
neither A1 nor A2 has a proper defeater. Then, in this par-
ticular context, neither A1 nor A2 can be warranted, and
thus A1 acts as a blocking argument for A2, and viceversa.

Remark that the unification degree, or the partial match-
ing, between fuzzy constants depends on the context we are
considering. For instance, if for the above context IU,m we
consider the Gödel negation instead of the involutive nega-
tion; i.e.,

m(¬A)(t) =
{

1, if m(A)(t) = 0
0, otherwise

for any fuzzy constant A, we get that

N(m(¬around 31) | m(between 25 30)) = 0.2
N(m(¬between 25 30) | m(around 31)) = 0.2

However, as 0.2 < 0.45 and 0.2 < 0.7, in this new particu-
lar context neither A1 nor A2 can be warranted as well.

Therefore we introduce the following notion of pair of
blocking arguments.

Definition 8 (Blocking arguments) Let P be a DePGL+

program, let IU,m be a context, and let 〈A1, q(A), α1〉 and
〈A2, q(B), α2〉 be two arguments wrt P in the context IU,m.
We will say that 〈A1, q(A), α1〉 blocks 〈A2, q(B), α2〉, and
viceversa, when

1. m(A) ∩m(B) is a non-normalized fuzzy set; and
2. N(m(¬A) | m(B)) < α1 and N(m(¬B) | m(A)) <

α2.

By extension, if 〈A1, Q1, α1〉 is a subargument of 〈A, Q, α〉
and 〈A1, Q1, α1〉 and 〈A2, Q2, α2〉 are a pair of blocking
arguments, argument 〈A, Q, α〉 cannot be warranted and
〈A2, Q2, α2〉 is a blocking argument for 〈A, Q, α〉.

Given a DePGL+ program and a particular context, there
may exist both multiple blocking arguments and multiple
proper defeaters for a same argument, all of them derived
from a same set of clauses by applying the semantical uni-
fication procedural rule SUA as we show in the following
example.

Example 9 Consider the DePGL+ program P and the con-
text IU,m of Example 7. Let

A3 = {(temp(about 25), 0.9)},
and let P ′ = P ∪ A3 be a new program. Further,
consider two new fuzzy constants “between 31 32” and
“about 25 ext”. The three new fuzzy constants are inter-
preted in the context IU,m as

m(about 25) = [24, 25, 25, 26],
m(¬about 25) = 1−m(about 25),
m(between 31 32) = [26, 31, 32, 37], and
m(about 25 ext) = [24, 25, 25, 32].

Notice that arguments A1 and A2 from Example 7 are still
arguments with respect the new program P ′. Now, in the
frame of the program P ′, from the argument A1 and by ap-
plying the SUA procedural rule, we can build the argument

A3 =〈A1, temp(between 31 32), 0.45〉,
since N(m(between 31 32) | m(around 31)) = 1. One
can easily check that A3 and A2 are a pair of blocking argu-
ments. Moreover, as m(around 31) ≤ m(between 31 32),
i.e. “around 31” is more specific than “between 31 32”,
we have N(m(¬between 25 30) | m(around 31)) ≥
N(m(¬between 25 30) | m(between 31 32)), and thus,
the argument A3 can be considered as a redundant blocking
argument for the argument A2.

On the other hand, the argument

A4 =〈A3, temp(about 25), 0.9〉,
can be derived from P ′. Then, from the argument A4 and
by applying the SUA procedural rule, we can build the argu-
ment

A5 =〈A3,∼temp(around 31), 0.9〉,
since N(m(¬around 31) | m(about 25)) = 1, and thus,
the argument A5 is a proper defeater for the argument A1.
Now, from the argument A4 and by applying the SUA proce-
dural rule, we can build the argument

A6 =〈A3, temp(about 25 ext), 0.9〉,
since N(m(about 25 ext) | m(about 25)) = 1. Finally,
from the argument A6 and by applying the SUA procedural
rule, we can build the argument

A7 =〈A3,∼temp(around 31), 0.5〉,
since N(m(¬around 31) | m(about 25 ext)) = 0.5, and
thus, the argument A7 is a proper defeater for the argument
A1. However, as arguments A5 and A7 have been computed
both from the same specific information of the program and
0.9 > 0.5, the argument A7 can be considered as a redun-
dant proper defeater for the argument A1.

Therefore, if we aim at an efficient procedure for com-
puting warrants (based on an exhaustive dialectical analysis
of all argumentation lines), we have to avoid for a given ar-
gument both redundant blocking arguments and redundant
proper defeaters . According to the above discussion, we in-
troduce the following definitions of redundant blocking ar-
guments and defeaters.

Definition 10 (Redundant blocking arguments) Let P be
a DePGL+ program, let IU,m be a context, and let
〈A1, p(A), α1〉 and 〈A2, p(B), α2〉 be a pair of block-
ing arguments wrt P in the context IU,m. We will say
that 〈A2, p(B), α2〉 is a redundant blocking argument for
〈A1, p(A), α1〉 iff there exists an argument 〈A2, p(C), 1〉
such that:

1. 〈A1, p(A), α1〉 and 〈A2, p(C), 1〉 are a pair of blocking
arguments; and

2. m(C) ≤ max(1− α2,m(B)).

Definition 11 (Redundant defeater) Let P be a DePGL+

program, let IU,m be a context, and let 〈A1, Q1, α1〉
and 〈A2, Q2, α2〉 be two arguments wrt P in the con-
text IU,m such that 〈A1, Q1, α1〉 is a proper defeater for
〈A2, Q2, α2〉. We will say that 〈A1, Q1, α1〉 is a redun-
dant defeater for 〈A2, Q2, α2〉 iff there exists an argument
〈A1, Q1, α〉 such that:

1. 〈A1, Q1, α〉 is is a proper defeater for 〈A2, Q2, α2〉); and
2. α1 < α.

At this point we are ready to formalize the notion of ar-
gumentation line in the framework of DePGL+. An argu-
mentation line starting in an argument 〈A0, Q0, α0〉 is a se-
quence of arguments

λ = [〈A0, Q0, α0〉, 〈A1, Q1, α1〉, . . . , 〈An, Qn, αn〉, . . .]

that can be thought of as an exchange of arguments between
two parties, a proponent (evenly-indexed arguments) and an
opponent (oddly-indexed arguments). Each 〈Ai, Qi, αi〉 is
either a defeater or a blocking argument for the previous ar-
gument 〈Ai−1, Qi−1, αi−1〉 in the sequence, i > 0. In order
to avoid fallacious reasoning, argumentation theory imposes
additional constraints on such an argument exchange to be
considered rationally acceptable wrt a DePGL+ program P
and a context IU,m, namely:

1. Non-contradiction: given an argumentation line λ, the
set of arguments of the proponent (resp. opponent) should
be non-contradictory wrt P and IU,m.

2. Progressive argumentation: every4 blocking defeater
and blocking argument 〈Ai, Qi, αi〉 in λ, i > 0, is de-
feated by a proper defeater 〈Ai+1, Qi+1, αi+1〉 in λ.

3. Non-redundancy: every proper defeater and blocking
argument 〈Ai, Qi, αi〉 in λ, i > 0, is a non-redundant
defeater, resp. a non-redundant blocking argument, for
the previous argument 〈Ai−1, Qi−1, αi−1〉 in λ; i.e.
〈Ai, Qi, αi〉 is the best proper defeater or the most spe-
cific blocking argument one can consider from a given set
of clauses.

The first condition disallows the use of contradictory in-
formation on either side (proponent or opponent). The sec-
ond condition enforces the use of a proper defeater to defeat
an argument which acts as a blocking defeater or as a block-
ing argument. An argumentation line satisfying restrictions

4Remark that the last argument in an argumentation line is al-
lowed to be a blocking defeater and a blocking argument for the
previous one.

(1) and (2) is called acceptable, and can be proven to be fi-
nite. Finally, since we consider programs with a finite set of
clauses, the last condition ensures that we have a computable
number of argumentations lines.

Given a program P , a context IU,m and an argument
〈A0, Q0, α0〉, the set of all acceptable argumentation lines
starting in 〈A0, Q0, α0〉 accounts for a whole dialectical
analysis for 〈A0, Q0, α0〉 (i.e. all possible dialogues rooted
in 〈A0, Q0, α0〉, formalized as a dialectical tree5).

Definition 12 (Warrant) Given a program P = (Π,∆), a
context IU,m, and a goal Q, we will say that Q is warranted
wrt P in the context IU,m with a maximum necessity degree
α iff there exists an argument of the form 〈A,Q,α〉, for some
A ⊆ ∆, such that:

1. every acceptable argumentation line starting with
〈A,Q,α〉 has an odd number of arguments; i.e. every ar-
gumentation line starting with 〈A,Q,α〉 finishes with an
argument proposed by the proponent which is in favor of
Q with at least a necessity degree α; and

2. for each argument of the form 〈A1, Q, β〉, with β > α,
there exists at least an acceptable argumentation line
starting with 〈A1, Q, β〉 that has an even number of ar-
guments.

Note that we will generalize the use of the term “warranted”
for applying it to both goals and arguments: whenever a goal
Q is warranted on the basis of a given argument 〈A,Q,α〉
as specified in Def. 12, we will also say that the argument
〈A,Q,α〉 is warranted. Continuing with Examples 7 and 9,
we will next show how to determine, according to the above
definition, whether some arguments appearing there (argu-
ments A4, A1 and A2) are warranted.

Example 13 Let us recall the following arguments:

A1 = 〈A1, temp(around 31), 0.45〉,
A2 = 〈A2, temp(between 25 30), 0.7〉,
A4 = 〈A3, temp(about 25), 0.9〉,
A5 = 〈A3,∼ temp(around 31), 0.9〉.

Consider first the argument A4. It has neither a proper
defeater nor a blocking argument, hence there exists an
acceptable argumentation line starting with A4 with just
one argument. Indeed, the only possible argumentation
line rooted in A4 that can be obtained is [A4]. Since this
line has odd length, according to Definition 12 the goal
“temp(about 25)” can be warranted wrt P ′ in the context
IU,m with a necessity of 0.9.

Consider now the case of argument A1. In this case, the
argument A5 is a non-redundant proper defeater for A1 and
A5 has no defeater, since “temp(about 25)” is a warranted
goal with a necessity of 0.9. Similarly, the argument A2 is
a non-redundant blocking argument for A1, but A2 has a
proper defeater, namely A4. However, the line [A1, A2, A4]
is not allowed because A1 and A4 are contradictory since

5It must be remarked that the definition of dialectical tree as
well as the characterization of constraints to avoid fallacies in argu-
mentation lines can be traced back to (Simari, Chesñevar, & Garcı́a
1994). Similar formalizations were also used in other argumenta-
tion frameworks (e.g. (Prakken & Sartor 1997)).

m(around 31) ∩ m(about 25) is not normalized. There-
fore two acceptable argumentation lines rooted at A1 can
be built: [A1, A5] and [A1, A2]. Since it is not the case that
every argumentation line rooted in A1 has odd length, the
argument A1 cannot be warranted.

Finally, following a similar discussion for A2, we can
conclude that the argument A2 is not warranted either.

It must be noted that to decide whether a given goal Q
is warranted (on the basis of a given argument A0 for Q) it
may be not necessary to compute every possible argumenta-
tion line rooted in A0, e.g. in the case of A1 in the previous
example, it sufficed to detect just one even-length argumen-
tation line to determine that is not warranted. Some aspects
concerning computing warrant efficiently by means of a top-
down procedure in P-DeLP can be found in (Chesñevar,
Simari, & Godo 2005).

Related work
To the best of our knowledge, in the literature there have
been not many approaches that aim at combining argumen-
tation and fuzziness, except for the work of Schroeder &
Schweimeier (Schweimeier & Schroeder 2001; Schroeder &
Schweimeier 2002; Schweimeier & Schroeder 2004). The
argumentation framework is also defined for a logic pro-
gramming framework based on extended logic programming
with well-founded semantics, and providing a declarative
bottom-up fixpoint semantics along with an equivalent top-
down proof procedure. In contrast with our approach, this
argumentation framework defines fuzzy unification on the
basis of the notion of edit distance, based on string com-
parison (Schweimeier & Schroeder 2004). Their proposal,
on the other hand, does not include an explicit treatment of
possibilistic uncertainty as in our case.

There has been generic approaches connecting defeasible
reasoning and possibilistic logic (e.g.(Benferhat, Dubois, &
Prade 2002)). Including possibilistic logic as part of an ar-
gumentation framework for modelling preference handling
and information merging has recently been treated by Am-
goud & Kaci (Amgoud & Kaci 2005) and Amgoud & Cay-
rol (Amgoud & Cayrol 2002). Such formulations are based
on using a possibilistic logic framework to handle merging
of prioritized information, obtaining an aggregated knowl-
edge base. Arguments are then analyzed on the basis of
the resulting aggregated knowledge base. An important dif-
ference of these proposals with our formulation is that our
framework introduces explicit representation of fuzziness
along with handling possibilistic logic. Besides, in the pro-
posed framework we attach necessity degrees to object level
formulas, propagating such necessity degrees according to
suitable inference rules, which differs from the approach
used in the proposals above mentioned.

Besides of considering possibilistic logic and fuzziness, a
number of hybrid approaches connecting argumentation and
uncertainty have been developed, such as Probabilistic Ar-
gumentation Systems (Haenni, Kohlas, & Lehmann 2000;
Haenni & Lehmann 2003), which use probabilities to com-
pute degrees of support and plausibility of goals, related to
Dempster-Shafer belief and plausibility functions. However

this approach is not based on a dialectical theory (with argu-
ments, defeaters, etc.) nor includes fuzziness as presented in
this paper.

Conclusions and future work
PGL+ constitutes a powerful formalism that can be inte-
grated into an argument-based framework like P-DeLP, al-
lowing to combine uncertainty expressed in possibilistic
logic and fuzziness characterized in terms of fuzzy constants
and fuzzy propositional variables.

In this paper we have focused on characterizing DePGL+,
a formal language that combines features from PGL+ along
with elements which are present in most argumentative
frameworks (like the notions of argument, counterargument,
and defeat). As stated in Sections 5 and 6, part of our cur-
rent work is focused on providing a formal characteriza-
tion of warrant in the context of the proposed framework.
In particular, we are interested in studying formal proper-
ties for warrant that should hold in the context of argumen-
tation frameworks, as proposed in (Caminada & Amgoud
2005). In this paper, Caminada & Amgoud identify anoma-
lies in several argumentation formalisms and provide an in-
teresting solution in terms of rationality postulates which
–the authors claim– should hold in any well-defined argu-
mentative system. In (Chesñevar et al. 2005) we started a
preliminary analysis for this problem in the context of P-
DeLP (Chesñevar et al. 2004), and currently part of our
research is focused on this issue. We are also analyzing how
to characterize an alternative conceptualization of warrant in
which different warrant degrees can be attached to formulas
on the basis of necessity degrees, extending some concepts
suggested in (Pollock 2001). Research in these directions is
currently being pursued.

Acknowledgments
We thank anonymous reviewers for their comments and sug-
gestions to improve the final version of this paper. This
work was supported by Spanish Projects TIC2003-00950,
TIN2004-07933-C03-01/03, by Ramón y Cajal Program
(MCyT, Spain), by CONICET (Argentina), by the Secretarı́a
General de Ciencia y Tecnologı́a de la Universidad Nacional
del Sur and by Agencia Nacional de Promoción Cientı́fica y
Tecnológica (PICT 2002 No. 13096).

References
Alsinet, T., and Godo, L. 2000. A complete calculus for
possibilistic logic programming with fuzzy propositional
variables. In Proc. of UAI-2000 Conf., 1–10.
Alsinet, T., and Godo, L. 2001. A proof procedure for
possibilistic logic programming with fuzzy constants. In
Proc. of the ECSQARU-2001 Conf., 760–771.
Alsinet, T. 2003. Logic Programming with Fuzzy Unifica-
tion and Imprecise Constants: Possibilistic Semantics and
Automated Deduction. Number 15. IIIA-CSIC. Bellaterra,
Spain.
Amgoud, L., and Cayrol, C. 2002. Inferring from incon-
sistency in preference-based argumentation frameworks. J.
Autom. Reasoning 29(2):125–169.

Amgoud, L., and Kaci, S. 2005. An argumentation frame-
work for merging conflicting knowledge bases: The prior-
itized case. In Proc. of the ECSQARU-2005 Conf., LNAI
3571, 527–538.
Benferhat, S.; Dubois, D.; and Prade, H. 2002. The pos-
sibilistic handling of irrelevance in exception-tolerant rea-
soning. Annals of Math. and AI 35:29–61.
Caminada, M., and Amgoud, L. 2005. An axiomatic ac-
count of formal argumentation. In Proc. of the AAAI-2005
Conf., 608–613.
Chesñevar, C. I.; Simari, G.; Alsinet, T.; and Godo, L.
2004. A Logic Programming Framework for Possibilis-
tic Argumentation with Vague Knowledge. In Proc. of the
UAI-2004 Conf., 76–84.
Chesñevar, C.; Simari, G.; Godo, L.; and Alsinet, T. 2005.
On warranted inference in possibilistic defeasible logic
programming. In Proc. of CCIA-2005. IOS Press, 265–
272.
Chesñevar, C.; Maguitman, A.; and Loui, R. 2000. Logical
Models of Argument. ACM Computing Surveys 32(4):337–
383.
Chesñevar, C.; Simari, G.; and Godo, L. 2005. Computing
dialectical trees efficiently in possibilistic defeasible logic
programming. In Proc. of LPNMR-2005 Conf., 158–171.
Dubois, D.; Lang, J.; and Prade, H. 1994. Possibilistic
logic. In D.Gabbay et al. eds., Handbook of Logic in Art.
Int. and Logic Prog. (Nonmonotonic Reasoning and Un-
certain Reasoning). Oxford Univ. Press. 439–513.
Haenni, R., and Lehmann, N. 2003. Probabilistic Ar-
gumentation Systems: a New Perspective on Dempster-
Shafer Theory. Int. J. of Intelligent Systems 1(18):93–106.
Haenni, R.; Kohlas, J.; and Lehmann, N. 2000. Proba-
bilistic argumentation systems. Handbook of Defeasible
Reasoning and Uncertainty Management Systems.
Pollock, J. L. 2001. Defeasible reasoning with variable
degrees of justification. Artif. Intell. 133(1-2):233–282.
Prakken, H., and Sartor, G. 1997. Argument-based ex-
tended logic programming with defeasible priorities. Jour-
nal of Applied Non-classical Logics 7:25–75.
Schroeder, M., and Schweimeier, R. 2002. Fuzzy argumen-
tation for negotiating agents. In Proc. of the AAMAS-2002
Conf., 942–943.
Schweimeier, R., and Schroeder, M. 2001. Fuzzy argu-
mentation and extended logic programming. In Proceed-
ings of ECSQARU Workshop Adventures in Argumentation
(Toulouse, France).
Schweimeier, R., and Schroeder, M. 2004. Fuzzy unifi-
cation and argumentation for well-founded semantics. In
proc. of SOFSEM 2004, LNCS 2932, 102–121.
Simari, G.; Chesñevar, C.; and Garcı́a, A. 1994. The role of
dialectics in defeasible argumentation. In Proc. of the XIV
Intl. Conf. of the Chilean Society for Computer Science,
260–281. Universidad de Concepción, Concepción (Chile).

