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Abstract

Recently defined resolution calculi for Max-SAT and signed
Max-SAT have provided a logical characterization of the
solving techniques applied by Max-SAT and WCSP solvers.
In this paper we first define a new resolution rule, called
signed Max-SAT parallel resolution, and prove that it is sound
and complete for signed Max-SAT. Second, we define a re-
striction and a generalization of the previous rule called,
respectively, signed Max-SAT i-consistency resolution and
signed Max-SAT (i, j)-consistency resolution. These rules
have the following property: if a WCSP signed encoding is
closed under signed Max-SAT i-consistency, then the WCSP
is i-consistent, and if it is closed under signed Max-SAT
(i, j)-consistency, then the WCSP is (i, j)-consistent. A new
and practical insight derived from the definition of these new
rules is that algorithms for enforcing high order consistency
should incorporate an efficient and effective component for
detecting minimal unsatisfiable cores. Finally, we describe
an algorithm that applies directional soft consistency with the
previous rules.

Introduction

The Weighted Constraint Satisfaction Problem (WCSP) is a
well-suited framework for modelling real-life problems with
soft constraints. WCSP is an optimization version of the
CSP framework in which constraints are extended by asso-
ciating costs to tuples. Solving a WCSP instance, which is
NP-hard, consists of finding a complete assignment of min-
imal cost.

Exact solvers for WCSP typically implement either vari-
able elimination algorithms (e.g. (Dechter 1999)) or branch
and bound algorithms which enforce a certain degree of
soft constraint propagation at each node of the search tree
(e.g. (Larrosa & Schiex 2004; de Givry et al. 2005)). Given
the relevance of both complete inference and incomplete in-
ference in WCSP solvers, our aim in this paper is to define
a new complete inference system for WCSP that could lead
to improved variable elimination algorithms, and to define
inference rules that capture soft local consistency properties
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(TIN2006-15662-C02-02) funded by MEC.
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stronger than the various forms of soft arc consistency de-
fined in the literature.

Our work —which lies at the intersection of the communi-
ties of Multiple-Valued Logic, Satisfiability and Constraint
Processing— is closely related to recent work on resolution
inference rules for Max-SAT and WCSP (Larrosa & Heras
2005; Heras & Larrosa 2006; Bonet, Levy, & Manyà 2006;
Ansótegui et al. 2007). On the one hand, the complete
Max-SAT and signed Max-SAT inference rules have given
rise to variable elimination algorithms for solving Max-
SAT (Bonet, Levy, & Manyà 2006) and WCSP (Ansótegui
et al. 2007) with an original notion of variable satura-
tion. On the other hand, the soft arc consistency prop-
erties enforced by WCSP solvers (de Givry et al. 2005;
Larrosa & Schiex 2004) have been expressed as derived in-
ference rules in (Ansótegui et al. 2007), and instantiations
of the Max-SAT resolution rule incorporated into Max-SAT
solvers have given rise to important performance improve-
ments (Larrosa & Heras 2005; Heras & Larrosa 2006). Our
work is also closely related to the soft k-consistency proper-
ties and algorithms defined in (Cooper 2005). Actually, our
results provide a logical framework for representing and an-
alyzing the local consistency operations of (Cooper 2005).

The link between the logical machinery defined for Max-
SAT and the graphical models used in WCSP is the many-
valued clausal formalism known as signed CNF formulae,
which provide a well-suited language for representing and
solving WCSP. Signed CNF formula use a generalized no-
tion of literal, called signed literal. A signed literal is an
expression of the form S :p, where p is a propositional vari-
able and S, its sign, is a subset of a domain N . The informal
meaning of S :p is “p takes one of the values in S”. Signed
CNF formulae have their origin in the community of auto-
mated theorem proving in many-valued logics, where they
are used as a generic and flexible language for represent-
ing many-valued interpretations (Beckert, Hähnle, & Manyà
2000).

Signed CNF formulae exploit the structure of domains
as in CSP/WCSP without losing the simplicity of clausal
forms. As a result, we get a language more expressive
than Boolean CNF formulae, and algorithms that extend,
with a very low overhead, the techniques implemented in
SAT/Max-SAT solvers in a natural way.

The contributions of the paper may be summarized as fol-
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lows: we first define a new resolution rule, called signed
Max-SAT parallel resolution, and prove that it is sound and
complete for signed Max-SAT. Second, we define a restric-
tion and a generalization of the previous rule called, respec-
tively, signed Max-SAT i-consistency resolution and signed
Max-SAT (i, j)-consistency resolution. These rules have the
following property: if a WCSP signed encoding is closed
under signed Max-SAT i-consistency, then the WCSP is i-
consistent, and if it is closed under signed Max-SAT (i, j)-
consistency, then the WCSP is (i, j)-consistent. By the form
of the signed Max-SAT parallel resolution rule and its vari-
ants we see that algorithms for enforcing high order consis-
tency should incorporate the best component for detecting
minimal unsatisfiable cores. Our last contribution is a de-
scription of an algorithm that applies directional soft con-
sistency with the previous rules, and enforces directional i-
consistency.

Preliminaries

Definition 1 A truth value set, or domain, N is a non-empty
finite set {i1, i2, . . . , in} where n denotes its cardinality. A
sign is a subset S ⊆ N of truth values. A signed literal is
an expression of the form S :p, where S is a sign and p is a
propositional variable. The complement of a signed literal l
of the form S :p, denoted by l, is S :p = (N \ S):p. A signed
clause is a disjunction of signed literals. The empty clause,
denoted by , is a disjunction of zero literals. A signed CNF
formula is a multiset of signed clauses. The empty multiset
of clauses is denoted by ∅.

Definition 2 An assignment for a signed CNF formula is
a mapping that assigns to every propositional variable an
element of the truth value set. An assignment I satisfies a
signed literal S :p iff I(p) ∈ S, satisfies a signed clause C
iff it satisfies at least one of the signed literals in C, and
satisfies a signed CNF formula Γ iff it satisfies all clauses
in Γ. A signed CNF formula is satisfiable iff it is satisfied by
at least one assignment; otherwise it is unsatisfiable.

Definition 3 The signed Max-SAT problem for a signed
CNF formula consists of finding an assignment that mini-
mizes the number of falsified signed clauses.

Definition 4 A minimal unsatisfiable core of a signed CNF
formula Γ is any unsatisfiable subset Γ′ of Γ such that, if we
remove any clause C ∈ Γ′, then Γ′ \ {C} is satisfiable.

Definition 5 A constraint satisfaction problem (CSP) in-
stance is defined as a triple 〈X, D, C〉, where X =
{x1, . . . , xn} is a set of variables, D = {d(x1), . . . , d(xn)}
is a set of domains containing the values the variables may
take, and C = {C1, . . . , Cm} is a set of constraints. Each
constraint Ci = 〈Si, Ri〉 is defined as a relation Ri over
a subset of variables Si = {xi1 , . . . , xik

}, called the con-
straint scope. The relation Ri may be represented exten-
sionally as a subset of the Cartesian product d(xi1 )× · · · ×
d(xik

).

Definition 6 An assignment v for a CSP instance 〈X, D, C〉
is a mapping that assigns to every variable xi ∈ X an ele-
ment v(xi) ∈ d(xi). An assignment v satisfies a constraint
〈{xi1 , . . . , xik

}, Ri〉 ∈ C iff 〈v(xi1 ), . . . , v(xik
)〉 ∈ Ri.

Definition 7 A Weighted CSP (WCSP) instance is defined
as a triple 〈X, D, C〉, where X and D are variables and
domains as in CSP. A constraint Ci is now defined as a pair
〈Si, fi〉, where Si = {xi1 , . . . , xik

} is the constraint scope
and fi : d(xi1 ) × · · · × d(xik

) → N is a cost function. The
cost of a constraint Ci induced by an assignment v in which
the variables of Si = {xi1 , . . . , xik

} take values bi1 , . . . , bik

is fi(bi1 , . . . , bik
). An optimal solution to a WCSP instance

is a complete assignment in which the sum of the costs of the
constraints is minimal.

Definition 8 The Weighted Constraint Satisfaction Problem
(WCSP) for a WCSP instance consists of finding an optimal
solution for that instance.

Definition 9 The signed encoding of a WCSP instance
〈X, D, C〉 is the signed CNF formula over the domain
N =

⋃
xi∈D d(xi) that contains for every possible tu-

ple 〈bi1 , . . . , bik
〉 ∈ d(xi1 ) × · · · × d(xik

) of every con-
straint 〈{xi1 , . . . , xik

}, fi〉 ∈ C, fi(bi1 , . . . , bik
) copies of

the signed clause:

{bi1}:xi1 ∨ · · · ∨ {bik
}:xik

.

An alternative encoding is to consider signed clauses with
weights instead of allowing multiple copies of a clause. For
the sake of clarity we use unweighted clauses. Neverthe-
less, any efficient implementation of the algorithms pro-
posed should deal with weighted clauses. The extension of
our theoretical results to weighted clauses is straightforward.

Proposition 10 Solving a WCSP instance P is equivalent to
solving the signed Max-SAT problem of its signed encoding;
i.e., the optimal cost of P coincides with the minimal number
of unsatisfied signed clauses of the signed encoding of P .

PROOF: See (Ansótegui et al. 2007).

Example 11 Figure 1 shows a WCSP instance 〈X, D, C〉
and its signed encoding. The WCSP has the set of vari-
ables X = {x1, x2, x3, x4} with domains d(x1) = d(x2) =
{a, b, c} and d(x3) = d(x4) = {a, b}. Unary costs are
depicted inside small circles. Binary costs are depicted as
labeled edges connecting the corresponding pair of values.
The label of each edge is the corresponding cost. If two val-
ues are not connected, the binary cost between them is 0.
The optimal cost is 1. The 8 signed clauses represent the
initial WCSP instance.

Complete Inference Rules for signed Max-SAT

We start by recalling two complete inference rules for solv-
ing the SAT problem of signed CNF formulae: the first —
called signed binary resolution— is a straightforward gen-
eralization of the resolution rule, and the second —called
signed parallel resolution— is a more efficient rule. Sec-
ond, we recall a complete rule for solving signed Max-
SAT, which is the natural extension to signed Max-SAT
of the Boolean Max-SAT rule (Larrosa & Heras 2005;
Bonet, Levy, & Manyà 2006). The rule for signed Max-SAT
was defined in (Ansótegui et al. 2007), also showing that
the existing soft arc consistency operations can be captured
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1 : {a} : x3 ∨ {a} : x1

2 : {a} : x3 ∨ {b} : x1

3 : {a} : x4 ∨ {c} : x1

4 : {b} : x4 ∨ {a} : x3

5 : {a} : x4 ∨ {b} : x3

6 : {b} : x3 ∨ {a} : x2

7 : {b} : x3 ∨ {b} : x2

8 : {b} : x4 ∨ {c} : x2

Figure 1: A WCSP instance and its signed encoding.

by derived rules. Third, we define a new inference rule for
signed Max-SAT which can be seen as the signed Max-SAT
version of the signed parallel resolution rule, and prove its
soundness and completeness. The completeness proof also
provides a characterization of a family of complete rules for
signed Max-SAT.

Signed binary resolution and signed parallel resolution are
defined as follows (Hähnle 1994; 1996):

signed binary resolution

S :x ∨ A
S′ :x ∨ B

S ∩ S′ :x ∨ A ∨ B

∅:x ∨ D
D

signed parallel resolution

S1 :x ∨ A1

· · ·
Sk :x ∨ Ak

A1 ∨ · · · ∨ Ak

whenever
⋂k

i=1
Si = ∅

In the above inference systems we assume w.l.o.g. that
every variable in a clause appears only once collapsing dif-
ferent occurrences of a literal by computing the union of the
supports.

It is possible to define the signed Max-SAT counterparts
of the previous rules. The first one was defined and proved
sound and complete in (Ansótegui et al. 2007). The second
one is generalized in this paper.

Definition 12 The signed Max-SAT resolution rule is de-
fined as follows:

S :x ∨ a1 ∨ · · · ∨ as

S′ :x ∨ b1 ∨ · · · ∨ bt

S ∩ S′ :x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt

S ∪ S′ :x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt

S :x ∨ a1 ∨ · · · ∨ as ∨ b1

S :x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ b2

· · ·
S :x ∨ a1 ∨ · · · ∨ as ∨ b1 ∨ · · · ∨ bt−1 ∨ bt

S′ :x ∨ b1 ∨ · · · ∨ bt ∨ a1

S′ :x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ a2

· · ·
S′ :x ∨ b1 ∨ · · · ∨ bt ∨ a1 ∨ · · · ∨ as−1 ∨ as

This inference rule is applied to multisets of clauses, and
replaces the premises of the rule by its conclusions.

We say that the rule resolves the variable x.
The tautologies concluded by the rule like N :x∨A are re-

moved from the resulting multiset. Also we substitute clauses
like S :x ∨ S′ :x ∨ A by (S ∪ S′):x ∨ A, and clauses like
∅:x∨ A by A.

For the sake of space, we can use the following more com-
pact representation:

S :x ∨ A
S′ :x ∨ B

S ∩ S′ :x ∨ A ∨ B
S ∪ S′ :x ∨ A ∨ B
S :x ∨ A ∨ B
S′ :x ∨ A ∨ B

Notice that B, where B is a disjunction of signed literals,
is not in CNF. Thus, an expression of the form D∨E, where
D is a disjunction of signed literals and E is the disjunc-
tion of signed literals e1 ∨ · · · ∨ et, can be replaced by the
following equivalent set of clauses:

D ∨ e1

D ∨ e1 ∨ e2

· · ·
D ∨ e1 ∨ · · · ∨ et−1 ∨ et

The second inference rule is new and is the one that cor-
responds to the signed parallel resolution rule in the signed
Max-SAT framework:

Definition 13 The signed Max-SAT parallel resolution rule
is defined as follows:

S1 :x ∨ D1

. . .
Sk :x ∨ Dk

D1 ∨ . . . ∨ Dk⎧⎨
⎩

(S1 ∩ . . . ∩ St−1) ∪ St :x∨D1 ∨ . . . ∨ Dt

(S1 ∩ . . . ∩ St−1):x∨D1 ∨ . . . ∨ Dt−1 ∨ Dt

St :x∨D1 ∨ . . . ∨ Dt−1 ∨ Dt

⎫⎬
⎭

t=2...k

where Di is a disjunction of signed literals, and
{S1 :x, . . . , Sk :x} is a minimal unsatisfiable core. We call x
the resolving variable.

We next prove that signed Max-SAT parallel resolution is
a sound inference rule. In the context of Max-SAT rules,
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a rule is sound if the number of unsatisfied clauses in the
premises coincides with the number of unsatisfied clauses
in the conclusions for every truth assignment. Recall that
applying a rule amounts to replacing the premises by the
conclusions.

Theorem 14 Signed Max-SAT parallel resolution is sound.

PROOF: We show the soundness of the rule by proving that
it is a derived rule of signed Max-SAT resolution. Given
the initial k premises the multiset of conclusions can be ob-
tained by exactly k−1 applications of signed Max-SAT res-
olution. The first application is on the first two premises.
Then, for the l-th application, 2 ≤ l ≤ k − 1, one of
the premises is the l+1-th premise, Sl+1 :x ∨ Dl+1, and the
second premise is the first conclusion of the previous step,
S1 ∩ . . . ∩ Sl :x ∨ D1 ∨ . . . ∨ Dl. Note that here we use the
fact that {S1 :x, . . . , Sk :x} is a minimal unsatisfiable core,
since we assume that S1 ∩ · · · ∩ Sl = ∅. Then we replace
these two premises by the following conclusions:

S1 ∩ . . . ∩ Sl+1 :x ∨ D1 ∨ . . . ∨ Dl+1

(S1 ∩ . . . ∩ Sl) ∪ Sl+1 :x ∨ D1 ∨ . . . ∨ Dl+1

(S1 ∩ . . . ∩ Sl):x ∨ D1 ∨ . . . ∨ Dl ∨ Dl+1

Sl+1 :x ∨ D1 ∨ . . . ∨ Dl ∨ Dl+1

Notice that in the next step the second premise will be the
first clause of the above conclusions. The first conclusion of
the last step will be S1 ∩ . . . ∩ Sk :x∨D1∨ . . .∨Dk. Since,
S1 :x, . . . , Sk :x is a minimal unsatisfiable core, S1 ∩ . . . ∩
Sk = ∅. Therefore, the last application of the rule produces
as a first conclusion D1 ∨ . . . ∨ Dk.

The completeness of the rule is a modification of the ar-
guments of (Bonet, Levy, & Manyà 2006; Ansótegui et al.
2007). In order to sketch it we need some definitions and
lemmas.

The first definition is the notion of saturation. This notion
captures the idea that if a multiset of clauses C is saturated
w.r.t. a variable x, then it does not make sense to keep ap-
plying the resolution rule with x as the resolving variable,
either because the supports of x don’t have an empty inter-
section (therefore the rule could not be applied) or the first
clause of the conclusion is a tautology.

Definition 15 A multiset of clauses C is said to be saturated
w.r.t. x if for every subset of clauses {S1 :x∨D1, . . . , Sm :x∨
Dm} ⊆ C, it holds that either S1 ∩ · · · ∩ Sm = ∅ or there
exist literals Si1 :y ∈ Di1 , . . . , Sil

:y ∈ Dil
, l ≤ m, such

that Si1 ∪ · · · ∪ Sil
= N . A multiset of clauses C′ is a

saturation of C w.r.t. x if C′ is saturated w.r.t. x and C �x C′,
i.e. C′ can be obtained from C applying the inference rule
resolving x finitely many times.

Lemma 16 Let E be a saturated multiset of clauses w.r.t. x.
Let E ′ be the subset of clauses of E not containing x. Then,
any assignment I satisfying E ′ (and not assigning x) can be
extended to an assignment satisfying E .

PROOF: We have to extend I to satisfy the whole E . In fact
we only need to set the value of x. Let us partition the mul-
tiset (E − E ′) (multiset of clauses that contain the variable

x) into two multisets: (E − E ′)T the multiset already satis-
fied by I , and (E − E ′)F the multiset such that the partial
assignment I doesn’t satisfy any of the clauses.

Let (E − E ′)F = {S1 :x ∨ D1, . . . , Sk :x ∨ Dk}. Since E
is saturated, either S1 ∩ · · · ∩ Sk = ∅ or D1 ∪ · · · ∪ Dk is a
tautology. If S1 ∩· · · ∩Sk = ∅, we extend I with a value in-
side the intersection. If S1∩· · ·∩Sk = ∅, then D1∪· · ·∪Dk

is a tautology. Then, there exist Si1 :y ∈ Di1 , . . . , Sil
:y ∈

Dil
, l ≤ m, such that Si1 ∪ · · · ∪ Sil

= N . Then, I satisfies
one of these literals and the corresponding clause. So, some
of the clauses are not in (E − E ′)F . Contradiction.

Another ingredient of the proof is showing that the proce-
dure of applying inference until saturation terminates. For
that we need to define the notion of characteristic function
of a multiset of clauses.

We assign a function P : N → {0, 1} to every signed
literal, a function P : {0, 1}n → {0, 1} to every clause, and
a function P : {0, 1}n → N to every multiset of clauses as
follows.

Definition 17 The characteristic function of a signed literal
L = {i1, . . . , im}:x is PL(x) = (1 − {i1}:x) · . . . · (1 −
{im}:x).

Definition 18 For every clause C = L1 ∨ · · · ∨ Ls we de-
fine its characteristic function as PC(�x) = PL1

(x1) · . . . ·
PLs

(xs).
For every multiset of clauses C = {C1, . . . , Cm}, we de-

fine its characteristic function as PC = Σm
i=1PCi

(�x).

Notice that, for every assignment I, PC(I) is the number
of clauses of C falsified by I.

Also notice that the set of functions {0, 1}n → N, with
the order relation: f ≤ g if for all x, f(x) ≤ g(x), defines
a partial order between functions. The strict part of this re-
lation, i.e. f < g if for all x, f(x) ≤ g(x) and for some x,
f(x) < g(x), defines a well-founded order.

Lemma 19 For every multiset of clauses C and every vari-
able x, there exists a multiset C′ such that C′ is a saturation
of C w.r.t. x.

PROOF: (Sketch) By the soundness of the signed Max-SAT
parallel resolution rule, every application of the rule replaces
a multiset of clauses by another with the same characteris-
tic function. But if we only look at the multisets containing
the variable x, the characteristic function strictly decreases.
This is because the first clause of the conclusion of the appli-
cation of the rule does not contain the variable x and since it
is not a tautology, its characteristic function is strictly greater
than zero. Therefore when we apply the rule the character-
istic function of the multiset of conclusions eliminating the
first clause is strictly smaller than the characteristic function
of the premises.

Now we are ready to state and sketch the proof of com-
pleteness.

Theorem 20 Signed Max-SAT parallel resolution is com-
plete; i.e., for any multiset of clauses C, we have

C � , . . . ,︸ ︷︷ ︸
m

,D

170



where D is a satisfiable multiset of clauses, and m is the
minimum number of unsatisfied clauses of C.

PROOF: (Sketch) Let x1, . . . , xn be an ordering of the vari-
ables. We can saturate the set C with respect to the first
variable x1. By Lemma 19 this process terminates. The
multiset that we obtain can be separated into two multisets.
One contains the clauses where x1 doesn’t appear anymore,
and we call it C1. The other contains the clauses where x1

still appears, and we call D1.
Next we saturate the set C1 with respect to the second vari-

able x2. Again we separate the saturated multiset into two,
C2 and D2, depending on whether x2 appears or not. We
continue this process until we saturate Cn−1 with respect to
xn obtaining Cn and Dn.

Notice that C is equivalent to (
⋃n

i=1
Di)∪Cn. Clearly, Cn

will be a multiset { , . . . , } of say m clauses. Then, m
will be the minimum number of unsatisfied clauses of C. On
the other hand, D1 ∪ . . . ∪ Dn will be a satisfiable multiset.
This is proven by several applications of Lemma 16 extend-
ing an empty interpretation to one satisfying Dn, and so on
until D1.

In fact, our result is stronger than the statement of the pre-
vious theorem, because it characterizes a family of complete
rules:

Corollary 21 Any sound resolution rule for signed Max-
SAT containing a non-tautological resolvent in which the
resolving variable does not appear is complete.

Local consistency via resolution

We are going to prove that the signed Max-SAT parallel
resolution rule actually enforces i-consistency in WCSP. In
order to do that, we first define (i, j)-consistency and i-
consistency in WCSP.

Definition 22 A WCSP is (i, j)-consistent, for i ≥ 0 and
j ≥ 1, iff any consistent instantiation of i variables can be
extended to a consistent instantiation of j additional vari-
ables.

Definition 23 A WCSP is i-consistent for, i ≥ 1, iff it is
(i− 1, 1)-consistent. A WCSP is strong i-consistent, for i ≥
1, iff it is k-consistent, for every k, 1 ≤ k ≤ i.

For more details on soft k-consistency properties and al-
gorithms see (Cooper 2005).

Now we will restrict the number of variables that appear
in D1 ∪ · · · ∪Dk in the signed Max-SAT parallel resolution
rule.

Definition 24 The signed Max-SAT (i,1)-consistency reso-
lution rule is the signed Max-SAT parallel resolution where
exactly i variables appear in D1∪· · ·∪Dk (|var(D1∪· · ·∪
Dk)| = i). If |var(D1∪· · ·∪Dk)| ≤ i we call the resolution
rule the strong signed Max-SAT (i,1)-consistency resolution
rule.

Lemma 25 If a set of clauses is closed under the signed
Max-SAT (i− 1, 1)-consistency resolution rule, then its cor-
responding WCSP is i-consistent.

PROOF: Suppose that a set of clauses is closed by the signed
Max-SAT (i − 1, 1)-consistency resolution rule, but its cor-
responding constraint network is not i-consistent. We have
some tuple of i − 1 variables x1, . . . , xi−1 and i − 1 con-
sistent values a1, . . . , ai−1 of their domains, and there ex-
ists also a variable x such that a1, . . . , ai−1 can not be ex-
tended to x consistently. I.e. for any value b of the do-
main of x, the tuple of i values a1, . . . , ai−1, b for the vari-
ables x1, . . . , xi−1, x falsifies some constraint about a subset
of such variables (where at least the variable x is present).
Therefore, for any b, the tuple a1, . . . , ai−1, b is a nogood,
and therefore there is a clause whose literals are a subset
of S1 :x1 ∨ . . . ∨ Si−1 :xi−1 ∨ S :x where ∀l 1 ≤ l ≤
i − 1, al /∈ Sl and b /∈ S. Since the set of clauses is
closed under the rule, and the intersection of the supports
of x is empty, our set of clauses also contains a subclause of
S′

1 :x1 ∨ . . .∨ S′

i−1 :xi−1 where ∀l 1 ≤ l ≤ i− 1, al /∈ S′

l .
So the tuple a1, . . . , ai−1 is a no good for 〈x1, . . . , xi−1〉
and this contradicts the assumption.

Signed Max-SAT (i,j)-consistency resolution rule

Once we have introduced the signed Max-SAT (i,1)-
consistency resolution rule, we are ready to introduce a more
general rule, the signed Max-SAT (i,j)-consistency resolu-
tion rule. In this case, instead of just having one resolv-
ing variable we have exactly j resolving variables. For the
sake of clarity one way of describing this rule is to col-
lapse the j resolving variables, say x1, . . . , xj , into one
single variable x′ whose domain is equal to the Cartesian
product of the domains of the j original variables, d(x′) =
d(x1) × · · · × d(xj), where d(x) is the domain of x. As a
consequence, a disjunction of signed literals on the j vari-
ables, S1 :x1 ∨ · · · ∨ Sj :xj is replaced by the signed literal,

S′ :x′, where S′ = S1 × · · · × Sj . Then, we can simply ap-
ply the (i,1)-signed Max-SAT resolution rule taking x′ as the
new resolving variable.

Definition 26 The signed Max-SAT (i,j)-consistency reso-
lution rule is defined as follows:

S1,1 :x1∨ · · · ∨S1,j :xj∨D1

...
Sk,1 :x1∨ · · · ∨Sk,j :xj∨Dk

D1 ∨ . . . ∨ Dk⎧⎨
⎩

(S′

1 ∩ . . . ∩ S′

t−1) ∪ S′

t :x
′∨D1 ∨ . . . ∨ Dt

(S′

1 ∩ . . . ∩ S′

t−1):x
′∨D1 ∨ . . . ∨ Dt−1 ∨ Dt

S′

t :x
′∨D1 ∨ . . . ∨ Dt−1 ∨ Dt

⎫⎬
⎭

t=2...k

where d(x′) = d(x1)×· · ·×d(xj), S′

r = Sr,1 × · · · × Sr,j ,
k ≥ r ≥ 1, |var(D1∪· · ·∪Dk)| = i, and {S′

1 :x, . . . , S′

k :x}
is a minimal unsatisfiable core.

Regarding the relation with the local consistencies in
WCSP, we also say that if a set of clauses is closed under the
signed Max-SAT (i, j)-consistency resolution rule, then its
corresponding WCSP is (i, j)-consistent. Because of lack of
space, the proof is omitted and will be provided in the long
version of the paper.
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C1

4 : {b} : x4 ∨ {a} : x3

5 : {a} : x4 ∨ {b} : x3

6 : {b} : x3 ∨ {a} : x2

7 : {b} : x3 ∨ {b} : x2

8 : {b} : x4 ∨ {c} : x2

9 : {a} : x4 ∨ {a} : x3

C2

4 : {b} : x4 ∨ {a} : x3

5 : {a} : x4 ∨ {b} : x3

9 : {a} : x4 ∨ {a} : x3

12 : {b} : x4 ∨ {b} : x3

C3

15 : {b} : x4

16 : {a} : x4

C4

17 :

D1

10 : {c} : x1 ∨ {a} : x3 ∨ {a} : x4

11 : {c} : x1 ∨ {a} : x3 ∨ {a} : x4

D2

13 : {c} : x2 ∨ {b} : x3 ∨ {b} : x4

14 : {c} : x2 ∨ {b} : x3 ∨ {b} : x4

D3

∅

D4

∅

Figure 2: The application of the algorithm for local consis-
tencies to the WCSP from Example 1.

Finally, notice that we get different instantiations of this
rule by fixing the i and j parameters. In particular, if we
set the i parameter to 0, we get an interesting instantiation
where the rule has the empty clause as the first of its conclu-
sions.

A directional local consistency algorithm
From the proof sketch of Theorem 20, we can extract an al-
gorithm for applying complete and incomplete inference on
WCSP. The only difference with the saturation procedure
described in it is that we apply inference only to clauses
of a bounded number of literals. This bound on the num-
ber of literals is the parameter i in the saturation function.
Function saturation(Cs−1, i, xs) computes a saturation of
Cs−1 w.r.t. xi applying the strong signed Max-SAT (i-1,1)-
consistency resolution rule resolving xs until it obtains a sat-
urated set. Lemma 19 ensures that this process terminates,
in particular that it does not cycle.

Function partition(C, xs) computes a partition of C, al-
ready saturated, into the subset of clauses containing xs and
the subset of clauses not containing xs.

input: A WCSP instance P , an index i
C0 := signed encoding(P )
for s := 1 to n

C := saturation(Cs−1, i, xs)
〈Cs, Ds〉 := partition(C, xs)

endfor

output: Cn ∪
⋃n

s=1
Ds

Given an initial WCSP instance P with n variables, the
above algorithm returns an equivalent WCSP instance. The
order on the saturation of the variables can be freely chosen,
i.e. the sequence x1, . . . xn can be any enumeration of the
variables. Notice that if i is the number of variables, the
previous algorithm is complete.

Example 27 Figure 2 shows the application of the algo-
rithm to the WCSP from Example 1, with parameter i =

3 and the order on the variables given by the sequence
x1, x2, x3, x4. C1 and D1 are obtained applying the signed
Max-SAT (2,1)-consistency resolution rule on clauses 1, 2, 3
with resolving variable x1. C2 and D2 are obtained apply-
ing the signed Max-SAT (2,1)-consistency resolution rule on
clauses 6, 7, 8 with resolving variable x2. C3 is obtained
applying the signed Max-SAT (1,1)-consistency on clauses
4, 12 and 5, 9 with the resolving variable x3. Finally, the
empty clause is obtained from clauses 15, 16 with resolving
variable x4.

Conclusions

We have defined a new resolution rule, called signed Max-
SAT parallel resolution, and proved that it is sound and com-
plete. Then, we have introduced a restriction and a general-
ization called signed Max-SAT i-consistency resolution and
signed Max-SAT (i, j)-consistency resolution, respectively.
If a WCSP signed encoding is closed under signed Max-
SAT i-consistency, then the WCSP is i-consistent, and if it
is closed under signed Max-SAT (i, j)-consistency, then the
WCSP is (i, j)-consistent. A new and practical insight de-
rived from the definition of these new rules is that algorithms
for enforcing high order consistency should incorporate an
efficient and effective component for detecting minimal un-
satisfiable cores. Finally, we have described an algorithm
that applies directional soft consistency with the previous
rules, enforcing directional i-consistency.
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