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Abstract

In this paper we consider the modal logic with both ✷ and ✸ arising from Kripke models with

a crisp accessibility and whose propositions are valued over the standard Gödel algebra [0, 1]G. We

provide an axiomatic system extending the one from [3] for models with a valued accessibility with

Dunn axiom from positive modal logics, and show it is strongly complete with respect to the intended

semantics. The axiomatizations of the most usual frame restrictions are given too. We also prove

that in the studied logic it is not possible to get ✸ as an abbreviation of ✷, nor vice-versa, showing

that indeed the axiomatic system we present does not coincide with any of the mono-modal fragments

previously axiomatized in the literature.

1 Introduction

Gödel Kripke models (GK-models, or GK) are the generalization of the classical Kripke seman-
tics for modal logics where both, the propositions at each world and the accessibility relation,
are valued in the standard Gödel algebra [0, 1]. A particular subclass of Gödel Kripke models
is the one given by the crisp ones (GKc-models, or GK

c) where the accessibility relation only
takes classical values, i.e. in {0, 1}. This is to say, the frames are classical and is the models
which incorporate some many-valued characteristics.

More general approaches, focusing mainly on finite residuated lattices, have been developed
by Fitting [9, 10], Priest [20], and Bou et al. [1], and for other main fuzzy logics in [13] and
[22]. We remark that this approach to modal many-valued logics, starting from a Kripke
semantics that behaves with respect to the FO semantics of the corresponding many-valued
logic in the analogous way to how it does in the classical case (i.e., modalities can be translated
to restricted quantifiers), differs from another main framework for modal substructural logics
studied for instance in [19], [21], [15]. This second approach, in contrast, can be seen as arising
from a syntactic definition of the logics, given by considering extensions of substructural logics
with modalities governed by some of the usual axioms/rules of the modalities from classical
modal logic. These logics enjoy completeness with respect to Kripke semantics different from
the ones studied in this paper (which have additional relations, instead of considering valuated
worlds), more similar to the ones appearing in modal intuitionistic logics.

The minimum logics over GK-models have been investigated in some detail by Caicedo
and Rodriguez [4, 3] and Metcalfe and Olivetti [16, 17]. Axiomatizations GK✷ and GK✸ were
proposed for the logics with only one modality (box and diamond fragments) arising from GK

in [4]. There, it was also proved that the box fragment is not able to discriminate between crisp
and non-crisp models, i.e. the box fragment of GK-models coincides with the box fragment of
GKc-models. On the contrary, the sets of valid diamond formulae under both semantics are
different. Interestingly enough, in [4] it is proven that the diamond fragment (over the whole
class of models) enjoys the finite model property (FMP) with respect to its Kripke semantics,
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and its decidability is established. This finite model property fails for both, the box fragment
(for which, as we said above, both crisp and general-valued Kripke semantics coincide) and
the diamond fragment of GKc-models. Nevertheless, decidability and PSPACE-completeness
of validity in these ✸-fragments is established in [16, 17] using analytic Gentzen-style proof
systems.

Further, in [17], the diamond fragment of GKc-models is axiomatized (GKc
✸
) too. It is

subsequently shown in [3] that the full logic with the two modalities arising from GK can be
axiomatized either by adding the Fischer Servi axioms for intuitionistic modal logic IK (see [8])
to the union of the axioms for both fragments, or by adding the prelinearity axiom for Gödel
logic to IK. The fact that the completeness proof strongly relies on assigning intermediate values
to the accessibility relation left still open the question of finitely axiomatizing the logic with
two modalities of the GKc-models. Indeed, the question of finding an axiomatization complete
with respect to the underlying full logic (with both modal operators) of GKc-models remains
unsolved.

The finite model property with respect to Kripke semantics fails for the bi-modal logics
arising from GK and from GKc. Nevertheless, an alternative semantics for both these logics
is introduced in in [2]. This is proven to be complete for those logics and it enjoys the finite
model property. Further, the size of the model is bounded in terms of the length of the formula
under study, which allows the authors to prove decidability of validity in both logics.

The main contribution of this paper is to establish an axiomatization for the bi-modal
logic arising from the class of GKc-models, closing the open problem and obtaining a full
characterization of the main minimal Gödel modal logics.

The paper is organized as follows: in Section 2 we introduce some necessary definitions and
review some important results that will be used in the paper, both from propositional Gödel
logic and from some known modal extensions. In Section 3, we present the axiomatic system
GKc, and prove some technical results about it. In Section 4 we show strong completeness
of the previous axiomatic system with respect to the bi-modal local logic of the GKc-models,
and provide an axiomatization for the global deduction too. We later see in Section 5 how
to axiomatize the logics arising from the most usual frame restrictions (reflexive, transitive,
symmetric, serial and euclidean frames). Lastly, in Section 6 we prove that the modal operators
are not interdefinable (in any way) in this logic, proving that GKc does not coincide with any
of the logics of the mono-modal fragments.

2 Preliminaries

2.1 Propositional Gödel logic

Let L(V ) be the set of formulas built over a countable set of propositional variables V with the
binary symbols ∨,∧,→ and constant ⊥, and where other propositional connectives are defined
as usual: ⊤ := ⊥ → ⊥,¬ϕ := ϕ→ ⊥, ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ).

Let us denote by G the extension of Hilbert propositional calculus with the prelinearity
axiom (ϕ → ψ) ∨ (ψ → ϕ)[6]. This system is known to be equivalent, for instance, to Hajèk’s
Basic Logic BL extended with idempotency of the monoidal operation [11]. For the sake of
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Axiomatization of crisp Gödel modal logic R. Rodriguez, A. Vidal

self-containment, let us introduce an axiomatization of G:

(A1) ϕ→ (ψ → ϕ) (A8) (ϕ→ ψ) → ((χ → ϕ) → (χ → ψ))

(A2) (ϕ ∧ ψ) → ϕ (A9) (ϕ→ (ψ → χ)) → (ψ → (ϕ→ χ))

(A3) (ϕ ∧ ψ) → ψ (A10) ((ϕ→ χ) ∧ (ψ → χ)) → ((ϕ ∨ ψ) → χ)

(A4) ϕ→ (ψ → (ϕ ∧ ψ)) (A11) (ϕ→ (ψ → χ)) → ((ϕ ∧ ψ) → χ)

(A5) (⊥ → ϕ) ∧ (ϕ→ ⊤) (A12) ((χ→ ϕ) ∧ (χ → ψ)) → (χ → (ϕ ∧ ψ))

(A6) ϕ→ (ϕ ∨ ψ) (A13) (ϕ→ (ϕ→ ψ)) → (ϕ→ ψ)

(A7) ψ → (ϕ ∨ ψ) (A14) (ϕ→ ψ) ∨ (ψ → ϕ)

(MP ) ϕ, ϕ→ ψ ⊢ ψ

⊢G denotes the usual deduction in G, and we will write ⊢G ϕ whenever ∅ ⊢G ϕ. We will use
this notation convention for all other axiomatic systems in the paper.

The equivalent algebraic semantics of ⊢G is that of the so-called Gödel algebras, namely
semilinear Heyting algebras. This is the variety generated by the Standard Gödel algebra ,
the structure [0, 1]G = 〈[0, 1],∧,∨,→, 0〉, where ∧ and ∨ are the usual minimum and maximum
in [0, 1], and

a→ b =

{

1 if a ≤ b,

b otherwise.

Since no confusion might arise, we will write, as usual, the same symbols to denote both
the syntactic operator in the language and the corresponding operation in the standard Gödel
algebra, for what concerns the previous propositional connectives. In order to lighten the
notation, for any Gödel homomorphism h and a (possibly infinite) set of formulas Γ, we shall
write h(Γ) to denote the set {h(γ) : γ ∈ Γ}. Moreover, as usual, for a non-empty finite set of
formulas Γ = {γ1, . . . , γn}, we write

∧

Γ to denote the formula γ1 ∧ . . .∧ γn, and the analogous
for

∨

Γ. Further, we use the conventions

∧

γ∈∅

γ := ⊤
∨

γ∈∅

γ := ⊥

and the analogous for the infimum/supremum of the empty set over elements in [0, 1].
Let |=[0,1]G denote the usual consequence over the standard Gödel algebra, i.e., for arbitrary

Γ ∪ {ϕ} ⊆ L(V ),

Γ |=[0,1]G ϕ iff for all h ∈ Hom(L(V ), [0, 1]G), h(Γ) ⊆ {1} implies h(ϕ) = 1.

It is known that ⊢G does not only enjoy strong completeness with respect to |=[0,1]G, but that
this completeness extends to deductions from arbitrary (possibly infinite) theories. Moreover,
this implies also an order-preserving completeness that will be useful in the next sections. Let
us summarize this facts.

Proposition 2.1. Let Γ ∪ {ϕ} ⊆ L(V )1. The following are equivalent:

1. Γ ⊢G ϕ,

2. Γ |=[0,1]G ϕ,

3. For any h ∈ Hom(L(V ), [0, 1]G) it holds that
∧

γ∈Γ h(γ) ≤ h(ϕ).

1The premise that V is countable cannot be ignored here.
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Proof. The equivalence between 1. and 2. is proven in [6], and also see for instance [11, Th.
4.2.17]. On the other hand, 3. trivially implies 2. It can be seen that 2. implies 3. easily since
any order preserving mapping in [0, 1] is a Gödel endomorphism.

⊠

Moreover, ⊢G enjoys the usual Deduction Theorem (D.T), i.e., for any Γ ∪ {ψ, ϕ} ⊆ L,

Γ, ψ ⊢G ϕ if and only if Γ ⊢G ψ → ϕ.

Before continuing, let us exhibit a formula that is valid in G which will be used in Section
4.

Lemma 2.2. ⊢G (((χ→ φ) → φ) ∧ (φ→ ψ)) ∨ (((χ → φ) → φ) → (ψ → φ)).

Proof. Let h ∈ Hom(L, [0, 1]G) and suppose h(((χ → φ) → φ) ∧ (φ → ψ)) < 1. Thus, either
h((χ → φ) → φ) < 1 or h(φ → ψ) < 1. In the second case, by prelinearity, h(ψ → φ) = 1,
and so, h(((χ → φ) → φ) → (ψ → φ)) = 1. On the other hand, if h((χ → φ) → φ) < 1,
due to the definition of the implication in [0, 1]G, necessarily h((χ → φ) → φ) = h(φ). Then,
h(((χ → φ) → φ) → (ψ → φ)) = h(φ) → h(ψ → φ) = 1. We conclude the proof relying in
completeness of ⊢G (Proposition 2.1). ⊠

2.2 Gödel modal logics

Let us consider a modal expansion of Gödel logic with two operators ✷ and ✸. The set of
formulas L✷✸(V ) is built as L(V ) (always assuming countability of the set of propositional
variables V ) but extending the set operations with two unary symbols ✷ and ✸. Whenever
V is clear from the context we will simply write L✷✸. We will sometimes refer to the mono-
modal expansions of Gödel logic, namely, those extending the propositional language either with
only ✷ (L✷(V )) or only ✸ (L✸(V )). We will say that ϕ is a mono-modal formula whenever
ϕ ∈ L✷(V ) ∪ L✸(V ).

In the style introduced by Fitting [9, 10] and studied in the works mentioned in the intro-
duction, we define the Gödel Modal Logic as arising from its semantic definition. This is given
by enriching usual Kripke models with evaluations over the previous standard algebra, as in
[4, 3] and others. Formally:

Definition 2.3. A Gödel-Kripke model M is a structure 〈W,R, e〉 where W is a non-empty
set of so-called worlds, and R : W ×W → [0, 1] and e : V ×W → [0, 1] are arbitrary mappings.

Whenever R : W ×W → {0, 1} we will say that the model is crisp, and write Rvw to denote
R(v, w) = 1.

The evaluation e can be uniquely extended to a map with domain W × L✷✸ in such a way
that it is a propositional Gödel homomorphism (for the propositional connectives) and where
the modal operators are interpreted as infima and suprema Mostowski style [18], namely:

• e(v,⊥) := 0,

• e(v, ϕ ⋆ ψ) := e(v, ϕ) ⋆ e(v, ψ) for ⋆ ∈ {∧,∨,→},

• e(v,✷ϕ) :=
∧

w∈W (R(v, w) → e(w,ϕ)),

• e(v,✸ϕ) :=
∨

w∈W (R(v, w) ∧ e(w,ϕ)).

Truth and logical entailment over the whole class of models, and over the crisp ones, are
defined as follows. Observe that truth and entailment from Gödel propositional logic is world-
wise preserved.
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Definition 2.4.

• Formula ϕ is true at world v in the model M, and write M, v |= ϕ if and only if
e(v, ϕ) = 1. Formula ϕ is true at model M, and write M |= ϕ if and only if M, v |= ϕ

for all v ∈W .

• We say that the formula ϕ follows locally from the set of formulas Γ, and write Γ |=GKc ϕ

(Γ |=GK ϕ) if and only if for any crisp Gödel-Kripke model (Gödel-Kripke model) M,

for all v ∈ W : M, v |= γ for all γ ∈ Γ implies M, v |= ϕ

• We say that the formula ϕ follows globally from the set of formulas Γ, and write Γ |=g
GKc

ϕ (Γ |=g
GK

ϕ) if and only if for any crisp Gödel-Kripke model (Gödel-Kripke model) M,

M |= γ for all γ ∈ Γ implies M |= ϕ

Observe that the set of theorems of the local and the global logics are clearly the same, but
the deduction systems, as it happens in the classical case, are not: ϕ |=g

GK
✷ϕ, but that is not

the case in the local consequence. Along this work, we will mainly study the local deduction,
and we will prove at the end of Section 4 a completeness result for the global logic, building on
the completeness of the local one.

In [3] the authors study the logic |=GK defined in the above way with both ✷ and ✸, and the
axiomatic system GK is introduced and proven complete. GK in [3] is defined as the extension
of the Intuitionistic modal logic IK by Fischer-Servi (see eg. [8]) with the prelinearity axiom,
in the same fashion that it is done in the propositional case. This coincides with the system
resulting from extending the calculus of Gödel-Dummet propositional logic G by the following
set of axioms and rules:

(K✷) ✷(ϕ→ψ)→(✷ϕ→✷ψ) (K✸) ✸(ϕ ∨ ψ)→(✸ϕ ∨✸ψ)

(FS1) ✸(ϕ→ ψ) → (✷ϕ→ ✸ψ) (FS2) (✸ϕ→✷ψ)→✷(ϕ→ψ)

(F✸) ¬✸⊥

(N✷) ⊢ ϕ implies ⊢ ✷ϕ (N✸) ⊢ ϕ→ ψ implies ⊢ ✸ϕ→ ✸ψ

Theorem 2.5 (Th. 3.1, [3]). Let Γ, ϕ ⊆ L✷✸(V ). Then

Γ ⊢GK ϕ if and only if Γ |=GK ϕ.

In [3] it is pointed out that an alternative axiomatization of the previous system can be
given by replacing (FS1) with the axiom scheme

(P ) ✷(ϕ→ψ)→(✸ϕ→✸ψ)

and removing the rule (N✸). In general, we will be using this second presentation of the logic
GK, particularly when facing a proof by induction on the length of a derivation in the logic.

Some formulas valid in GK that will be used below are the following:

(T 1) ✷(ϕ ∧ ψ) ↔ ✷ϕ ∧✷ψ

(T 2) ((✷ϕ→ ✸ψ) → ✸ψ) → ✷((ϕ→ ψ) → ψ) ∨✸ψ

It is easy to check both of them are valid in |=GK, and so theorems of GK.
In [3], the axiomatization of the logic arising from |=GKc in the language with two modalities

is left as an open problem. On the other hand, the corresponding mono-modal fragments have
been studied and axiomatized in [4] and [17].
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The axiomatic system GKc
✷
is introduced in [4] (under the name of G✷). It is the extension

of G with the following axiom schemata and rule:

(K✷) ✷(ϕ→ψ)→(✷ϕ→✷ψ) (N✷) ⊢ ϕ implies ⊢ ✷ϕ

(Z✷) ¬¬✷ϕ→ ✷¬¬ϕ

Theorem 2.6 (Th. 4.2, [4]). Let Γ, ϕ ⊆ L✷(V ). Then

Γ ⊢GKc
✷
ϕ if and only if Γ |=GKc ϕ.

On the other hand, the ✸-fragment is studied in [17]. The axiomatic system GKc
✸
is intro-

duced there (under the name of HGK✸). It is the extension of G with the following axiom
schemata and rule:

(Z✸) ✸¬¬ϕ→ ¬¬✸ϕ (K✸) ✸(ϕ ∨ ψ) → (✸ϕ ∨✸ψ)

(F✸) ¬✸⊥ (Nec✸) ⊢ (ϕ→ ψ) ∨ χ infer ⊢ (✸ϕ→ ✸ψ) ∨✸χ

Theorem 2.7 (Th. 5.8, [17]). Let Γ, ϕ ⊆ L✸(V ). Then

Γ ⊢GKc
✸
ϕ if and only if Γ |=GKc ϕ.

3 The logic GKc

As we said before, the axiomatization of the logic |=GKc with both ✷ and ✸ is an open problem.
It is also not known whether the system GK ∪ GKc

✷
∪ GKc

✸
might be complete with respect to

|=GKc for sets of formulas in L✷✸.
We propose here the axiomatic system GKc, which extends GK with an axiom that is also

used in the field of positive modal logics (see for instance [7]). We will prove that this system
is strongly complete with respect to |=GKc , solving the open problem stated above.

Definition 3.1. The logic GKc is defined by adding to GK the following axiom scheme

(Cr) ✷(ϕ ∨ ψ) → (✷ϕ ∨✸ψ)

Let us pay some attention to the relation of GKc with respect to the existing axiomatizations
of the mono-modal fragments. Since in [3] it is proven that ⊢GK (Z✷), and the other axiom
schemata and rule from GKc

✷
are explicitly included in the definition of GK, we get the following.

Remark 3.2. For Γ, ϕ ⊆ L✷(V ), Γ ⊢GKc
✷
ϕ implies that Γ ⊢GKc ϕ.

The same relation of GKc
✸
with respect to GKc can be proven too.

Lemma 3.3. For Γ, ϕ ⊆ L✸(V ), Γ ⊢GKc
✸
ϕ implies that Γ ⊢GKc ϕ.

Proof. It is only needed to prove that the formula (Z✸) and the rule (Nec✸) can be derived in
GKc.

Concerning (Z✸) ✸¬¬ϕ → ¬¬✸ϕ, observe that ⊢GKc ✸¬¬ϕ → (✷¬ϕ → ✸⊥), by (FS1),
and so, from (F✸) it follows that

⊢GKc ✸¬¬ϕ→ ¬✷¬ϕ (1)
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Further, ⊢GKc ¬✸ϕ → ((✸ϕ) → ✷⊥) (since ⊢GKc ⊥ → ✷⊥), and thus, applying (FS2),
we know that ⊢GKc ¬✸ϕ → ✷¬ϕ. Thus ⊢GKc ¬✷¬ϕ → ¬¬✸ϕ, and using the implication (1)
proven above we conclude ⊢GKc ✸¬¬ϕ→ ¬¬✸ϕ.

Let us now prove that the inference rule

(R✸) ⊢ ϕ ∨ (ψ → χ) implies ⊢ ✸ϕ ∨ (✸ψ → ✸χ),

is also derivable in GKc. This can be proven by first applying rule (N✷) to the premise, getting
✷(ϕ∨ (ψ → χ)). By (Cr) and M.P. it follows that ✸ϕ∨✷(ψ → χ). Applying (P ) to the second
part of the previous disjunction, we reach the conclusion. ⊠

Corollary 3.4. Let ϕ be a mono-modal formula. Then |=GKc ϕ implies ⊢GKc ϕ.

Proof. If ϕ is a formula using only the M modality (for M ∈ {✷,✸}), we know that |=GKc ϕ

implies that ⊢GKc
M
ϕ (Theorems 2.6 and 2.7). From Remark 3.2 and Lemma 3.3, then also

⊢GKc ϕ. ⊠

Using this, let us exhibit some additional valid formulas from GKc that will be useful in the
next section.

Lemma 3.5. The following formulas are provable in GKc:

(T 3) (✷ϕ→✸ϕ) ∨ ✷⊥,

(T<
✷
) ((✷ψ → ✷ϕ) → ✷ϕ) → ((✷((ψ → ϕ) → ϕ) → ✷ϕ) → ✷ϕ),

(T<
✸
) ((✸ψ → ✸ϕ) → ✸ϕ) → ✸((ψ → ϕ) → ϕ)

Proof. (T<
✷
) and (T<

✸
) are mono-modal formulas, and they are easy to check in |=GKc . Then,

from the previous corollary, we get they are derivable in GKc too.
(T 3) follows easily from (Cr) and the fact that GKc extends GKc

✷
. Indeed, since ϕ→ ⊥∨ϕ is

a theorem of G, applying N✷ and subsequently K axiom to it, we get that ⊢GKc ✷ϕ→ ✷(⊥∨ϕ).
Now, by axiom (Cr) and transitivity of the implication, it follows that ⊢GKc ✷ϕ→ (✷⊥∨✸ϕ),
and by distributivity of → over ∨, ⊢GKc (✷ϕ→ ✷⊥) ∨ (✷ϕ→ ✸ϕ).

From here, using that ⊢GKc
✷
(✷ϕ → ✷⊥) → ¬✷ϕ ∨ ✷⊥, and that ⊢G ¬χ1 → (χ1 → χ2) for

any χ1, χ2 (and so, ⊢GKc ¬✷ϕ→ (✷ϕ→ ✸ϕ)), we conclude (T 3). ⊠

We denote by MV := {✷θ,✸θ : θ ∈ L✷✸(V )}, the set of formulas in L✷✸(V ) starting with
a modal symbol, ✷ or ✸. If we use this set as names for fresh variables (i.e., not in V ),
clearly L✷✸(V ) = L(V ∪ MV ) as sets2. That is to say, any formula in L✷✸(V ) may be seen as
a propositional Gödel formula built from the extended set of propositional variables V ∪ MV .
This allows us to abuse the definition of Homomorphism (which technically is given only for two
algebras of the same type), and write Hom(L✷✸(V ), [0, 1]G) to denote Hom(L(V ∪MV ), [0, 1]G).
This syntactic association allows us to take advantage of Lemma 3.6.

Let us denote by Th(GKc) the set of theorems of GKc, i.e., the formulas that can be derived
in GKc from the empty set.

It is easy to see that deductions in GKc can be reduced to derivations in pure propositional
Gödel logic ⊢G with a certain set of premises. The proof follows immediately from the fact that
the only non-propositional inference rule from GKc is restricted to the set of theorems.

2They are not the same if seen as the respective formula algebras, since they have different types - the first
one has more operations.
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Lemma 3.6. For any Γ ∪ {ϕ} ⊆ L✷✸,

Γ ⊢GKc ϕ if and only if Th(GKc),Γ ⊢G ϕ.

It is also easy to see that ⊢GKc still enjoys the D.T, namely for any Γ ∪ {ψ, ϕ} ⊆ L✷✸,

Γ, ψ ⊢GKc ϕ if and only if Γ ⊢GKc ψ → ϕ (D.T)

In addition, we can prove the following meta-rule, which will be useful to prove completeness
of ⊢GKc . As usual, for an arbitrary set Γ ⊆ L✷✸, we let

✷Γ := {✷γ : γ ∈ Γ}.

Lemma 3.7. For any Γ ∪ {ϕ} ⊆ L✷✸,

Γ ⊢GKc ϕ implies ✷Γ ⊢GKc ✷ϕ (M✷)

Proof. We reason by induction on the length of the derivation of ϕ from Γ in GKc. We use the
presentation of GKc with only inference rules M.P (from G) and (N✷).

If ⊢GKc ϕ, then the step follows by the necessitation rule. Otherwise Γ ⊢GKc χ and Γ ⊢GKc

χ → ϕ (since M.P. is the only inference rule affecting not only theorems of the logic). By I.H.
✷Γ ⊢GKc ✷χ and ✷Γ ⊢GKc ✷(χ → ϕ). Applying K✷ axiom and later MP we get ✷Γ ⊢GKc

✷ϕ. ⊠

4 Completeness of GKc

In this section we will show that GKc is complete with respect to the local deduction in GK
c.

We will begin by detailing the proof for valid formulas, and at the end of the section we will
see that this easily extends to all deductions in the logic. We will also see how we can use
this completeness to provide an axiomatization of the global deduction over the same class of
models.

For any formula ρ we denote by 〈ρ〉 ⊆ L✷✸ the set of subformulas of ρ containing in addition,
constants ⊥ and ⊤.

For each formula ρ ∈ L✷✸ that is not a theorem of GKc, we will build a crisp Gödel-Kripke
model Mρ where there is indeed a world in which ρ is evaluated to less than 1. In order to do
so, we will define a structure in a similar fashion to the canonical model from [3], and we will
see it is canonical for 〈ρ〉.3

The canonical model Mρ = 〈W ρ, Rρ, eρ〉 is defined as follows:

• W ρ is the set {u ∈ Hom(L✷✸(V ), [0, 1]G) : u(Th(GK
c)) ⊆ {1}}.4

• Rρwu if and only if ∀ψ ∈ 〈ρ〉 : w(✷ψ) ≤ u(ψ) and u(ψ) ≤ w(✸ψ).

• eρ(u, p) = u(p) for any p ∈ V .

The previous structure is, by definition, a Gödel-Kripke model. The main idea behind the
definition is that, if ρ 6∈ Th(GKc), then from Lemma 3.6 and strong standard completeness of
⊢G (Proposition 2.1), there is h ∈ Hom(L(V ∪ MV ), [0, 1]G) such that h(Th(GKc)) ⊆ {1} and

3Meaning that each world of the model is a Gödel homomorphism satisfying all theorems of the modal logic,
and at each world h, and for each formula ψ ∈ 〈ρ〉, e(h,ψ) = h(ψ), taking into account the syntactic convention
of the set equality L✷✸(V ) = L(V ∪ MV ).

4Recall this notation stands for Hom(L(V ∪ MV ), [0, 1]G).
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h(ρ) < 1. To use this homomorphism in proving that this model is indeed a counter-model
for ρ, we need to see that e(h, ρ) = h(ρ). We will do so by proving a version of the usual
Truth-Lemma relative to 〈ρ〉, which can be done because of the way we defined Rρ above.

Let us introduce some notation to simplify the reading of the results below. For u ∈ W ρ,
α ∈ [0, 1], modality M ∈ {✷,✸} and ▽ ∈ {<,>,=} put

M
▽α
u := {ψ ∈ 〈ρ〉 : u(Mψ)▽α}

Moreover, we will denote the versions of the above sets not restricted to formulas in 〈ρ〉 by
∗
M
▽α
u . In fact, we will be only using one of these sets, namely

∗
✷

=1
u = {ψ ∈ L✷✸(V ) : u(✷ψ) = 1}.

A trivial observation about the above sets is that for any ψ ∈ M
▽α
u , u(Mψ)▽α.

We will sometimes refer to the formulas
∧

U or
∨

U for some of the above M▽αu sets (since they
are always finite, this is well defined, see the preliminaries section). Recall that, by convention,
we assume that if U = ∅, these are respectively the formulas ⊤ and ⊥.

Let us begin by proving some results that will later allow to give an easy proof of the
Truth-Lemma for the ✷-formulas.

Lemma 4.1. Let α < 1 and ϕ ∈ ✷
=α
u . Let 5

δ := (
∧

✷
>α
u → ϕ) → ϕ

Then u(✷δ) > α.

Proof. From (T 1) -namely, distributivity of ∧ and ✷- we know that u(✷
∧

✷
>α
u ) = u(

∧

✷✷
>α
u ).

Since for any ψ ∈ ✷
>α
u by definition u(✷ψ) > α, we get that u(✷(

∧

✷
>α
u )) > α, and in

particular, since ϕ ∈ ✷
=α
u , u(✷

∧

✷
>α
u ) > u(✷ϕ). Then, from the characteristics of Gödel

implication, it follows that

u((✷
∧

✷
>α
u → ✷ϕ) → ✷ϕ) = 1.

Consider now the formula (T<
✷
), valid in GKc. We can substitute in its premise the previous

formula, and by M.P. we know that

u((✷((
∧

✷
>α
u → ϕ) → ϕ) → ✷ϕ) → ✷ϕ) = 1.

From the definition of Gödel implication, and since u(✷ϕ) < 1, the above implies that
u(✷δ) = u(✷((

∧

✷
>α
u → ϕ) → ϕ)) > u(✷ϕ) = α, concluding the proof. ⊠

The next remark is a matter of expanding the definitions.

Remark 4.2. For any Gödel homomorphism v, if v(δ) = 1 and v(ϕ) < 1 then v(ϕ) < v(ψ) for
all ψ ∈ ✷

>α
u .

Proposition 4.3. Let α < 1 and ϕ ∈ ✷
=α
u . Then there exists h ∈ Hom(L✷✸(V ), [0, 1]G) such

that

(C1) h(Th(GKc)) ⊆ {1},

5While δ depends on u and ϕ, we have chosen to omit these elements from the name of the formula, since
they are clear from the context and the notation gets much heavier if we use δϕu .
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(C2) h(∗✷=1
u ) ⊆ {1},

(C3) h(ψ) < 1 for all ψ ∈ ✸
<1
u ,

(C4) h(ϕ) < h(ψ) for all ψ ∈ ✷
>α
u .

Proof. Recall from Lemma 2.2 that for any χ, φ, ψ, it holds that

⊢G (((χ → φ) → φ) ∧ (φ→ ψ)) ∨ (((χ → φ) → φ) → (ψ → φ)).

Substituting χ by
∧

✷
>α
u , φ by ϕ and ψ by

∨

✸
<1
u , and using the wrapping δ introduced in

Lemma 4.1 we get that

⊢GKc (δ ∧ (ϕ→
∨

✸
<1
u )) ∨ (δ → (

∨

✸
<1
u → ϕ)).

Applying commutativity of ∨, the (N✷) rule and axiom (Cr), we get

⊢GKc ✸(δ ∧ (ϕ→
∨

✸
<1
u )) ∨ ✷(δ → (

∨

✸
<1
u → ϕ)).

Since u ∈ W ρ, it evaluates the previous formula to 1 necessarily, and so there are two possible
cases:

(A) Either u(✸(δ ∧ (ϕ→
∨

✸
<1
u ))) = 1, or

(B) u(✷(δ → (
∨

✸
<1
u → ϕ))) = 1.

We will show that in either case the Proposition can be proven.
(A) Assume u(✸(δ ∧ (ϕ→

∨

✸
<1
u ))) = 1, and let us prove

Th(GKc), ∗✷=1
u , δ 6|=[0,1]G (ϕ→

∨

✸
<1
u ) →

∨

✸
<1
u (2)

Suppose the contrary, with a view to contradiction. Using (strong) completeness of |=[0,1]G

with respect to G (Proposition 2.1), and then Lemma 3.6 (which allows us to move between
propositional and modal deductions) and the D.T., it follows that

∗
✷

=1
u ⊢GKc (δ ∧ (ϕ→

∨

✸
<1
u )) →

∨

✸
<1
u .

Applying the meta-rule M✷ (Lemma 3.7), and axioms (P ) and (K✸) it follows that

✷
∗
✷

=1
u ⊢GKc ✸(δ ∧ (ϕ→

∨

✸
<1
u )) →

∨

✸✸
<1
u .

Going back to propositional (via Lemma 3.6 again), it follows that

Th(GKc),✷∗
✷

=1
u |=[0,1]G ✸(δ ∧ (ϕ→

∨

✸
<1
u )) →

∨

✸✸
<1
u .

However, this leads to a contradiction, since we can prove u refutes this derivation:

• u(Th(GKc)) ⊆ {1} (since u ∈ W ), and u(✷∗
✷

=1
u ) ⊆ {1} by definition. Thus, the premises

of the derivation are met by homomorphism u. However,

• u(✸(δ ∧ (ϕ →
∨

✸
<1
u ))) = 1, since we assumed (A) at the beginning of this part of the

proof, and u(
∨

✸✸
<1
u ) < 1 by definition. Thus, u(✸(δ ∧ (ϕ →

∨

✸
<1
u )) →

∨

✸✸
<1
u ) < 1,

meaning that the conclusion is not satisfied by u and so contradicting the definition of
|=[0,1]G .
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This concludes the proof of condition (2). Thus, there exists an homomorphism h ∈
Hom(L✷✸(V ), [0, 1]G) that sends the premises of (2) to 1 and the conclusion to some value
strictly less than 1. We claim this homomorphism h meets the four conditions stated in the
Proposition, since:

• The premises on (2) are sent to 1 by h, so h(Th(GKc)) ⊆ {1} proving (C1), and h(∗✷=1
u ) ⊆

{1} proving (C2).

• h((ϕ →
∨

✸
<1
u ) →

∨

✸
<1
u ) < 1 implies that h(ϕ →

∨

✸
<1
u ) > h(

∨

✸
<1
u ). Thus, necessar-

ily, h(
∨

✸
<1
u ) < 1, proving h satisfies (C3). Further, by the definition of Gödel implication,

it also follows that h(ϕ) ≤ h(
∨

✸
<1
u ), proving that also h(ϕ) < 1.

• Using again that the premises of (2) are sent to 1 by h, we know that h(δ) = 1. Together
with h(ϕ) < 1 (from the previous point) and Remark 4.2, these imply that h(ϕ) < h(ψ)
for any ψ ∈ ✷

>α
u , namely, (C4).

(B) Assume (A) does not hold, and so, (B) is the case, i.e., u(✷(δ → (
∨

✸
<1
u → ϕ))) = 1. Let

us prove that

Th(GKc), ∗✷=1
u , δ, δ → (

∨

✸
<1
u → ϕ) 6|=[0,1]G ϕ (3)

Suppose the contrary, with a view to contradiction. Using completeness of |=[0,1]G with respect
to ⊢G , and applying Lemma 3.6 twice (once in each direction) and M✷ in between, it follows
that

Th(GKc),✷(∗✷=1
u ),✷δ,✷(δ → (

∨

✸
<1
u → ϕ)) |=[0,1]G ✷ϕ (4)

But this leads to a contradiction, since:

• u(Th(GKc)) = 1 since u ∈ W ρ and u(✷(∗✷=1
u )) = 1 by definition of ∗

✷
=1
u . Moreover,

u(✷δ) > α (Lemma 4.1), and u(✷(δ → (
∨

✸
<1
u → ϕ))) = 1 by assumption of the sub-case

(B). Letting Γ be the premises in (4), the previous amount to say that
∧

γ∈Γ u(γ) > α.

• However, u(✷ϕ) = α, contradicting 3. from Proposition 2.1.

Thus, we have proven Condition (3). This implies there exists an homomorphism h ∈
Hom(L✷✸(V ), [0, 1]G) that sends its premises to 1 and the conclusion to some value strictly
less than 1. We claim this homomorphism h meets the four conditions from the Proposition.
Let us see why:

• Since the premises in (3) are sent to 1, we have that h(Th(GKc)) = 1 (proving (C1)) and
h(∗✷=1

u ) = 1 (proving (C2)),

• h(δ) = 1 and h(ϕ) < 1, and from Observation 4.2 these imply (C4),

• h(δ → (
∨

✸
<1
u → ϕ)) = 1, which together with h(δ) = 1 and h(ϕ) < 1 imply h(

∨

✸
<1
u ) < 1,

namely, (C3). ⊠

It is easy that, since u(✷⊤) = 1, such an homomorphism further satisfies

(C4.1) h(ϕ) < 1.

The following are some other properties of any h as in the previous proposition.

Remark 4.4. An homomorphism h with properties (C1),(C2) and (C3) from Proposition 4.3,
further satisfies for any formulas θ1, θ2, θ ∈ L✷✸(V ):

(C2.a) u(✸θ1) ≤ u(✷θ2) implies h(θ1) ≤ h(θ2) (since via (FS2) θ1 → θ2 ∈ ∗
✷

=1
u );

11
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(C2.b) For θ1 ∈ 〈ρ〉, u(✸θ1) < u(✷θ2) implies h(θ1) < h(θ2) (since u(✸θ1) < 1 and u(((✷θ2) →
✸θ1) → ✸θ1) = 1 imply, via (T 2), that (θ2 → θ1) → θ1 ∈ ∗

✷
=1
u , and (C3) further implies

that h(θ1) < 1);

(C2.c) 0 < u(✷θ) implies 0 < h(θ) (using (C2.b), since u(✸⊥) = 0).

(C2.d) u(✸θ) = 0 implies 0 = h(θ) (using (C2.a) since u(✸θ) ≤ h(✷⊥)).

Similarly to how it is done in [3], it is possible to build a Gödel endomorphism that composed
with the previous homomorphism will allow us to provide a world v ∈W ρ such that Rρuv and
where v(ϕ) is as near as possible to u(✷ϕ) = α.

Proposition 4.5. Let α < 1, ϕ ∈ ✷
=α
u and ε > 0. Then there is w ∈W ρ such that Rρuw and

w(ϕ) ∈ [α, α+ ε].

Proof. Let us consider the set A = {u(✷θ) : θ ∈ 〈ρ〉}, and for any a ∈ A let ha :=
∧

h(✷=a
u ).6

Further let h+α := min{ha : a ∈ A, hα < ha}.7 From (C4.1) we know hα < h+α . Observe
condition (C4) on h implies directly that (*)hα ≤ h(ϕ) < ha for any α < a. Similarly, from
(C2.c) we get that (**)h0 < ha for any a > 0.

We inductively define the following sequence in A:

b0 := max{a ∈ A : a < 1},

bi+1 := max{a ∈ A : a < bi and ha < hbi}.

Since A is finite, the previous is a strictly decreasing finite sequence, that has 0 as last
element (from observation (**) above). Moreover, α = bi for some i, from the observation (*)
above. We will denote this index by iα (i.e., α = biα). Also, by construction, the sequence
hb0 , hb1 , ... is a strictly descending sequence with last element equal to 0.

Let us now define the sequence that will determine the upper bounds of our partial mappings.

t0 :=
∧

u(✸✸
>b0
u ),

tiα := (α+ ε) ∧
∧

u(✸✸
>α
u ),

ti+1 := bi ∧
∧

u(✸✸
>bi+1

u ) for i+ 1 6= iα

By construction, ti > bi, which implies that also the sequence 〈ti〉 is strictly decreasing.
For simplicity in the notation, allow us to add the element b−1 = 1 to the sequence (so

hb−1
= 1, from (C2)). Then, Let σ : [0, 1] → [0, 1] be a strictly increasing uniform function with

σ([hα, h
+
α )) = [α, tiα), σ([hbi , hbi−1

)) = [bi, ti) for i ≥ 0

We know ti > bi and tiα > α by definition, so each interval in the right side is non-empty,
proving σ is well defined. Let us then denote w := σ ◦ h. Since hα ≤ h(ϕ) < h+α (from (C4.1)),
and tiα ≤ α+ ε, by definition we get w(ϕ) ∈ [α, α+ ε]. We prove below that Rρuw, that is, for
any formula θ ∈ 〈ρ〉 we should see u(✷θ) ≤ w(θ) ≤ u(✸θ). This will conclude the proof of the
Proposition.

First, w(θ) = 1 implies h(θ) = 1. From (C3) of h, this implies u(✸θ) = 1, and so, w(θ) ∈
[u(✷θ), u(✸θ)].

If w(θ) < 1 then there is some i ≥ 0 for which h(θ) ∈ [hbi , hbi−1
), since hb−1

= 1 and the
last element of the sequence is 0.

6namely, ha = min{h(θ) : θ ∈ 〈ρ〉 and u(✷θ) = a}.
7Recall that by convention the minimum of the empty set is 1. We will be using this fact below without

further notice.
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• u(✷θ) ≤ bi follows from the definition of bi. Indeed, hu(✷θ) ≤ h(θ) < hbi−1
and u(✷θ) <

bi−1 (otherwise bi−1 = u(✷θ), getting a contradiction with h(θ) < hbi−1
)). Since bi+1 is

the maximum element in A with those properties, u(✷θ) ≤ bi.

• To show the condition for ✸, we first prove that for any ψ ∈ 〈ρ〉, j ≥ 0:

u(✸ψ) < tj implies h(ψ) ≤ hbj

u(✸ψ) < tj implies by definition of tj that u(✸ψ) ≤ bj. From (C2.a) we get h(ψ) ≤ h(χ)
for all χ ∈ 〈ρ〉 such that u(✷χ) = bj . Thus, by definition, h(ψ) ≤ hbj .

Now, if u(✸θ) < ti, from the previous equation we know that h(θ) ≤ hbi , so in fact,
h(θ) = hbi and thus w(θ) = bi. But h(θ) = hbi implies (1 >)bi = u(✷θ) ≤ u(✸θ) by (T 3),
so w(θ) ≤ u(✸θ)

Otherwise, ti ≤ u(✸θ). ⊠

The previous results will allow us to check the Truth-Lemma of the Canonical Model for
formulas starting with ✷. We prove now results analogous to Propositions 4.3 and 4.5 but
aiming towards the construction of a successor witnessing the values of the ✸ formulas.

Let us observe an easy fact on the behavior of formulas in ✸
<α
u .

Lemma 4.6. Let α > 0 and ϕ ∈ ✸
=α
u . Put

δ′ := (ϕ→
∨

✸
<α
u )→

∨

✸
<α
u

Then u(✸δ′) = 1.

Proof. It follows directly from T<
✸

and K✸, since u(✸ϕ) > u(
∨

✸✸
<α
u ) by definition. ⊠

Proposition 4.7. Let α > 0 and ϕ ∈ ✸
=α
u . Then there exists h ∈ Hom(L✷✸(V ), [0, 1]G) such

that

(C1) h(Th(GKc)) ⊆ {1},

(C2) h(∗✷=1
u ) ⊆ {1},

(C3) h(ψ) < 1 for all ψ ∈ ✸
<1
u ,

(C4)′ h(ψ) < h(ϕ) for all ψ ∈ ✸
<α
u .

Proof. Let us prove that

Th(GKc), ∗✷=1
u , δ′ 6|=[0,1]G

∨

✸
<1
u (5)

Assume the contrary, with a view to contradiction. Similarly to the proofs from Proposition
4.3, using completeness of |=[0,1]G , Lemma 3.6, the D.T for ⊢GKc , the rule M✷ and theorems
K✸ and P , and lastly again Lemma 3.6, it follows that

Th(GKc),✷∗
✷

=1
u |=[0,1]G ✸δ′ →

∨

✸✸
<1
u

This leads to a contradiction: on the one hand, u(Th(GKc)) ⊆ {1} (because u ∈ W ρ),
u(✷∗

✷
=1
u ) ⊆ {1} (by definition) and u(✸δ′) = 1 from Lemma 4.6; on the other hand,

u(
∨

✸✸
<1
u ) < 1 by definition too, contradicting the definition of |=[0,1]G .

Condition 5 allows to conclude the proposition, since it implies there is h ∈
Hom(L✷✸(V ), [0, 1]G) evaluating the premises to 1 and the conclusion to less than 1. This
h satisfies the conditions of the Proposition, since:

13



Axiomatization of crisp Gödel modal logic R. Rodriguez, A. Vidal

• Since the premises are sent to 1, necessarily h(Th(GKc)) ⊆ {1} (namely, (C1)) and
h(∗✷=1

u ) ⊆ {1} (namely, (C2)).

• Since the conclusion is sent to less than 1, we have that h(ψ) < 1 for all ψ ∈ ✸
<1
u (thus

proving (C3)),

• Using the last of the premises is sent to 1 by h, i.e., h(δ′) = 1, it follows that
h((ϕ→

∨

✸
<α
u )→

∨

✸
<α
u ) = 1. From the previous point it follows that, in particular,

h(
∨

✸
<α
u ) < 1. Thus necessarily h(

∨

✸
<α
u ) < h(ϕ), proving (C4)′. ⊠

Homomorphism h further satisfies (for formulas in 〈ρ〉) the conditions stated in Remark 4.4,
since the necessary requisites are met. Moreover, in a dual way, and since u(✸⊥) = 0, we now
have that

(C4.1)′ h(ϕ) > 0.

We can again adapt the previous homomorphism in a dual way to how it was done in
Proposition 4.5.

Proposition 4.8. Let α > 0, ϕ ∈ ✸
=α
u and ε > 0. Then there is w ∈W ρ such that Rρuw and

w(ϕ) ∈ [α− ε, α].

Proof. The proof is dual to the one of that Proposition 4.5, swapping coherently ✷ and ✸ and
handling the corresponding boundary values for ✸. We detail it for convenience of the reader.

Let in this case A = {u(✸θ) : θ ∈ 〈ρ〉}, and for any a ∈ A let ha :=
∨

h(✸=a
u ). Further let

h−α := max{ha : a ∈ A, ha < hα}.8 From (C4.1)′ we know hα > h−α . Observe condition (C4)′

on h further implies that (*)hα ≥ h(ϕ) > ha for any α > a. Similarly, from (C3) we get that
(**)ha < h1 for any a < 1.

We define the following sequence in A (now, we start with the top boundaries, from below):

t0 := min{a ∈ A : 0 < a},

ti+1 := min{a ∈ A : a > ti and ha > hti}.

Since A is finite, the previous is a strictly increasing finite sequence, that has tN = u(✸⊤)
as last element. Moreover, α = ti for some i, from the observation (*). We will denote this
index by iα (i.e., α = tiα).

Also, by construction, the sequence ht0 , ht1 , . . . , htN is a strictly increasing sequence with
last element equal to 1.

Let us now define the sequence for the lower bounds.

b0 :=
∨

u(✷✷<t0u ),

biα := (α− ε) ∨
∨

u(✷✷<αu ),

bi+1 := bi ∨
∨

u(✷✷<ti+1

u ) for i+ 1 6= iα

By construction, ti > bi, which implies that also the sequence 〈bi〉 is strictly increasing.
For simplicity in the notation, allow us to add the element t−1 = 0 to the sequence (so

ht−1
= 0 from (C2.d)). Let then σ : [0, 1] → [0, 1] be a strictly increasing uniform function with

σ((h−α , hα]) = (biα , α],

σ((hti−1, hti ]) = [bi, ti) for i ≥ 0

8 Recall that by convention the maximum of the empty set is 0. We will be using this fact below without
further notice.
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We know ti > bi and biα < α by definition, so each interval in the right side is non-empty,
proving σ is well defined. Let us then denote w := σ ◦ h. Since hα ≥ h(ϕ) > h−α (from (C4)′),
and tiα ≥ α − ε, by definition we get w(ϕ) ∈ [α − ε, α]. We prove below that Rρuw, that
is, for any formula θ ∈ 〈ρ〉 it holds u(✷θ) ≤ w(θ) ≤ u(✸θ). This concludes the proof of the
Proposition.

First, w(θ) = 0 implies h(θ) = 0. From (C2.c) of h, this implies u(✷θ) = 0, and so,
w(θ) ∈ [u(✷θ), u(✸θ)].

If w(θ) > 1 then there is some i ≥ 0 for which h(θ) ∈ (hti−1
, hti ], since ht−1

= 0 and the
last element of the sequence is 1.

• u(✸θ) ≥ ti follows from the definition of ti. Indeed, hu(✸θ) ≥ h(θ) > hti−1
, and u(✸θ) >

ti−1 (otherwise ti−1 = u(✸θ), getting a contradiction with h(θ) > h(tbi−1
)). Since ti is the

minimum element in A with those properties, u(✸θ) ≥ ti.

• To show the condition for ✷, we first prove that for any ψ ∈ 〈ρ〉, j ≥ 0:

u(✷ψ) > bj implies h(ψ) ≥ htj

u(✷ψ) > bj implies by definition of bj that u(✷ψ) ≥ tj . From (C2.a) we get h(ψ) ≥ h(χ)
for all χ ∈ 〈ρ〉 such that u(✸χ) = tj . Thus, by definition, h(ψ) ≥ htj .

Now, if u(✷θ) > bi, from the previous equation we know that h(θ) ≥ hti , so in fact,
h(θ) = hti and thus w(θ) = ti. But h(θ) = hti implies (0 <)ti = u(✸θ) ≥ u(✷θ) by (T 3),
so w(θ) ≥ u(✷θ)

Otherwise, bi ≥ u(✷θ).

⊠

With the previous machinery, we can now go back to prove that the model Mρ is indeed
canonical for formulas in 〈ρ〉.

Lemma 4.9 (Truth-Lemma). eρ(u, ϕ) = u(ϕ) for any ϕ ∈ 〈ρ〉 and any u ∈ W ρ.

Proof. This can be proven, as usual, by induction on the complexity of the formulas. Propo-
sitional cases are trivial, and so the relevant cases are the steps of modal operations. Thus,
applying Induction Hypothesis, the objective is to prove that for any ✷ϕ,✸ϕ ∈ 〈ρ〉:

(TL✷) : u(✷ϕ) =
∧

Rρuv

v(ϕ) and (TL✸) : u(✸ϕ) =
∨

Rρuv

v(ϕ)

≤ in (TL✷) and ≥ in (TL✸) follow immediately by definition. These inequalities further
proof the full equality whenever u(✷ϕ) = 1 or u(✸ϕ) = 0, respectively.

For the rest of the cases, Proposition 4.5 proves that
∧

Rρuv v(ϕ) ≤ u(✷ϕ), and correspond-
ingly, Proposition 4.8 proves u(✸ϕ) ≤

∨

Rρuv v(ϕ). ⊠

Theorem 4.10 (Weak completeness). For any formula ϕ in L✷✸

⊢GKc ϕ if and only if |=GKc ϕ

Proof. Soundness of the axioms is simple to check. For what concerns completeness, assume
6⊢GKc ϕ. Then Th(GKc) 6⊢G ϕ by Lemma 3.6, and thus there is, by Proposition 2.1, an element
v ∈ Hom(L✷✸(V ), [0, 1]G) such that v(ϕ) < v(Th(GKc)) = {1}. Then v is a world of the
canonical model Mϕ and by Lemma 4.9, eϕ(v, ϕ) = v(ϕ) < 1. Thus 6|=GKc ϕ. ⊠
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The previous proof of completeness for theorems of the logic, together with the Deduction
Theorem for GKc allows us to easily generalize the completeness result to deductions.

Corollary 4.11 (Finite strong completeness). For any finite set of formulas Γ ∪ {ϕ} ⊆ L✷✸

the following are equivalent:

Γ ⊢GKc ϕ if and only if Γ |=GKc ϕ

Proof. Left-to-right is a direct consequence of the D.T. For the other direction, assume Γ 6⊢GKc ϕ.
Thus, from Lemma 3.6 and completeness of Gödel propositional logic (Prop. 2.1) there is
h ∈ Hom(L✷✸, [0, 1]G) such that h(Γ) ⊆ {1}, h(Th(GKc)) ⊆ {1} and h(ϕ) < 1. In particular, h
is an element of the universe of the canonical model of

∧

Γ → ϕ (or equivalently, of any formula
containing both Γ and ϕ in its set of subformulas). From the Truth Lemma 4.9 we know that
in this model e(h,

∧

Γ) = h(
∧

Γ) = 1, and e(h, ϕ) = h(ϕ) < 1, proving that Γ 6|=GKc ϕ. ⊠

Moreover, as it is done in [3, Theorem 3.1], it is possible to extend this completeness to
infinite sets of formulas, as long as they are built on a countable set of variables.

Corollary 4.12 (Strong completeness). For any countable set of formulas Γ and formula
ϕ ∈ L✷✸(V ),

Γ ⊢GKc ϕ if and only if Γ |=GKc ϕ

Proof. The proof is almost the same as in [3, Theorem 3.1], only taking into account that,
when building the theory that models the class GK

c inside classical first order logic, we need
to restrict the value of the accessibility relation to {0, 1}. We briefly reproduce the proof here
for convenience of the reader. Some familiarity with first order logic is assumed.

Let Γ be countable and Γ 0GKc ϕ and consider the first order theory Γ∗ with two unary
relation symbols W,P, a binary relation symbol <, three constant symbols 0, 1, c, two binary
function symbols ◦, S, and a unary function symbol fθ for each θ ∈ L�✸(V ), where V is the set
of propositional variables occurring in formulas of Γ, and having for axioms:

∀x¬(W (x) ∧ P (x))
∀x(W (x) ∨ ¬W (x))
“(P,<) is a strict linear order with minimum 0 and maximum 1”
∀x∀y(W (x) ∧W (y) → (S(x, y) = 1 ∨ S(x, y) = 0))
∀x∀y(P (x) ∧ P (y) → (x ≤ y ∧ x ◦ y = 1) ∨ (x > y ∧ x ◦ y = y))
∀x(W (x) → f⊥(x) = 0)
for each θ, ψ ∈ L�✸ the sentences:
∀x(W (x) → P (fθ(x)))
∀x(W (x) → fθ∧ψ(x) = min{fθ(x), fψ(x)})
∀x(W (x) → fθ→ψ(x) = (fθ(x) ◦ fψ(x))
∀x(W (x) → f�θ(x) = infy(S(x, y) ◦ fθ(y))
∀x(W (x) → f✸θ(x) = supy(min{S(x, y), fθ(y)})
for each γ ∈ Γ the sentence: fγ(c) = 1
finally, W (c) ∧ (fϕ(c) < 1).

For each finite part t of Γ∗ let F be a finite fragment of L�✸ containing {θ : fθ occurs in t}.
Since F ∩ Γ 0GKc ϕ by hypothesis, then, by weak completeness, there is a crisp GK-model
MF = (W,SF , eF ) and c ∈ W such that eF (c, θ) = 1 for each θ ∈ F ∩ Γ and eF (c, ϕ) < 1.
Therefore the first order structure (W ⊔ [0, 1],W, [0, 1], <, 0, 1, c,⇒, SF , {fθ}θ∈L�✸

), with fθ :
W → [0, 1] defined as fθ(x) = eF (x, θ), is clearly a model of t. By compactness of first order
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logic and the downward Löwenheim theorem, Γ∗ has a countable model M∗ = (B,W,P,<
, 0, 1, c, ◦, S, {fθ}θ∈L�✸

). Using Horn’s lemma [14], (P,<) may be embedded in (Q ∩ [0, 1], <)
preserving 0, 1, and all suprema and infima existing in P ; therefore, we may assume without
loss of generality that the function S is crisp and the ranges of the f ′

θs are contained in [0, 1].
Then, it is straightforward to verify that M = (W,S, e), where e(w, θ) = fθ(w) for all w ∈ W

and θ ∈ L�✸(V ), is a crisp GK-model with a distinguished world c such that M, c |= Γ, and
M, c 6|= ϕ. Hence, Γ 6|=GKc ϕ. ⊠

Strong completeness allows us to easily prove that extending GKc with the unrestricted
necessity rule ∗N✷ : ϕ ⊢ ✷ϕ (i.e., affecting all formulas and not only theorems of the logic)
provides a complete axiomatization of |=g

GKc . Let us denote this axiomatic system by ∗GKc.
Moreover, for any formula ψ we will write

✷
0ψ :=ψ, ✷

k+1ψ := ✷✷
kψ (6)

and the corresponding analogous meaning for what concerns sets of formulas.

Lemma 4.13. For any set Γ ∪ {ϕ} ⊆ L✷✸

Γ ⊢∗GKc ϕ if and only if {✷kΓ}k∈ω ⊢GKc ϕ

Proof. Right-to-left direction is immediate. For what concerns the other we can simply reason
by induction on the length of the derivation of ϕ from Γ. The step for M.P. is immediate. For
the ∗N✷ step, assume Γ ⊢∗GKc ψ. By Induction Hypothesis, we know {✷kΓ}k∈ω ⊢GKc ψ. Now,
applying (M✷) we get ✷{✷kΓ}k∈ω ⊢GKc ✷ψ. Since ✷{✷kΓ}k∈ω ⊂ {✷kΓ}k∈ω, this concludes
the proof. ⊠

Corollary 4.14 (Strong global completeness). For any set of formulas Γ ∪ {ϕ} ⊆ L✷✸,

Γ ⊢∗GKc ϕ if and only if Γ |=g
GKc ϕ

5 Some axiomatic extensions

In a similar fashion to how it is done in [3], it is easy to axiomatize some of the better known
frame structural properties. Moreover, since the accessibility relation in the models from GK

c

is classical, it is possible to also address some properties whose characterization in the full GK
is unknown (eg. seriality, ∀x∃yR(x, y)).

The canonical model built in the previous sections is, as it happens in [3], determined by a
finite subset of formulas, and in that sense, it lacks optimality with respect to the accessibility
relation. Namely, its accessibility relation can be further extended in such a way that the
Truth Lemma (Lemma 4.9) holds for all formulas in the language (not only those in 〈ρ〉). The
procedure in order to do so is very similar to the one in the above reference, only taking into
account the restriction to crisp models.

Definition 5.1 (c.f. Def. 4.1 from [3]). Given a crisp Gödel-Kripke model M = 〈W,R, e〉 we
define R+ := {〈v, w〉 : e(v,✷ϕ) ≤ e(w,ϕ) ≤ e(w,✸ϕ) for all ϕ ∈ L✷✸}, and denote M+ :=
〈W,R+, e〉. We call M optimal if R+ = R.

For simplicity in the notation, we will write e+ when evaluating in the extended model. It
is easy to see by induction on the formulas that any model is equivalent to an optimal one.
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Lemma 5.2. For any model M ∈ GK
c and any formula ϕ ∈ L✷✸,

e(v, ϕ) = e+(v, ϕ).

Proof. Clearly R ⊆ R+, so e(v,✷ϕ) ≥ e+(v,✷ϕ) for every formula ϕ. On the other hand, if
R+(v, w), by definition e(v,✷ϕ) ≤ e(w,ϕ). Thus, e(v,✷ϕ) ≤

∧

R+(v,w) e(w,ϕ) = e+(v,✷ϕ).
The proof for ✸ formulas is analogous. ⊠

The previous result provides completeness of ⊢GKc with respect to optimal models. One of
their benefits is that it is easier to check the correspondence between axiomatic extensions and
frame conditions over them.

Usual definitions of the classical frame conditions are preserved for crisp Gödel-Kripke mod-
els, given that the frame itself is classical. Thus, a frame (and correspondingly, a model) is
reflexive, transitive, symmetric, euclidean and serial if the corresponding classical conditions
hold over its accessibility relation.

The modal schemes that characterize classically the previous conditions are the following:9

T✷ ✷ϕ→ ϕ T✸ ϕ→ ✸ϕ ((M) reflexivity)

4✷ ✷ϕ→ ✷✷ϕ 4✸ ✸✸ϕ→ ✸ϕ ((4) transitivity)

B1 ϕ→ ✷✸ϕ B2 ✸✷ϕ→ ϕ ((B) symmetry)

51 ✸ϕ→ ✷✸ϕ 52 ✸✷ϕ→ ✷ϕ ((5) euclideanicity)

D ✸⊤ ((D) seriality)

Validity of the previous pairs of axioms in the corresponding classes of models is direct. It
is also not hard to see that, over optimal models, the axiom schemata indeed characterize the
corresponding frame conditions.

Lemma 5.3. Let M be an optimal crisp Gödel-Kripke model. Then the following hold:

• M is reflexive if and only if it validates the schemes T✷, T✸;

• M is transitive if and only if it validates the schemes 4✷, 4✸;

• M is symmetric if and only if it validates the schemes B1, B2;

• M is euclidean if and only if it validates the schemes 51, 52;

• M is serial if and only if it validates the scheme D;

Proof. The proof is a simple application of the definition of optimal model. Readers interested
in the details can consult of [3, Prop. 4.1]. The case of seriality follows by definition (and holds
also for non-optimal models). ⊠

Combining the completeness result with respect to optimal models pointed out in Lemma
5.2 and the previous lemma, the axiomatization of the analogous extensions of GKc is clear.

Theorem 5.4. Let P ⊆ {{T✷, T✸}, {4✷, 4✸}, {B1, B2}, {51, 52}, D}, and P be the corresponding
set of frame restrictions associated to the axioms from P (in the sense of 5.3). Consider GKcP
be the axiomatic system GKc extended by the axiom schemata from

⋃

P . Then GKcP is strongly
complete with respect to the Gödel Kripke models with frame conditions from P.

9In the classical case, only one of the two modal schemes corresponding to each condition is necessary to
characterize the class of frames, due to the inter-definability of the modalities.
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We would like to close this section pointing out that the previous result implies that GKcP
with P = {{T✷, T✸}, {4✷, 4✸}, {51, 52}} is an axiomatization of the monadic Gödel logic S5(G),
namely, the one arising from Gödel-Kripke models where the accessibility relation is a equiva-
lence relation. This logic was studied by Hájek in [12] but his proof of completeness is wrong,
as it is pointed out in [5], where another alternative proof is provided. In addition, it is worth
mentioning that GKcP with P as above is equivalent to10 the logic GS5 + C below (studied in
[3]):

(GS5)































G Propositional Gödel logic
K✷ ✷(ϕ→ψ)→✷ϕ→✷ψ

K✸ ✸(ϕ ∨ ψ)→✸ϕ ∨✸ψ

P ✷(ϕ→ψ)→✸ϕ→✸ψ

T ✷ϕ→ϕ and ϕ→✸ϕ

5 ✸ϕ→✷✸ϕ and ✸✷ϕ→✷ϕ































+ (C) ✷(✷ϕ ∨ ψ)→✷ϕ ∨✷ψ

6 Non Interdefinability of the modal operators

One might wonder if it is possible to define ✷ from ✸ or vice-versa in the logic arising from
the class of crisp models GK

c. While it is easy to see that the usual definition of one modality
from the other using negation as it is done in classical modal logic does not hold (see eg. [4]),
it could be the case that other possible formulations did (for instance, in [23] it is proven how
this can be done in logics with canonical constants). While the failure for inter-definability of
✷ and ✸ was expected, up to our knowledge there were no proofs in the literature showing this
was indeed the case.

In this section, we prove that indeed it is not possible to define ✷ from ✸ or vice-versa,
showing that the axiomatization GKc we provided in Section 3 is a new logic different from
GKc

✷
and GKc

✸
the fragments. This implies that the modalities are not interdefinable neither

in the larger class of models GK, where the accessibility relation is [0, 1]-valued.
First observe it is clear that ✸ cannot be possibly defined from ✷ in GK, because the ✷-

fragment over GK is complete with respect to GK
c, while this is not the case for the ✸-fragment

[4]. The case of ✷ not being definable from ✸ in GK will follow from the same result over GK
c,

which we prove below.
To be precise, we say that ✷ is definable from ✸ in the class of models C if there is some

✷-free formula φ✷(x) such that, for any ✷-free formula ϕ, any model M ∈ C and any v ∈ W ,

e(v,✷ϕ) = e(v, φ✷(ϕ))

Dually, ✸ is definable from ✷ if there is some ✸-free formula φ✸ such that for any ✸-free formula
ϕ, any model M ∈ C and any v ∈W ,

e(v,✸ϕ) = e(v, φ✸(ϕ))

For C = GK
c, via the completeness result proven before (Theorem 4.10), the previous

definitions are equivalent to say that there is a ✷-free formula φ✷(x) such that ✷ϕ ↔ φ✷(ϕ)
is a theorem of the logic GKc, for any ✷-free formula ϕ (and the dual for the definition of ✸
formulas in terms of formulas with only ✷).

Lemma 6.1. ✷ is not definable from ✸ in GK
c, and ✸ is not definable from ✷ in GK

c.

10We thank Xavier Caicedo for this observation.
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Proof.
In order to do so, we will define a GKc algebra A, and choose,
for each one of the claims above, a corresponding reduct A✸

(correspondingly A✷) such that A✸ is a GKc
✸

algebra but
not a GKc-subalgebra of A (correspondingly, an GKc

✷
algebra

that is not a GKc-subalgebra). These prove the lemma: if ✷
could be defined from ✸ in the above sense, since the formula
✷ϕ↔ φ✷(ϕ) should be valid in A, necessarily alsoA✸ should
be a GKc algebra (and dually for ✸).
In order to build the above algebra, consider the frame F in
the right side.

y z

x

__❄❄❄❄❄❄❄❄

??⑧⑧⑧⑧⑧⑧⑧⑧

Frame F.

The complex algebra arising from F (see eg. [3] for the general construction) is the algebra11

A := 〈[0, 1]3,∧,∨,→,✷,✸, 0, 1〉

where ∧,∨,→ are interpreted as the Gödel operations component-wise, 0 and 1 are the constant
mappings to 0 and 1 respectively, and

✷〈a,b,c〉 := 〈b ∧ c,1,1〉, ✸〈a,b,c〉 := 〈b ∨ c,0,0〉

To prove that ✷ is not definable from ✸, let A✸ be the ✸-subalgebra of A generated by the
element 〈0, 12 ,

1
3 〉. It can be checked that the universe of A✸ is the set

{〈0,0,0〉,〈1,1,1〉,〈1,0,0〉,〈0,1,1〉,〈0, 12 ,
1
3 〉,〈1,

1
2 ,

1
3 〉,〈

1
2 ,

1
2 ,

1
3 〉,〈

1
2 ,0,0〉,〈

1
2 ,1,1〉}

This is a Gödel subalgebra of A that is further closed under applications of ✸, thus a GKc
✸
-

algebra. However, ✷〈0, 12 ,
1
3 〉 = 〈13 ,1,1〉 is not an element of A✸, so it is not a GKc subalgebra of

A.
To prove that ✸ is not definable from ✷, let A✷ be the ✷-subalgebra of A generated by the

same element from before, 〈0, 12 ,
1
3 〉. It is a matter of calculations to see that the universe of

A✷ is the set

{〈0,0,0〉, 〈1,1,1〉,〈1,0,0〉,〈0,1,1〉,〈0, 12 ,
1
3 〉,〈1,

1
2 ,

1
3 〉,〈

1
3 ,

1
2 ,

1
3 〉,〈

1
3 ,0,0〉,〈

1
3 ,1,1〉}

This is a Gödel subalgebra of A that is further closed under applications of ✷, thus a GKc
✷
-

algebra.
On the other hand, ✸〈0,12 ,

1
3 〉 = 〈12 ,0,0〉 is not an element in the previous A✷, proving that

in A✷ is not a GKc subalgebra of A.
⊠

Since GK
c ⊂ GK, the following is immediate.

Corollary 6.2. ✷ is not definable from ✸ in GK.

7 Conclusions

In this work, we have studied Gödel many-valued logics extended with modal operators ✷ and
✸ interpreted over the class of models GK

c. The main contribution of this paper has been

11In order to lighten the notation, we will denote a function g ∈ [0, 1]{x,y,z} simply by the tripla
〈g(x),g(y),g(z)〉 ∈ [0, 1]3.
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establishing an axiomatization GKc strongly complete with respect to the logic of GKc-models.
The proposed axiomatization is built by taking the one introduced in [3] plus a simple axiom
coming from the study of positive modal logics. In addition, we prove that both ✷-fragment
and ✸-fragment are strictly included in our logic GKc.

We leave some open questions concerning the studied framework:

1. Is the axiom Cr derivable from the axioms of GK and the rule R✸?

2. We know our logic GKc is decidable under the alternative semantics proposed in [2], but is it
possible to extend this result to other logics whose accessibility relations satisfy conditions
such as reflexivity, symmetry, and transitivity?

3. What is the computational complexity of validity in GK
c?
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in Computer Science, 7(2) (2011), 27.

[18] Mostowski, A., ‘On a generalization of quantifiers’, Fundamenta Mathematicae, 44 (1957), pp.
12–36.

[19] Ono, H., ‘Semantics for substructural logics’, in K. Došen, and P. Schroeder-Heister, (eds.), Sub-
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