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ABSTRACT
Multiagent systems offer a new paradigm to organize AI Applica-
tions. We focus on the application of Case-Based Reasoning to
Multiagent systems. CBR offers the individual agents the capa-
bility of autonomously learn from experience. In this paper we
present a framework for collaboration among agents that use CBR.
We present explicit strategies for case bartering that address the is-
sue of agents having a biased view of the data. The outcome of
bartering is an improvement of individual agent performance and
of overall multiagent system performance that equals the ideal sit-
uation where all agents have an unbiased view of the data. We also
present empirical results illustrating the robustness of the case bar-
tering process for several configurations of the multiagent system
and for three different CBR techniques.

1. INTRODUCTION
Multiagent systems offer a new paradigm to organize AI applica-

tions. Our goal is to develop techniques to integrate CBR into ap-
plications that are developed as multiagent systems. CBR offers the
multiagent system paradigm the capability of autonomously learn
from experience. In this paper we present a framework for collabo-
ration among agents that use CBR and some experiments illustrat-
ing how they can improve its performance using case bartering.

The individual case bases of the CBR agents are the main issue
here, if they are not properly maintained, the overall system be-
havior will be suboptimal. In a real system, there will be agents
that can very easily obtain certain kind of cases, and that will very
costly obtain other types of cases, and for sure that other agents in
the system will be in the inverse situation. It will be beneficial for
both agents if they reach an agreement to trade cases. This is a very
well known strategy in the human history called bartering. Using
case bartering, agents that have a lot of cases of some kind will give
them to another agents in return to more interesting cases for them.

Our research focuses on the scenario of separate case bases that
we want to use in a decentralized fashion by means of a multia-
gent system, that is to say a collection of CBR agents that manage
individual case bases and can communicate (and collaborate) with
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other CBR agents. Separate case bases make sense for different rea-
sons like privacy or efficiency. If the case bases are owned by some
organizations, perhaps they are not willing to donate the contents
of its case bases to a centralized one where CBR can be applied.
Moreover, in the case that the case bases where not private, more
problems can arise from having all the cases in a single one, such
as efficiency or storage problems.

In this paper we focus on case bartering. We present two pro-
tocols for case bartering that improve the overall performance of
the system and of the individual CBR agents without compromis-
ing the agent’s autonomy and keeping individual and private case
bases. This protocols will try to minimize the individual case base
bias (how far is a case base of being a good sample of the overall
distribution of cases).

The structure of the paper is as follows. Section 2 presents the
collaboration scheme that the agents use, then the individual case
base bias measurement is introduced in section 3. After that, sec-
tion 4 presents the case bartering mechanism, including the barter-
ing protocols. Finally, The experiments are explained in section 5
and the paper closes with related work and conclusion sections.

2. COLLABORATION SCHEME
A multiagent CBR (

�
AC) system

� �������	��
��������������� � � �
is

composed on n agents, where each agent
� �

has a case base
� �

. In
the experiments reported here we assume that initially case bases
are disjunct ( � � � 
�������� �!� �#" ���$�&% ), i.e. initially there is no
case shared by two agent’s case bases. In this framework we restrict
ourselves to analytical tasks, i.e. tasks (like classification) where
the solution is achieved by selecting from an enumerated set of
solutions ' �(�#)*�,+-+.+)0/1� . A case base

���*�(����2 � 
3)546��� � ����� � � 7
is a collection of pairs problem/solution.

When an agent
�	�

asks another agent
� �

help to solve a problem
the interaction protocol is as follows. First,

� �
sends a problem

description P to
� �

. Second, after
� �

has tried to solve P using its
case base

� �
, it sends back a message that is either :sorry (if it

cannot solve P) or a solution endorsement record (SER). A SER has
the form 8 �!��)04�
�9

� 4 ���!
�2�
� ��: , where the collection of endorsing
pairs
��)04!
�9 � 4 � mean that the CBR method of the agent

� �
has

found
9 � 4 cases in case base

�;�
endorsing solution

) 4
—i.e. there

are a number
9 � 4 of cases that are relevant (similar) for endorsing)54

as a solution for P. Each agent
���

is free to send one or more
endorsing pairs in a SER record.

2.1 Voting Scheme
The voting scheme defines the mechanism by which an agent

reaches an aggregate solution from a collection of SERs coming



�
AC ICB 3 Ag. 5 Ag. 8 Ag. 10 Ag.
0.0 88.36% 88.12% 87.50% 86.75%
0.1 86.07% 87.50% 85.35% 85.00%
0.2 81.46% 83.53% 83.00% 82.00%

Table 1: Classification accuracy for the marine sponge classifi-
cation problem for systems with several mean ICB bias.

from other agents. The principle behind the voting scheme is that
the agents vote for solution classes depending on the number of
cases they found endorsing those classes. However, we want to
prevent an agent having an unbounded number of votes. Thus, we
will define a normalization function so that each agent has one vote
that can be for a unique solution class or fractionally assigned to a
number of classes depending on the number of endorsing cases.

Formally, let
���

the set of agents that have submitted their SERs
to the agent

� �
for problem

2
. We will consider that

� � � � �
and

the result of
�$�

trying to solve
2

is also reified as a SER. The vote
of an agent

� � � � �
for class

)04
is�����	� ��)04 
�� � �;� 9 � 4
��� � 
��� 9 � 4

where  ����� �*��� � � / 9 �� is the total number of cases retrieved and
 is a constant that on our experiments is set to 1. It is easy to see
that an agent can cast a fractional vote that is always less than 1. In
the rightmost formulation we can distinguish two factors, the first
one ( �� � 
��� � ) favors the agents with a high number of retrieved
cases, and the second one (

9 � 4 �� ) fractionally assigns the vote to
the different classes.

Aggregating the votes from different agents for a class
),4

we
have ballot ������� ��� � ��)04!
 � � �;���� �!#"%$'& �(���	� ��)54!
����6�

and there-
fore the winning solution class is the class with more votes in total.

This voting scheme can be seen as a variation of Approval Vot-
ing [2]. In Approval Voting each agent vote for all the candidates
they consider as posible solutions without giving any weight to its
votes. In our scheme, Approval Voting can be implemented making�����	� ��)04!
�� � �;�*)

if
9 � 4,+��-

and
-

otherwise.
There are two differences between the standard Approval Voting

and our voting scheme. The first one is that in our voting scheme
agents can give a weight to each one of its votes. The second differ-
ence is that the sum of the votes of an agent is bounded to 1. Thus
we can call it Bounded-Weighted Approval Voting (BWAV).

We will show now the
� �/.0.213�4�5�6�

collaboration policy that
uses this voting scheme (see [8] for a detailed explanation and com-
parison of several collaboration policies).

2.2 Committee Policy
In this collaboration policy the agent members of a

�
AC system�

are viewed as a committee. An agent
�1�

that has to solve a prob-
lem P, sends it to all the other agents in

�
. Each agent

� �
that has

received P sends a solution endorsement record 8 ����)04�
�9
�4 ��� 
�2�
� ��:

to
� �

. The initiating agent
� �

uses the voting scheme above upon
all SERs, i.e. its own SER and the SERs of all the other agents
in the multiagent system. The problem’s solution is the class with
maximum number of votes.

3. CASE BASE BIAS
In a previous work [8] we have shown how agents can obtain

better results using the Committee collaboration policy that work-
ing alone. However, in those experiments we assumed that every
agent had a representative sample of cases in its individual case

base. When an agent has a case base that is not representative of
the overall distribution, we say that the agent has a biased case base.

In this section we are going to define a measure of the degree
of biasing of an individual case base (ICB bias or Individual Case
Base bias), then we will show how the performance of the Commit-
tee degrades as the ICB bias of the agents grow. Later sections in-
troduce bartering policies to improve the Committee performance.

3.1 Individual Case Base Bias
Let be 7 � � � 7 �� 
-+-+-+5
 7 /� � the individual distribution of cases

for an agent
�	�

, where 7 � � is the number of cases with solution) � � ' in the the case base of
� �

. Now, we can estimate the over-
all distribution of cases 8 � � 8 � 
-+-+.+0
 8 / � where 8 � is the esti-
mated probability of the class

)5�
, 8 � ��� �� �*� 7 � � � � �� �*� � /9 �*� 7 9� .

To measure how far is the case base
� �

of a given agent
� �

of
being a representative sample of the overall distribution we will
define the Individual Case Base (ICB) bias, as the square distance
between the distribution of cases 8 and the (normalized) individual
distribution of cases obtained from 7 � :

: � � ��� � � � /; 9 ��� < 8 9>= 7 9�� /� ��� 7 � ��?A@
In order to see how the ICB bias affects the performance of the

system, Table 1 shows the accuracy of several multiagent systems
with increasing ICB bias (the

�
AC ICB bias represents the av-

erage bias in the system and is calculated as the mean of all the
ICB bias of the individual agents in the system). There we can
see that when the agents have case bases that are not representa-
tive (those with a high ICB) the agents using the Committee policy
obtain lower accuracies. In the following sections, we will show
how case bartering improves accuracy by lowering the individual
biases.

4. CASE BARTERING
In the physical world, bartering involves the interchange of two

goods. But as our agents will barter with cases (that are just infor-
mation) they will have the option of send only a copy of the cases
to the other agents without losing them. We have experienced with
two different strategies of bartering: in the first one the agents send
only copies of the cases (copy mode), and in the second one, the
agents forget the cases they send (non-copy mode). The main dif-
ference between these two cases is wether the sender retains the
cases or not. Experiments showing the results of applying both
strategies are explained in section 5.

In this section, we are going to present the Case Bartering proto-
col that the agents use in order to improve the overall performance.
These protocols are independent of the strategy used by the agents,
they only manage how the agents can reach bartering agreements.
But first, we are going to explain how two agents can reach a barter-
ing agreement and the concrete strategies that the agents are using
in our experiments.

4.1 Case Bartering Mechanism
To reach an agreement for bartering between two agents, there

must be an offering agent
�	�

that sends an offer to another agent� �
. Then

� �
has to evaluate whether the offer of interchanging

cases with
� �

is interesting, and accept or reject the offer. If the
offer is accepted, we say that

�1�
and
� �

have reached a bartering
agreement, and they will interchange the cases in the offer.

Formally an offer is a tuple
� � 8 �1� 
�� � 
�)04�B 
)54DC : where

�	�
is

the offering agent,
���

is the receiver of the offer, and
) 4EB

and
) 4FC



are two solution classes, meaning that the agent
�1�

will send one
of its cases (or a copy of it) with solution

)04DC
and
� �

will send one
of its cases (or a copy of it) with solution

)04EB
.

4.2 Making and accepting offers
The Case Bartering Protocol is not restrictive in how many offers

can an agent send at a given time. So, many strategies can be used
here, but in our experiments, the agents use a very simple one to
choose which are the most interesting offers, as follows for a given
agent
� �

:

� For each solution class
)04EB � �#)*�0+ +.+)0/	�

� �	� looks if increasing by one its number of cases with solu-
tion
)54EB

will decrease its ICB bias.

� If so,
�	�

chooses which agent
� �

of the others is the best one
to ask for cases of solution

) 4EB
(Currently the chosen

� �
is

the one with more cases of the solution class
),4�B

).

� In this step we have to distinguish two modes

1. In the copy mode,
� �

determines which is its best class)54DC
(currently the chosen one is the class for which

it has more cases), and makes the offer
� � 8 � � 
�� ��
)54EB#
)54DC :

, i.e.
�	�

offers to
� �

a case of solution
)04FC

if� �
gives one of solution

)04EB
to
�	�

.

2. In the non-copy mode,
�	�

determines, from the subset
of classes that decreasing by one its number of cases
of that class will decrease the ICB bias, which is its
best class

) 4DC
(currently the chosen one is the class

for which it has more cases), and makes the offer
� �

8 � � 
�����
#) 4EB 
3) 4DC : , i.e.
� �

offers to
���

a case of solu-
tion
)54DC

if
� �

gives one of solution
)04EB

to
�	�

.

When an agent receives a set of offers, it also has to choose which
of these offers to accept and which not. In our experiments the
agents use the simple rule of accepting every offer that reduces its
own ICB bias. Thus, we will define the set of interesting offers
Interesting

����
.�$� �
of a set of offers

�
for an agent

�1�
as those

offers that will reduce the ICB bias of
�1�

. Moreover, in the copy
mode an agent should not send twice the same case to the same
agent. So, the agents will only accept those interesting offers that
can satisfy this constraint (i.e. can provide a new case).

4.3 Case Bartering Protocol
We are going to present two different protocols for Case Barter-

ing, both synchronous (there are preestablished stages (“rounds”)
where the agents can send their offers, then the protocol moves to
the next stage, etc). The first one is called the Simultaneous Case
Bartering Protocol, and the second one the Token-Passing Case
Bartering Protocol.

When an agent member of the
�

AC wants to enter in the bar-
tering process, it sends an initiating message to all the other agents
in the
�

AC. Then all the other agents answer whether or not they
enter the bargaining process. This initiating message contains the
parameters for bartering: a parameter

���
, corresponding to the time

period that the agents have to make offers; a parameter
�  

, corre-
sponding to the time period that the agents have to send the accept
messages; the number � of agents taking part in the bartering, and���
	��

, the maximum number of bartering rounds that the bartering
will have. Once the agents have answered to this initial message,
the bartering starts.

We have specified both protocols using the formalism used in IS-
LANDER [4] (also available online at http://e-institutor.iiia.csic.es

p1: Inform(?Aini,all,c1=?tO ∧ c2=?tA ∧ c3=?n ∧ c4=?Rmax)
p2: Inform(?Ai,all,?di)
p3 / c1: Inform(!Aini,all,start) /

| !w1 w1 di | = !n
p4: Offer(?Ai,?Aj,?o)
p5 / c2 : Accept(?Ai?Aj,?o) /

(?Aj,?Ai,?o) ∈ !w2 w2(Ai,Aj,o) 
p3 / c3: Inform(!Aini,all,start) /

| !w4 w4 di | = !n ∧
| !w3 w3 o | ≠ 0 ∧ | !*w4 w4 Ai | < !Rmax*!n

p6 / c4: Inform(!Aini,all,bye) /
| !w4 w4 di | = !n ∧
| !w3 w3 o | = 0 ∨ | !*w4 w4 Ai | ≥ !Rmax*!n

a

w0

w1 w2

w4 w3

wf

p2

p4

p3 / c1

[!tO]p3 / c3

p6 / c4

[!tA]
p5 / c2

p1

p2

Figure 1: Simultaneous Case Bartering Protocol specification

/e-institutor/publications.html), and we also include a plain text ex-
planation. The appendix briefly summarizes the notation of IS-
LANDER that we use in the following sections.

4.3.1 Simultaneous Case Bartering Protocol
In this protocol all the agents send their offers simultaneously

in every round. After all the offers have been sent for the current
round, all the agents send a message for the offers they accept.
Figure 1 shows the formal specification of the protocol, and below
we describe it in detail.

1. The initial state is �� (see Figure 1). First, the initiating
agent (
� ���#�

) sends a message (� � ) to all the other agents with
the protocol parameters (

��� 
 �  
 � and
� �
	��

). then the pro-
tocol to move to state  � .

2. Each agent broadcasts its individual distribution 7 � (message
� @ ). The protocol remains at  � until each agent has done
this, as established by condition 
 � .

3. When all the agents have sent its individual distribution (con-
dition 
 � ), they are able to compute the overall distribution
estimation 8 . Now the initiating agent broadcasts a start
signal in message ��� and the protocol moves to state  @ .4. In state  @ the agents send their bartering offers using mes-
sage ��� . When the time

� �
is reached, the protocol moves to

state �� .

5. In state �� the agents send the accept messages (��� ) for those
offers they are interested in. The condition 
 @ establishes
than an agent can only confirm those offers that where send
to him in the state  @ . When the maximum time

�  
is over,

all the unaccepted offers are considered as rejected and the
protocol moves to �� .



p1: Inform(?Aini,all,c1=?tO ∧ c2=?tA ∧ c3=?n ∧ c4=?Rmax)
p2: Inform(?Ai,all,?di)
P3 / c1: Inform(!Aini,all,new-round)

 | !w1 w1 di | =!n
p4 / c2: GiveToken(!Aini,?Atoken) /

?Atoken = f(!w1 w1 (Ai di))
p5: Inform(!Atoken,all,start)
p6: Offer(!Atoken,?Aj,?o)
p7 / c3: Accept(?Ai,!Atoken,?o) /

(!Atoken,?Ai,?o) ∈ !w4 w4(Atoken,Aj,o)
p8 / c4: GiveToken(!Atoken,?Atoken) /

| !w6 w6 di | =!n ∧ | !w2 w6 Atoken | < !n ∧
?Atoken = f(!w1 w1 (Ai di) / (Ai ∉ !w2 w6 Atoken))

P3 / c5: Inform(!Aini,all,new-round) /
| !w6 w6 di | =!n ∧ | !w2 w6 Atoken | = !n ∧
| !w2 w5 o | ≠ 0 ∧ | !*w6 w6 Ai | < !Rmax*!n

P9 / c6: Inform(!Aini,all,bye) /
 | !w6 w6 di | =!n ∧ | !w2 w6 Atoken | = !n ∧
(| !w2 w5 o | = 0 ∨ | !*w6 w6 �Ai | ≥ !Rmax*!n)

a

w0

w2 w4

w6 w5

wf

p1

[!tO]

p9 / c6

p7 / c3

p6w3

p3 / c5

p4 / c2 p5

[!tA]

p2
p8 / c4

w1 p2

p3 / c1

Figure 2: Token-Passing Case Bartering Protocol specification

6. In state  � each agent broadcasts its new individual distribu-
tion 7 � (message � @ ). The protocol remains at  � until each
agent has done this as established by conditions 
 � and 
 � .

7. If there have been no interchanged cases or the maximum
number of iterations

� � 	��
is reached (condition 
 � ), the

Case Bartering Protocol ends (  � ), otherwise, when condi-
tion 
 � holds the agents start a new round and the protocol
moves again to  @ when the initiating agent broadcasts a
start message. Notice, that the agents will know that there
have been no interchanged cases when the individual distri-
butions 7 � do not change from one round to another.

4.3.2 Token-Passing Case Bartering Protocol
The main difference between this protocol and the previous one

is the introduction of a Token-Passing mechanism, so that only the
agent who has the Token can make offers to the others. Figure 2
shows the formal specification of the protocol, and below we de-
scribe it in detail.

1. The initial state is �� . First, the initiating agent (
�	���#�

) sends
a message (� � ) to all the other agents with the protocol pa-
rameters (

��� 
 �  
 � and
� �
	��

). Then the protocol moves to
state  � .

2. Each agent broadcasts its individual distribution 7 � (message
� @ ). The protocol remains at  � until each agent has done
this, as established by condition 
 � .

3. When all the agents have sent its individual distribution (con-
dition 
 � ), they are able to compute the overall distribution
estimation 8 . The initiating agent broadcasts a new-round
signal in message � � and the protocol moves to state  @ .4. Each agent is able to compute the ICB bias of all the agents
taking part in the bartering (including itself), and this will
define the order in which the token will be passed through.
Now the initiating agent gives the token (message � � ) to the
agent with the highest ICB bias (condition 
 @ ) and the pro-
tocol moves to  � . In the specification of condition 
 @ we
are assuming that we have a function � that given a list of
pairs
���$��
 7 � � (i.e. agent and ICB bias) returns the agent with

higher ICB bias.

5. Now the agent
� ��� 4�� � owning the token broadcasts a start

signal in message � � and the protocol moves to  � .
6. In state  � the agent

� ��� 4�� � sends its bartering offers us-
ing message ��� . When the time

� �
is reached, the protocol

moves to state �� .
7. In state  � the agents will send the accept messages (�	� ) for

those offers they are interested in. The condition 
 � estab-
lishes than an agent can only confirm those offers that where
send to him in the state  � . When the maximum time

�  
is

over, all the unaccepted offers are considered as rejected and
the protocol moves to state  � .

8. Each agent broadcasts its new individual distribution 7 � (mes-
sage � @ ). The protocol remains at  � until each agent has
done this, as established by conditions 
 � , 
 � and 
 � .

9. When all the agents have send its individual distributions,
three different situations may arise:

(a) If there are some agents that still haven’t owned the To-
ken in the current round (condition 
 � ), the owner of
the token passes it to the next agent with message ��

and the protocol moves to �� again. To specify condi-
tion 
 � we have used the same function � used in the
specification of condition 
 @ .(b) If every agent has owned the token once in this round,
there have been some interchanged cases and the maxi-
mum number of iterations

� � 	��
still has not been reached

(condition 
 � ), the agents start a new round and the pro-
tocol moves again to  @ when the initiating agent

�	���#�
broadcasts a new-round signal in message (��� ).

(c) If every agent has owned the token once in this round
but there have been no interchanged cases or the maxi-
mum number of iterations

� �
	��
is reached (condition
 � ), the Case Bartering Protocol ends (  � ) after the ini-

tiating agent
�	� �6�

sends a bye signal in message ��� .
4.4 Protocol discussion

To ensure the convergence of both protocols, we have to distin-
guish between the copy mode and the non-copy mode.

In the copy mode, we must have in mind the only restriction that
we have imposed: an agent cannot send twice the same case to the
same agent. With this restriction it is easy to see that both protocols
cannot run indefinitely, because each agent has a limited number of
cases to trade with. So, we can say that in a bounded number of
rounds both protocols will end.

The above restriction cannot be used in non-copy mode, because
the cases will never be replicated in the

�
AC. In this situation, the



Agent 1 Agent 2 Agent 3
Astrophorida 0.7 0.15 0.15
Hadromerida 0.15 0.7 0.15

Axinellida 0.15 0.15 0.7

Table 2: Probability of having cases of each solution class for
the 3 agents scenario. This corresponds to an

�
AC ICB of

about 0.2

safest way to ensure that the protocol will not run indefinitely is to
preset the maximum number of rounds

� �
	��
.

Comparing the protocols, we can see that the Simultaneous pro-
tocol has the problem that an agent has to decide whether to accept
offers or not without knowing if its own offers are going to be ac-
cepted. The Token-Passing protocol tries to solve this problem by
allowing one agent only to send offers at a time.

Moreover, in the Simultaneous protocol, two agents may send
the same offer to each other, i.e.

� �
sends to

��� 8 � � 
���� 
 ) 4EB 
3) 4DC :
and
� �

sends to
�	� 8 � � 
��	� 
 )04FC�
)54EB : . As they are identical, we

want to treat them as if there was only one offer sent. We call
this phenomena the Identical Offer Clash (IOC). When two agents
detect an IOC, they behave considering that only one offer has been
sent, and only one case of each class is bartered.

5. EXPERIMENTAL RESULTS
In this section we want to show how the classification accuracy

of the CBR agents improve using the case bartering protocols with
respect to systems where the CBR agents do not use them. We also
show results concerning case base sizes after the bartering and the
number of rounds needed to converge to a stable case distribution.

We use the marine sponge classification problem as our test bed.
Sponge classification is interesting because the difficulties arise
from the morphological plasticity of the species, and from the in-
complete knowledge of many of their biological and cytological
features. Moreover, benthology specialists are distributed around
the world and they have experience in different benthos that spawn
species with different characteristics due to the local habitat condi-
tions.

In order to show the improvements obtained in the system when
the agents use case bartering, we have designed an experimental
suite with a case base of 280 marine sponges pertaining to three
different orders of the Demospongiae class (Astrophorida, Hadro-
merida and Axinellida). In an experimental run, cases are randomly
distributed among the agents (e.g. if the training set is composed of
252 cases and we have a 4 agents system, each agent will receive
about 63 cases). In the testing phase, problems arrive randomly to
one agent in the

�
AC. The goal of the agent receiving a problem

is to identify the correct biological order given the description of a
new sponge. Once an agent has received a problem, the

�
AC will

use the Committee collaboration policy to obtain the prediction.
For experimentation purposes, we force biased case bases in ev-

ery agent by increasing the probability of each agent to have cases
of some classes and decreasing the probability to have cases of
some other classes. For example, Table 2 shows the probabilities
for 3 agents of having cases for each solution class.

In order to test the generality of the protocols, we have tested
them using systems with 3, 5, 8 and up to 10 agents, and using
several CBR methods: nearest neighbor, 3-nearest neighbor and
LID[1]. The results presented here are the average of 5 10-fold
cross validation runs.

The figures 3, 4 and 5 show the results of applying the two case
bartering protocols. The left part of those figures show the aver-

3 Agents 5 Agents 8 Agents 10 Agents
Before 84.00 50.40 31.50 25.20

After SCBP 187.49 79.60 49.42 40.75
After TPCBP 183.00 77.50 46.78 38.15

Table 3: Comparison of the mean case base size before and
after the bartering process in the copy mode.

age accuracy obtained for the non-copy mode, and the right part
show the average accuracy obtained for the copy mode. Three bars
are shown for each scenario, the biased results represent the aver-
age accuracy obtained by the

�
AC without using case-bartering

with biased individual case bases; and the SCBP and TPCBP results
represent the average accuracy obtained by the

�
AC after using

the Synchronous Case Bartering Protocol and Token-Passing Case
Bartering Protocol respectively. We can see in those figures that
in all the scenarios, the

�
AC systems using case bartering obtain

a significative gain in accuracy than those systems that do not use
case bartering. This shows the independence of the bartering pro-
tocols from the CBR method used by the individual agents. Those
figures also show that case bartering is robust even when the size
of the case bases decreases and the number of cases an agent can
barter is very small, as we can see for the 10 agents scenario where
each agent has only about 25 cases (i.e. less than 9 cases per class).

Comparing the accuracy obtained by the two protocols SCBP
and TPCBP we see that both have nearly the same accuracy in all
the scenarios. We can see that there is never a difference greater
than 1% between the results of the Simultaneous protocol and the
results of the Token-Passing protocol. Therefore no bartering pro-
tocol is significantly better than another but both are significantly
better than using no bartering protocol.

Figure 3 shows that when the agents use simple methods like
nearest neighbor, they can take more advantage of the bartering
process than when the agents use more sophisticated methods like
LID (Figure 5). For instance, we can see how in a 3 agent sce-
nario (with about 84 cases per agent) using nearest neighbor, the
accuracy can boost from 81.43% to 90.71% in the copy mode or
to 89.21% in the non-copy mode. In the same 3 agent scenario but
using LID the accuracy for the system without using case barter-
ing is 84.82%, and after case bartering it raises to 90.36% in the
copy-mode or 89.36% in the non-copy mode. The gain in accuracy
for the nearest neighbor is higher than for LID, but it is due to the
fact that the accuracy obtained by the system without using case-
bartering is lower for nearest neighbor than for LID, and the accu-
racies obtained after case bartering are more similar. Therefore, we
can conclude that LID is more resilient to biased case bases and that
bartering is positive to all three CBR methods but specially useful
for nearest-neighbor methods.

Looking at Figure 4, we can see that 3-nearest neighbor results
are worse than with nearest neighbor or LID specially for the non-
copy mode and even more when the individual case base sizes are
small (in the 8 or 10 agent scenario). The reason is that 3-nearest
neighbor do not work well when the case bases are small. Thus, we
can see that in the non-copy mode the results of 3-nearest neighbor
are not very good because the case base sizes keep being small,
but when we allow case redundancy (in the copy mode) and the
case bases are bigger, 3-nearest neighbor starts behaving better and
obtains nearly the same results as nearest neighbor.

Table 3 shows the case base sizes reached after case bartering in
the copy mode. We see that the agents stop interchanging cases be-
fore each agent acquires all known cases in the system. Moreover,
except in the 3 agents scenario, the case base sizes do not increase
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Figure 3: Accuracy plot for systems where the agents use nearest neighbor
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Figure 4: Accuracy plot for systems where the agents use 3-nearest neighbor

very much. The 3 agents scenario is special because the initial case
bases of the agents are quite big, and to repair their ICB biases the
number of cases needed to be bartered is quite higher than in the
5, 8 or 10 agent scenarios. We also see that the case base sizes
in the non-copy mode obtained using the Token-Passing protocol
are slightly smaller than the ones obtained using the Simultaneous
protocol.

Concerning the convergence of the protocols, they always con-
verge, and the maximum number of rounds

� �
	��
(set to 300 in

these experiments) is practically never reached. Table 4 shows the
average number of iterations of the protocols needed to converge to
a stable case distribution for the copy mode. We can see there that
the Simultaneous protocol is much faster than the Token-Passing
one (taking only in consideration the number of rounds needed to
converge). The reason is that in the Token-Passing protocol only
one agent can make offers each round, so it needs about � times
more rounds (being � the number of agents in the system) than
the Simultaneous protocol. For comparison purposes the third row
of Table 4 shows the number of rounds needed by the Simultane-
ous protocol multiplied by � . Table 5 shows the average number
of iterations of the protocols needed to converge for the non-copy
mode. Again the Simultaneous protocol needs less rounds to con-
verge than the Token-Passing protocol for the same reason. We
can see comparing both tables (4 and 5) that the number of rounds
needed to converge in the non-copy mode is smaller than in the
copy mode. This is as expected, since in non-copy mode the bias of
individual case bases is modified in two ways: by the case an agent

3 Agents 5 Agents 8 Agents 10 Agents
SCBP 79.4 24.9 14.0 12.9

TPCBP 212.0 101.1 97.2 99.4
SCBP*n 238.2 124.5 112 129

Table 4: Number of rounds need to converge in the case barter-
ing protocols for the copy mode.

3 Agents 5 Agents 8 Agents 10 Agents
SCBP 19.0 10.7 9.5 5.6

TPCBP 36.0 40.0 61.3 50.2
SCBP*n 57 53.5 76 56

Table 5: Average number of rounds need to converge in the case
bartering protocols for the non-copy mode.

loses by sending it away and the new case that arrives — while
copy mode only has the latter effect.

Comparing now the two modes, we see that in the non-copy
mode the

�
AC obtains lower accuracies than in the copy mode.

But, on the other hand, in the non-copy mode, the average number
of cases per agent does not increase and in the copy mode the size of
the individual case bases grows. Therefore, we can say that in the
copy mode (when the agents send copies of the cases without for-
getting them) the agents obtain greater accuracies, but at the cost
of increasing the individual case base sizes. In other words, they
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Figure 5: Accuracy plot for systems where the agents use LID

improve the accuracy allowing case redundancy in the contents of
individual case bases (a case may be contained in more than one
individual case base), while in the non-copy mode the agents only
reallocate the cases but allowing only a single copy of each case in
the system.

Finally, Table 6 shows the average accuracy for a individual
agent before and after the case bartering process in copy mode. We
can see that the barternig process also improves the individual per-
formance of agents with respect to the biased situation; therefore,
bartering makes sense for individual agents whether or not they are
willing to cooperate. However, since using the Committe collab-
oration policy the performance is clearly better it makes sense for
individual to engage in such a collaboration.

6. RELATED WORK
Several areas are related to our work: multiple model learning

(where the final solution for a problem is obtained through the ag-
gregation of solutions of individual predictors), case base compe-
tence assessment, and negotiation protocols. Here we will briefly
describe some relevant work in these areas that is close to us.

A general result on multiple model learning [7] demonstrated
that if uncorrelated classifiers with error rate lower than 0.5 are
combined then the resulting error rate must be lower than the one
made by the individual classifiers. The BEM (Basic Ensemble
Method) is presented in [9] as a basic way to combine continuous
estimators, and since then many other methods have been proposed:
Cascade generalization [6], Bagging [3] or Boosting [5] are some
examples. However, all these methods do not deal with the issue
of “partitioned examples” among different classifiers as we do—
they rely on aggregating results from multiple classifiers that have
access to all data. Their goal is to use multiplicity of classifiers
to increase accuracy of existing classification methods. Our inten-
tion is to combine the decisions of autonomous classifiers (each
one corresponding to one agent), and to see how can they coop-
erate to achieve a better behavior than when they work alone. A
more similar approach is the one proposed in [13], where a MAS
is proposed for pattern recognition. Each agent is a specialist rec-
ognizing only a subset of all the patterns, and the predictions are
combined dynamically.

Learning from biased data sets is a well known problem, and
many solutions have been proposed. Vucetic and Obradovic [12]
propose a method based on a bootstrap algorithm to estimate class
probabilities in order to improve the classification accuracy. How-
ever, their method does not fit our needs, because they need the

entire test set available for the agents before start solving any prob-
lem in order to make the class probabilities estimation.

Related work is that of case base competence assessment. We
use a very simple measure comparing individual with global distri-
bution of cases; we do not try to assess the areas of competence of
(individual) case bases - as proposed by Smyth and McKenna [11].
This work focuses on finding groups of cases that are competent.

In [10] Schwartz and Kraus discuss negotiation protocols for
data allocation. They propose two protocols, the sequential pro-
tocol, and the simultaneous protocol. These two protocols can be
compared respectively to our Token- Passing Case Bartering Pro-
tocol and Simultaneous Case Bartering Protocol, because in their
simultaneous protocol, the agents have to make offers for allocat-
ing some data item without knowing the other’s offers, and in the
sequential protocol, the agents make offers in order, and each one
knows which were the offers of the previous ones.

7. CONCLUSIONS AND FUTURE WORK
We have presented a framework for cooperative Case-Based Rea-

soning in multiagent systems, where agents use a market mech-
anism (bartering) to improve the performance both of individuals
and of the whole multiagent system. The agent autonomy is main-
tained, because if an agent do not want to take part in the bartering,
he just has to do nothing, and when the other agents notice that
there is one agent not following the protocol they will ignore it dur-
ing the remaining iterations of the bartering process.

In this article we have shown a problem arising when data is dis-
tributed over a collection of agents, namely that each agent may
have a skewed view of the world (the individual bias). Comparing
empirical results in classification tasks we saw that both the indi-
vidual and the overall performance decreases when bias increases.
The process of bartering shows that the problems derived from
distributed data over a collection of agents can be solved using
a market-oriented approach. Each agent engages in a barter only
when it makes sense for its individual purposes but the outcome is
an improvement of the individual and overall performance.

The naive way to solve the ICB bias problem could be to central-
ize all data in one location or adopt a completely cooperative mul-
tiagent approach where each agent sends its cases to other agents
and they retain what they want (a “gift economy”). The problem
with the completely cooperative approach is that the outcome im-
proves but redundancy also increases and there may be scaling up
problems; the bartering approach tries to interchange cases only to
the amount that is necessary and not more.



NN 3-NN LID
Biased SCBP TPCBP Biased SCBP TPCBP Biased SCBP TPCBP

3 Agents 73.35 89.25 88.21 59.52 76.50 76.60 73.80 82.14 87.14
5 Agents 67.10 82.60 82.50 56.25 61.92 63.57 68.38 79.52 80.35
8 Agents 65.40 78.87 76.53 48.80 56.78 57.14 67.50 75.00 76.07

10 Agents 65.15 78.57 73.21 46.78 54.28 53.75 66.66 69.64 73.00

Table 6: Individual accuracy of agents before (Biased) and after the case bartering (SCBP and TPCBP) processes.

We have presented the copy and non-copy modes for modelling
two different but related scenarios in multiagent case-based reason-
ing. In the non-copy mode cases are viewed as assets and owner-
ship of cases requires that the acquisition of a case by an agents
requires the other agent to relinquish any possession or use rights
on that case. This mode insures that redundancy of cases in the
multiagent system will not increase. However, a limited amount of
redundancy can improve the multiagent system performance so if
circumstances permit it is a good idea to allow it. This is precisely
what the copy mode allows; however, copy mode is applicable only
in scenarios where cases are seen as information (and not as assets)
that can be shared when it is in the interest of the sharing partners.

In the experiments reported in this paper, the agents use strate-
gies for choosing which offers to generate and send to other agents
and for choosing which offers to accept from other agents. Cur-
rently, both strategies try to minimize the ICB bias measure. The
ICB bias estimates the difference between the individual and global
case distribution over the classes. However, we plan to study other
kinds of biases that may characterize the individual agents’ case
base. In order to compute these new bias measures, the agents may
need to make public more information. Thus, a modification in the
bartering protocols would be needed to manage the information re-
quired. Moreover, the ICB bias measure presented in this paper is
only useful when we are dealing with classification tasks. There-
fore, new bias measures are needed to manage non-classification
tasks.

We have focused on bartering for agents using lazy learning but
future work should address the usefulness of bartering for eager
(inductive) learning techniques.
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[8] S. Ontañón and E. Plaza. Learning when to collaborate
among learning agents. In 12th European Conference on
Machine Learning, 2001.

[9] M. P. Perrone and L. N. Cooper. When networks disagree:
Ensemble methods for hydrid neural networks. In Artificial
Neural Networks for Speech and Vision. Chapman-Hall,
1993.

[10] R. Schwartz and S. Kraus. Bidding mechanisms for data
allocation in multi-agent environments. In Agent Theories,
Architectures, and Languages, pages 61–75, 1997.

[11] B. Smyth and E. McKenna. Modelling the competence of
case-bases. In EWCBR, pages 208–220, 1998.

[12] S. Vucetic and Z. Obradovic. Classification on data with
biased class distribution. In 12th European Conference on
Machine Learning, 2001.

[13] L. Vuurpijl and L. Schomaker. A framework for using
multiple classifiers in a multiple-agent architecture. In Third
International Workshop on Handwriting Analysis and
Recognition, 1998.

APPENDIX

A. PROTOCOL SPECIFICATION
Four basic elements shape the protocol specification formalism:

States, Transitions (connecting two states in an oriented way), Per-
formatives (containing a sender, the receivers, and optionally some
content parameters), and Conditions (specifying whether a perfor-
mative is valid or not depending on some restrictions). In order to
specify all the above, we have used the following notation:

A state is noted  � . A Performative is noted � � , and is used
with the form: Performative(sender, receiver,

+-+-+
). A Condition

is denoted as 
 � , and is composed of a set of constraints linked by
conjunctive or disjunctive relations.

Each Transition is labeled by a Performative and optionally a
Condition (� � ��
 � ) meaning that the Performative � � is only valid
when the Condition 
 � is satisfied. Some Transitions are labeled
with a Timeout

� ��� ��� �
instead of a Performative, meaning that when

the time
�

is reached after the arrival to the current state, the transi-
tion is in effect and the system moves to the next state.

A variable is noted ��� . When we want to denote the value of a
previously instantiated variable, we write

�
� . And when we want to

obtain the set of values that a variable has taken we write:
�  �  � � ;

this expression denotes the set of values taken by the variable �
during the last transition of the protocol from  � to  � . And if we
want to obtain the set of all the instantiations of a variable from the
beginning of the protocol, we write �

�
� .


