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Abstract. In this paper we introduce and study finite Gödel algebras
with operators (GAOs for short) and their dual frames. Taking into ac-
count that the category of finite Gödel algebras with homomorphisms is
dually equivalent to the category of finite forests with order-preserving
open maps, the dual relational frames of GAOs are forest frames: finite
forests endowed with two binary (crisp) relations satisfying suitable prop-
erties. Our main result is a Jónsson-Tarski like representation theorem
for these structures. In particular we show that every finite Gödel algebra
with operators determines a unique forest frame whose set of subforests,
endowed with suitably defined algebraic and modal operators, is a GAO
isomorphic to the original one.

Keywords: Finite Gödel algebras; modal operators; finite forests; rep-
resentation theorem.

1 Introduction

Fuzzy modal logic is an active and relatively recent area of research aimed at
generalizing classical modal logic to the many-valued or fuzzy framework. This
is usually done by considering a Kripke-style relational semantics in which both
accessibility relations and evaluations of modal formulas (in each world) are
allowed to take values in the real unit interval [0, 1], instead of the classical
two-valued set {0, 1} (see [4, 5, 7] for instance).

In this contribution we put forward a new, algebraic-oriented perspective
to the area of modal fuzzy logic, and in particular to Gödel modal logic by
defining and studying the class of finite Gödel algebras with operators (GAOs
for short). These structures are obtained by expanding the language of Gödel
algebras (i.e. prelinear Heyting algebras) by means of two modal operators ♦
and � equationally described by the same axioms used to define these operators
in Boolean algebras with operators (BAOs), see [3].

Obviously, while in a BAO the operators ♦ and � are inter-definable, this is
not the general case in a GAO since the negation operator in a Gödel algebra
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is not involutive. Hence, the equation ♦x = ¬�¬x does not hold in general in a
GAO.

In the same way the dual frames of BAOs are Kripke frames, the duality
between finite Gödel algebras and finite forests (see [1]) leads us to introduce
the dual structures of GAOs as triples (F, R♦, R�), where F = (F,≤) is a finite
forest, while R♦ and R� are binary (crisp) relations on F satisfying suitable
conditions of (anti-)monotonicity in their first argument.

The main result of this paper is a Jónsson-Tarski like representation theorem
for GAOs. In particular we will show how, starting from a Gödel algebra with
operators (A,♦,�), one can uniquely define a forest frame (F, R♦, R�) such
that (A,♦,�) is isomorphic to the GAO whose Gödel reduct is the algebra of
subforests of F and whose modal operators are defined from the binary relations
R♦ and R�.

Finally, we will discuss the effect of a stronger axiomatization for ♦ and �
on the side of the corresponding forest frame. In particular we will see that the
equations usually imposed on positive modal algebras [8, 6] allow for a simpler
description of the forest frames needed in the representation theorem.

This paper is organized as follows. After this introduction, in the following
Section 2 we will recall basic facts on finite Gödel algebras and finite forests. In
Section 3 we will consider the case of Gödel algebras expanded by the modal
operator ♦, while Gödel algebras with a � operator will be studied in Section 4.
Section 5 is dedicated to introduce Gödel algebras with both ♦ and � and also
to discuss the effect of the stronger axiomatization for these modalities obtained
by adding the equations of positive modal algebras. We will end this paper in
Section 6 where we present our future work.

2 Finite Gödel algebras and forests

Gödel algebras, the algebraic semantics of infinite-valued Gödel logic [9], are
idempotent, bounded, integral, commutative residuated lattices of the form A =
(A,∧,∨,→,⊥,>) satisfying the prelinearity equation: (a→ b)∨ (b→ a) = >. In
other words, Gödel algebras are prelinear Heyting algebras. If not unless specified,
all algebras we will consider in this paper are finite.

Let A be a Gödel algebra and denote by FA the set of its prime filters, i.e.,
filters principally generated by the join-irreducible elements of A. Unlike the
case of boolean algebras, prime and maximal filters are not the same for Gödel
algebras and indeed FA can be ordered in a nontrivial way. In particular, if for
f1, f2 ∈ FA we define f1 ≤ f2 iff (as prime filters) f1 ⊇ f2, FA = (FA,≤) turns
out to be a finite forest, i.e., a poset such that the downset of each element is
totally ordered.

Finite forests play a crucial role in the theory of Gödel algebras. Indeed, let
F = (F,≤) be a finite forest, SF be the set of all downward closed subsets of
F (i.e., the subforests of F) and consider the following operations on SF: for all
x, y ∈ F ,

1. x ∧ y = x ∩ y (the set-theoretic intersection);
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2. x ∨ y = x ∪ y (the set-theoretic union);
3. x→ y = F \ ↑(x \ y) (where \ denotes the set-theoretical difference and for

every z ∈ F , ↑z = {k ∈ F | k ≥ z}).1

The algebra SF = (SF,∧,∨,→, ∅, F ) is a Gödel algebra [1, §4.2] and the following
is a Stone-like representation theorem for these structures.

Lemma 1 ([1, Theorem 4.2.1]). Every Gödel algebra A is isomorphic to SFA

through the map r : A→ SFA

r : a ∈ A 7→ {f ∈ FA | a ∈ f}.

Example 1. Let free1 be the 1-generated free Gödel algebra (Fig. 1). Its prime
filters, which are all principally generated as upsets of its join-irreducible ele-
ments, are f1 = {y ∈ free1 | y ≥ x} = {x, x ∨ ¬x,¬¬x,>}, f2 = {y ∈ free1 | y ≥
¬x} = {¬x, x ∨ ¬x,>}, and f3 = {y ∈ free1 | y ≥ ¬¬x} = {¬¬x,>}. The forest
Ffree1 is obtained by ordering {f1, f2, f3} by reverse inclusion.

Let us consider the set SFfree1
of subforests of Ffree1 :

SFfree1
= {∅, Ffree1 , {f2}, {f1}, {f2, f1}, {f3, f1}}

with operations ∧,∨,→ as in (1-3) above. Lemma 1 shows that algebra SFfree1
is

a Gödel algebra which is isomorphic to free1.

⊥

x¬x

¬¬x

>

¬x ∨ x

f2 f1

f3

∅

{f1}{f2}

{f1, f3}

Ffree1

{f1, f2}

Fig. 1. From left to right: The Hasse diagram of the free Gödel algebra over one gener-
ator free1, the forest Ffree1 of its prime filters, and the Hasse diagram of its isomorphic
copy SFfree1

3 Gödel algebras with ♦-operators

Definition 1. A ♦-Gödel algebra is a pair (A,♦) where A is a Gödel algebra
and ♦ : A→ A satisfies the following equations:

1 Without danger of confusion, and thanks to the following result, we will not distin-
guish the symbols of a Gödel algebra A from those of SF
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(♦1) ♦(⊥) = ⊥;
(♦2) ♦(a ∨ b) = ♦a ∨ ♦b.

Definition 2. A ♦-forest frame is a pair (F, R) where F = (F,≤) is a finite
forest and R ⊆ F × F satisfies the following condition:

(A) for all x, y, z ∈ F , if y ≤ x and R(x, z), then R(y, z)2.

For every ♦-forest frame (F, R), let SF be defined as in the previous section
and consider the map δR : SF → SF such that, for every a ∈ SF

δR(a) = {y ∈ F | ∃z ∈ a, R(y, z)}. (1)

Notice that, for all a ∈ SF, δR(a) ∈ SF, i.e., δR(a) is a subforest of F. Indeed
if x ∈ δR(a) then there exists z ∈ a such that R(x, z). Let y ≤ x in F. Then
(A) of Definition 2 implies R(y, z) as well, that is y ∈ δR(a) and hence δR(a) is
downward closed. Further, the following properties hold.

Proposition 1. For every ♦-forest frame (F, R) let δR : SF → SF be defined as
in (1). Then:

1. δR(⊥) = ⊥;
2. For all b ∈ SF, δR(b) =

⋃
{δR(a) | a ≤ b and a is join-irreducible}.

Proof. (1) The bottom element of SF is the empty forest, whence ∅ = {y ∈ F |
∃z ∈ ∅, R(y, z)} = δR(⊥).

(2) The claim is trivial if b is join irreducible. Thus, let b = a1 ∨ . . . ∨ am with
the ai’s being join irreducible. Therefore, δR(b) = {y ∈ F | ∃z ∈ b, R(y, z)} =
{y ∈ F | ∃z ∈ a1 ∨ . . . ∨ am, R(y, z)} = {y ∈ F | ∃z ∈ a1 ∪ . . . ∪ am, R(y, z)} =⋃m

i=1({y ∈ F | ∃z ∈ ai, R(y, z)}) =
⋃m

i=1 δR(ai). ut

Lemma 2. For each ♦-forest frame (F, R), (SF, δR) is a ♦-Gödel algebra.

Proof. From Lemma 1, SF is a Gödel algebra. Equation (♦1) holds because
of Proposition 1(1). Further, if a, b ∈ SF, by Proposition 1(2), δR(a ∨ b) =
δR(a) ∪ δR(b) = δR(a) ∨ δR(b) by definition of δR. Thus, δR satisfies (♦2). ut

Now, let (A,♦) be a ♦-Gödel algebra, let FA be as in Section 2 and define
Q♦ ⊆ FA × FA as follows: for all f1, f2 ∈ FA,

Q♦(f1, f2) iff ♦(f2) ⊆ f1, (2)

where, for every filter f , ♦(f) = {♦x | x ∈ f}. Then the following holds.

Lemma 3. For each ♦-Gödel algebra (A,♦), (FA, Q♦) is a ♦-forest frame.

Proof. It is enough to prove that the condition (A) of Definition 2 holds. Let
f1, f2, f3 ∈ FA and assume Q♦(f1, f3) (i.e., ♦(f3) ⊆ f1) and f1 ≥ f2, meaning
that, as prime filters, f1 ⊆ f2. Then, ♦(f3) ⊆ f1 ⊆ f2 and hence Q♦(f2, f3).

2 Along this paper we will adopt the notation R(x, y) to denote that the pair (x, y)
belongs to the relation R.
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Now, our aim is to extend the isomorphism r of Lemma 1 to the case of ♦-Gödel
algebras. Let hence (A,♦) be a ♦-Gödel algebra and define, for every a ∈ A,

r(♦(a)) = {f ∈ FA | ♦(a) ∈ f}. (3)

Theorem 1. For every ♦-Gödel algebra (A,♦), the map r : (A,♦)→ (SFA
, δQ♦)

is an isomorphism. In particular, for all a ∈ A,

r(♦(a)) = δQ♦(r(a)). (4)

Proof. We proved in Lemma 1 that SFA
is a Gödel algebra and the map r : A→

SFA
is a Gödel isomorphism. Thus, it remains to show that (4) holds. First of

all notice that it is sufficient to prove it for the case of a being a join-irreducible
element of A. Indeed, assume that (4) holds for join irreducible elements and let
b be not join irreducible. Then b can be displayed as b = a1 ∨ . . .∨ ak, where the
ai’s are join irreducible. By (♦2), ♦(b) = ♦(a1) ∨ . . . ∨ ♦(ak). Therefore, since r
is a Gödel algebra isomorphism,

r(♦(b)) = r(♦(a1)) ∨ . . . ∨ r(♦(ak)).

By assumption, r(♦ai) = δQ♦(r(ai)) for all i = 1, . . . , k. Thus, r(♦(b)) =
δQ♦(a1) ∨ . . . ∨ δQ♦(ak) which equals δQ♦(b) by Proposition 1(2).

Let hence a be join irreducible. By Lemma 1, we have:

δQ♦(r(a)) = {f ∈ FA | ∃g ∈ r(a), Q♦(f, g)}
= {f ∈ FA | ∃g ∈ FA, (a ∈ g & Q♦(f, g)}
= {f ∈ FA | ∃g ∈ FA, (a ∈ g & ♦(g) ⊆ f)}

Therefore, if f ∈ δQ♦(r(a)), ♦(a) ∈ f and hence f ∈ r(♦(a)).
To prove the other inclusion we have to show that if f ′ ∈ r(♦(a)), there exists

an f ∈ FA such that a ∈ f and ♦(f) ⊆ f ′. Since a is join irreducible, the filter
fa = {b ∈ A | b ≥ a} is prime. Let us prove that ♦(fa) ⊆ f ′.

Claim. ♦(fa) ⊆ f♦(a) = {x ∈ A | x ≥ ♦(a)}.

As a matter of fact, if z ∈ ♦(fa), then there exists b ≥ a such that z = ♦(b).
Since ♦ is monotone, ♦(b) ≥ ♦(a), whence z = ♦(b) ∈ f♦(a).

Claim. For all f ′ ∈ r(♦(a)), f♦(a) ⊆ f ′.

Indeed, if x ∈ f♦(a), then x ≥ ♦(a) and hence x ∈ f ′ because ♦(a) ∈ f ′ and f ′

is upward closed.
By the above claims, for all f ′ ∈ r(♦(a)), ♦(fa) ⊆ f ′, whence

r(♦(a)) ⊆ δQ♦(r(a)).

Thus, for all a, r(♦(a)) = δQ♦(r(a)) which settles the claim. ut

Example 2. Let free1 be as in Example 1 and let ♦ : free1 → free1 be the following
map:
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♦(⊥) = ⊥; ♦(x) = ¬x; ♦(¬x) = ¬x ∨ x; ♦(¬x ∨ x) = ¬x ∨ x;
♦(¬¬x) = >; ♦(>) = >.

It is easy to check that ♦ satisfies (♦1) and (♦2) of Definition 1 and hence
(free1,♦) is a ♦-Gödel algebra.

Let Ffree1 be the dual forest of free1 as in Example 1 and let us compute
Q♦ according to (2). First: ♦(f1) = {¬x, x ∨ ¬x,>}; ♦(f2) = {x ∨ ¬x,>} and
♦(f3) = {>}. Therefore, (see Figure 2)

Q♦ = {(f1, f2), (f1, f3), (f2, f2), (f2, f1), (f2, f3), (f3, f3)}.

The relation Q♦ satisfies the property (A) of Definition 2. Indeed, f1 ≤ f3, and
for all f ∈ Ffree1 , if Q♦(f3, f) then Q♦(f1, f). Therefore (Ffree1 , Q♦) is a ♦-forest
frame.

Finally, let SFfree1
be the isomorphic copy of free1 as in Example 1 and let

δQ♦ : SFfree1
→ SFfree1

be as in (1):

δQ♦(∅) = {f ∈ Ffree1 | ∃g ∈ ∅, Q♦(f, g)} = ∅;
δQ♦({f1}) = {f ∈ Ffree1 | ∃g ∈ {f1}, Q♦(f, g)} = {f2};
δQ♦({f2}) = {f ∈ Ffree1 | ∃g ∈ {f2}, Q♦(f, g)} = {f1, f2};
δQ♦({f1, f2}) = {f ∈ Ffree1 | ∃g ∈ {f1, f2}, Q♦(f, g)} = {f1, f2};
δQ♦({f1, f3}) = {f ∈ Ffree1 | ∃g ∈ {f1, f3}, Q♦(f, g)} = {f1, f2, f3} = Ffree1 ;

δQ♦(Ffree1) = {f ∈ Ffree1 | ∃g ∈ Ffree1 , Q♦(f, g)} = Ffree1 .

Therefore, (free1,♦) and (SFfree1
, δQ♦) are isomorphic ♦-Gödel algebras.

⊥

x¬x

¬¬x

>

¬x ∨ x

f2 f1

f3

∅

{f1}{f2}

{f1, f3}

Ffree1

{f1, f2}

Fig. 2. From left to right: The Hasse diagram of the free Gödel algebra over one
generator free1 and a ♦ operator (dotted arrows); the forest Ffree1 of its prime filters
and the relation Q♦ (dotted arrows); the Hasse diagram of its isomorphic copy SFfree1

endowed with the operator δQ♦ (dotted arrows).
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4 Gödel algebras with �-operators

Definition 3. A �-Gödel algebra is a pair (A,�) such that A is a Gödel algebra
and � : A→ A satisfies the following equalities:

(�1) �(>) = >;

(�2) �(a ∧ b) = �a ∧�b.

Definition 4. A �-forest frame is a pair (F, R) where F = (F,≤) is a finite
forest and R ⊆ F × F satisfies the following condition:

(M) for all x, y, z ∈ F , if x ≤ y and R(x, z), then R(y, z).

For every �-forest frame (F, R), let βR : SF → SF be defined as follows: for all
a ∈ SF,

βR(a) = {y ∈ F | ∀z ∈ F, (R(y, z)⇒ z ∈ a)}. (5)

For all a ∈ SF, βR(a) is a subforest of F. Indeed, if x ∈ βR(a) then ∀z ∈
F, (R(x, z)⇒ z ∈ a). Let y ≤ x. Thus, for all z ∈ F either R(y, z) is false (and
in this case the condition R(y, z) ⇒ z ∈ a is trivially true), or R(y, z) is true
in which case R(x, z) is true as well, because of (M), and hence z ∈ a. Thus
y ∈ βR(a).

Proposition 2. The following properties hold:

1. βR(>) = >;

2. For all b ∈ AF , βR(b) =
⋃

({βR(a) | a ≤ b and a is join irreducible}).

Proof. (1) Recall from Section 2 that the top element of SF is F . Thus, βR(>) =
βR(F ) = {y ∈ F | ∀z ∈ F, (R(y, z) ⇒ z ∈ F )}. Obviously, the condition
(R(y, z)⇒ z ∈ F ) is true for all z ∈ F and hence βR(F ) = F .

(2) Skipping the trivial case in which b is join irreducible, let b = a1 ∨ . . . ∨ am
with the ai’s join irreducible. Remember that in classical logic, for every finite
k, x⇒ (∃i ∈ {1, . . . , k}(yi)) = ∃i ∈ {1, . . . , k} (x⇒ yi), hence

βR(b) = {y ∈ F | ∀z ∈ F, (R(y, z)⇒ z ∈ b)}
= {y ∈ F | ∀z ∈ F, (R(y, z)⇒ z ∈

∨m
i=1 ai)}

= {y ∈ F | ∀z ∈ F, (R(y, z)⇒ (∃i ∈ {1, . . . ,m} (z ∈ ai)))}
= {y ∈ F | ∀z ∈ F, ∃i ∈ {1, . . . , k} (R(y, z)⇒ z ∈ ai)}
=

⋃m
i=1{y ∈ F | ∀z ∈ F, (R(y, z)⇒ z ∈ ai)}

=
⋃m

i=1 βR(ai).

The claim is hence settled. ut

Lemma 4. For every �-forest frame (F, R), (SF, βR) is a �-Gödel algebra.
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Proof. We already showed that βR(>) = >. If a, b ∈ SF and recalling that, as
subforests of F , a ∧ b = a ∩ b, one has

βR(a ∧ b) = {y ∈ F | ∀z ∈ F, (R(y, z)⇒ z ∈ a ∧ b)}
= {y ∈ F | ∀z ∈ F, (R(y, z)⇒ z ∈ a ∩ b)}
= {y ∈ F | ∀z ∈ F, (R(y, z)⇒ z ∈ a)} ∩
{y ∈ F | ∀z ∈ F, (R(y, z)⇒ z ∈ b)}

= βR(a) ∩ βR(b)
= βR(a) ∧ βR(b).

ut

Let (A,�) be a �-Gödel algebra and define Q� on FA×FA as follows: for each
f1, f2 ∈ FA,

Q�(f1, f2) iff �−1(f1) ⊆ f2, (6)

where, for every filter f , �−1(f) = {x ∈ A | �(x) ∈ f}.

Lemma 5. For every �-Gödel algebra (A,�), (FA, Q�) is a �-forest frame.

Proof. Let f1, f2, f3 ∈ FA. If f1 ≤ f2 in the order of FA, then f1 ⊇ f2 as prime
filters, whence if �−1(f1) ⊆ f3 then �−1(f2) ⊆ f3. Therefore, if Q�(f1, f3), then
Q�(f2, f3) which settles the claim.

The following result is the analogous of Theorem 1 in the case of �-Gödel alge-
bras where r is the map of Lemma 1 which extends to all elements of a �-Gödel
algebra (A,�) by the following stipulation:

r(�(a)) = {f ∈ FA | �(a) ∈ f}. (7)

Theorem 2. For every finite G�-algebra (A,�), the map r : (A,�)→ (SFA
, βQ�

)
defined as above is an isomorphism. In particular, for all a ∈ A,

r(�(a)) = βQ�
(r(a)). (8)

Proof. Let us start proving that for all a ∈ A, βQ�
(r(a)) ⊆ r(�(a)). By defini-

tion,
βQ�

(r(a)) = {f ∈ FA | ∀g ∈ FA (Q�(f, g)⇒ g ∈ r(a))}
= {f ∈ FA | ∀g ∈ FA (�−1(f) ⊆ g ⇒ a ∈ g)}.

Let f ∈ βQ�
(r(a)) and assume, by way of contradiction, that f 6∈ r(�(a)), that

is to say, a 6∈ �−1(f). Notice that this assumption forces a 6= >.

Claim. �−1(f) is a filter of A.

As a matter of facts, > ∈ �−1(f) because > ∈ f and �> = >. Further, if
a, b ∈ �−1(f), then �a ∈ f and �b ∈ f , whence �(a) ∧ �(b) ∈ f since f is
a filter. Hence �(a ∧ b) ∈ f by (�2) showing that �−1(f) is ∧-closed. Finally,
if a ∈ �−1(f) and b ≥ a, then by the monotonicity of �, �(b) ≥ �(a), hence
�(b) ∈ f because f us upward closed. Therefore, �−1(f) is a filter of A.
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Going back to the proof of Theorem 2, if a ∈ �−1(f) and since a 6= >, by
[9, Lemma 2.3.15], there exists a prime filter p of A such that p ⊇ �−1(f) and
a 6∈ p. On the other hand, Q�(f, p) because p extends �−1(f) and a 6∈ p. Thus,
f 6∈ βQ�

(r(a)) and a contradiction has been reached.
For the other inclusion, we have to prove that if �(a) ∈ f , then for all g ∈ FA,

Q�(f, g) ⇒ a ∈ g. If �(a) ∈ f , then a ∈ �−1(f). Therefore, for all g ∈ FA, if
Q�(f, g), then �−1(f) ⊆ g and hence a ∈ g which settles the claim. ut

Example 3. As in the previous Examples 1 and 2 let free1 the free, 1-generated
Gödel algebra and consider the map � : free1 → free1 defined as follows (dashed
arrows in the leftmost picture of Figure 3):

�(⊥) = ⊥; �(x) = x; �(¬x) = ⊥; �(¬x ∨ x) = x; �(¬¬x) = ¬¬x; �(>) = >.

That operation makes (free1,�) into a �-Gödel algebra.
For the reader convenience, let us compute �−1(f) (for f ∈ Ffree1): Adopting

the same notation of the previous examples,

�−1(f1) = {>}; �−1(f2) = f2; �−1(f3) = f3.

Therefore, by (6), Q� ⊆ Ffree1 × Ffree1 is the following relation (check Figure 3,
central picture):

Q� = {(f1, f1), (f2, f2), (f3, f3), (f2, f1), (f2, f3), (f3, f1)}.

Notice that (Ffree1 , Q�) is a �-forest frame. Indeed, f1 ≤ f3 and for all f ∈ Ffree1 ,
Q�(f1, f) ≤ Q�(f3, f).

Finally, let SFfree1
be the isomorphic copy of free1 as in Example 1 and let us

define βQ�
as above, i.e., for all a ∈ SFfree1

,

βQ�
(a) = {f ∈ Ffree1 | for all g ∈ Ffree1 , if Q�(f, g) then g ∈ a}.

The computation is tedious and we will only show βQ�
({f1, f2}). The remaining

cases are left to the reader.

βQ�
({f1, f2}) = {f ∈ Ffree1 | for all g ∈ Ffree1 , if Q�(f, g) then g ∈ {f1, f2}}.

Let us enter a case distinction:

- f1 ∈ βQ�
({f1, f2}). Let g be arbitrary in Ffree1 . In particular, if g = f1,

then Q�(f1, f1) and f1 ∈ {f1, f2}; if g = f2, we have Q�(f1, f2) and
again f2 ∈ {f1, f2}; if g = f3, (f1, f3) 6∈ Q� whence we conclude that
f1 ∈ βQ�

({f1, f2}).
- f2 ∈ βQ�

({f1, f2}). Again we distinguish the following cases: for g = f1 or
g = f2, Q�(f2, g) and g ∈ {f1, f2}; if g = f3, Q�(f2, f3) but f3 6∈ {f1, f2},
whence f2 6∈ βQ�

({f1, f2}).
- f3 ∈ βQ�

({f1, f2}). Notice immediately that for g = f3 one has Q�(f3, f3)
but f3 6∈ {f1, f2}, whence f3 6∈ βQ�

({f1, f2}).

Therefore, βQ�
({f1, f2}) = {f1} (see Figure 3, dashed arrows in the rightmost

picture, for the remaining cases).
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⊥

x¬x

¬¬x

>

¬x ∨ x

f2 f1

f3

∅

{f1}{f2}

{f1, f3}

Ffree1

{f1, f2}

Fig. 3. From left to right: The Hasse diagram of the free Gödel algebra over one
generator free1 and a � operator (dotted arrows); the forest Ffree1 of its prime filters
and the relation Q� (dotted arrows); the Hasse diagram of its isomorphic copy SFfree1

endowed with the operator βQ�
(dotted arrows).

5 Gödel algebras with ♦ and � operators

The notions of results provided in the previous sections immediately give us the
following

Definition 5. A Gödel algebra with operators (GAO for short) is a triple
(A,♦,�) where A is a Gödel algebra, ♦ and � are unary operators of A which
satisfy the equations (♦1)-(♦2) and (�1)-(�2) of Definitions 1 and 3 respectively.

Let us observe that the equations for ♦ and � are minimal in the sense
that (♦1)-(♦2) and (�1)-(�2) are the weakest requirements we may ask the
modal operators to satisfy, taking into account that, since the negation operator
in Gödel algebras is not involutive, ♦ and � are not inter-definable as in the
classical setting. A similar remark concerning the minimality of those equations,
but in the more general setting of Heyting algebras with operators, can be found
in [10].

This remark leads us to the following notion of frame for GAOs which, not
surprisingly, includes both that of ♦- and �-forest frame.

Definition 6. A forest frame is a triple (F, R♦, R�) such that (F, R♦) is a ♦-
forest frame and (F, R�) is a �-forest frame.

Given a GAO (A,♦,�) and following exactly the same constructions and re-
sults described in the previous Sections 3 and 4, it is immediate to show that,
indeed, (FA, Q♦, Q�) is a forest frame and, vice versa, given any forest frame
(F, R♦, R�), the algebra (SF, δR♦ , βR�

) is a GAO. The following result, which
is an immediate consequence of Theorem 1 and Theorem 2, is a Jónsson-Tarski
like representation for GAOs.

Theorem 3. Let (A,♦,�) be a GAO. The map r : (A,♦,�)→ (AFA
, δQ♦ , βQ�

),
where δQ♦ and βQ�

are defined by equations (3) and (7), is an isomorphism. In
particular, for all a ∈ A,

r(♦(a)) = δQ♦(r(a)) and r(�(a)) = βQ�
(r(a)). (9)



11

Following [8, 6], let us consider the following equations:

(D1) �(a ∨ b) ≤ �a ∨ ♦b;
(D2) �a ∧ ♦b ≤ ♦(a ∧ b).

For every Gödel algebra A, let us denote by A− its {→,¬}-free reduct. Then,
if (A,♦,�) satisfies (D1) and (D2), (A−,♦,�) is a positive modal algebra in
the sense of [8, 6]. Since the set of prime filters of A and that of A− coincide,
FA− = FA and, following [6], let us define RA ⊆ FA− × FA− as follows: for all
f1, f2 ∈ FA,

RA(f1, f2) iff �−1(f1) ⊆ f2 ⊆ ♦−1(f1).

Observing that f2 ⊆ ♦−1(f1) iff ♦(f2) ⊆ f1, by [6, Lemma 2.1(1)], we have that
RA = Q♦ ∩Q�, where Q♦ and Q� are defined as in (2) and (6) respectively.

Now, let SFA− be the Gödel algebra of subforests of FA− and define δRA
and

βRA
on SFA− by (1) and (5) respectively. Then the following is an immediate

consequence of [6, Theorem 2.2] (see also [8, Theorem 8.1]).

Proposition 3. Let (A,♦,�) be a GAO which satisfies (D1) and (D2). Then
its {→,¬}-free reduct (A−,♦,�) and the positive algebra ((SFA− )−, δRA

, βRA
)

are isomorphic (as positive modal algebras).

Clearly, SFA− = SFA
. Now, it is not difficult to extend the above result to GAOs

satisfying (D1) and (D2) by expanding the algebra ((SFA− )−, δRA
, βRA

) by the
operator → defined as in Section 2: for all x, y ∈ SFA

,

x→ y = FA \ ↑(x \ y).

Then, (SFA− )− plus → and ¬ (defined as usual by ¬x = x → ∅) is a Gödel
algebra isomorphic to SFA

. Thus, the following holds.

Theorem 4. Every GAO (A,♦,�) satisfying (D1) and (D2) is isomorphic to
(SFA

, δRA
, βRA

) (as Gödel algebras with operators).

6 Conclusion and future work

In the present paper we have introduced finite Gödel algebras with modal oper-
ators and their dual forest frames. Our main result is a Jónsson-Tarski like rep-
resentation theorem for these structures. Further, we have introduced a proper
subclass of Gödel algebras with operators, and we have shown for them a sim-
plified representation which uses, on the dual side of forest frames, only one ac-
cessibility relation. It is important to notice that, in contrast with [5] where the
authors consider Kripke frames for Gödel modal logic with a unique [0, 1]-valued
accessibility relation, the dual frames of our Gödel algebras with operators have
two crisp accessibility relations. This latter observation offers, in our opinion,
a fresh new perspective on the semantic approach to fuzzy modal logics which
deserves to be further investigated.
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As for future work we plan the address the following questions:

(1) To extend the results of this paper to the whole class of Gödel algebras. In this
direction we will investigate an extension of Theorem 3 for general Gödel algebras
with operators. In order to achieve this goal we will take into account that the
prime spectrum of a Gödel algebra forms an Esakia space whose underline poset
is a forest (see [11, Theorem 2.4]).

(2) The whole class of Gödel algebras with operators forms a variety which
determines the equivalent algebraic semantics of a Gödel modal logic. This logic,
denoted by G�♦, can be regarded as the axiomatic extension of intuitionistic
modal logic IntK�♦ [12] by the prelinearity axiom (ϕ → ψ) ∨ (ψ → ϕ). Our
main plans in this direction are to show that G�♦ has the finite model property
and to compare G�♦ with the other approaches to Gödel modal logic existing in
the literature, in particular with that of [5]. In this paper the authors introduce
a logic with both � and ♦ operators, stronger than G�♦

3, that is shown to be
complete with respect to the class of Kripke models over the standard Gödel
algebra (on the unit real interval [0, 1]) where both the accessibility relation and
formulas are evaluated on [0, 1].

(3) Finite Nilpotent Minimum (NM) algebras with (or without) a negation fix-
point are dually equivalent to the category of finite forests (and hence categori-
cally equivalent to finite Gödel algebras) [1, Proposition 4.5.4 and §4.5] and [2,
Corollary 4.10]. In particular, the connected (disconnected, respectively) rotation
of the {⊥}-free reduct of any finite, directly indecomposable Gödel algebra A is
a finite, directly indecomposable, NM-algebra with (without) negation fixpoint
and each directly indecomposable NM-algebra with (without) negation fixpoint
arises in this way (see [1, §4.5] and references therein). Taking into account this
structural description, we plan to extend the analysis reported in this paper to
the classes of NM-algebras with, or without, negation fixpoint.
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