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Abstract. In this paper our aim is to explore a new look at formal
systems of fuzzy logics using the framework of (fuzzy) formal concept
analysis (FCA). Let L be an extension of MTL complete with respect
to a given L-chain. We investigate two possible approaches. The first
one is to consider fuzzy formal contexts arising from L where attributes
are identified with L-formulas and objects with L-evaluations: every L-
evaluation (object) satisfies a formula (attribute) to a given degree, and
vice-versa. The corresponding fuzzy concept lattices are shown to be
isomorphic to quotients of the Lindenbaum algebra of L. The second
one, following an idea in a previous paper by two of the authors for the
particular case of Gödel fuzzy logic, is to use a result by Ganter and Wille
in order to interpret the (lattice reduct of the) Lindenbaum algebra of
L-formulas as a (classical) concept lattice of a given context.
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1 Introduction

In this paper our aim is to explore a new look at formal systems of fuzzy logics
using the framework of (fuzzy) formal concept analysis (FCA).

The possibility of connecting descriptions of real-world contexts with pow-
erful formal instruments is what makes (fuzzy) FCA a promising framework,
merging the intuitions of intended semantics with the advantages of formal se-
mantics. In the case of classical logic, a first attempt has been done in [8].

To build a bridge between systems of fuzzy logic and FCA, we explore two
possible approaches. In the first one, given a fuzzy logic L we consider fuzzy
FCA tables where attributes are described by formulas of the logic L, while
L-evaluations play the role of objects: every object (L-evaluation) satisfies at-
tributes (formulas) to a given degree, and vice-versa, every attribute (formula)
is satisfied to a given extent by objects (evaluations).



The second one is, following the idea in [5] for the particular case of Gödel
fuzzy logic [12], is to use Ganter and Wille’s result [10, Theorem 3] in order to
interpret the lattice reduct of the Lindenbaum algebra of L-formulas as a lattice
of the set of formal concepts of a given context. Then, in order to endow the
lattice of concepts with a structure of L-algebra, suitable operations on formal
concepts have to be defined.

The paper is structured as follows. After this brief introduction, we recall
some background notions in Section 2, in Section 3 we introduce concept lattices
of formulas and evaluations, and in Section 4 we recall the construction of [5].
Both approaches will be used to obtain formal concepts for formulas of the 3-
valued  Lukasiewicz logic.

2 Preliminaries

2.1 Basic notions on Formal Concept Analysis

We recollect the basic definitions and facts about formal concept analysis needed
in this work. For further details on this topics we refer the reader to [10].

Recall that an element j of a distributive lattice H is called a join-irreducible
if j is not the bottom of H and if whenever j = atb, then j = a or j = b,
for a, b ∈ L. Meet-irreducible elements are defined dually. Given a lattice H =
(H,u,t, 1), we denote by J(H) the set of its join-irreducible elements, and by
M(H) the set of its meet-irreducible elements.

Let G and M be arbitrary sets of objects and attributes, respectively, and let
I ⊆ G ×M be an arbitrary binary relation. Then, the triple K = (G,M, I) is
called a formal context. For g ∈ G and m ∈ M , we interpret (g,m) ∈ I as “the
object g has attribute m”. For A ⊆ G and B ⊆M , a Galois connection between
the powersets of G and M is defined through the following operators:

A∗ = {m ∈M | ∀g ∈ A : gIm} B◦ = {g ∈ G | ∀m ∈ B : gIm}

Every pair (A,B) such that A∗ = B and B◦ = A is called a formal concept.
A and B are the extent and the intent of the concept, respectively. Given a
context K, the set B(K) of all formal concepts of K is partially ordered by
(A1, B1) ≤ (A2, B2) if and only if A1 ⊆ A2 (or, equivalently, B2 ⊆ B1). The
basic theorem on concept lattices [10, Theorem 3] states that the set of formal
concepts of the context K is a complete lattice (B(K),u,t), called concept lattice,
where meet and join are defined by:
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for a set J of indexes. The following proposition is fundamental for our purposes.



Proposition 1 ([10, Proposition 12]). For every finite lattice H there is (up
to isomorphisms) a unique context KH , with L ∼= B(KH):

KH := (J(H),M(H),≤).

The context KH is called the standard context of the lattice H.
Since H is finite, J(H) is finite as well. Hence, the concept (J(H), ∅) is the

top element of B(KH). We denote it by >G, emphasizing the fact that the join-
irreducible elements of L are the objects of our context. Analogously, the concept
(∅,M(H)) is the bottom element of B(KH), and we denote it by ⊥M .

2.2 On t-norm based fuzzy logics

In this paper we investigate logical systems based on left continuous t-norms,
that are binary, commutative, associative and monotonically non-decreasing op-
erations over [0, 1] that have 1 as unit element. A t-norm operator � is used to
interpret a conjunction connective, while its corresponding implication connec-
tive → is modelled by the residuum of �, that is, defined by x → y = max{z |
x� z ≤ y} for all x, y, z ∈ [0, 1]. It has been shown that the necessary and suffi-
cient condition for a t-norm � to have a residuum (i.e. satisfying the condition
x� y ≤ z iff x ≤ y → z for all x, y, z ∈ [0, 1]) is the left-continuity �.

In [7] the authors introduce MTL, the logic of all left-continuos t-norms and
their residua [13]. MTL encompasses the Basic fuzzy Logic BL of Hájek [12],
which is the logic of continuous t-norms and their residua. For axiomatisations
of MTL and BL, we refer the reader to [7] and [12] respectively.

Other relevant t-norm based fuzzy logics can be obtained as schematic exten-
sions of MTL or BL. Gödel logic G is the schematic extension of BL obtained by
adding the idempotency axiom, ϕ→ (ϕ�ϕ).  Lukasiewicz logic  L is the schematic
extension of BL obtained by adding the double negation axiom ¬¬ϕ→ ϕ. Adding
ϕ� ϕ↔ ϕ� ϕ� ϕ to  L we obtain the 3-valued  Lukasiewicz logic  L3.

Our interest in  L3 is given by the recent paper [6], where authors characterize
this logic as the logic of prototypes and counterexamples. Gödel logic will be used
as a stepping stone for developing the methodology to be applied to the case of
 L3.

Each schematic extension L of MTL determines a subvariety V(L) of the vari-
ety of MTL algebras MTL, that is the class of algebras A = (A,∧,∨,�,→,⊥,>)
of type (2, 2, 2, 2, 0, 0) such that (A,∧,∨,⊥,>) is a bounded lattice, with top >
and bottom ⊥, (A,�,>) is a commutative monoid, satisfying the residuation
equivalence, x � y ≤ z if and only if x ≤ y → z, and the prelinearity equation
(x→ y) ∨ (y → x) = > 3. Negation is usually defined as ¬x = x→ ⊥.

The notion of logical consequence for a logic L relative to a class A ⊆ V(L)
is defined as follows: for any set of formulas T ∪ {ϕ}, ϕ is a logical consequence

3 MTL algebras are commutative integral bounded residuated lattices satisfying pre-
linearity [9].



of T , written T |=A ϕ, whenever for all algebra A ∈ A and each evaluation e of
formulas on A, if e(ψ) = 1 for all ψ ∈ T , then e(ϕ) = 1 as well.

Given a logic L, two formulas ϕ and ψ are logically equivalent, in symbols
ϕ ≡L ψ, if and only if ϕ ↔ ψ is a L-tautology, that is, if |=V(L) ϕ ↔ ψ.
The Lindenbaum Algebra Lind(L) of L is the algebra whose elements are the
equivalence classes of formulas of L, with respect to ≡L. The free k-generated
algebra Fk(V(L)) in V(L) is the subalgebra of the Lindenbaum algebra Lind(L)
of the formulas over the first k variables. Combinatorial representations of Fk(G)
and Fk(MV3), where G = V(G) and MV3 = V( L3), can be found in [1].

3 The Concept Lattice of Formulas and Evaluations

Suppose L is an axiomatic extension of MTL that is complete with respect to a
given L-chain M , that is, |=V(L) = |=M . In what follow, we will denote by L the
set of propositional L-formulas built from a finite set of propositional variables V ,
and by Ω the set of truth-evaluations of propositinal variables into the L-chain
M , that is, Ω = {e : V →M}. Of course, every evaluation of variables uniquely
extends to an evaluation of any propositional formula using the truth-functions
interpreting the connectives.

In our FCA-based analysis of the notion of consequence in the logic L, we
will consider attributes described as propositional formulas from L, and objects
as evaluations from Ω. In this setting, a formal context will be specified by a
triple

K = (Ω0,L0, R),

where Ω0 ⊆ Ω and L0 ⊆ L are finite sets, and R : Ω0 × L0 →M is a M -valued
fuzzy relation defined as R(e, ϕ) = e(ϕ).

In this way, each attribute or formula ϕ ∈ L0 determines a fuzzy set of
objects ϕ∗ : Ω0 →M , with ϕ∗(e) = R(e, ϕ), for all e ∈ Ω0, and vice-versa, each
object or evaluation e ∈ Ω0 determines a fuzzy set of attributes e◦ : L0 → M ,
with e◦(ϕ) = R(e, ϕ), for all ϕ ∈ L0. More than that, following Pollandt [14]
and Bělohlávek’s [2] models of FCA, this correspondence is extended to a Galois
connection between fuzzy sets of formulas and fuzzy sets of evaluations as follows.

Definition 1. Let F ∈ F(L0) be a fuzzy subset of formulas (fuzzy theory) and
let E ∈ F(Ω0) be a fuzzy set of evaluations. Define:

– F ∗ is the fuzzy subset of Ω0 defined as F ∗(e) = infϕ∈L0 F (ϕ)→ R(e, ϕ), for
all e ∈ Ω0,

– E◦ is the fuzzy subset of L0 defined as E◦(ϕ) = infe∈Ω0
E(e)→ R(e, ϕ), for

all ϕ ∈ L0.

A pair (E,F ) is a logic fuzzy concept if F ∗ = E and E◦ = F .

In other words, F ∗ is the fuzzy set of models of the fuzzy theory F , and E◦ is
the fuzzy set of formulas satisfied by the fuzzy set of evaluations E. Moreover,
as it is known, ∗◦ is a closure operation on the set F(L0) of M -valued fuzzy sets



of formulas, hence F ≤ F ∗◦. Actually the mapping ∗◦ : F(L0)→ F(L0), defined
by

F ∗◦(ϕ) = inf
e∈Ω0

[ inf
ψ∈L0

F (ψ)→ e(ψ)]→ e(ϕ)

can be considered as a graded logical consequence relation, that it is even a bit
more general than the one central to the so-called graded approach to fuzzy logic,
developed by authors like J. A. Goguen, J. Pavelka, V. Nóvak and G. Gerla, as
discussed e.g. in [11].

In what follows, we will denote by C(K) = (C(K),�) the lattice of fuzzy
concepts induced by a context K, where the ordering � is defined as

(E,F ) � (E′, F ′) iff E ≤ E′ and F ≥ F ′ ,

and the meet and join operations are defined as:

(E,F )u(E′, F ′) = (E∩E′, (F∪F ′)∗◦), (E,F )t(E′, F ′) = ((E∪E′)◦∗, F∩F ′) ,

where ∩ and ∪ denote intersection and union of fuzzy sets, defined with the min
and max operations respectively.

This lattice is bounded and the bottom element is the concept ⊥K = (∅,L0),
while the top element is >K = (Ω0, TΩ0), where TΩ0 if the fuzzy set of formulas
defined by TΩ0(ψ) = infe∈Ω0 e(ψ).

Let us see how it looks like the fuzzy concept in C(K) induced by (the crisp
set of) a single formula ϕ ∈ L0, i.e. the pair (ϕ∗, ϕ∗◦), where for the sake of
a simpler notation we have used ϕ∗ for {ϕ}∗ and ϕ∗◦ for ({ϕ}∗)◦. An easy
computation shows that:

– ϕ∗(e) = R(e, ϕ) = e(ϕ), for all e ∈ Ω0;
– ϕ∗◦(ψ) = infe∈Ω0

R(e, ϕ)→ R(e, ψ) = infe∈Ω0
e(ϕ→ ψ), for all ψ ∈ L0.

Further, if we consider a finite set of formulas or theory T , using the same
notation convention as above, the corresponding concept (T ∗, T ∗◦) is as follows,
where

∧
T denotes the ∧-conjunction of all the formulas in T , i.e.

∧
T =

∧
ϕ∈T ϕ:

– T ∗(e) = infϕ∈T R(e, ϕ) = infϕ∈T e(ϕ) = e(
∧
T ), for all e ∈ Ω0;

– T ∗◦(ψ) = infe∈Ω0
T ∗(e)→ R(e, ψ) = infe∈Ω0

e(
∧
T → ψ), for all ψ ∈ L0.

Note that, as discussed above, T ∗◦ accounts for a certain notion of graded
consequence from T , in the sense that T ∗◦(ψ) provides the degree in which ψ is
implied by T , relative to the set of interpretations Ω0. It is a graded consequence
that resembles Pavelka’s notion of truth degree of a formula in a theory (see e.g.
[12, 11]), although they do not coincide. It is also related to the so-called degree

preserving logic |=≤L companion of L, see e.g. [4]. Indeed, it is easy to check the
following lemma.

Lemma 1. For any ψ ∈ L0, T ∗◦(ψ) = 1 iff e(
∧
T → ψ) = 1 for all e ∈ Ω0.

Therefore, when Ω0 = Ω, T ∗◦(ψ) = 1 holds if, and only if, infϕ∈T e(ϕ) ≤
e(ψ), i.e. iff T |=≤L ψ. That is, the core of T ∗◦ is nothing but the set of conse-
quences of T (restricted to L0) under the degree preserving logic companion of
L.



Lemma 2. T ∗◦1 = T ∗◦2 iff
∧
T1 and

∧
T2 are logically equivalent relative to Ω0,

i.e. e(
∧
T1) = e(

∧
T2) for every evaluation e ∈ Ω0.

Proof. The direction right-to-left is trivial. As for the converse, if T ∗◦1 = T ∗◦2 ,
then in particular, for all χ, T ∗◦1 (χ) = 1 iff T ∗◦2 (χ) = 1. Take χ =

∧
T1. Since

T ∗◦1 (
∧
T1) = 1, then T ∗◦2 (

∧
T1) = 1 as well, and by Lemma 1 this happens iff

for all e ∈ Ω0, e(
∧
T2) ≤ e(

∧
T1). Analogously, if we take χ =

∧
T2, we would

get that, for all e ∈ Ω0, e(
∧
T1) ≤ e(

∧
T2). ut

Notice again that in case Ω0 = Ω, then T ∗◦1 = T ∗◦2 iff
∧
T1 and

∧
T2 are logically

equivalent in the usual sense.

The set Ccg(K) of concepts of the form (T ∗, T ∗◦), with T ⊆ L0 a finite
(crisp) set of formulas, is in fact what is known as the set of crisply generated
concepts in the fuzzy concept lattice C(K) [3]. As already mentioned, for the
purpose of building concepts, we can always replace a finite theory T by the ∧-
conjunction of its formulas

∧
T . Indeed, for every concept of the form (T ∗, T ∗◦)

with T a finite set of formulas, there is always a formula ϕ (e.g.
∧
T ) such that

(T ∗, T ∗◦) = (ϕ∗, ϕ∗◦). Thus Ccg(K) = {(ϕ∗, ϕ∗◦) | ϕ ∈ L0} and we can safely
restrict ourselves to deal with concepts induced by a single formula.

The lattice operations in C(K) over concepts from Ccg(K) take the following
form.

Lemma 3. For any ϕ,ψ ∈ L,

(ϕ∗, ϕ∗◦) u (ψ∗, ψ∗◦) = ((ϕ ∧ ψ)∗, (ϕ ∧ ψ)∗◦), (2)

(ϕ∗, ϕ∗◦) t (ψ∗, ψ∗◦) = ((ϕ ∨ ψ)∗, (ϕ ∨ ψ)∗◦). (3)

Proof. By definition, (ϕ∗, ϕ∗◦) u (ψ∗, ψ∗◦) = (ϕ∗ ∩ ψ∗, (ϕ∗ ∩ ψ∗)◦), but since
(ϕ∗ ∩ ψ∗)(e) = min(ϕ∗(e), ψ∗(e)) = min(e(ϕ), e(ψ)) = e(ϕ ∧ ψ) = (ϕ ∧ ψ)∗(e),
we have (ϕ∗ ∩ ψ∗, (ϕ∗ ∩ ψ∗)◦) = ((ϕ ∧ ψ)∗, (ϕ ∧ ψ)∗◦).

Analogously, by definition (ϕ∗, ϕ∗◦)t(ψ∗, ψ∗◦) = ((ϕ∗∪ψ∗)◦∗, ϕ∗◦∩ψ∗◦), but
(ϕ∗◦∩ψ∗◦)(χ) = min(infe e(ϕ→ χ), infe e(ψ → χ)) = infe min(e(ϕ→ χ), e(ψ →
χ)) = infe e(ϕ ∨ ψ → χ) = (ϕ ∨ ψ)∗◦(χ). Therefore ((ϕ∗ ∪ ψ∗)◦∗, ϕ∗◦ ∩ ψ∗◦) =
((ϕ∗ ∪ ψ∗)◦∗, (ϕ ∨ ψ)∗◦) = ((ϕ ∨ ψ)∗, (ϕ ∨ ψ)∗◦). ut

As it proven in [3], Ccg(K) is indeed a u-subsemilattice of C(K) in the
general case. Indeed, notice that the u operation is closed in Ccg(K), since the
concept induced by the conjunction

∧
T of a set of formulas T ⊆ L0, even if

∧
T

does not belong to L0, is the same concept induced by the crisp set of formulas
T , and hence it belongs to Ccg(K). However, this is not the case for a disjunction
of a set of formulas. However, if we can guarantee that the concept induced by
a disjunction also belongs to Ccg(K), then Ccg(K) is actually a sublattice of
C(K).

Lemma 4. If L0 is closed by ∨ (modulo logical equivalence) then t is closed in
Ccg(K), and Ccg(K) = (Ccg(K),u,t,>K ,⊥k) is a sublattice of C(K).



In the following we will assume L0 = L to avoid any problem. In such a
case, we can also enrich the lattice Ccg(K) with some further operations in a
natural way so to come up with a residuated lattice structure, inherited from
the L-algebras.

Definition 2. We define the following two operations on fuzzy concepts from
Ccg(K). For any ϕ,ψ ∈ L, let us define:

(ϕ∗, ϕ∗◦) � (ψ∗, ψ∗◦) = ((ϕ� ψ)∗, (ϕ� ψ)∗◦), (4)

(ϕ∗, ϕ∗◦)⇒ (ψ∗, ψ∗◦) = ((ϕ→ ψ)∗, (ϕ→ ψ)∗◦). (5)

It is easy to check that � and ⇒ endow the lattice Ccg(K) with a structure
of residuated lattice, in particular with the structure of a L-algebra.

Proposition 2. Ccg(K) = (Ccg(K),u,t,�,⇒,>K ,⊥K) is an L-algebra that
is isomorphic to the quotient algebra L/≡Ω0

, where ϕ ≡Ω0
ψ iff e(ϕ) = e(ψ) for

all e ∈ Ω0.

Proof. Elements of L/≡Ω0
are equivalence classes of formulas from L, according

to the congruence relation ≡Ω0
. Given a formula ϕ ∈ L, let us denote by [ϕ]

its equivalence class. Since the class of L-algebras is a variety, it is closed under
quotients, hence L/≡Ω0 is an L-algebra as well. Now consider the mapping
λ : L/ ≡Ω0

→ Ccg(K) defined by λ([ϕ]) = (ϕ∗, ϕ∗◦). It is easy to check that
this mapping is one-to-one thanks to Lemma 2, and moreover it is an algebraic
homomorphism with respect to the operations involved: λ([ϕ]∧ [ψ])) = λ([ϕ])u
λ([ψ]), etc. Therefore, Ccg(K) is an L-algebra as well, isomorphic to L/≡Ω0 . ut

Corollary 1. If Ω0 = Ω, then Ccg(K) is isomorphic to the Lindenbaum algebra
Lind(L) = L/≡L.

3.1 An example: the case of  L3

In this section, we provide an example of the construction of the concept lattice
of formulas and evaluations for the  Lukasiewicz 3-valued logic  L3.

Let L0 = {ϕ1, ϕ2, . . . , ϕ12} be the set of all  L3-formulas (up to logical equiv-
alence) on one variable x, where4

ϕ1 = x2 ∧ (¬x)2 = ⊥, ϕ2 = (¬x)2, ϕ3 = x ∧ ¬x,
ϕ4 = x2, ϕ5 = ¬x, ϕ6 = (x ∨ ¬x)2,

ϕ7 = ¬x2 ∧ ¬(¬x)2, ϕ8 = x, ϕ9 = ¬x2,
ϕ10 = x ∨ ¬x, ϕ11 = ¬(¬x)2, ϕ12 = ¬x2 ∨ ¬(¬x)2 = > .

Further, let us consider all possible 3-valued evaluations on the variable x as
the set of objects: Ω0 = {e0, e1, e2}, where e0(x) = 0, e1(x) = 1

2 , e2(x) = 1. The
following table shows the values of each formula of L0 under each evaluation.

4 We use ϕ2 as a shorcut for ϕ� ϕ.



ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6 ϕ7 ϕ8 ϕ9 ϕ10 ϕ11 ϕ12

e0(·) 0 1 0 0 1 1 0 0 1 1 0 1
e1(·) 0 0 1/2 0 1/2 0 1 1/2 1 1/2 1 1
e2(·) 0 0 0 1 0 1 0 0 0 1 1 1

As described before in this section, the triple K = {Ω0,L0, R}, where R :
Ω0 × L0 → {0, 12 , 1} is a 3-valued fuzzy relation defined as R(e, ϕ) = e(ϕ),
identifies a formal context.

First of all, we aim at obtaining all the concepts induced by a single formula.
For instance, consider the formula ϕ8 = x. Then, ϕ∗8(e0) = e0(ϕ8) = 0, ϕ∗8(e1) =
1
2 , and ϕ∗8(e2) = 1. We denote the fuzzy set of objects (evaluations) ϕ∗8 by the
tuple (0, 12 , 1). Let us compute the fuzzy set of attributes (formulas) ϕ∗◦8 :

ϕ∗◦8 (ϕ1) = inf
e∈Ω0

e(ϕ8 → ϕ1) = 0 , ϕ∗◦8 (ϕ2) = inf
e∈Ω0

e(ϕ8 → ϕ2) = 0 ,

ϕ∗◦8 (ϕ3) = inf
e∈Ω0

e(ϕ8 → ϕ3) = 0 , ϕ∗◦8 (ϕ4) = inf
e∈Ω0

e(ϕ8 → ϕ4) = 1/2 ,

ϕ∗◦8 (ϕ5) = inf
e∈Ω0

e(ϕ8 → ϕ5) = 0 , ϕ∗◦8 (ϕ6) = inf
e∈Ω0

e(ϕ8 → ϕ6) = 1/2 ,

ϕ∗◦8 (ϕ7) = inf
e∈Ω0

e(ϕ8 → ϕ7) = 0 , ϕ∗◦8 (ϕ8) = inf
e∈Ω0

e(ϕ8 → ϕ8) = 1 ,

ϕ∗◦8 (ϕ9) = inf
e∈Ω0

e(ϕ8 → ϕ9) = 0 , ϕ∗◦8 (ϕ10) = inf
e∈Ω0

e(ϕ8 → ϕ10) = 1 ,

ϕ∗◦8 (ϕ11) = inf
e∈Ω0

e(ϕ8 → ϕ11) = 1 , ϕ∗◦8 (ϕ12) = inf
e∈Ω0

e(ϕ8 → ϕ12) = 1 .

We indicate the value of ϕ∗◦8 by the tuple (0, 0, 0, 12 , 0,
1
2 , 0, 1, 0, 1, 1, 1). The pair

(ϕ∗8, ϕ
∗◦
8 ) is the formal concept induced by the furmula ϕ8. In the same way, we

can compute all the formal concepts induced by single formulas of L0, obtaining:

(ϕ∗1, ϕ
∗◦
1 ) = ((0, 0, 0), (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) ,

(ϕ∗2, ϕ
∗◦
2 ) = ((1, 0, 0), (0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1)) ,

(ϕ∗3, ϕ
∗◦
3 ) = ((0, 1/2, 0), (1/2, 1/2, 1, 1/2, 1, 1/2, 1, 1, 1, 1, 1, 1)) ,

(ϕ∗4, ϕ
∗◦
4 ) = ((0, 0, 1), (0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1)) ,

(ϕ∗5, ϕ
∗◦
5 ) = ((1, 1/2, 0), (0, 1/2, 0, 0, 1, 1/2, 0, 0, 1, 1, 0, 1)) ,

(ϕ∗6, ϕ
∗◦
6 ) = ((1, 0, 1), (0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1)) ,

(ϕ∗7, ϕ
∗◦
7 ) = ((0, 1, 0), (0, 0, 1/2, 0, 1/2, 0, 1, 1/2, 1, 1/2, 1, 1)) ,

(ϕ∗8, ϕ
∗◦
8 ) = ((0, 1/2, 1), (0, 0, 0, 1/2, 0, 1/2, 0, 1, 0, 1, 1, 1)) ,

(ϕ∗9, ϕ
∗◦
9 ) = ((1, 1, 0), (0, 0, 0, 0, 1/2, 0, 0, 0, 1, 1/2, 0, 1)) ,

(ϕ∗10, ϕ
∗◦
10) = ((1, 1/2, 1), (0, 0, 0, 0, 0, 1/2, 0, 0, 0, 1, 0, 1)) ,

(ϕ∗11, ϕ
∗◦
11) = ((0, 1, 1), (0, 0, 0, 0, 0, 0, 0, 1/2, 0, 1/2, 1, 1)) ,

(ϕ∗12, ϕ
∗◦
12) = ((1, 1, 1), (0, 0, 0, 0, 0, 0, 0, 0, 0, 1/2, 0, 1)) .

Note that all the formal concepts above are precisely all the crisply generated
concepts. Indeed, the concept generated by {ψ1, . . . , ψk} ⊆ L0 coincides with the
concept generated by the single formula

∧
i=1,...,k ψi, which is logically equivalent



to a formula of L0. We also observe that ϕ∗◦12 = (infe∈Ω0
e(ϕ1), . . . , infe∈Ω0

e(ϕ12)) =
TΩ0
6= ∅.

As described in the previous part of the section, we can endow the set Ccg(K)
with the operations defined in (2)–(5). We obtain in this way an algebra Ccg(K)
of crisply generated concepts of L0 which is isomorphic to the free 1-generated
 L3 algebra, depicted in Figure 1, via the isomorphism λ that associates each
formula ϕ ∈ L0 with the concept (ϕ∗, ϕ∗◦).

ϕ12

ϕ9 ϕ10 ϕ11

ϕ5 ϕ6 ϕ7 ϕ8

ϕ2 ϕ3 ϕ4

ϕ1

Fig. 1: The Lindenbaum-Tarski algebra of  L3 over one generator.

Consider now the set of objects (evaluations) ΩB = {e0, e2} ⊆ Ω0. Again,
the triple KB = {ΩB ,L0, RB}, where RB : ΩB × L0 → {0, 12 , 1} is a 3-valued
fuzzy relation defined as R(e, ϕ) = e(ϕ), identifies a formal context. Actually,
the fuzzy relation RB is in fact a crisp relation, since the evaluation e0 and e2
only evaluate x to either 0 or 1. In this new setting, we can compute all the
formal concepts induced by single formulas of L0, obtaining:

(ϕ∗1, ϕ
∗◦
1 ) = (ϕ∗3, ϕ

∗◦
3 ) = (ϕ∗7, ϕ

∗◦
7 ) = ((0, 0), (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)) ,

(ϕ∗4, ϕ
∗◦
4 ) = (ϕ∗8, ϕ

∗◦
8 ) = (ϕ∗11, ϕ

∗◦
11) = ((0, 1), (0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1)) ,

(ϕ∗2, ϕ
∗◦
2 ) = (ϕ∗5, ϕ

∗◦
5 ) = (ϕ∗9, ϕ

∗◦
9 ) = ((1, 0), (0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1)) ,

(ϕ∗6, ϕ
∗◦
6 ) = (ϕ∗10, ϕ

∗◦
10) = (ϕ∗12, ϕ

∗◦
12) = ((1, 1), (0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1)) ,

which, in fact, they turn out to be classical concepts. Not surprisingly, endowing
this set of concepts Ccg(KB) with the operations defined in (2)–(5) we obtain an
algebra of concepts which is isomorphic to the free 1-generated Boolean algebra.
Such algebra is obtained as a quotient of Ccg(K). As it is easily seen using
Proposition 2, this holds in general, that is, an algebra of concepts Ccg(K′),
with K ′ = {Ω′0,L0, R} and Ω′0 ⊆ Ω0 is a quotient of the algebra Ccg(K).



4 The natural Concept Lattice of a Logic

In this section we recall the construction of concept lattices applied in [5] to
characterize formal concept lattices associated to Gödel algebras.

Proposition 1 states that for every finite lattice H there is always a canonical
way to build the standard context KH , whose concept lattice B(KH) is isomor-
phic to H. Let A = (A,∧,∨,→,>,⊥) be a finite algebra in a variety V ⊆MTL,
and let CA = B((J(A),M(A),≤)) be the concept lattice of its standard context.
Then, the lattice CA = (CA,u,t,>G,⊥M ), is isomorphic to the lattice reduct
of A.

Pushing further this approach, when V is a locally finite variety the k-
generated free algebras Fk(V) are finite, and hence we can apply to them the
above construction. As the elements of Fk(V) are equivalence classes of logical
formulas in k variables, this amount to associate every logical formula to its
natural formal concept.

For some cases it is possible to extend the lattice isomorphism to a full
isomorphism of algebras by defining suitable operations between the formal con-
cepts. In [5] the authors use this methodology to obtain formal concepts for
every Gödel logic formula. This is possible because in Gödel algebras lattice and
monoidal conjunctions coincide, and hence it is natural to define an implication
operator between concepts by using the residum of the concepts meet.

Comparing to Section 3.1, in the next subsection we apply the above sketched
construction to F1(V( L3)).

4.1 Constructing the concept lattice of the logic  L3

Consider the set L0 = {ϕ1, ϕ2, . . . , ϕ12} of all  L3-fomulas (up to logical equiv-
alence) on one variable x. The formulas of L0 are exhibited in Figure 1. Let
H = (L0,≤) be the lattice reduct of the free 1-generated  L3 algebra F1 depicted
in Figure 1. The sets of join irreducible elements and meet irreducible elements
of L are J(H) = {ϕ2, ϕ3, ϕ4, ϕ7}, and M(H) = {ϕ6, ϕ9, ϕ10, ϕ11}, respectively.
By Proposition 1, we can identify J(H) and M(H) with the set of objects and
attributes, respectively, of a standard context KH = (J(H),M(H),≤). The fol-
lowing table shows the relation ≤

≤ ϕ6 ϕ9 ϕ10 ϕ11

ϕ2 × × ×
ϕ3 × × ×
ϕ4 × × ×
ϕ7 × ×

The corresponding standard context lattice is depicted in Figure 2. Clearly, by
Proposition 1, it is isomophic to the lattice reduct of the free 1-generated  L3

algebra of Figure 1, via a lattice isomorphim f defined as follows. For each
ϕ ∈ L0, let Jϕ be the maximal subset of J(H) such that ϕ =

∨
Jϕ, and Mϕ be

the maximal subset of M(H) such that ϕ =
∧
Mϕ. Then the map f associates

each ϕ ∈ L0 with the formal concept (Jϕ,Mϕ) ∈ KH .



(ϕ2ϕ3ϕ4ϕ7, ∅)

(ϕ2ϕ3ϕ7, ϕ9) (ϕ2ϕ3ϕ4, ϕ10) (ϕ3ϕ4ϕ7, ϕ11)

(ϕ2ϕ3, ϕ9ϕ10) (ϕ2ϕ4, ϕ6ϕ10) (ϕ3ϕ7, ϕ9ϕ11) (ϕ3ϕ4, ϕ10ϕ11)

(ϕ2, ϕ6ϕ9ϕ10) (ϕ3, ϕ9ϕ10ϕ11) (ϕ4, ϕ6ϕ10ϕ11)

(∅, ϕ6ϕ9ϕ10ϕ11)

Fig. 2: The concept lattice associated with the lattice reduct of F1

To extend the above defined lattice isomorphism to an algebraic isomorphism
between F1( L3) and the concept lattice of the standard context KH , it is neces-
sary to define a proper monoidal conjunction between concepts of KH . Of course,
an obvious way to define such an operation is through the isomorphism f , that
is, for each pair of concepts (E,F ), (E′, F ′) ∈ KH , to define (E,F )⊗ (E′, F ′) =
(Jϕ�ψ,Mϕ�ψ), where f−1((E,F )) = ϕ and f−1((E′, F ′)) = ψ. However, this
does not shed any light on how the operation works on the elements of the con-
cepts. To have a much better insight in the operation seems not to be an easy
task, even in the case of locally finite subvarieties of MTL (such as  L3), and it
will be faced in some future paper.

5 Conclusions and further developments

To obtain a direct relation between a formal concept and a fuzzy logic formula,
in this work we have explored two ways to obtain concept lattices isomorphic to
Lindenbaum algebras of many-valued logics. The first approach naturally gives
the desired isomorphism between the concept lattice and the algebra of formulas,
while to complete the second approach additional research has to be done.

To depict the two constructions we have chosen the logic  L3. In [6],  L3 has
been characterized as a logic of prototypes and counterexamples. The construc-

tion of possible worlds in [6] gives a lattice of functions Ω
Ωn

0
0 very similar to the

concept lattice of our first approach in Section 3.1. Hence, putting together the
characterization of [6] with the constructions presented here, it will be ideally
possible to build a formal concept semantics of prototypes and counterxamples
for the logic  L3.
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