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Abstract

The bargaining problem deals with the question of how far a negotiating
agent should concede to its opponent. Classical solutions to this problem,
such as the Nash bargaining solution (NBS), are based on the assumption
that the set of possible negotiation outcomes forms a continuous space.
Recently, however, we proposed a new solution to this problem for sce-
narios with finite offer spaces [22]. Our idea was to model the bargaining
problem as a normal-form game, which we called the concession game,
and then pick one of its Nash equilibria as the solution. Unfortunately,
however, this game in general has multiple Nash equilibria and it was not
clear which of them should be picked. In this paper we fill this gap by
defining a new solution to the general problem of how to choose between
multiple Nash equilibria, for arbitrary 2-player normal-form games. This
solution is based on the assumption that the agent will play either ‘side’
of the game (i.e. as row-player or as column-player) equally often, or
with equal probability. We then apply this to the concession game, which
ties up the loose ends of our previous work and results in a proper, well-
defined, solution to the bargaining problem. The striking conclusion, is
that for rational and purely self-interested agents, in most cases the opti-
mal strategy is to agree to the deal that maximizes the sum of the agents’
utilities and not the product of their utilities as the NBS prescribes.

Keywords: Automated Negotiation, Equilibrium Selection, Bargaining
Solution, Cooperative Game Theory, Non-cooperative Game Theory
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1 Introduction

Automated negotiation is a research area that deals with autonomous agents
that are purely self-interested, but nevertheless need to cooperate to ensure
beneficial outcomes [13]. A typical example is the scenario in which a buyer
and a seller are negotiating the price of a car. Although the seller would prefer
to get paid the highest possible price, she should also take into account that
the price has to be low enough for the buyer to accept the offer.

In general, in automated negotiation, two or more agents may propose
offers to each other, and may accept or reject the offers they receive from each
other. Although a negotiating agent is self-interested, its proposals must also
benefit the other agents because otherwise they would never accept any of
these proposals.

The question which offer represents the ideal trade-off between an agent’s
own utility and its opponent’s utility, is known as the bargaining problem. In the
literature, many solutions to this problem have been proposed. Arguably the
best known of these is the Nash bargaining solution (NBS) [32]. The problem
with the NBS, however, is that it is based on the assumption that set of
possible outcomes of the negotiation forms a convex set, so it does not apply
to domains where the number of possible outcomes is finite.

This assumption of convexity is typically defended with two arguments.
Firstly, it is often argued that one can always make the set of possible nego-
tiation outcomes convex, by allowing ‘lotteries’ over outcomes. However, it
is hard to imagine any real-life situation were negotiators would agree on a
lottery ticket as the outcome of their negotiations. A second, more realistic,
argument is that one can make any discrete set of offers convex by allowing
monetary side-payments. Although we agree that there are many real-world
scenarios where this is indeed a valid argument, we argue that there are still
many other scenarios were such monetary payments are not possible. See, for
example, the Automated Negotiating Agents Competitions (ANAC) [4], or see
[23; 24] for a real-world application.

We therefore argue that there is a need for an alternative solution to
the bargaining problem that applies to negotiation scenarios with only a finite
number of possible offers.

Recently, we proposed such a solution [21], based on game-theoretical prin-
ciples. Our idea was to model the negotiations as a normal-form game, which
we called the concession game, and which could be a seen as a discrete vari-
ant to the game defined by Nash in [34]. We then argued that the solution
of the bargaining problem can be found as a Nash equilibrium of this con-
cession game. Unfortunately, this game typically has multiple Nash equilibria,
so we left it as an open question how to choose between those equilibria. In
this paper we fill this gap by describing a recipe to select the correct Nash
equilibrium, resulting in a more refined version of the bargaining solution we
proposed earlier.

The question which equilibrium a player should select when a game has
multiple Nash equilibria, is known as the equilibrium selection problem. This is
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another problem that has also been studied extensively, and again there is no
single solution that is generally accepted, because each of these solutions needs
to make additional assumptions that are typically only justifiable in specific
scenarios [17; 16; 12; 30; 38; 41; 31; 26]

Of course, just like any of these existing solutions, the new solution that
we are proposing here also requires certain additional assumptions which may
not always hold. In our case, we assume what we call the assumption of
role-equifrequency, which means we assume that each ‘side’ of the game (i.e.
‘row-player’ and ‘column-player’) is played equally often, or with equal prob-
ability. While this may not always be true, it has the advantage that it is
often relatively easy to reason whether or not this assumption holds in a given
scenario.

The striking result of our analysis, is that under this assumption, the opti-
mal strategy for a purely self-interested negotiator, is to aim for an agreement
that maximizes the sum of the utilities, rather than the product.

In summary, this paper makes the following contributions:

� We present a new solution to the equilibrium selection problem for 2-player
normal-form games.

� We use this solution to fill a gap in our earlier work in which we proposed
a new solution to the bargaining problem for finite offer spaces.

� We show that this bargaining solution can, in many cases, be calculated
efficiently.

The rest of this paper is organized as follows. In Section 2 we briefly discuss
existing work on the bargaining problem and the equilibrium selection problem.
In Section 3 we recall the definitions from existing work that are necessary
to understand this paper. In Section 4 we prove a theorem that allows us
to characterize the Nash equilibria of the concession game. In Section 5 we
present our solution to the equilibrium selection problem, and prove that this
solution is optimal, under the assumption of role equifrequency. In Section 6
we show how our bargaining solution can be calculated efficiently. Then, in
Section 7 we present a number of examples to demonstrate our approach. In
Section 8 we go into a more detailed discussion of a number of decisions and
assumptions we have made throughout this paper. And finally, in Section 9 we
summarize our conclusions and discuss future work.

The source code of our algorithm to calculate our bargaining solution is
publicly available at: https://www.iiia.csic.es/∼davedejonge/downloads.

2 Related Work

The equilibrium selection problem has been studied extensively, but there is
no single solution that is generally accepted, because every solution that has
been proposed makes a number of additional assumptions that are typically
only justifiable in specific scenarios. For example, very elaborate theories of
equilibrium selection were developed in [17] and [16], which were largely based

https://www.iiia.csic.es/~davedejonge/downloads


Springer Nature 2021 LATEX template

4 A New Bargaining Solution for Finite Offer Spaces

on the concept of risk dominance, which takes into account the risk that the
opponent may not be perfectly rational or that the utility values may not be
perfectly known. Furthermore, these existing approaches depend on a tracing
procedure [12], which starts from some prior assumption over the chosen strate-
gies, and then evolves to some unique Nash equilibrium, but it is not always
clear why it would be rational for the opponent to follow exactly the same
tracing procedure. Many other solutions have been proposed that are based
on some evolutionary approach [30; 38; 41; 31; 26].

The bargaining problem is another problem that has been studied exten-
sively. While the NBS seems to be the most widely accepted solution, it
has been widely criticized in the literature, because some of its axioms are
controversial [25]. Most notably, the axiom of ‘independence of irrelevant alter-
natives’ (see Section 8.4). Therefore, alternative solutions based on different
axioms have been proposed, such as the Kalai-Smorodinsky solution [25], but
their axioms remain equally controversial. Other attempts to overcome this
issue discard the axiomatic approach altogether, and instead try to derive an
optimal negotiation strategy [40], rather than just an optimal outcome, but
they still require assumptions that are not always clearly justifiable, such as
time-discounted utility functions.

Furthermore, various generalizations of the Nash bargaining solution have
been proposed for non-convex domains [11; 18], but they still assume the offer
space is continuous, rather than discrete. To the best of our knowledge, no
one else has proposed any bargaining solution for negotiation domains with a
finite offer space.

The simplest types of negotiation strategies that have been proposed in
the literature are the so-called time-based strategies [13]. They base their deci-
sions when to make which proposal only on time. More sophisticated agents,
however, apply adaptive strategies that use machine learning techniques to
predict, at run-time, how far the opponent is willing to concede, based on the
offers received from that opponent. The adaptive agent then makes sure it will
never propose or accept any offer with utility lower than the maximum util-
ity the opponent is predicted to offer. A plethora of different machine learning
techniques have been used for this, such as non-linear regression [45], Gaus-
sian processes [44], wavelet decomposition [9], Bayesian learning [19; 43; 45],
or reinforcement learning [27; 14]. Apart from learning at run-time, various
authors have also proposed the use of machine learning techniques to learn
from previous negotiation sessions [7; 42; 37]. While the authors of such agents
do often use the NBS or social welfare to measure the performance measure
for their approach, they rarely investigate whether their agents converge to a
theoretically optimal solution when they negotiate against themselves. Other
important types of strategy are Tit-for-Tat [13] and MiCRO [20].

Social welfare (i.e. the sum of the utilities of all agents) has often been
used in the automated negotiation literature as a performance measure, but
often only as a measure to assess the quality of some negotiation system as a
whole, rather than the quality of an individual strategy [1; 8]. On the other
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hand, in [46] it was mentioned that social welfare can also be useful to measure
the strength of individual strategies, because even a self-interested agent may
prefer to optimize social welfare if that improves its long-term relationship
with some specific other agent, which would allow it to achieve more individual
utility in the future. For this reason, various editions of ANAC awarded a prize
for the agents that scored highest social welfare [15; 2]. It should be noted,
however, that in this paper we are not looking at the benefits of long-term
relationships. We argue that a self-interested agent should aim to maximize
the utility sum, even if it is sure that it will never interact with the same
opponent ever again.

3 Preliminaries

In this section we discuss the relevant definitions and theorems from existing
literature that are required to understand the rest of the paper.

3.1 Game Theory

We here give the formal definition of a ‘game’ and of related concepts such as
‘strategies’ and ‘Nash equilibria’.

Definition 1 A normal-form game G (for two players) is a tuple 〈A1,A2, u1, u2〉,
where A1 and A2 are two finite sets representing the actions of the two players, and
u1, u2 are two utility functions ui : A1 ×A2 → R.

We say an agent plays the role of player 1 (resp. 2) if it chooses an action
from the set A1 (resp. A2) with the aim of maximizing the utility function u1

(resp. u2). We will call this agent α1 (resp. α2). In the literature, these roles are
also often referred to as the row-player and the column-player, respectively.

A strategy q for αi in game G, is a map that assigns a probability value
to each action a ∈ Ai. That is, q(a) ∈ [0, 1], and

∑
a∈Ai

q(a) = 1. The set of
all actions for which q(a) > 0 is called the support of q. A strategy is called a
pure strategy if the size of its support is exactly 1, and it is called a mixed
strategy if its support is greater than 1. A joint strategy ~q = (q1, q2) is
a pair consisting of one strategy for each player. We may sometimes abuse
terminology and refer to a strategy a, where a is actually an action, when we
mean the pure strategy with support {a}.

For any player i and any joint strategy ~q = (q1, q2), we can define the utility
value ui(q1, q2) ∈ R as:

ui(q1, q2) :=
∑
a∈A1

∑
a′∈A2

q1(a) · q2(a′) · ui(a, a′). (1)

We will sometimes use the notation ~u(q1, q2) or ~u(~q) as a shorthand for
(u1(q1, q2), u2(q1, q2)). If (q1, q2) is a joint strategy then we say that q1 is
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a best response to q2 if for all other strategies q′ for player 1 we have:
u1(q1, q2) ≥ u1(q′, q2). Similarly, q2 is a best response to q1 if for all other
strategies q′ for player 2 we have: u2(q1, q2) ≥ u2(q1, q

′). Furthermore, (q1, q2)
is called a Nash equilibrium if q1 is a best response to q2 and q2 is a best
response to q1. Note that whenever we use the term ‘Nash equilibrium’, we are
referring to an equilibrium of strategies that can be either mixed or pure. The
question which equilibrium strategy a player should choose when a game has
more than one Nash equilibrium, is known as the equilibrium selection problem.

While there is no generally accepted correct solution to the general equi-
librium selection problem, there is clear solution for the subclass of symmetric
games [10]. A symmetric game is a game 〈A1,A2, u1, u2〉, for which A1 = A2

and, for all a, a′ ∈ A1 we have: u1(a, a′) = u2(a′, a). If G is a symmetric game
then a symmetric Nash equilibrium of G is a Nash equilibrium (q1, q2) for
which q1 = q2. One can argue that in symmetric games players should behave
symmetrically, and therefore that we should only be interested in symmetric
Nash equilibria. Furthermore, it is known that every finite symmetric game has
at least one symmetric Nash equilibrium [10; 33], and since a given symmet-
ric equilibrium yields the the same utility to each player, the players should
choose the symmetric equilibrium that maximizes their utility.

3.2 Automated Negotiation

We here recall the main ideas and definitions from the literature on automated
negotiation. We first present the definition of a ‘negotiation domain’, in Section
3.2.1, and then, in Section 3.2.2 we discuss what it means for a negotiation
strategy to be ‘optimal’, and why this notion is important.

3.2.1 Definitions

In a classical scenario for automated negotiation two agents α1 and α2 have
to make a deal together. The agents have a fixed amount of time to make
proposals to one another according to some negotiation protocol [39]. That is,
each agent may propose an offer ω to the other agent, from some given set of
possible offers Ω. The other agent may then either accept the proposal or reject
it and make a counter proposal ω′ ∈ Ω. The agents continue making proposals
to each other until either the deadline has passed, or one of the agents accepts
a proposal made by the other. Each agent αi has a utility function Ui that
assigns to each offer ω ∈ Ω a utility value Ui(ω) ∈ R, but which is not known
to the other agent.1 When an offer ω gets accepted the agents receive their
respective utility values, U1(ω) and U2(ω) corresponding to this offer. On the
other hand, if the negotiations fail because no proposal is accepted before the
deadline, then each agent αi receives a fixed utility value rvi ∈ R, known as
its reservation value.

1Note that we use the upper case U to denote utility functions of negotiation domains, while
we use the lower case u to denote utility functions of normal-form games.
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Definition 2 A finite bilateral negotiation domain N is a tuple
〈Ω, U1, U2, rv1, rv2, 〉 where:

� Ω is a finite set of possible offers.
� U1 and U2 are two utility functions (one for each agent) which are maps

from Ω to R
� rv1, rv2 ∈ R are the reservation values of the respective agents.

An offer ω ∈ Ω is said to be individually rational if U1(ω) > rv1 and
U2(ω) > rv2. An offer ω is said to be dominated by another offer ω′ if
U1(ω′) ≥ U1(ω) and U2(ω′) ≥ U2(ω) and at least one of these two inequalities
is strict. An offer ω is said to be Pareto-optimal if it is not dominated by
any offer in Ω. We will always assume (w.l.o.g.) that for any two offers ω 6= ω′

we have either U1(ω) 6= U1(ω′) or U2(ω) 6= U2(ω′).
We define the Pareto-set of a negotiation domain to be a sorted list

(ω1, ω2, . . . ωn), containing exactly the offers in Ω that are Pareto-optimal and
individually rational, and in which the offers are sorted in order of increasing
utility for agent α1. That is:2

rv1 < U1(ω1) < U1(ω2) < · · · < U1(ωn) (2)

which, by Pareto-optimality, also implies:

U2(ω1) > U2(ω2) > · · · > U2(ωn) > rv2 (3)

Definition 3 Let N be a negotiation domain. For any offer ω ∈ Ω, we define
its utility vector as the pair (U1(ω), U2(ω)). Furthermore, we define the utility
space of N as the set of all utility vectors of the offers in Ω. That is, the set
{(U1(ω), U2(ω)) ∈ R2 | ω ∈ Ω}. Whenever we say that a negotiation domain N is
convex, we mean that the utility space of N is a convex set.

When an agent αi proposes or accepts an offer ω for which its utility ui(ω)
is less than for any other offer ω′ it has proposed so far, we say the agent is
conceding, or making a concession. When we say that one agent is willing to
concede more than the other, we mean that the first agent is willing to accept
a lower amount of utility from the final agreement than the other agent.

3.2.2 Optimal Negotiation Strategies

The main question in automated negotiation is how to decide which offers to
propose or accept, and when. One might think that this could be answered by
modeling negotiations as an extensive-form game, and then trying to find a
subgame perfect equilibrium. However, it is hard to model negotiations in this

2Note that these inequalities are always strict, because if U1(ω) = U1(ω′), then one of these
two offers must dominate the other, but then the dominated offer is not the Pareto-set.
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way, because negotiations take place over continuous time (for a more in-depth
discussion, see Section 8.2).

Instead, Nash took an entirely different approach. Rather than trying to
derive the optimal negotiation strategy itself, he only derived the the final
outcome of a negotiation between two agents that negotiate optimally. Once we
know the answer to that question, we can implement a strategy that concedes
to, but no further than, that offer. If both agents play such a strategy, then
they can only come to exactly that agreement, and therefore it does not matter
anymore how exactly they concede towards that deal.3

Nash formulated a number of axioms and argued that, if the agents apply
an optimal negotiation strategy, they would agree upon an offer that satisfies
those axioms. He then proved that the unique offer that satisfies those axioms
is the one that that maximizes the product of the utilities of the two agents.

Definition 4 For any bilateral negotiation domain, its Nash bargaining solution
(NBS) is defined as the offer ωNBS ∈ Ω that satisfies:

ωNBS := arg max
ω∈Ω

{(U1(ω)− rv1) · (U2(ω)− rv2)}

However, one of the main assumptions underlying the NBS, is that the
negotiation domain is convex. Without this requirement Nash’s proof is no
longer valid, and the NBS may not even be well-defined, because there could
be multiple offers that maximize the utility product.

It is important to stress here, that even if you know how to determine the
theoretically optimal negotiation strategy, it is not easy to actually implement
it, because it would depend on the opponent’s utility function, which is usually
not known to the agent. Nevertheless, it is still very interesting and important
to be able to define the optimal negotiation strategy. Firstly, because it may
help researchers to determine how well a given negotiation strategy performs in
comparison to the theoretically optimal one. Secondly, even if the opponent’s
utility function is not exactly known, the agent may still have an approximate
model of this utility function, obtained either at runtime [6], or beforehand,
based on background knowledge of the domain [23]. Therefore, the agent could
use this estimated opponent utility to at least approximate the theoretically
optimal strategy.

3.3 The Concession Game

In [21] we proposed a new solution for the bargaining problem with finite offer
spaces. That is, we modeled the question how far an agent should be willing
to concede as a normal-form game, which we called the concession game. We
here repeat the definition of this game, although it should be noted that we
here use a slightly different definition than the one in our previous paper.

3Of course, in practice the agents may not be perfectly rational, and utility functions may not
be perfectly known, so in practice it may still matter how exactly the agents concede towards the
target deal, but in our context this is not relevant.
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Table 1 Payoff matrix of the concession game CN corresponding to a very simple domain
negotiation domain N with two offers ω1 and ω2 and utility vectors
(U1(ω1), U2(ω1)) = (40, 60) and (U1(ω2), U2(ω2)) = (60, 40).

Demand 60 Demand 40
Demand 60 rv1 , rv2 60 , 40

Demand 40 40 , 60 1
2

(40 + 60) , 1
2

(40 + 60)

First, in Section 3.3.1, we explain the concession game by means of an
example and then, in Section 3.3.2, we present the formal definition. Finally,
in Section 3.3.3 we discuss what exactly it means to play a mixed strategy of
the concession game.

3.3.1 Example

We here explain the concession game using an example from [21; 22].
Suppose the negotiation domain has two pareto-optimal offers, ω1 and ω2

which have utility vectors (U1(ω1), U2(ω1)) = (40, 60) and (U1(ω2), U2(ω2)) =
(60, 40). Both agents have to choose which would be the very lowest utility
they are willing to accept at the end of the negotiations. In this case, each
agent has two options: to demand at least 40 utility points, or to demand at
least 60 points. If both agents demand at least 60, then their demands are
incompatible because there is no offer that yields 60 or more to both agents,
so the negotiations fail and the agents will receive their respective reservation
values. If α1 demands 60 while α2 demands 40, then the only feasible outcome
is ω2, so that will be the final agreement, and the agents will receive the
respective utility values of ω2. Vice versa, if α1 demands 40 while α2 demands
60 then the outcome will be ω1. If both players only demand 40, then both
ω1 and ω2 are feasible, so the outcome of the negotiation will depend on the
details of their respective negotiation strategies. To abstract away such details,
we will simply assume that in that case there is a 50% chance that they will
agree on contract ω1, and 50% chance it will be ω2. The question which utility
each agent should demand (40 or 60) can now be seen as a normal-form game,
with a payoff matrix as displayed in Table 1, and the optimal strategy can be
found by calculating its Nash equilibrium.

3.3.2 Formal Definition

We are now ready to present the formal definition of a concession game, which
is just a generalization of the example above, to the case with n offers.

Definition 5 Let N be a negotiation domain with Pareto-set (ω1, ω2 . . . ωn) (where
ωn is the offer that is most preferred by α1 and ω1 is most preferred by α2), then
the concession game CN corresponding to N is a normal-form game in which both
players have the same set of actions A1 = A2 = {a1, a2, . . . , an} and the utility
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functions ui are given as:

ui(a
k, am) =


rvi if k > m

Ui(ω
k) if k = m

1
1+m−k

∑m
j=k Ui(ω

j) if k < m

(4)

Note that the lower case ui denotes the utility functions of the concession
game CN , while the upper case Ui denotes the utility functions of the negoti-
ation domain N . Furthermore, note that although each action ak of the game
CN corresponds exactly to one offer ωk of the Pareto-set of N , we make a
strict distinction between the two. Specifically, when an agent plays action ak

it means that at the end of the negotiations that agent would be willing to
propose or accept any offer that is better than or equal to ωk, but will never
propose or accept any offer that is worse than ωk.

The intuition behind Eq. (4) is that if agent α1 chooses action ak and agent
α2 chooses am, with k > m, then there is no offer that can satisfy both agents,
so negotiations will fail and the agents receive their respective reservation
values. For example, if α1 plays a7 and α2 plays a3 (see Figure 1), it means
that α1 is only willing to propose or accept offers ω7, ω8, ω9 and ω10, while α2

is only willing to propose or accept offers ω1, ω2, and ω3. On the other hand,
if k < m it means that any offer ωj with k ≤ j ≤ m is acceptable to both
agents. We then assume that any of these offers have equal probability of being
selected as the final outcome. For example, if α1 plays a3 and α2 plays a7 (see
Figure 2), it means that α1 is willing to propose or accept offers ω3, ω4 . . . ωn,
while α2 is willing to propose or accept offers ω1, ω2 . . . , ω7. So, the offers from
ω3 to ω7 are acceptable to both agents.

Finally, if k = m then ωk = ωm is the only acceptable offer, so indeed
negotiations will end with ωk as the accepted offer and the agents receive
U1(ωk) and U2(ωk) respectively (see Figure 3).

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

a3

a7

(player 2)

(player 1)

Fig. 1 If player 1 plays action a7, it means he is willing to accept ω7, or any other offer
that is better for him (i.e. ω7, ω8, ω9, or ω10). Similarly, if player 2 plays action a3 it means
she is willing to accept ω3, or anything better for her (i.e. ω1, ω2, or ω3). In that case there
is no overlap between the acceptable offers, so no deal can be made.
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ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

a7

a3

(player 2)

(player 1)

Fig. 2 If player 1 plays action a3, it means he is willing to accept ω3, ω4, . . . ω10, while, if
player 2 plays action a3 it means she is willing to accept ω1, ω2, . . . ω7. In this case the offers
ω3, ω4, . . . ω7 are acceptable to both players, so any of these may become the accepted offer.

ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9 ω10

a6

a6

(player 2)

(player 1)

Fig. 3 If both players play action a6, then ω6 is the only offer that is acceptable to both
players.

We should remark that this definition is slightly different from our original
definition in [22]. That is, in that other paper we assumed, in the case of k < m,
that the outcome would be either ωk or ωm, while in this paper we assume
that any other offer ωj in between them is also a feasible outcome. We think
that this new definition more realistic.

Furthermore, we think it is important to stress the following:

Remark 1 The concession game is, in general, not a symmetric game.

Although the utility functions of the two players are both described by
Eq. (4), the concession game is, in general, not symmetric, because the right-
hand side of Eq. (4) depends on Ui, which is, in general, different for each
agent.

In the rest of this paper we will use the notation uk,mi as a shorthand for
ui(a

k, am) and Uk
i as a shorthand for Ui(ω

k). The following two identities,



Springer Nature 2021 LATEX template

12 A New Bargaining Solution for Finite Offer Spaces

which follow directly from Eq. (4), will be useful later on.

uk,ki = Uk
i for all k. (5)

uk,mi =
1

1 +m− k

m∑
j=k

uj,ji if k ≤ m. (6)

3.3.3 Execution of a Strategy

Let us now discuss what it actually means for a negotiating agent to play a
mixed strategy of the concession game.

Suppose that some negotiation domain N has a Pareto-set of size 10, so
the Pareto-optimal offers are labeled as ω1, ω2, . . . ω10. Furthermore, suppose
that the strategy selected by our agent has support {a5, a6}. Then, agent α1

will start by making proposals ω10, ω9, . . . , etc. until reaching4 ω6. At that
point, α1 will flip a coin (with probabilities weighted according to its mixed
strategy) to determine whether to play a5 or a6, that is: whether to stick with
ω6 as its final offer, or to concede further to ω5. In the first case α1 simply
keeps repeating the offer ω6, while in the second case it will need to decide
when to make that final concession. The agent cannot propose ω5 immediately,
because that would give α2 enough time to react to it and and play the best
reply against a5, which would defeat the whole purpose of playing randomized
strategy. Therefore, α1 should first keep repeating ω6, and try to wait until
the very last moment before making the final concession and propose ω5. This
also has the advantage that α1 can wait and see if α2 is willing to accept ω6,
before α1 proposes ω5.

We will not go into the details of what exactly is ‘the last possible moment’
because it depends on the details of the negotiation protocol. In a round-based
protocol this would be clear, but in a continuous-time protocol the agent would
have to make an estimation of what the latest time would be at which it could
safely make a proposal without risking that the message arrives too late.

4 The Nash Equilibria of the Concession Game

In this section we present our first new main result, namely a characterization
of the Nash Equilibria of a concession game. Specifically, we show that any
concession game has exactly one Nash equilibrium for every non-empty subset
S of A, so, in total, any concession game always has exactly 2|A| − 1 Nash
equilibria. This claim is formalized by two theorems. Theorem 1 was already
proved in [22], but for a slightly different definition of the concession game.
Therefore, we here state it again and present an updated proof. Theorem 2,
on the other hand, was only conjectured in [22], but not yet proven. So, the
main contribution of this section is a proof of Theorem 2.

4As explained above, it is not relevant to us how exactly the agent does this, since we assume
both agents are committed to the optimal strategy, so all offers that are worse for the opponent
will be rejected by the opponent anyway.
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Before we can state and prove these theorems, we first need the following
two lemmas, of which the proofs can be found in the Appendix.

Lemma 1 For any concession game CN , if k ≤ l < m then we have: uk,m2 < uk,l2 .

Lemma 2 Let CN be any concession game with actions A, let S be any proper non-
empty subset of A and let ak be any action that is not in S, i.e. ak ∈ A \ S. If one
player plays a mixed strategy with support S, then playing ak is not a best response
for the other player.

The proof of Lemma 2 is essentially the same as the proof that we presented
earlier in [22]. However, since the definition of the concession game was slightly
different in our previous paper, and since also our notation has changed, we
think it is useful to present an updated proof. Furthermore, note that Lemma 3
and Theorem 1 are just reformulations of Lemma 2. Nevertheless we feel it is
useful, for clarity, to state them separately.

Lemma 3 In any concession game, if one player chooses a mixed strategy with
support S, then the best response for the opponent is a mixed strategy with support
S′, where S′ is a subset of S.

Proof This follows directly from Lemma 2. �

Theorem 1 In any Nash equilibrium of a concession game, the strategies of both
players have exactly the same support.

Proof This follows directly from Lemma 3. �

Theorem 1 says that any Nash equilibrium of a concession game can be
identified with a single set of of actions S ⊆ A, which is the support of both
players’ strategies. Therefore, from now on whenever we refer to “an equilib-
rium with support S”, we mean a Nash equilibrium such that both players
play a strategy with support S.

The following theorem says that the opposite also holds, and therefore
that there is a one-to-one relationship between all the Nash equilibria of the
concession game and all the non-empty subsets of A.

Theorem 2 Let A be the set of actions of a concession game. Then, for any
nonempty subset S of A there exists a Nash-equilibrium in which both players play a
strategy with support S.
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Proof We already know from Lemma 3 that, for any arbitrary subset S of A, if agent
α1 chooses a mixed strategy q1 with support S, then the best response for α2 is to
play a mixed strategy with support S′ ⊆ S. Thus, we only need to show that α1

can choose q1 in such a way that α2 will be indifferent between all the elements of
S (i.e. regardless of which action a ∈ S agent α2 chooses, α2 will always receive the
same expected utility). It is well-known in game theory (e.g. see [35]) that this then
implies that any strategy q2 for α2 with support S will be a best-response to q1.
Furthermore, from the symmetrical definition of the concession game, it then follows
that α2 can also choose q2 in such a way that α1 will be indifferent between all
actions in S, which in turn implies that q1 is also a best response to q2, and thus we
have constructed a Nash equilibrium in which both strategies have support S.

To simplify notation we will assume that S consists of a number of consecutive
actions, i.e. S = {ak, ak+1, ak+2, . . . am}. The proof works just as well for subsets
with non-consecutive actions, but we would then have to rename the actions. Fur-
thermore, we will assume the reservation values rvi are zero. It is straightforward to
adapt the proof to non-zero reservation values.

Let q1 denote a strategy for α1 with support S, and let u2(q1, a
l) denote the

expected utility of α2 when α1 plays q1, while α2 plays action al. Then we have:

u2(q1, a
l) =

n∑
i=0

u2(ai, al) · q1(ai)

Then, if we use qi1 as a shorthand for q1(ai) and we make use of the fact that qi1 = 0
for all ai 6∈ S, we can rewrite this as:

u2(q1, a
l) =

m∑
i=k

ui,l2 · q
i
1 (7)

Furthermore, noting that by Eq. (4) we have ui,l2 = rvi = 0 whenever i > l, we can
rewrite this as:

u2(q1, a
l) =

l∑
i=k

ui,l2 · q
i
1 (8)

As explained, we need to show that the values of qi1 can be chosen such that α2 is
indifferent between all actions al ∈ S. In other words, we need the value of u2(q1, a

l)
to be the same for all al ∈ S. Combined with Eq. (8) this means that we have to
show there is some value c such that the following set of equations can be satisfied
simultaneously:

l∑
i=k

ui,l2 · q
i
1 = c for all l ∈ {k, k + 1, . . . ,m} (9)

Note that this is indeed a set of equations, one for each value of l. Specifically, these
are (m−k)+1 equations with (m−k)+2 variables (the variables are qk1 , . . . q

m
1 and c).

In addition, since the variables qi1 are to be interpreted as probabilities, they should
also obey the equation

∑
qi1 = 1, so in total we have an equal number of variables

and equations. We can solve this by first picking an arbitrary positive value for c,
and then solving the system of equations (9). Let’s denote the solution obtained in

this way by ĉ, q̂k1 , q̂
k+1
1 . . . q̂m1 . We can then obtain a new solution to (9) by setting

qi1 =
q̂i1∑
q̂i1

and c = ĉ∑
q̂i1

. Note that this is indeed a new solution to the same set

of equations, and that the value of c is irrelevant anyway, since we merely want to
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prove that the left-hand side of (9) is the same for all l. This new solution clearly
also satisfies

∑
qi1 = 1. Finally, since the qi1 are to represent probabilities, we must

also show that qi1 > 0 for all i ∈ {k . . .m}.
We will now show by induction that (9) can indeed be solved this way. That is,

we start by finding qk1 from the equation for l = k, and then we show that if for some
integer t all qi1 with i ≤ t are known, then we can use these values to determine qt+1

1 .

For l = k Eq. (9) is: uk,k2 · qk1 = c. This is easily solved as:

qk1 =
c

uk,k2

(10)

and since both c > 0 and uk,k2 > 0 we have that qk1 > 0.

Now, suppose that for some integer t we have found the values of qk1 , q
k+1
1 . . . qt1.

Then, choosing l = t + 1 in Eq. (9) we get:
∑t+1

i=k u
i,t+1
2 · qi1 = c, which can be

rewritten as:
t∑

i=k

ui,t+1
2 · qi1 + ut+1,t+1

2 · qt+1
1 = c (11)

Note that we already have, by induction, that:

t∑
i=k

ui,t2 · q
i
1 = c (12)

We can equate the left-hand sides of (11) and (12) to get:

t∑
i=k

ui,t+1
2 · qi1 + ut+1,t+1

2 · qt+1
1 =

t∑
i=k

ui,t2 · q
i
1

which can then be rewritten as:

qt+1
1 =

∑t
i=k u

i,t
2 · q

i
1 −

∑t
i=k u

i,t+1
2 · qi1

ut+1,t+1
2

=

∑t
i=k(ui,t2 − u

i,t+1
2 ) · qi1

ut+1,t+1
2

=

∑t
i=k(ui,t2 − u

i,t+1
2 ) · qi1

U t+1
2

(13)

Here, to get from the second line to the third line, we used Eq. (5) to rewrite the
denominator. We now just need to show that this expression is positive. We can see
this as follows. Firstly, we know that U t+1

2 > 0, from Eq. (3) and the assumption

that rv2 = 0. Secondly, we know by induction that qi1 > 0 for all i ∈ {k, k+ 1, . . . 1}.
Finally, the fact that (ui,t2 − u

i,t+1
2 ) > 0 follows from Lemma 1.

�

Note that, as we explained in the proof, Equations (10) and (13) only
yield the unnormalized probabilities, so in order to get the true probabilities,
one still needs to divide them by

∑
j q

j
1. Also note that the result will be

independent of the chosen value of c, because this value will be canceled out
by this normalization.
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For completeness, we mention that if we repeat the calculations in this
proof with non-zero reservation values, then Equations (10) and (13) become:

qk1 =
c

uk,k2 − rv2

qt+1
1 =

∑t
i=k(ui,t2 − u

i,t+1
2 ) · qi1

U t−1
2 − rv2

5 Selecting the Best Equilibrium

In Section 4 we have seen that any concession game has exactly 2|A|−1 different
Nash equilibria. The question is now which one the players should choose. We
therefore present a new solution to the equilibrium selection problem. Although
we are mainly interested in its application to the concession game, this solution
concept applies just as well to any other 2-player normal-form game.

Our solution is based on the assumption that, given some set of games, for
any game in this class, our agent will be playing that game equally often in
the role of player 1 as it will be playing that game in the role of player 2. We
call this the assumption of role-equifrequency (AoRE).

We make the following claim, which we will formalize and prove in
Section 5.6: Under the AoRE a perfectly rational and purely self-interested
agent should choose its strategy corresponding to the Nash equilibrium that
maximizes the sum of the utilities of the two players.

5.1 The Assumption of Role-Equifrequency

Of course, the AoRE does not always hold, but we can think of three general
scenarios where the AoRE can be assumed to be true:

1. Our agent is going to play one or more different games, and we know that
each game will be repeated a number of times, and we know that for each
of these games our agent will play each of the two roles equally often.

2. Our agent is going to play one or more different games, and we know that
for each game our agent has a 50% chance of playing the role of player 1
and a 50% chance of playing as player 2.

3. Our agent is going to play one or more different games, but we have abso-
lutely no knowledge whatsoever about how often our agent is going to play
each role of each game.

A good example of the first scenario would be when you are implementing a
chess-playing algorithm, because it would be reasonable to assume that this
algorithm is going to play black equally often as white. Another example of
the first (or second) scenario, would be a tournament setting such as the Auto-
mated Negotiating Agents Competition (ANAC) [5]. The third scenario may
occur if one is implementing a general-purpose game-playing algorithm, for a
broad class of games, rather than for any specific game (as in the research field
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of general game playing). In that case the designer of the algorithm may have
no reason to believe, for any given game, that the agent will play that game as
player 1 more often or less often than as player 2. It can therefore be argued
that one can assign an equal probability to each role. This is known as the
principle of indifference [36].

Apart from these three scenarios, one can also imagine situations in which
the AoRE may not be perfectly true, but where it is still a reasonable
approximation of reality.

On the other hand, the AoRE may not hold if an algorithm is specifically
designed for one particular role in one specific domain. For example, when a
negotiating agent represents a phone company that negotiates with its (human)
customers on the price and contents of a phone contract. Since the agent always
represents the phone company and never the customer, the AoRE clearly does
not hold. In such situations our solution concept does not apply.

5.2 Multiple Equilibria that Maximize Utility-Sum

As we mentioned above, we claim that a rational agent should choose a Nash
equilibrium that maximizes the sum of the players’ utilities (which will be
proven below). The next question to answer, then, is how to break the tie if
there are multiple such equilibria.

For example, suppose there are two such equilibria ~q = (q1, q2) and ~r =
(r1, r2), with u1(~q) + u2(~q) = u1(~r) + u2(~r). An agent αi playing this game
cannot simply flip a coin and randomly choose between qi and ri, because if it
does that, then it is actually playing the strategy 1

2qi+
1
2ri, which may not even

be an equilibrium strategy at all. Instead, we need some tie-breaking rule that
allows us to deterministically choose one equilibrium. Secondly, we argue that
this tie-breaking rule cannot be arbitrary, but has to be based on some rational
criterion. After all, if our agent α1 picks an equilibrium (q1, q2) without any
rational justification, then there is no reason to believe the opponent α2 will
pick the same equilibrium, so α2 might pick the other one (r1, r2). But then
the agents end up playing the joint strategy (q1, r2) which, again, may not be
an equilibrium at all, and which may actually yield very low utility to α1.

We argue that the most rational solution to break ties, is to pick the equi-
librium that minimizes the absolute difference between the utilities of the two
agents |u1(~q) − u2(~q)|, because it can be considered the most ‘symmetrical’
solution. After all, if instead agent α1 picks an asymmetrical equilibrium that
is very good for itself, but bad for the other agent α2, then it is reasonable to
assume agent α2 reasons in the same way, and also picks an equilibrium that
is very good for itself, but bad for α1. This, of course, means that the two
agents pick different equilibria. So, the agents should neither pick the most
selfish equilibrium, nor the most unselfish equilibrium. Instead, they should
choose the solution that minimizes the utility-difference.
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5.3 Degenerate Equilibria

Even with the tie-breaking rule of the previous subsection, it could still happen
that among those equilibria that maximize the utility-sum there are multiple
equilibria that all minimize the absolute utility-difference. That would mean
that for each of these equilibria ~q there is another equilibrium ~r for which the
utility vector ~u(~r) is either exactly the same as ~u(~q), or is the ‘reflection’ of
~u(~q) (e.g. ~u(~q) = (60, 40) and ~u(~r) = (40, 60)).

Definition 6 For any pair of numbers (a, b) ∈ R2 we define its reflection to be the
pair (b, a).

We say that such solutions are degenerate, and we argue that in that there
is no rational and deterministic way to choose among several degenerate solu-
tions. Therefore all degenerate solutions need to be discarded (in Section 8.1
we present a more detailed discussion about why this is necessary).

Definition 7 We say a Nash equilibrium ~q is degenerate if there exists at least
one other Nash equilibrium ~r such that either they have identical utility vectors, or
the utility vector of ~r is the reflection of the utility vector of ~q. That is:

(u1(~q), u2(~q)) = (u1(~r), u2(~r)) or (u1(~q), u2(~q)) = (u2(~r), u1(~r)).

5.4 Our Solution to the Equilibrium Selection Problem,
Summarized

In summary, our solution to the equilibrium selection problem works as follows
(see also Figure 4):

1. Calculate all Nash equilibria.
2. Discard those Nash equilibria that are degenerate. If the set of non-

degenerate Nash equilibria is empty, then return without any result.
3. Among the non-degenerate equilibria, pick the equilibrium ~q that maximizes

the utility-sum u1(~q) + u2(~q).
4. If there is more than one such equilibrium, break ties by choosing the one

that minimizes the absolute utility-difference |u1(~q)−u2(~q)| (there can only
be one such equilibrium, because otherwise it would be degenerate).

If all Nash equilibria are degenerate, then our solution concept does not return
any result. However, this is a very extreme situation, and at this point it is
not even clear to us whether this situation can even happen at all.

One could say that Step 3 picks the equilibrium that maximizes ‘social
welfare’, and that Step 4 picks the one that maximizes ‘fairness’. However, we
feel it is important to stress the following:
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Fig. 4 A flowchart of our solution to the equilibrium selection problem.

Remark 2 Our solution concept has nothing to do with social welfare maximization
or fairness maximization. We argue that our solution concept is optimal for purely
self-interested agents that do not care about social welfare or fairness.

Our only motivation for steps 3 and 4 is that they are optimal from a purely
self-interested point of view, as we will show in Section 5.6. So, the fact that
our solution concept happens to maximize social welfare and fairness is just a
coincidental side effect, and not an intentional goal.

Furthermore, we should remark that other authors have also studied the
maximization of social welfare for purely-self interested reasons. For exam-
ple, in [46] the authors mentioned that it could be useful for the purpose of
building social relationships with agents that you may encounter again in the
future. However, we should stress that in our case we are not considering such
social relationships. Our arguments still hold even if each opponent is only
encountered once.

5.5 An Exception

Although we argued above that all degenerate equilibria should be discarded,
there is one situation where we can make an exception to this rule. That is, a
degenerate Nash equilibrium ~q does not need to be discarded if the following
two conditions are satisfied:

� There does not exist any equilibrium ~r for which ~u(~r) is the reflection of
~u(~q) (we say that ~q is only weakly degenerate).

� There is some possibility for the players to communicate.

In this case, the equilibria the agents have to choose between all have identical
utility vectors, so the agents do not care which of them is selected, as long as
they both select the same one. This means the agents could just use any arbi-
trary tie-breaking rule, as long as they coordinate with each other to ensure
they both select the same equilibrium. For example, one agent could just pick
an arbitrary equilibrium, announce it to the other agent, and the other agent
then simply picks the same one. Note, however, that this only works for weakly
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degenerate equilibria, because otherwise one agent would prefer one equilib-
rium, while the other would prefer the other, so neither of the two agents would
be willing to follow the choice of the other.

5.6 Optimality of Our Solution

In this section we formally show that, under the AoRE, our solution concept
that we described above is, in a certain sense, optimal. The main idea behind
our notion of optimality, is that we do not focus on what is the best strategy
for an individual game, but instead we try to find the optimal algorithm that
selects a strategy for any game G in some given class of games G. Selecting
such an algorithm can then itself be seen as a kind of game, and even though
the games G ∈ G may not be symmetrical, the AoRE ensures that this ‘meta-
game’, is in fact symmetrical, and we already know how to select an optimal
Nash equilibrium for such games, as explained in Section 3.1.

We will here always assume that G is some set of 2-player normal-form
games, and that P is function G × {1, 2} → R+. The value P(G, i) ∈ R+

represents the frequency or probability that our algorithm will be playing game
G as player i.

Definition 8 A strategy selection algorithm (SSA) T for G is an algorithm
that can take as its input any pair (G, i) with G ∈ G, and i ∈ {1, 2} and outputs
a mixed strategy for player i in the game G. The set of all possible SSAs for G is
denoted as TG .

We will not give a precise formalization of the set TG , but one could think
of it as the set of all Turing machines that take as input a string representing a
game G and a number i, and that output some string representing a strategy
for player i in game G. One example of an SSA could be an implementation
of the Lemke-Howson algorithm [29].

For any SSA we want to assign a score to it that represents how well it
performs. This score depends on the frequency with which it plays each of the
games in G in each role, and on the SSA applied by its opponents.

Definition 9 Let G be a set of games, and P be a function G × {1, 2} → R+.
Furthermore, let T and T ′ be two SSAs. Then we define two utility functions UI and
UII , with respect to P, as follows:5

UI(T, T ′) :=
∑
G∈G
P(G, 1) · u1(T (G, 1), T ′(G, 2))

+ P(G, 2) · u2(T ′(G, 1), T (G, 2))

(14)

5If G is infinite then we must of course impose some convergence criteria on P for these two
expressions to be well-defined. We will not go into such detail here.
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UII (T, T ′) :=
∑
G∈G
P(G, 1) · u2(T (G, 1), T ′(G, 2))

+ P(G, 2) · u1(T ′(G, 1), T (G, 2))

(15)

The expression UI(T, T ′) represents the total expected utility that T would
obtain when playing against T ′, while UII represents the expected utility
obtained by its opponent T ′.

In Eq. (14) the term u1(T (G, 1), T ′(G, 2)) represents the expected utility
obtained by T when it plays the role of player 1 in game G, while its opponent
applies algorithm T ′, and u2(T ′(G, 1), T (G, 2)) is the utility that T receives
when it plays as player 2 in game G against an opponent that applies T ′.
Similarly, in the two corresponding terms in Eq. (15) represent the utility
values obtained by T ′ in those same games.

Furthermore, note that in both equations, the expression P(G, i) represents
the probability or frequency that T will play the game G in the role of player
i. That is, it refers to the SSA that appears as the first argument in UI or UII

Definition 10 We say that P satisfies the Assumption of Role-Equifrequency
(AoRE) if for all games G ∈ G we have P(G, 1) = P(G, 2).

Definition 11 Let G be some set of games and P some weight distribution over
G × {1, 2}. Then, the meta-game for P, denoted ΓP , is a 2-player normal-form
game, defined as follows:

� For both players, their set of actions is given by the set of SSAs for G.
That is: AI = AII = TG .

� The utility functions are given by UI and UII , as in Def. 9 (w.r.t. P).

Note that we use roman numerals I and II as indices for the players of the
meta-game, in order to clearly distinguish them from the players 1 and 2 of
the individual games G ∈ G. To be clear: if some agent α plays the meta-game
in the role of player I, it means that α will play each game G with probability
(or frequency) P(G, 1) as player 1, and with probability (or frequency) P(G, 2)
as player 2.

We feel we should stress the following:

Remark 3 Even though each game G ∈ G may be repeated several times, this does
not mean the meta-game can be seen as a repeated game.

Note that according to Def. 8 an SSA only takes as its input the description
of a single game plus the index of the role to play. This means it does not
accept the history of any previously played games as its input. In other words,
it does not remember any earlier games, so each game is played as an entirely
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new game, independent from anything that happened in previous games, and
from any opponents it has played against before. Therefore, it is not playing
a repeated game.

Lemma 4 If P satisfies the AoRE, then ΓP is a symmetric game.

Proof We need to show that for any T and T ′ we have UI(T, T ′) = UII (T ′, T ).
Thanks to the AoRE we can define P(G) := P(G, 1) = P(G, 2), so we can rewrite
Eq. (14) as:

UI(T, T ′) =
∑
G∈G
P(G) ·

(
u1(T (G, 1), T ′(G, 2)) + u2(T ′(G, 1), T (G, 2))

)
Similarly, we can rewrite Eq. (15) as:

UII (T ′, T ) =
∑
G∈G
P(G) ·

(
u2(T ′(G, 1), T (G, 2)) + u1(T (G, 1), T ′(G, 2))

)
These two expressions are indeed equal. �

In the following, for any game G ∈ G, we will use the notation q  q′

to denote that q′ is a best response to q, and q ! q′ denotes that (q, q′)
is a Nash equilibrium. Similarly, given some distribution P, we will use the
notation T ⇒ T ′ to denote that SSA T ′ is a best response to T in the meta-
game ΓP , and T ⇔ T ′ to denote that T and T ′ form a Nash equilibrium of
the meta-game ΓP .

Lemma 5 T ′ is a best response to T iff for all games G ∈ G and all roles i ∈ {1, 2},
the strategy T ′(G, i) selected by T ′ is a best response to the strategy selected by T
in the opposing role. That is:

T ⇒ T ′ iff for all G ∈ G we have T (G, 1) T ′(G, 2) and T (G, 2) T ′(G, 1).

Proof Suppose that T ⇒ T ′ but there is some game Ĝ for which we do not have
T (Ĝ, 1)  T ′(Ĝ, 2). This means that there is some other strategy q for player 2 in
game Ĝ for which T (Ĝ, 1) q. Let us now define a new SSA T † as follows:

T †(G, i) =

{
q if (G, i) = (Ĝ, 2)

T ′(G, i) otherwise

It should be clear that if in Equation (15) we replace T ′ by T † then all terms stay the
same, except for the term u2(T (Ĝ, 1), T ′(Ĝ, 2)), which will be replaced by the term
u2(T (Ĝ, 1), q). And since q is a best response to T (Ĝ, 1) the new term must be greater
than the old term, so we have UII (T, T ′) < UII (T, T †), which is in contradiction with
the assumption that T ⇒ T ′. This proves that we must have T (G, 1)  T ′(G, 2),
and in a similar way we can show that T (G, 2) T ′(G, 1) must also hold.

To prove the other direction, assume that for all G in G we have T (G, 1)  
T ′(G, 2) and T (G, 2)  T ′(G, 1), while we do not have T ⇒ T ′. So, there must be
some T † with UII (T, T ′) < UII (T, T †). We see from Eq. (15) that this means there
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must be some game G such that either u2(T (G, 1), T ′(G, 2)) < u2(T (G, 1), T †(G, 2))
or u1(T ′(G, 1), T (G, 2)) < u2(T †(G, 1), T (G, 2)). But the first of these inequalities
contradicts the assumption that T (G, 1)  T ′(G, 2), while the second contradicts
T (G, 2) T ′(G, 1). �

Corollary 1 Two SSAs form a Nash equilibrium of the meta-game, if and only if for
each game G ∈ G the strategies they select form a Nash equilibrium of G. That is:

T ⇔ T ′ iff for all G in G we have: T (G, 1)! T ′(G, 2) and T ′(G, 1)! T (G, 2).

Proof This follows directly from Lemma 5. �

Lemma 6 For any G and any P that satisfies the AoRE, the meta-game ΓP has at
least one pure symmetric Nash equilibrium.

Proof For each game G ∈ G, pick a Nash equilibrium (q1, q2) of that game. This
equilibrium does not need to be symmetric, and its strategies do not need to be pure.
Then, simply define T (G, i) = qi. Note that by Corollary 1 we then have that (T, T )
is a Nash equilibrium of ΓP , which is clearly symmetric. Furthermore, note that it is
a pure equilibrium, despite the fact that the strategies selected by T may be mixed
strategies. This is because in the definition of ΓP each SSA T is considered to be a
single action. �

Definition 12 We say an SSA T is rational if the following two conditions both
hold:

� T is a best response to itself (i.e. T vs. T forms a pure symmetric Nash
equilibrium of the meta-game).

� for every game G ∈ G the Nash equilibrium (T (G, 1), T (G, 2)) is non-
degenerate.

Note that if T is a best response to itself, then, by Corollary 1 the pair
(T (G, 1), T (G, 2)) is indeed a Nash equilibrium of G.

Definition 13 Suppose that P satisfies the AoRE. Then we say T is an optimal
SSA (w.r.t. P) if it is rational and, in addition, the following condition also holds:

� For any other rational SSA T ′ we have UI(T, T ) ≥ UI(T ′, T ′).

Note that since, in this case, the meta-game ΓP is symmetrical, this
condition can be equivalently stated as UII (T, T ) ≥ UII (T ′, T ′).

We are now ready to state the next main theorem of this paper, which
implies that our solution concept, described in Section 5, is optimal in the
sense of Definition 13.
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Theorem 3 If P satisfies the AoRE, and T is a rational SSA such that for any
G ∈ G the pair (T (G, 1), T (G, 2)) is a Nash equilbrium that maximizes u1(~q) + u2(~q)
among all non-degenerate Nash equilibria ~q of G, then T is an optimal SSA w.r.t. P.

Proof In this proof we will use the notation τi as a shorthand for T (G, i) and τ ′i as
shorthand for T ′(G, i).

Suppose the contrary, i.e. that T is not optimal, which means there is some
rational SSA T ′ such that UI(T, T ) < UI(T ′, T ′). We then see from Equation (14)
that there must be at least one game G for which we have:

P(G, 1) · u1(τ1, τ2) + P(G, 2) · u2(τ1, τ2) <

P(G, 1) · u1(τ ′1, τ
′
2) + P(G, 2) · u2(τ ′1, τ

′
2)

and thanks to the AoRE we can remove the factors P(G, 1) and P(G, 2), so we get:

u1(τ1, τ2) + u2(τ1, τ2) < u1(τ ′1, τ
′
2) + u2(τ ′1, τ

′
2)

Note that by Corollary 1 the pairs (τ1, τ2) and (τ ′1, τ
′
2) are both Nash equilibria

of G, and since T and T ′ were both assumed rational, they are both non-degenerate.
So, this inequality is in contradiction to the assumption that (τ1, τ2) maximizes the
utility-sum among all non-degenerate Nash equilibria. �

6 A More Efficient Algorithm

In Section 4 we have seen that any concession game has 2|A|−1 equilibria. This
means it would be intractable to calculate all of them, and therefore we cannot
apply the solution to the equilibrium selection problem that we presented in
Section 5 in a brute-force manner. Luckily, however, we will show in this section
that, in the case of the concession game, we can apply our solution without
explicitly calculating all equilibria.

Let S be any subset of A. Then we define the two extreme points of
S as the first and last element of S (viewed as a list, sorted as in Eq. (2))
respectively. For example, if S = {a3, a4, a7, a12} then the extreme points are
a3 and a12. Formally, ak and am are the extreme points of S iff for all al ∈ S
we have U1(ωk) ≤ U1(ωl) ≤ U1(ωm).

In the following, we will use the notation ui(S) to denote the expected
utility for agent αi when both players follow the equilibrium with support S.

We first need the following two lemmas, which are proven in the Appendix:

Lemma 7 For any concession game CN , if k ≤ l ≤ m then we have uk,l1 ≤ uk,m1 .

Lemma 8 For any concession game CN , if k ≤ l ≤ m then we have ul,m2 ≤ uk,m2 .

We can then use these two lemmas to prove the following important lemma.
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Lemma 9 Let CN be a concession game with actions A. Then for any subset S of
A with extreme points ak and am, and for any i ∈ {1, 2} we have:

ui(S) ≤ uk,mi .

Proof Let S be a set for which ak and am are the extreme points (with k < m). For
u1(S) we then have:

u1(S) =
∑
al∈S

ql2 · u
k,l
1 ≤

∑
al∈S

ql2 · u
k,m
1 = uk,m1

Here, the first equation comes from Eq. (1), by fixing action ak for player 1 (which is
allowed because in a Nash equilibrium each player is indifferent between the various
actions in its support), and the inequality in the middle comes from Lemma 7.

In a similar way, using Lemma 8, we obtain:

u2(S) =
∑
al∈S

ql1 · u
l,m
2 ≤

∑
al∈S

ql1 · u
k,m
2 = uk,m2

�

Lemma 9 is useful, because it means that uk,m1 +uk,m2 is an upper bound for
the utility sum u1(S) + u2(S), which can be calculated quickly without deter-
mining the actual Nash equilibrium corresponding to S. If this upper bound
is lower than the utility-sum of any other support S′ that we have already
calculated and that is non-degenerate, then we can immediately discard the
equilibrium with support S, as well as any other equilibrium for which the
support has the same extreme points.

Lemma 10 Let CN be a concession game with actions A. Then, for any subset S
of A there exists an action at ∈ A such that u1(S) + u2(S) ≤ ut,t1 + ut,t2 .

Proof We denote the extreme points of S by ak and am. Furthermore, we define at

to be the action in S such that:

t = arg max
j∈{k,k+1,...,m}

uj,j1 + uj,j2

Then we have:

u1(S) + u2(S) ≤ uk,m1 + uk,m2

=
1

m− k + 1

m∑
j=k

uj,j1 + uj,j2

≤ 1

m− k + 1

m∑
j=k

ut,t1 + ut,t2

= (ut,t1 + ut,t2 ) · 1

m− k + 1

m∑
j=k

1
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= ut,t1 + ut,t2

where the first line comes from Lemma 9, the second line is from Eq. (6), and the
third line holds by our definition of t. �

Lemma 10 implies that, to calculate our solution concept, most of the times
we can ignore all subsets S with |S| > 1, because for such subsets there will
always be some action at such that the Nash equilibrium with support {at}
will have a higher utility sum. The only case in which we cannot ignore such
subsets, is when the equilibrium with support {at} happens to be degenerate.

Theorem 4 Let CN be a concession game with actions A. If there is a unique action
a∗ ∈ A that maximizes the utility sum u1(a, a) + u2(a, a), then our solution concept
can be calculated in linear time (i.e. in O(|A|)) and it will return the Nash equilibrium
with support {a∗}.

Proof Clearly, to determine a∗ and to determine that it is unique, we only need to
calculate the values u1(a, a) + u2(a, a) for each a ∈ A, so this can indeed be done in
O(|A|). The fact that {a∗} is indeed the solution follows from the fact that for any
other subset S with |S| = 1 we know that it is dominated by {a∗} (by definition of
a∗), and for any subset S with |S| > 1, we know by Lemma 10 that it is dominated by
some subset with |S| = 1 (namely S = {at}, with at as in that Lemma). Furthermore,
the fact that a∗ is unique implies that the equilibrium with support {a∗} is non-
degenerate. �

7 Examples

In this section we present two simple example negotiation domains and for
both of them we calculate our optimal solution and compare it to the NBS.
Furthermore, we calculate the optimal solutions of all domains that were used
in ANAC 2012 and 2013, and show that they can be calculated quickly.

7.1 Utility-sum vs. Utility-product

We will now give a simple example that clearly shows how a negotiation
algorithm that aims to maximize the utility-sum, performs better than an
algorithm that aims to maximize the utility-product.

Imagine we have a negotiation domain with only two offers: Ω = {ω1, ω2},
and the following utility functions:

U1(ω1) = 3 U2(ω1) = 10

U1(ω2) = 6 U2(ω2) = 6

Note that ω1 maximizes the utility-sum (10 + 3 > 6 + 6), while ω2 maximizes
the utility-product (6 · 6 > 10 · 3).
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Furthermore, suppose that we have two agents, α and β, that will negotiate
over this domain twice, once with α having utility function U1 and once with
β having utility function U1. In other words, they are playing the concession
game twice, with their roles flipped between the two games, so the AoRE holds.

We then see that if the agents both applied a strategy that always aims
to maximize the utility-product, then they would always agree on ω2. So, in
the first negotiation, agent α would receive U1(ω2) and agent β would receive
U2(ω2), which means they both receive 6 utility points. In the second nego-
tiation, since the utility functions are now swapped, agent α would receive
U2(ω2) and agent β would receive U1(ω2). Again, this means they both receive
6 points, so, summed over both sessions, the two agents would each receive a
total of 12 utility points.

On the other hand, if they both aimed to maximize the utility-sum, then
they would always agree on ω1. So, in the first negotiation α would receive
U1(ω1) = 10 and β would receive U2(ω1) = 3. In the second negotiation, α
would receive U2(ω1) = 10 and β would receive U1(ω1) = 3. This means that
both agents would receive a total of 13 utility points.

Indeed, both agents are better off if they aim to maximize the utility sum,
rather than the utility product.

7.2 The Nice-or-Die Domain

The Nice-or-Die domain is a negotiation domain that has been used in several
editions of ANAC [5; 46]. It has only three offers, with the following utility vec-

tors:6 ~U(ω1) = (160 , 1000), ~U(ω2) = (299 , 299) and ~U(ω3) = (1000 , 160).
This domain is especially interesting because its Nash bargaining solution is
not well-defined. After all, both ω1 and ω3 maximize the product of the agents’
utilities. We show that our solution concept, on the other hand, does yield a
well-defined optimal solution.

Since the Nice-or-Die domain contains three offers, the corresponding con-
cession game has 23 − 1 = 7 Nash equilibria. Using Equations (1), (10), and
(13) we can calculate the utility vectors of each of these equilibria. The results
are displayed in Table 2. We see that both {a1} and {a3} maximize the utility
sum 1000 + 160 = 1160, and they also both have the same utility difference
|1000 − 160| = 840. Therefore, these are degenerate solutions and we have to
discard them. The next best equilibria are {a1, a2} and {a2, a3}, but again
they are degenerate so we have to discard them as well. Finally, the next best
equilibrium is the one with support {a2}, which yields an expected value of
299 utility points for each agent, so this is the final outcome of our solution
concept.

6Normally, the utilities are normalized to be between 0 and 1, but here we multiply them by
1000 for clarity.
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Table 2 The expected utility vectors for the 7 Nash equilibria of the concession game
corresponding to the Nice-or-Die negotiation domain.

Support Utilities
{a1} (160 , 1000)

{a1, a2} (208 , 460)
{a1, a3} (238 , 238)
{a2} (299 , 299)

{a1, a2, a3} (270 , 270)
{a2, a3} (460 , 208)
{a3} (1000 , 160)

Table 3 Size: the number of offers in the domain. P.S.: the number of offers in the
Pareto-set. Sup: the size of the support of our solution. Our Sol.: the utility vector of our
solution. NBS: utility vector of the Nash bargaining solution. This table only shows the
domains for which our solution was different from the NBS.

Domain Name Size P.S. Sup. Our Sol. NBS

NiceOrDie 3 3 1 (299 , 299) -
Barter 80 25 1 (474 , 850) (654 , 650)
Outfit 128 6 1 (740 , 1000) (801 , 936)
HouseKeeping 384 12 1 (940 , 690) (840 , 780)
Lunch 3,840 38 1 (860 , 605) (827 , 633)
Travel 188,160 12 1 (920 , 765) (882 , 802)
Energy 390,625 149 1 (784 , 478) (652 , 607)

7.3 The ANAC 2012 and 2013 Domains

Apart from the Nice-or-Die domain, we have also calculated our solution con-
cept for all other domains that were used in in ANAC 2012 and 2013 (with
reservation values always set to 0). Thanks to Theorem 4 the calculation of
the solution took, in all cases, no more than a fraction of a second (on a laptop
with Intel Core i7-8750H@2.20GHz CPU and 32 GB RAM). We found that
in most cases our solution concept yields exactly the same result as the Nash
Bargaining solution. Therefore, in Table 3 we only show those few domains for
which it was different (for clarity we display the utilities as values between 0
and 1,000). We also note that in all cases the support of the optimal solution
had size 1. In other words, in each of these domains there is a single offer that
can be considered the optimal solution, and there is no need to apply a mixed
strategy.

8 Discussion

In this section we will go into a more in-depth discussion of a number of details
that we mentioned earlier in the paper.
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8.1 Degenerate Equilibria

One point of critique that one might have against our approach, is the fact
that we simply discard degenerate equilibria. Let us therefore explain our
justification for this decision in a bit more detail.

Firstly, one should understand that the appearance of degenerate equilibria
is a very extreme case, because it requires a perfect symmetry between the
two equilibria. That is, they are only degenerate if the values of their utility
vectors are exactly the same. For example, suppose we have two equilibria that
yield utility vectors of (40, 60) and (60, 40), respectively. If we make even the
slightest perturbation to one of these values, so that, for example, the first
utility vector actually becomes (40 + ε, 60) for some very small value ε, then
they are no longer degenerate. Therefore, some might argue that degenerate
equilibria are a purely theoretical phenomenon that cannot exist in practice,
and therefore, that it does not matter what we do with degenerate solutions.

On the other hand, if one insists that perfectly symmetrical situations do
exist, then one should also accept that in such a situation it is strictly impos-
sible for any decision-making algorithm to make a rational choice between
the options (otherwise the situation would not be perfectly symmetrical).
Therefore, any choice between two degenerate equilibria should either be
randomized, or based on some non-rational criterion.

To make this clearer, we will discuss a few possible ways an agent might
choose between two degenerate equilibria (q1, q2) and (r1, r2) to avoid dis-
carding them, but we will argue that none of these solutions is actually
feasible:

1. The agent chooses randomly.
2. The agent uses some some criterion that is rational, but not based on the

given utility values, to make a choice.
3. The agent uses an entirely arbitrary criterion, which is not based on any

form of rationality, to make a choice.
4. The two agents jointly agree to apply some (arbitrary) tie-breaking criterion

to make a choice.

The first of these options is not feasible, because if you flip a coin to choose
between strategies q1 and r1, you are in reality playing an entirely different
mixed strategy, namely the strategy 1

2 · q1 + 1
2 · r1, which may not even be an

equilibrium strategy at all. And even if this does happen to be an equilibrium
strategy, it means that the agent is actually choosing a different equilibrium,
rather than any of the two degenerate equilibria. In other words, the agent has
discarded the two degenerate equilibria after all.

If the second option was feasible, it would mean that the given utility
functions u1 and u2 actually do not faithfully capture the rational decision-
making process of the agent. In other words, the agent is in reality basing
its decisions on a pair of alternative utility functions u′1 and u′2, which are
slightly different from the given ones, and which break the tie between the two
equilibria. But that would mean that the two equilibria only seemed degenerate
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because their values were expressed with the incorrect utility functions u1 and
u2, while in reality they are not degenerate at all (w.r.t. u′1 and u′2). But
then we still have not solved the problem of what to do if we encounter two
equilibria that are truly degenerate (w.r.t. u′1 and u′2).

In the third case, one can imagine, for example, that the various actions
of the game have names, and that whenever the agent has to choose between
degenerate equilibria, it picks the one for which the support contains the action
that comes first in alphabetical order. This criterion is only used to break
the tie, and there is no rational justification to prefer that specific tie-breaker
over any other one. To explain why this does not work, let us say that our
agent selects strategy q1. Now, since this choice was based on an arbitrary tie-
breaking criterion, it would be impossible for the opponent to reason which
strategy our agent has chosen. Therefore, the opponent will have to guess which
strategy is its best response, so there is a 50% probability that the opponent
will pick q2, and 50% probability that the opponent will pick r2. Alternatively,
the opponent might also use an arbitrary tie-breaking criterion, but since our
agent cannot know which one, from our agent’s point of view there will still be
a 50% probability the opponent picks q2, and 50% probability the opponent
picks r2. But that means that our agent’s best response to the opponent is
neither q1, nor r1. Instead, our agent should actually pick the strategy that is
a best response against 1

2 · q2 + 1
2 · r2. Therefore, if both agents are rational,

neither of the two would actually choose their strategy using this non-rational
criterion, because both agents would have reason to deviate to a different
strategy. This means that, just as for point 1, the agents end up playing an
entirely different equilibrium, which means they have effectively discarded the
two degenerate equilibria after all.

The final option one might consider, is that the two agents could somehow
jointly coordinate to pick the same equilibrium. For example, one agent could
announce its selection so that the other can follow and select the same equi-
librium, or they could in some way jointly agree which equilibrium to select.
However, as we already explained in Section 5.5, this only works if the utility
vectors of those equilibria are identical. Otherwise, there is one equilibrium
that favors one agent, while another equilibrium favors the other agent. Given
that the situation is perfectly symmetrical between the two agents, either both
agents should be willing to accept the least favorable option, or neither of
them. In the first case we still do not have any rational criterion to select the
equilibrium, so the only way out would be for the two agents to flip a coin
together, but as we argued in the Introduction, and also below in Section 8.3,
that would violate one of the basic assumptions of our work. In the second
case, neither of the two equilibria would be chosen by the agents, so again they
are discarded after all.
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8.2 Negotiations as an Extensive-form Game

In Section 3.2.2 we mentioned that negotiations are difficult to model as
extensive-form games, because they take place in continuous time. We will
here discuss this in some more detail.

Of course, one could try to model time as being composed of very small,
but discrete, time steps. In order to make this a realistic model of actual
continuous-time negotiations, those time steps would then need to be so small
that a computer can practically no longer distinguish it from a continuous-time
model. For example, each time step could be the length of one CPU cycle.

The problem, however, is that any theoretically derived solution for such an
extensive-form game could be very difficult (if not impossible) to implement in
practice. For example, a strategy might prescribe that a specific offer must be
proposed in the last time step. But if that time step only lasts for a nanosecond,
then this is obviously not feasible, because the time it takes for the algorithm
to calculate which proposal should be made and execute all computational
steps involved in the act of proposing it, would typically take longer than a
nanosecond. Furthermore, one should take into account that in any realistic
scenario the negotiators would likely exchange their proposals over a network,
which means that one should take network latency into account, which is
unpredictable and which therefore makes precise timing of a proposal very
difficult.

An alternative is to model negotiations over much larger discrete steps.
For example, in the main league of ANAC 2019 [3] negotiations were limited
to no more than 1000 rounds. However, this means we would be studying an
inherently different problem than continuous-time negotiations. Furthermore,
it seems unrealistic to impose such a limit in a real-world negotiation, as it
would be unfair for the agent that needs to make a decision in the last round,
since it would only be able to accept or reject the last offer, while it would not
be allowed to make any new proposals.

8.3 Randomized Strategies vs. Randomized Agreements

In the Introduction we have argued against the use of lotteries or coin flips to
make the offer space convex. However, later on, we did allow players to play
mixed strategies. At first sight, this may seem contradictory, but we should
make clear that these are two entirely different forms of randomization. Specifi-
cally, we oppose the use of randomized agreements, but we have nothing against
randomized strategies.

The main difference, is that in the case of a randomized strategy it is a single
agent alone that performs the coin flip to decide its strategy, and it is purely
in the agent’s own interest to do so, because it allows it to be unpredictable
to its opponent. Furthermore, the coin flip can be implemented in the source
code of the agent itself, which means that the agent will not have any reason
to distrust the fairness of the coin flip.
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On the other hand, in the case of a randomized agreement, there are two
agents involved that together decide to flip a coin to make a final decision.
This is unsatisfactory, because no matter the outcome, there will always be one
agent that will be unhappy with the outcome (if there was an outcome that
made both agents happy, then they would not need to flip a coin). Furthermore,
since there are two agents involved, the coin flip should be executed by an
external algorithm, which should be trusted by both agents.

To give a more practical idea of the difference, note that randomized strate-
gies are very common in real-world scenarios. One can think, for example, of
border control units that each day pick a random location where they will
patrol the border, or ticket controllers in a public transportation system that
pick a random metro station on a random date to perform a surprise ticket
control. On the other hand, it is much harder to imagine a real-world example
of a randomized agreement. For example, it would be very strange for a car
salesman to propose to the client to flip a coin to determine the price of a car.

8.4 Comparison between Our Solution and the NBS

We here discuss the differences between the NBS and our solution.
Nash argued that, given a negotiation domain N , if the two agents both

negotiate optimally, then the outcome o(N) ∈ Ω they would agree upon, would
satisfy the following axioms [32]:

1. o(N) is Pareto-optimal:

∀ω ∈ Ω : U1(o(N)) ≥ U1(ω) ∨ U2(o(N)) ≥ U2(ω)

2. o(N) is independent of ‘irrelevant alternatives’:

Let N = (Ω, U1, U2, rv1, rv2) and N ′ = (Ω′, U1, U2, rv1, rv2) with Ω′ ⊂ Ω.

Then, if o(N) ∈ Ω′, then we must have: o(N ′) = o(N).

3. o(N) is invariant under any arbitrary positive linear transformation of the
utility function and reservation value of either of the two agents:

Let N = (Ω, U1, U2, rv1, rv2) and N ′ = (Ω, U ′1, U
′
2, rv

′
1, rv

′
2)

such that: U ′1 = a · U1 + b and rv′1 = a · rv1 + b

and: U ′2 = c · U2 + d and rv′2 = c · rv2 + d

with a, c ∈ R+ and b, d ∈ R.
Then: o(N) = o(N ′)

4. If the utility space is symmetrical, then o(N) should also be symmetrical:

If for every ω ∈ Ω there exists an offer ω′ ∈ Ω such that:

(U1(ω), U2(ω)) = (U2(ω′), U1(ω′)) then: U1(o(N)) = U2(o(N))
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On the other hand, our bargaining solution returns a set of offers o(N) ⊆
Ω, which is to be interpreted as the support of a Nash equilibrium of the
concession game CN . It is defined by the following axioms:

1. The Nash equilibrium with support o(N) should be Pareto-optimal (among
the set of all Nash equilibria of CN ).

2. The Nash equilibrium with support o(N) should be non-degenerate.
3. Among those equilibria that satisfy the previous two conditions, the equi-

librium with support o(N) should maximize the utility-sum of the two
players.

4. Among those equilibria that satisfy the previous three conditions, the equi-
librium with support o(N) should minimize the absolute utility-difference.

Assuming the offer space is finite, and that CN has at least one non-degenerate
equilibrium, this solution always returns a single well-defined solution. Further-
more, we have shown that if the AoRE holds, then this solution is theoretically
optimal.

We have seen that, in most cases, our solution concept can be summarized
as “the offer that maximizes the utility-sum of the two players”, while the NBS
is the offer that maximizes the utility-product. So, an important question is
where this difference comes from. Of course, we have assumed that our offer
space is finite while Nash assumed it was convex. However, this is not the
actual reason for this difference. After all, we could imagine an offer space that
is finite, but where the offers are so dense that it can be seen as approximately
convex.

For example, if we take our example of Section 7.1, with two utility vectors
(3, 10) and (6, 6), and we extend it by adding many offers with utility vectors
that lie on the straight line between the two original ones. We can then easily
see that (3, 10) still maximizes the utility-sum, while it does not maximize the
utility product, because at least (6, 6) has a higher product.

The real reason for the difference, is that Nash assumes that the utility
function of each player can be arbitrarily re-scaled, independently from the
other agent (and many other approaches have made the same assumption
[32; 17; 18; 11]). At first sight, this seems to make sense. After all, each player
could measure their utility according to their own preferred scale. For example,
if the payoff is monetary (such as in [28; 23]), then one agent might measure
it in euros, while the other might measure it in dollars. The outcome should
obviously not depend on the choice of unit or currency of either agent.

However, one should keep in mind that we make a distinction between the
agent and the role this agent is playing. We still agree that each agent should be
able to choose their own unit or currency, but since we are assuming the AoRE,
each agent has to sum its utility over all games and all roles it has played.
This, in turn, means that the agent has to measure the payoff for each role of
each game in the same unit or currency. So, we can no longer assume that the
optimal solution is invariant when we apply different linear transformations
to the two respective utility functions. If we apply a linear transformation to
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the payoff of player 1, we should apply the same transformation also to the
payoff of player 2. Note, however, that we still allow each agent to apply any
arbitrary linear transformation, independently of other agents.

Formally, our solution concept satisfies the following property (compare
this to the corresponding axiom for the NBS above):

Let N = (Ω, U1, U2, rv1, rv2) and N ′ = (Ω, U ′1, U
′
2, rv

′
1, rv

′
2)

such that: U ′1 = a · U1 + b and rv′1 = a · rv1 + b

and: U ′2 = a · U2 + b and rv′2 = a · rv2 + b

with a ∈ R+, and b ∈ R.
Then: o(N) = o(N ′)

We did not mention this property in our list of axioms above, because we
do not require this property to hold. We merely observe that it holds for our
solution concept, as a consequence of the other axioms. Similarly, we do not
require the axiom of independence of irrelevant alternatives to hold, but it
turns out that our solution does satisfy it, at least in those domains where all
equilibria are non-degenerate.

8.5 Optimality of MiCRO on the ANAC Domains

In a recent paper [20] we argued that many of the negotiation domains that
have been used for the ANAC competitions are too simplistic. We presented a
very simple negotiation strategy, called MiCRO, and showed that if two agents
both apply this strategy, then, in many of these domains, they always reach an
agreement that coincides with the NBS. From this we concluded that MiCRO
performs optimal on such domains.

However, this conclusion was based on the assumption that the NBS defines
the ‘optimal solution’, which is of course in contradiction to our conclusion
in this paper. Nevertheless, our conclusions about the ANAC domains and
MiCRO remain valid, because, as we have seen in Section 7.3, in most ANAC
domains the NBS also coincides with the optimal solution according to our
definition.

9 Conclusions and Future Work

We have introduced a new solution to the equilibrium selection problem, based
on the assumption of role-equifrequency, and have showed that under this
assumption it is rationally optimal. Furthermore, we have used it to improve
the bargaining solution that we proposed in earlier work. The surprising con-
clusion is, that in many cases this solution coincides with the maximum social
welfare solution, even though we assume agents are purely self-interested, and
do not care about social welfare.

There are several remaining questions that would be interesting to study
further. The main weakness of this work is that we have assumed that if the
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two agents select their strategies such that there are multiple feasible agree-
ments, then the actual outcome of the negotiation can be modeled as a random
choice from a uniform probability distribution over the feasible agreements (see
Eq. (4)). This seems a strong assumption and we can imagine that in reality
this outcome may not be uniformly distributed. Therefore, we aim to general-
ize our assumptions, and instead assume the probability distribution can have
any triangular shape.

Another important open question is whether our bargaining solution always
returns a solution or not. We know that if all Nash equilibria are degenerate
then it does not return any solution, but, as we already mentioned above, it
is not yet clear to us whether that can actually happen in the case of the
concession game.

Finally, it would be interesting to study under what conditions it is better
to apply any of the existing solutions of the equilibrium selection problem,
instead of ours, to the concession game (e.g. when the AoRE does not hold).
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Appendix

We here present a number of proofs that we omitted from the main text.

Proof of Lemma 1

To prove:
For any concession game CN , if k ≤ l < m then we have: uk,m2 < uk,l2 .

https://ii.tudelft.nl/genius/
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Proof We will show that uk,l2 − u
k,m
2 > 0. First, note that by Eq. (6) we can write:

uk,l2 − u
k,m
2 =

1

l − k + 1

l∑
j=k

uj,j2 −
1

m− k + 1

m∑
j=k

uj,j2

Then, if we split the second summation into two parts, we get:

uk,l2 − u
k,m
2 =

1

l − k + 1

l∑
j=k

uj,j2 −
1

m− k + 1

l∑
j=k

uj,j2 −
1

m− k + 1

m∑
j=l+1

uj,j2

and then by taking the first two summations together:

uk,l2 − u
k,m
2 = (

1

l − k + 1
− 1

m− k + 1
)

l∑
j=k

uj,j2 −
1

m− k + 1

m∑
j=l+1

uj,j2

Note that since l < m we have that ( 1
l−k+1 −

1
m−k+1 ) > 0. Furthermore, note that

from Eq. (3) and Eq. (5) we have that if j ≤ l, then uj,j2 ≥ ul,l2 . This means that, if

we replace the uj,j2 in the first summation by ul,l2 , then the new expression will be
smaller than or equal to the original expression. Therefore, we have:

uk,l2 − u
k,m
2 ≥ (

1

l − k + 1
− 1

m− k + 1
)

l∑
j=k

ul,l2 −
1

m− k + 1

m∑
j=l+1

uj,j2

Similarly, making use of the fact that if j > l, then uj,j2 < ul,l2 , but this time applying
it to the second summation (and noting that there is a minus sign before the second
summation), we get:

uk,l2 − u
k,m
2 > (

1

l − k + 1
− 1

m− k + 1
)

l∑
j=k

ul,l2 −
1

m− k + 1

m∑
j=l+1

ul,l2

Note that now, in both summations, the summand ul,l2 is constant (i.e. does not
depend on the index j), so we can take it outside of the sum, and get:

uk,l2 − u
k,m
2 > (

1

l − k + 1
− 1

m− k + 1
) · ul,l2 ·

l∑
j=k

1− 1

m− k + 1
· ul,l2 ·

m∑
j=l+1

1

And finally, using straightforward algebra, we can re-write the right-hand side to get:

uk,l2 − u
k,m
2 > (

1

l − k + 1
− 1

m− k + 1
) · ul,l2 · (l − k + 1)− 1

m− k + 1
· ul,l2 · (m− l)

=
l − k + 1

l − k + 1
· ul,l2 −

l − k + 1

m− k + 1
· ul,l2 −

m− l
m− k + 1

· ul,l2

= 0

�

Proof of Lemma 2

To Prove:
Let CN be any concession game with actions A, let S be any proper non-

empty subset of A and let ak be any action that is not in S, i.e. ak ∈ A \ S.
If one player plays a mixed strategy with support S, then playing ak is not a
best response for the other player.
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Proof Suppose agent α1 is playing a mixed strategy q. The expected utility of α2,
when playing ak is then given by:

u2(q, ak) =

n∑
i=1

q(ai) · u2(ai, ak) (16)

We will prove that, if the support of q is S and if ak 6∈ S, then there is some other
action al for which u2(q, al) > u2(q, ak) (we should also prove a similar statement
for u1, but since the definition of the concession game is entirely symmetrical for the
two players, it is obvious that an analogous proof works for u1.). To prove this we
will consider two separate cases, namely the case that i > k for all ai ∈ S, and the
case that there is at least one ai ∈ S for which i < k and .

Case 1 Suppose that for all ai ∈ S we have i > k. Note that if i > k then by (4)
we have u2(ai, ak) = rv2, while if i ≤ k we have ai 6∈ S and therefore q(ai) = 0. We
can then easily see from Eq. (16) that we have:

u2(q, ak) ≤ rv2 (17)

Now let l be the smallest integer such that al ∈ S. Then we have:

u2(q, al) =

n∑
i=1

q(ai) · u2(ai, al)

=

n∑
i=l

q(ai) · u2(ai, al)

= q(al) · u2(al, al) +

n∑
i=l+1

q(ai) · u2(ai, al)

= q(al) · u2(al, al) +

n∑
i=l+1

q(ai) · rv2

> q(al) · rv2 +

n∑
i=l+1

q(ai) · rv2

= rv2 ·
n∑
i=l

q(ai)

= rv2

(18)

Here, the second line follows from the fact that if i < l then ai 6∈ S and therefore
q(ai) = 0. The fourth line follows from the fact that u2(ai, al) = rv2 whenever i > l
(see Eq.(4)). To obtain the fifth line we have used that u2(al, al) = U2(ωl) > rv2

(see Eq. (3) and Eq. (4)). The last line follows again from the fact that q(ai) = 0
for all i < l and that the values q(ai) are probabilities, so they sum to 1. Combining
(17) and (18) we see we have indeed that u2(q, al) > u2(q, ak).

Case 2 Now suppose there is at least one integer j such that aj ∈ S and j < k.
Let l be the largest such integer. Since u2(ai, ak) = rv2 for all i > k, and q(ai) = 0
for all i with l < i ≤ k we can rewrite Equation (16) as:

u2(q, ak) =

l∑
i=0

q(ai) · u2(ai, ak) +

n∑
i=k+1

q(ai) · rv2
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Similarly, we have:

u2(q, al) =

l∑
i=0

q(ai) · u2(ai, al) +

n∑
i=k+1

q(ai) · rv2

If we now compare these two equations, we see that, in order to prove that u2(q, al) >
u2(q, ak) we only need to show that for each i ∈ {1, 2, . . . l} we have u2(ai, ak) <
u2(ai, al). But this is indeed the case, by Lemma 1. �

Proof of Lemma 7

To prove:
For any concession game CN , if k ≤ l ≤ m, then we have uk,l1 ≤ u

k,m
1 .

Proof In the case that l = m, this obviously holds, so we only need to prove that it

holds for k ≤ l < m. Specifically, we will show that in that case we have uk,m1 −uk,l1 >
0.

uk,m1 − uk,l1 =

m∑
i=k

ui,i1

m− k + 1
−

l∑
i=k

ui,i1

l − k + 1

=

l∑
i=k

ui,i1

m− k + 1
+

m∑
i=l+1

ui,i1

m− k + 1
−

l∑
i=k

ui,i1

l − k + 1

=

m∑
i=l+1

ui,i1

m− k + 1
+ (

1

m− k + 1
− 1

l − k + 1
)

l∑
i=k

ui,i1

>

m∑
i=l+1

ul,l1

m− k + 1
+ (

1

m− k + 1
− 1

l − k + 1
)

l∑
i=k

ui,i1

≥
m∑

i=l+1

ul,l1

m− k + 1
+ (

1

m− k + 1
− 1

l − k + 1
)

l∑
i=k

ul,l1

= (l −m) ·
ul,l1

m− k + 1
+ (

1

m− k + 1
− 1

l − k + 1
) · (l − k + 1) · ul,l1

=
l −m

m− k + 1
· ul,l1 +

l − k + 1

m− k + 1
· ul,l1 −

l − k + 1

l − k + 1
· ul,l1

= 0

Here, the first line is from Eq. (6), and we have obtained the second line from the
first one by splitting the first sum into two parts, one over the range k, k+ 1 . . . l and
another one over the range l + 1, l + 2 . . .m. To go from the third line to the fourth

we have used that ul,l1 < ui,i1 , whenever l < i (which follows from Eq. (2) and Eq.

(5)). Next, to get the fifth line, we have used the opposite, namely that ui,i1 ≤ ul,l1 ,

whenever i ≥ l. This is justified, because the factor ( 1
m−k+1 −

1
l−k+1 ) before the

sum is negative (because l < m and therefore 1
m−k+1 < 1

l−k+1 ). So, if we replace

the term ui,i1 in the second sum by something that is greater, the overall expression
becomes smaller. The rest is straightforward algebra. �
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Proof of Lemma 8

To prove:
For any concession game CN , if k ≤ l ≤ m, then we have: ul,m2 ≤ uk,m2 .

Proof This is trivial in the case that k = l, so we will prove that if k < l ≤ m, then

uk,m2 − ul,m2 > 0

uk,m2 − ul,m2 =

m∑
i=k

ui,i2

m− k + 1
−

m∑
i=l

ui,i2

m− l + 1

=

l−1∑
i=k

ui,i2

m− k + 1
+

m∑
i=l

ui,i2

m− k + 1
−

m∑
i=l

ui,i2

m− l + 1

=

l−1∑
i=k

ui,i2

m− k + 1
+ (

1

m− k + 1
− 1

m− l + 1
)

m∑
i=l

ui,i2

> (l − k) ·
ul,l2

m− k + 1
+ (

1

m− k + 1
− 1

m− l + 1
)

m∑
i=l

ui,i2

≥ (l − k) ·
ul,l2

m− k + 1
+ (

1

m− k + 1
− 1

m− l + 1
) · (m− l + 1) · ul,l2

=
l − k

m− k + 1
· ul,l2 +

m− l + 1

m− k + 1
· ul,l2 −

m− l + 1

m− l + 1
· ul,l2

= 0

For the the details of this proof, see the proof of Lemma 7.
�
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