
On the Empirical Evaluation of Mixed
Multi-Unit Combinatorial Auctions

Technical Report RR-IIIA-2007-01

Meritxell Vinyals and Jesús Cerquides

IIIA, Artificial Intelligence Research Institute
CSIC, Spanish National Research Council

08193 Bellaterra, Spain
{meritxell,cerquide}@iiia.csic.es

Abstract. Mixed Multi-Unit Combinatorial Auctions (MMUCA) allow
agents to bid for bundles of goods to buy, goods to sell, and transfor-
mations of goods. In particular, MMUCAs offer a high potential to be
employed for the automated assembly of supply chains of agents offering
goods and services, and in general the MMUCA extends and generalises
all the preceding types of combinatorial auctions. However, little is known
about their practical application since no empirical results have been re-
ported on winner determination algorithms for MMUCAs. In this paper,
we try to make headway on the practical application of MMUCAs by:
(1) providing an algorithm to generate artificial data that is representa-
tive of the sort of scenarios a winner determination algorithm is likely to
encounter; and (2) subsequently assessing the performance of an Integer
Programming implementation of MMUCA on CPLEX.

1 Introduction

A combinatorial auction (CA) is an auction where bidders can buy (or
sell) entire bundles of goods in a single transaction ([1]). Although compu-
tationally very complex, selling items in bundles has the great advantage
of eliminating the risk for a bidder of not being able to obtain comple-
mentary items at a reasonable price in a follow-up auction (think of a
combinatorial auction for a pair of shoes, as opposed to two consecutive
single-item auctions for each of the individual shoes). The study of the
mathematical, game-theoretical and algorithmic properties of combina-
torial auctions has recently become a popular research topic in AI. This
is due not only to their relevance to important application areas such as
electronic commerce or supply chain management, but also to the range of
deep research questions raised by this auction model. In particular, sup-
ply chain formation (SCF) appears as a very promising application area
where strong complementarities arise. Indeed, in [7] Walsh et al. observe

that production technologies often have to deal with strong complemen-
tarities: the inputs and outputs of a production process present a high-
dependence relationship. For instance, in that context a producer may not
be able to cover consumer’s demands as a consequence of failing to obtain
the necessary raw materials for the production process. At the same time
the same provider may risk to produce goods which are not demanded
by costumers in the market after investing money in its production pro-
cess. Hence, a supply chain can be regarded as an intricate network of
producers (entities transforming input goods into output goods at a cer-
tain cost), and consumers interacting in a complex way. Nevertheless, the
complementarities arising in SCF are different from the ones we do find
in CAs. The complementarities in SCF arise because of the preconditions
and postconditions of production processes: precedences and dependences
along the supply chain must be taken into account. Hence, whilst in CAs
the complementarities can be simply represented as relationships among
goods, in SCF the complementarities involve not only goods, but also in-
terrelated transformation (production) relationships along several levels
of the supply chain.

The work in [4] introduces a generalisation of the standard model of
combinatorial auction and discusses the issues of bidding and winner de-
termination. This new auction extends and generalises all the preceding
types of combinatorial auctions: single-unit CAs, multi-unit CA, double
CAs, and supply chain formation CAs. It provides a bidding language that
can express several type of complex bids, and allows for bids on combina-
tions of production processes, as well as a general winner determination
problem (WDP) solver working on any network topology. This auction
model is called mixed multi-unit combinatorial auction (MMUCA). No-
tice that this must not to be confused with a double auction [1] because
the order in which agents consume and produce goods is of central im-
portance. Consider as an example the assembly of a car’s engine, whose
structure is depicted in figure 1. Notice that each part in the diagram,
in turn, is produced form further components or raw materials. For in-
stance, a cylinder ring (part 8) is produced by transforming some amount
of stainless steel with the aid of an appropriate machine. Therefore, there
are several production levels involved in the making of a car’s engine.
A MMUCA allows to run a supply chain formation auction where bid-
ders can bid over bundles of parts, bundles of transformations, or any
combination of parts and transformations.

Despite its potential for application, and unlike CAs, little is known
about the practical application of MMUCAs since no empirical results

have been reported on any winner determination algorithms. These re-
sults are unlikely to come up unless, and along the lines of the research
effort carried out in CAs [5], researchers are provided with algorithms or
test suites to generate artificial data that is representative of the auc-
tion scenarios a winner determination algorithm is likely to encounter.
Hence, winner determination algorithms could be accurately tested, com-
pared, and improved. In this paper, we try to contribute to the practical
application of MMUCAs along two directions. Firstly, we provide an al-
gorithm to generate generate artificial data sets that is representative of
the sort of scenarios a winner determination (WD) algorithm is likely
to encounter. Secondly, we employ such algorithm to generate artificial
data and subsequently assess the performance of an Integer Program-
ming implementation of MMUCA on CPLEX. Based on our empirical
results, we argue that there is a need for special-purpose WD algorithms
for MMUCAs if these are intended to be employed in large scenarios.

The paper is structured as follows. In section 2 we provide some back-
ground on MMUCAs. Next, in section 3 we analyse the required features
of an artificial data set generator for MMUCAs so that they represent
realistic bidding behaviour. Next, in section 4 we detail an algorithm for
the generation of artificial data sets. In section 5, we analyse some empir-
ical results for an IP formulation of the WDP for MMUCAs. Finally, we
draw some conclusions and outline paths to future research in section 6.

Fig. 1. Components of a car engine.

2 Background

Next, we introduce MMUCA by summarising the work in [4, 3]. Let G
be the finite set of all the types of goods. A transformation is a pair of
multisets over G: (I,O) ∈ NG × NG. An agent offering the transforma-
tion (I,O) declares that it can deliver O after having received I. In our
setting, bidders can offer any number of such transformations, including
several copies of the same transformation. That is, agents will be nego-
tiating over multisets of transformations D ∈ N(NG×NG). For example,
{({ }, {a}), ({b}, {c})} means that the agent in question is able to deliver
a (no input required) and that it is able to deliver c if provided with b.
Note that this is not the same as {({b}, {a, c})}. In the former case, if
another agent is able to produce b if provided with a, we can get c from
nothing; in the latter case this would not work.

In an MMUCA, agents negotiate over bundles of transformations.
Hence, a valuation v : N(NG×NG) → R is a (typically partial) map-
ping from multisets of transformations to the real numbers. Intuitively,
v(D) = p means that the agent equipped with valuation v is willing to
make a payment of p in return for being allocated all the transforma-
tions in D (in case p is a negative number, this means that the agent will
accept the deal if it receives an amount of |p|). For instance, valuation
v({({line, ring , head , 6 · screws, screwdriver}, {cylinder , screwdriver})}) =
−10 means that some agent can assemble a cylinder for 10 $ when pro-
vided with a cylinder line, a cylinder ring, a cylinder head , six screws,
and a screwdriver, and returns the screwdriver once done1.

An atomic bid bid({(I1,O1), . . . , (In,On)}, p) specifies a finite mul-
tiset of finite transformations and a price. To make the semantics of such
an atomic bid precise, we need to decide whether or not we want to make
a free disposal assumption.In MMUCA we consider good free disposal at
the auctioneer’s side which means that the auctioneer can freely dispose
of additional goods, i.e. accept more and give away fewer of them. These
free disposals affect the definition of what constitutes a valid solution to
the WDP. Refer to [4] for a further discussion about free disposal assump-
tions .
A suitable bidding language should allow a bidder to encode choices be-
tween alternative bids and the like[6]. Informally, an OR-combination of
several bids signifies that the bidder would be happy to accept any num-
ber of the sub-bids specified, if paid the sum of the associated prices. An

1 We use 6 · screws as a shorthand to represent six identical elements in the multiset.

XOR-combination of bids expresses that the bidder is prepared to accept
at most one of them.

The input to the WDP consists of a complex bid expression for each
bidder, a multiset Uin of goods the auctioneer holds to begin with, and a
multiset Uout of goods the auctioneer expects to end up with.

In standard combinatorial auctions, a solution to the WDP is a set
of atomic bids to accept. In our setting, however, the order in which
the auctioneer “uses” the accepted transformations matters. In MMUCA
transformations could form cycles and as a result given a set of trans-
formations its order of execution is not implicit. For instance, if the auc-
tioneer holds a to begin with, then checking whether accepting the two
bids Bid1 = ({a}, {b}, 10) and Bid2 = ({b}, {c}, 20) is feasible involves
realising that we have to use Bid1 before Bid2. Thus, a solution to the
WDP will be a sequence of transformations. A valid solution has to meet
two conditions:

(1) Bidder constraints: The multiset of transformations in the sequence
has to respect the bids submitted by the bidders. This is a standard
requirement. For instance, if a bidder submits an XOR-combination of
transformations, at most one of them may be accepted. With no transfor-
mation free disposal if a bidder submits an offer over a bundle of transfor-
mations, all of them must be employed in the transformation sequence,
whereas in the case of transformation free disposal any number of the
transformations in the bundle can be included into the solution sequence,
but the price to be paid is the total price of the bid.
(2) Auctioneer constraints: The sequence of transformations has to be im-
plementable: (a) check that Uin is a superset of the input set of the first
transformation; (b) then update the set of goods held by the auctioneer
after each transformation and check that it is a superset of the input set
of the next transformation; (c) finally check that the set of items held
by the auctioneer in the end is a superset (the same set in the case of
no good free disposal) of Uout. This requirement is specific to MMUCAs.
In case of no transformations free disposal check also that there are no
transformations bought and left unused. An optimal solution is a valid
solution that maximises the sum of prices associated with the atomic bids
selected.

For the formal definition of the WDP, we restrict ourselves to bids
in the XOR-language, which is known to be fully expressive (as proved
by Cerquides et al. [4]). Therefore, solving the WDP for MMUCAs with
XOR-bids amounts to maximise

∑
b∈B xb · pb, while fulfilling the con-

straints informally defined above2, where B stands for the set of all atomic
bids, xb is binary decision variable indicating whether bid b is selected or
not, and pb stands for the price of bid b. As noticed in [4], the number of
decision variables of an integer program to solve a MMUCA WDP is of
the order of |T |2, where |T | is the overall number of transformations men-
tioned anywhere in the bids. As the reader may notice, this represents a
serious computational cost as the number of transformations grow. In the
presence of XOR-relationships the number of variables of a problem can
be reduced since in this case the maximum length of a solution sequence
is the sum of the number of transformation contained in the larger bid
for all XOR-bids.

3 Bid Generator Requirements

In order to test and compare MMUCA WD algorithms, researchers must
be provided with algorithms or test suites to generate artificial data that
is representative of the auction scenarios a WD algorithm is likely to
encounter. Hence, WD algorithms can be accurately tested, compared,
and improved. Unfortunately, we cannot benefit from any previous re-
sults in the literature since they do not take into account the notion of
transformation introduced in [4, 3].

In this section we make explicit the requirements for a bid generation
technique intended to produce artificial data sets for MMUCAs. Since bids
in MMUCAs are composed of transformations, such requirements shall
encompass —along the lines of artificial data set generators for CAs—
the selection of which transformations and how many transformations
to place in a bundle, what price to offer or request for the bundle, and
which bids to combine in an XOR’ed set. Notice though that artificial
data set generators for CAs consider that agents trade goods, whereas
the requirements for a MMUCA generator consider that agents trade
transformations.

3.1 A Taxonomy of Transformations

Bids in MMUCAs are composed of transformations. Each transformation
expressses either an offer to buy, to sell, or to transform some good(s) into
(an)other good(s). Since transformations are the building blocks compos-
ing bids, we must firslty characterise the types of transformations a bid
generator may need to construct in order to produce bids. Our analysis
of transformations has led to a classification into three types, namely:
2 The interested reader should refer to [4] for a formal, precise definition of the WDP.

Fig. 2. Examples of tranformation types.

1. Output transformations (O-transformations) are those with no
input good(s). Thus, an O-transformation represents a bidder’s offer
to sell some good(s). Notice that an O-transformation is equivalent to
a bid in a reverse CA.

2. Input transformations (I-transformations) are those with no
output good(s). Thus, an I-transformation represents a bidder’s offer
to buy some good(s) . Notice that an I-transformation is equivalent
to a bid in a direct CA.

3. Input-Output transformations (IO-transformations) are those
whose input and output good(s) are not empty. An IO-transformation
stands for a bidder’s offer to deliver some good(s) after receiving some
other good(s): I can deliver I after having received O. They can model
a wide range of different processes in real-world situations (e.g. assem-
bly, transformation, or exchange).

Fig.2 presents samples of each transformation type. In the figure, ver-
tical, black bars stand for transformations, cercles stand for goods, and
directed arrows from goods into or from transformations represent the
goods input into or produced from a transformation. Thus, we differen-
tiate an I-transformation to consume a piston, an O-transformation to
give away a piston, and an IO-transformation giving away a piston after
receiving a piston ring and a piston line.

Notice that any bid in a MMUCA results as a combination of the
transformations of the types listed above. Therefore, a bid generator for
MMUCA must support the generation of transformations of all these
types.

3.2 Requirements

It is time to consider how to combine transformations of the types de-
scribed in section 3.1 in order to construct bids. Since MMUCAs gen-
eralise CAs, as noticed in [4], our approach is to depart from artificial
data sets generators for CAs, keeping the requirements summarised in
[5], namely:

1. Certain goods are more likely to appear together than others.
2. The number of goods in a bundle is often related to which goods

compose the bundle.
3. Valuations are related to which goods appear in the bundle. Where

appropiate, valuations can be configured to be subadditive, additive
or superadditive in the number of goods requested.

4. Sets of XOR’ed bids are constructed in a meaningful way, on a per-
bidder basis.

Notice though that the requirements above must be reformulated,
and eventually extended, in terms of transformations since a bidder in
a MMUCA bids over a bundle of transformations (as defined in section
2), whereas a bidder in a CA bids over a bundle of goods. This differ-
ence leads to a fundamental issue: how should an artificial data set gen-
erator for MMUCA compose bids? Indeed, notice that a CA generator
bundles goods from a given set of goods to construct bids. And hence,
analogously, what is the set of transformations from which a MMUCA
generator constructs bids? In order to provide a proper answer we must
think of the kind of scenarios faced by buyers and providers in the real
world. If so, within a given market we expect several companies to of-
fer the very same or similar services (transformations) at different prices,
as well as several companies to require the very same or similar services
(transformations) valued at different prices. In other words, within a given
market we can identify a collection of common services buying and pro-
viding companies request and offer. For instance, in the example in fig-
ure 1, several providers may offer to assemble a cylinder through the very
same transformation: t = ({6 ·screws, 1 · cylinder line, 1 · cylinder rig, 1 ·
cylinder head}, {cylinder}). Eventually, a provider may offer to perform
such transformation several times (e.g. as many times as cylinders are
required), to bundle it with other transformations, or the two. Whatever
the case, we can regard this sample transformation as an atomic trans-
formation because it represents the minimum transformation required to
perform a service. Hereafter, we shall consider the common goods and
services in a given market to be represented as a collection of atomic

tranformations that we shall refer to as market transformations. There-
fore, market transformations represent the ”goods” providers and buyers
can request and bid for. Hence, bids for MMUCAs are to be composed as
combinations of market transformations. More formally, we firstly define
atomic transformations as follows3:

Definition 1 (Atomic transformation). Given a set of transforma-
tions T = {t1, . . . , tn}, we say that transformation ti = (Ii,Oi) is min-
imum in T iff ∀tj ∈ T satisfying that ∀gi ∈ Ii, gj ∈ Ij gi, gj ∈ I ∩ I ′
and ∀gi ∈ Oi, gj ∈ Oj gi, gj ∈ O ∩ O′, the following inequalities hold: (i)
mIi(g) ≤ mIj (g) ∀g ∈ Ij and; (ii) mOi(g) ≤ mOj (g) ∀g ∈ Oj .

From the definition above, we can readily provide a formal definiton
of market transformations.

Definition 2 (Market transformations). We say that T ⊆ NG × NG

is a set of market transformations iff: (i) it is finite; (ii) every transfor-
mation t ∈ T is minimum; and (iii) ({g}, {}), ({}, {g}) ∈ T ∀g ∈ G.

Notice that the third condition ensures that there are at least two
market transformations for every good in G4, and thus ensuring that
every good is individually available to buy and/or sell. Fig.3 depicts a
sample of market transformations if intending to build the car engine in
Fig. 1. From the discussion so far, we shall add a new requirement: ”there
is a finite set of market transformations to bid for”.

Notice too that we mentioned above that bids are composed as com-
binations of market transformations. If so, we must introduce the no-
tion of transformation multiplicity as the counterpart of good multiplic-
ity5. Indeed, say that in a CA a bidder submits a bid for the goods
in multi-set {engine, engine, piston}. It is clear that the multiplicity of
good engine is two, whereas the multiplicity of good piston is one. But
things become more complicated when we consider transformations be-
cause the multiplicity of a given transformation must be defined in terms
of another transformation, which in turn is composed of multiple input
and output goods. Intuitively, we say that a transformation is a mul-
tiple of another one is both share the same input and output goods,

3 Hereafter, we consider that the multiplicity (that is, the number of occurrences) of
the elements in a multiset A is provided by a function mA from A to N.

4 Therefore the number of market transformations is always greater or equal than
2 · |G|

5 The number of units of a given good within an offr or a request.

Fig. 3. Market transformations for a car’s engine.

the former has more input and output goods than the latter but keep-
ing the same ratio between input and output goods. For instance, given
transformations t = ({6 · screws, 1 · cylinder line, 1 · cylinder rig, 1 ·
cylinder head}, {cylinder}) and t′ = ({12 · screws, 2 · cylinder line, 2 ·
cylinder rig, 2 · cylinder head}, {2 · cylinder}) we way that t′ has multi-
plicity two with respect to t.Put formally, we define transformation mul-
tiplicity as follows:

Definition 3 (Tranformation multiplicity). Let t = (I,O) and t′ =
(I ′,O′) be tranformations such that ∀g ∈ I, g′ ∈ I ′ g, g′ ∈ I ∩ I ′ and
∀g ∈ O, g′ ∈ O′ g, g′ ∈ O ∩ O′. We say that t has multiplicity κ with
respect to t′ iff mI(g) = κ·mI′(g) ∀g ∈ I and mO(g) = κ·mO′(g) ∀g ∈ O.

A further issue has to do with the way bidders value transformations.
Notice that performing a transformation to assemble the engine in figure 1
results in a new product that has more market value than its parts. There-
fore, a car maker values the transformation according to his expected
benefits, namely the difference between the expected market value of the
engine and the value already paid for the parts. Therefore, if the parts
cost 850EUR and the expected market value of the engine is 1000EUR,
the car maker should be willing to offer to pay less than 150EUR for the
transformation. On the other hand, any provider is expected to request
less than 150EUR in order to perform the transformation. In general,
buyers and providers in a MMUCA should value a transformation on the

basis of the difference between the expectec market value of its output
goods and the cost of its input goods. Notice though that we are not
assuming here that such difference must be always positive. This dicus-
sion leads us to a further requirement: ”every transformation valuation
is assessed in terms of the surplus resulting from the market price of its
ouput goods with respect to the market price of its input goods”.

Finally, a last requirement stems from the fact that, unlike auctioneer
in CAs, not all goods involved in a MMUCA must be requested by the
auctioneer. Back to our example of a car maker in need of engines as
depicted in Fig. 1, it can run a MMUCA only requesting engines. There-
after, bidders may offer already-assembled engines, or other goods (e.g.
parts like crankcases, crankshafts, or screws) that jointly with transfor-
mations over such goods help produce the requested goods. Hence, the
new requirement goes as follows: ”Goods not requested by the auctioneer
may be involved in the auction”.

Following the analysis above, we can reformulate the requirements for
an artificial data set generator for CAs and add the new requirements
derived so far to finally obtain the requirements for an artificial data set
generator for MMUCAs:

1. There is a finite set of market transformations to bid for.
2. Certain transformations are more likely to appear together than oth-

ers.
3. The number of transformations in a bundle is often related to which

transformations compose the bundle.
4. Valuations are related to which transformations appear in the bundle.

Where appropiate, valuations can be configured to be subadditive,
additive or superadditive in the number of transformations requested.

5. Every transformation valuation is assessed in terms of the difference
between the valuation of its ouput goods with respect to the valuation
of its input goods.

6. Sets of XOR’ed bids are constructed in a meaningful way, on a per-
bidder basis.

7. Goods not requested by the auctioneer may be involved in the auction.

4 An Algorithm for Artificial Data Set Generation

In this section we describe an artificial data set generator algorithm for
MMUCA that captures the requirements above. The algorithm’s purpose
is to generate MMUCA problems (each composed by a collection of XOR
bids and the set of goods available to and requested by the auctioneer)

that can be subsequently fed into an MMUCA winner determination al-
gorithm. The bid generation technique makes explicit which transforma-
tions and how many of them to offer/request in a bundle, how to price
the bundle, and which bids to combine in an XOR bid. Therefore, the bid
generation technique described below automates the generation of artifi-
cial data sets as specified in section 3. The algorithm starts by generating
the set of goods involved in MMUCA. Next, it generates the goods the
auctioneer requests. After that, it creates a subset of atomic transforma-
tions, which are the market transformations to employ for bid generation.
Thereafter, it generates bids as linear combinations of market transfor-
mations, which are subsequently priced according to a price policy. The
resulting bids are further composed into XOR (mutually exclusive) bids
because, as pointed out in [4], the XOR language is a fully expressive
language allowing bidders to express all their preferences in a single XOR
bid. Hence, our algorithm assumes that each bidder formulates a single
XOR bid, being the number of bidders equal to the number of XOR bids.

4.1 Good Generation

The good generation algorithm (see Algorithm 1) receives the number of
different goods (ngoods) involved in an auction along with the maximum
price any good can take on (maxPrice). Based on these values, the algo-
rithm returns for each good: (1) its average market price (µ[i]) drawn
from a uniform distribution U [1,maxPrice] where maxPrice (line 2);
and (2) the distribution to assess its multiplicity, or more precisely,
the success probability (ggeometric) of a geometric probability distribution
from which the good multiplicity is to be drawn later on (line 3).

Algorithm 1 Good Generation(ngoods,maxPrice)

1: for i = 1 to ngoods do
2: µ[i]← U [1, maxPrice]
3: ggeometric[i]← U [0, 1)
4: end for
5: return µ, ggeometric

4.2 Requested Goods Generation

The requested goods generation algorithm (see Algorithm 2) assesses the
number of units of each good the auctioneer requests, namely the multiset

Uout. As pointed out in Section 3, not all goods involved in a MMUCA
must be requested by the auctioneer. Hence, the algorithm selects a subset
of goods to be part of Uout. Firstly, it determines whether a good is
requested by the auctioneer by comparing the value drawn from a uniform
distribution with pgood requested, the probability of adding a new good to
Uout (line 2). Once included a given good, the number of units requested
for that good is drawn from a geometric distribution with the success
probability ggeometric returned by algorithm 1.

Algorithm 2 Requested Good Generation(ngoods, pgood requested, ggeometric)

1: for i = 1 to ngoods do
2: if U [0, 1) < pgood requested then
3: Uout[i]← 1 + Geometric(ggeometric[i])
4: else
5: Uout[i]← 0
6: end if
7: end for
8: Return Uout

4.3 Market Transformations Generation

The market transformation generation algorithm (see Algorithm 3)
generates a finite set of transformations to be employed as the building
blocks to subsequently compose bids.

For each good, the algorithm constructs two market transformations
(one I-transformation and one O-transformation). Each transformation,
which according to definition 2 is atomic, involves a single good with mul-
tiplicity one (lines 2-11). For instance, ({engine}, {}) and ({}, {engine})
stand respectively for the I-transformation and O-transformation for good
engine. After that, the algorithm generates a limited number of market
IO-transformations (nIO market transformations).

In order to generate a market IO-transformation, the algorithm chooses
the goods to include in its input and output set employing the prob-
abilities of adding some good to the input and output set respectively
(pgood in input and pgood in output). Once included a good to either the input
or output set, its multiplicity is calculated from a geometric distribution
parametrised by ggeometric. (lines 16-21).

Finally, there is the matter of attaching to each market transformation
a probability distribution to draw its multiplicity. Our algorithm assumes
that the bid generation process, detailed by algorithm 4, is to employ

Algorithm 3 Market Transformation Generation(ngoods, pgood in input, pgood in output,
ggeometric)

1: MT ← {}
2: for i = 1 to ngoods do
3: T ← EmptyTransition()
4: T.inputs[i]← 1
5: T.tgeometric ← imultiplicity [i]
6: MT ←MT ∪ {T}
7: T ← EmptyTransition()
8: T.outputs[i]← 1
9: T.tgeometric ← ggeometric[i]

10: MT ←MT ∪ {T}
11: end for
12: for t = 1 to nmarket IO transformations do
13: T ← EmptyTransition()
14: for i = 1 to ngoods do
15: if U [0, 1] < pgood in input then
16: T.inputs[i]← 1 + Geometric(ggeometric[i])
17: end if
18: end for
19: for i = 1 to ngoods do
20: if U [0, 1] < pgood in output then
21: T.outputs[i]← 1 + Geometric(ggeometric[i])
22: end if
23: end for
24: T.tgeometric ← 1
25: for i = 1 to ngoods do
26: a← ggeometric[i]

27: T.tgeometric ← min(T.pmultiplicity , a|T.inputs[i]−T.outputs[i]|)
28: end for
29: MT ←MT ∪ {T}
30: end for
31: return MT

a geometric distribution for each market transformation to calculate its
multiplicity. Hence, algorithm 3 solely assesses the success probability to
be employed by such geometric distributions (tgeometric), namely the prob-
ability of adding an extra unit of a transformation already included in a
bundle bid. Notice though that we cannot randomly generate tgeometric

because transformations are defined over multisets of goods, and there-
fore we must keep consistency with respect to the success probabilities
assigned to each good by algorithm 1 (line 3). Therefore, we propose to set
the success probability for each transformation as follows. Given a trans-
formation t = (I,O), for each good involved in the transformation, g, we
assess its probability of having multiplicity |mI(g)−mO(g)|. We set the
success probability of t to the minimum of these probabilities. Formally,
tgeometric = ming∈Gg

|mI(g)−mO(g)|
geometric , where tgeometric stands for the success

probability of transformation t and ggeometric stands for the success prob-

ability of good g. Indeed, algorithm 1 sets the success probability for each
transformation in this way (lines 25-28).

4.4 Bid Generation

The bid generation algorithm (algorithm 4) generates bids that are subse-
quently combined into XOR bids, each one encoding the offer or request
of a bidder.

The bid generation algorithm (algorithm 4) generates bids that are
subsequently combined into XOR bids, each one encoding the offer or
request of a bidder. Firstly, for each XOR bid (XORBid) the algo-
rithm composes each bid (Bid) by combining the market transforma-
tions (MTS) returned by the market transformation generation pro-
cess. The number of market transformations (nTransfBid) to compose
each bid is obtained from a normal distribution N (µadd new transformation,
σadd new transformation) (line 12). Market transformations are randomly
chosen from the set of market transformations (MTS) (line 14) and their
multiplicity in the bundle bid is obtained from a geometric distribution
with success probability tgeometric (line 15). Next, the algorithm prices the
transformation according to its multiplicity (lines 16-20), and bunldes it
into the bid under construction (line 21). Finally, after creating the bid,
the algorithm adds it to the XOR bid (line 24). At this point, notice that
the number of bids that compose an XOR bid is obtained from a normal
distribution N (µadd new XOR clause, σadd new XOR clause) (line 9).

And yet there remains the matter of setting a valuation for each bid
within an XOR bid via some pricing policy while fulfilling the require-
ments in section 3. At this aim, a pricing policy must provide the means
to price a good, a transformation, multiple units of the very same trans-
formation, and a bundle of transformations in a realistic manner. As to
pricing goods, in order to vary prices among bidders, our algorithm gen-
erates a price for bidder b for good g, represented as pprices bid[b, g], from a
normal distribution N (µ[g], σprices), where µ[g] stands for good g’s aver-
age price in the market and σprices for the variance among bidders’ prices
(lines 2-4). Thereafter, a transformation’s price for bidder b is assessed in
terms of the difference from his valuation of its output goods with respect
to his valuation of its input goods (line 19) as stated by requirement 5
in section 3. It is time to address bid valuations while keeping in mind
requirement 4 in section 3. At this aim, we propose to introduce super-
additivity by applying multiplicity-based discounts to transformations.
Going back to the example in Fig. (a) in table ??, we observe that screws

Algorithm 4 Bid Generation(MTS, nXOR bids, µ, σprices, µadd new XOR clause,
σadd new transformation, µadd new transformation, σadd new transformation, α)

1: for g = 1 to ngoods do
2: for b = 1 to nXOR bids do
3: pprices bid[b, g]← µ[g] ·N(1, σprices)
4: end for
5: end for
6: Bids← {}
7: for b = 1 to nXOR bids do
8: XORBid← EmptyXORBid()
9: nXORClauses← N (µadd new XOR clause, σadd new XOR clause)

10: for x = 1 to nXORClauses do
11: Bid← EmptyCombinatorialBid()
12: nTransfBid← N (µadd new transformation, σadd new transformation)
13: for t = 1 to nTransfBid do
14: MT ← Randomly select transformation from MTS
15: multiplicity ← Geometric(MT.tgeometric)
16: T.inputs←MT.inputs ·multiplicity
17: T.outputs←MT.outputs ·multiplicity
18: T.price←

P
g∈T.outputs

pprices bid[b, g]−
P

g∈T.inputs
pprices bid[b, g]

19: poffer ← (T.tgeometric)
multiplicity

20: discount← α 1−e
1−poffer

1−e

21: Bid.t← Bid.t ∪ T
22: Bid.price← Bid.price + T.price · (1− discount)
23: end for
24: XORBid← XORBid ∪ {Bid}
25: end for
26: Bids← Bids ∪ {XORBid}
27: end for
28: return Bids

are usually traded in higher quantities than full engines. Thus, not sur-
prisingly the same (percentage) discount may apply to an offer for 100
screws than to an offer for 5 engines. Hence, an offer to produce more
than 5 engines, though more unlikely, should reflect higher discounts. In
other words, as a general rule the more unlikely for a transformation
to be traded at certain units (multiplicity), the higher the discount to
apply to its overall price. In this way we try to capture in a realistic
manner the way multiplicity-based (volume-based) discounts are applied
in the real world. Therefore, given transformation t, we firstly assess the
probability poffer of the transformation to be traded with multiplicity m
from a geometric distribution with success probability tgeometric as fol-
lows: poffer = tgeometric

multiplicity (line 20). Secondly, we compute the
discount to apply (discount) as follows: discount = α1−e

1−poffer

1−e . Indeed,
in this way we manage to apply higher discounts to more unlikely offers
within the range [0, α]. Notice too that setting α to zero leads to no dis-

counts, and thus to no superadditvity. Finally, a bid valuation is obtained
by adding the prices of its transformations (line 23).

Parameter Description
ngoods Number of goods
nXORbids Number of XOR bids
nIO market transformations Number of market IO-transformations
maxPrice Maximum average good price
σprices bid Variance of good prices among different bidders
µadd New XOR Clause Mean number of bids per XOR bid
σadd New XOR Clause Variance of bids per XOR bid
µadd New trasnformation Mean transformations per bid
σadd New transformation Variance of transformations per bid
pgood requested Probability for a good to be included in Uout
pgood in input Probability for a good to be included in the input set of a transformation
pgood in output Probability for a good to be included in the output set of a transformation
α Maximum discount applied to a bid for the number of requested goods

Table 1. Artificial data set generator parameters.

Table 1 summarises all parameters required by an artificial data set
generator for MMUCAs.

5 Experimental results

In this section we shall illustrate the computational cost of solving the
WDP for MMUCA. At this aim, we present our first experimental results
for MMUCA by assessing the performance of an IP implementation on
CPLEX.

As explained at the end of section 2, the number of decision vari-
ables of an IP to solve a MMUCA WDP depends on the overall number
of transformations. Thus, the number of transformations must be con-
sidered as one dimension when measuring the time complexity of a WD
algorithm for MMUCA. However, transformations are subsequently com-
bined in several ways in order to finally composed bids in the XOR bid-
ding language. Thus, transformations can be bundled into bids, which in
turn may be put together into XOR bids. Hence, the size of bids (trans-
formation bundles) as well as the size of XOR bids must be regarded
as further dimensions when measuring the time complexity of a WD al-
gorithm. Considering the dimensions mentioned so far, we propose to
evaluate an IP implementation when solving artificial data sets modelling
scenarios with: (1) XOR-bids composed of a single bid with a single trans-
formation (neither AND nor XOR constraints); (2) XOR-bids composed

of two bids with one single transformation (XOR constraints); and (3)
XOR-bids composed of two bids with two transformations (both AND
and XOR constraints)6. Within each scenario, the number of transfor-
mations varies by taking on values within the set {40, 80, 120, 160, 200}.
Table 2 summarises the three scenarios we have employed in our empir-
ical evaluation. For each scenario, we set the values of the parameters
required by the artificial data set generator described in section 4 (sum-
marised in table 1) as follows: ngoods = 4, nIO market transformations = 10,
maxPrice = 100, σprices = 0.05, pgood requested = 0.3, pgood in input = 0.3,
and pgood in output = 0.1.

Scenario Transformations XOR-bid size Bid size
1 {40,80,120,160,200} 1 1
2 {40,80,120,160,200} 2 1
3 {40,80,120,160,200} 2 2

Table 2. Parameters characterising our experimental scenarios.

Considering the above-described experimental scenarios, we have run
our experiments as follows. Firstly, we have generated 50 WDP instances
for each configuration in table 2 (e.g. for 120 transformations in sce-
nario 2) using a MATLAB implementation of the artificial data set gen-
erator detailed in section 4 whose source code is publicly available at
http://www.iiia.csic.es/~meritxell/material/MMUCA_problem_generator.zip.
We have solved each WDP with an IP implementation of MMUCA on
CPLEX 7.0 and recorded the resulting solving times. Notice though that
we have set to 3600 seconds the time deadline to solve each WDP. Fur-
thermore, we have only considered feasible WDP instances to calculate
solving times since the time required by CPLEX to prove infeasibility is
(usually) significantly lower than time required to find an optimal solu-
tion. All our tests have been run on a Dell Precision 490 with double
processor Dual-Core Xeon 5060 running at 3.2 GHz with 2Gb RAM on
Linux 2.6.

Fig. 4 depicts the median of the solving times resulting when vary-
ing the number of transformations for the scenarios in table 2. The star
(*) symbol stands for the median value exceeded the time limit (3600s).
If that is the case, we cannot know the exact median value, but only
that it exceeded the time limit. Observe that indeed the MMUCA com-

6 Notice that scenario 1 would be enough to model a CA scenario whenever no IO-
transformations are generated.

Fig. 4. Solving time with respect to number of transformations.

putational cost increases as the number of transformations grows. Solv-
ing times quickly, exponentially increase for all scenarios. We observe too
that XOR relationships (among bids) have significantly more impact than
AND relationships (among transformations bundled in bids) on compu-
tational costs. Notice that as a general rule, the length of a valid solution
sequence is at most as large as the length of the sequence resulting from
adding the largest (in numer of transformations) bid out of each XOR-bid.
Hence, the introduction of XOR bids reduces the length of the solution
sequence and, consequently, the number of decision variables of the IP.

6 Conclusions and future work

In this work, we have attempted at making headway in the practical
application of MMUCAs along two directions.

Firstly, we have provided an algorithm to generate artificial data sets
for MMUCA that are representative of the sort of scenarios a WD algo-
rithm is likely to encounter. A distinguishing feature of the algorithm is
that it pursues to capture in a realistic manner how bidders trade trans-
formations. Our algorithm reformulates and extends in terms of trans-
formations the requirements for an artificial data set generator for CAs.
Secondly, we provide the first empirical tests for MMUCAs by assessing
the performance of a CPLEX IP implementation. These tests assess the

computational cost of solving the WDP as transformations grow for dif-
ferent bid expressions in the XOR bidding language. Our results indicate
that the scalability of an IP implementation of MMUCA is seriously com-
promised by the exponential growth of computational cost as the number
of transformations increases. Hence, we argue in favour of special-purpose
optimal and local algorithms that improve the current performance of an
IP implementation. Unlike CAs, for which special-purpose optimal algo-
rithms cannot outperform an IP CPLEX implementation, we argue that
for MMUCAs it is worth studying whether a special purpose algorithm
can exploit the high redundancy among the sequences of transformations
explored when calculating an optimal allocation. As to local (sub-optimal)
approaches, they can be of value when anytime solutions are required. In-
deed, in scenarios where supply chain formation must be agile in response
to rapidly changing conditions, optimality is not as important as finding
acceptable configurations within some specific time. On the theoretical
side, we believe that a promising strand of research is represented by
the work in [3] (or [2] in the context of multi-attribute double auctions),
where the WDP is mapped into a search space where the structure of
the problem is analysed in order to identify particular structures whose
WDP complexity can be reduced.

Acknowledgements

This work has been supported by projects IEA (TIN2006-15662-C02-01), OK (IST-4-

027253-STP), eREP(EC-FP6-CIT5-28575) and 2006 5 OI 099.

References

1. P. Cramton, Y. Shoham, and R. Steinberg, editors. Combinatorial Auctions. MIT
Press, 2006.

2. Y. Engel, M. Wellman, and K. Lochner. Bid expressiveness and clearing algorithms
in multiattribute double auctions. In Proceedings of the ACM Conference on Elec-
tronic Commerce, pages 110–119, Ann Arbor, Michigan, USA, June 11-15 2006.

3. A. Giovannucci, J. A. Rodŕıguez-Aguilar, J. Cerquides, and U. Endriss. On the win-
ner determination problem in mixed multi-unit combinatorial auctions. In Proceed-
ings of the Sixth International Conference on Autonomous Agents and Multiagent
Systems, Honolulu, Hawaii, USA, May 14-18 2007. In press.

4. J.Cerquides, U.Endriss, A.Giovannucci, and J.A Rodŕıguez-Aguilar. Bidding lan-
guages and winnder determination for mixed multi-unit combinatorial auctions.
In Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI 2007), pages 1221–1226, India, January 2007.

5. K.Leyton-Brown and Y. Shoham. A Test Suite for Combinatorial Auctions, chap-
ter 18. MIT Press, 2006.

6. N. Nisan. Bidding languages for combinatorial auctions. In P. Cramton et al.,
editors, Combinatorial Auctions. MIT Press, 2006.

7. W. E. Walsh, M. P. Wellman, and F. Ygge. Combinatorial auctions for supply chain
formation. In Proc. of the 2nd ACM Conference on Electronic Commerce, pages
260–269, Minneapolis, Minnesota, 2000.

