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Abstract

Negotiation is a fundamental interaction mechanism in multi-agent systems because it
allows self-interested agents to come to mutually beneficial agreements and partition
resources efficiently and effectively. Now, in many situations, the agents need to nego-
tiate with one another many times and so developing strategies that are effective over
repeated interactions is an important challenge. Against this background, a growing
body of work has examined the use of Persuasive Negotiation (PN), which involves
negotiating using rhetorical arguments (such as threats, rewards, or appeals), in try-
ing to convince an opponent to accept a given offer. Such mechanisms are especially
suited to repeated encounters because they allow agents to influence the outcomes
of future negotiations, while negotiating a deal in the present one, with the aim of
producing results that are beneficial to both parties. To this end, in this paper, we
develop a comprehensive PN mechanism for repeated interactions that makes use of
rewards that can be asked for or given to. Our mechanism consists of two parts. First,
a novel protocol that structures the interaction by capturing the commitments that
agents incur when using rewards. Second, a new reward generation algorithm that
constructs promises of rewards in future interactions as a means of permitting agents
to reach better agreements, in a shorter time, in the present encounter. We then go
on to develop a specific negotiation tactic, based on this reward generation algorithm,
and show that it can achieve significantly better outcomes than existing benchmark
tactics that do not use such inducements. Specifically, we show, via empirical evalu-
ation in a Multi-Move Prisoners’ dilemma setting, that our tactic can lead to a 26%
improvement in the utility of deals that are made and that 21 times fewer messages
need to be exchanged in order to achieve this.
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1 Introduction

Negotiation is a fundamental concept in multi-agent systems (MAS) because
it enables self-interested agents to find agreements and partition resources ef-
ficiently and effectively. In most cases, such negotiation proceeds as a series of
offers and counter-offers (Jennings et al., 2001). These offers generally indicate
the preferred outcome for the proponent and the opponent may either accept
them, counter-offer a more beneficial outcome, or reject them. Now, in many
cases, the agents involved need to negotiate with one another many times. How-
ever, such repeated encounters have rarely been dealt with in the multi-agent
systems literature (see section 7 for more details). One of the main reasons for this
is that repeated encounters require additional mechanisms and structures, over
and above those required for single shot encounters, to fully take into account
the repeated nature of the interaction. In particular, offers that are generated
should not only influence the present encounter, but also future ones, so that
better deals can be found in the long run (Muthoo, 1999; Busch and Hortsmann,
1999). To this end, argument-based negotiation (ABN), in which arguments are
used to support offers and persuade an opponent to accept them, has been ad-
vocated as an effective means to achieve this (Ramchurn et al., 2006; Rahwan
et al., 2003a) and, therefore, this is the approach we explore in this paper.

In more detail, ABN techniques aim to enable agents to achieve better agree-
ments faster by allowing them to explore a larger space of possible solutions
and/or to express, update, or evolve their preferences in single or multiple shot
interactions (Jennings et al., 1998). They do this by providing additional expla-
nations that justify the offer (Amgoud and Kaci, 2004), identifying other goals
satisfied by the offer that the opponent might not be aware of (Rahwan et al.,
2003b), or offering additional incentives conditional upon the acceptance of the
offer (Kraus et al., 1998; Sierra et al., 1998; Amgoud and Prade, 2005a). While
all these approaches capture, in one way or another, the notion of persuasiveness,
a number of them have focused specifically on the use of rhetorical arguments
such as threats, rewards, and appeals (Sycara, 1990; Amgoud and Prade, 2005b;
Tindale, 1999; Perelman, 1982). To be clear, here, we categorise such argument
acts as persuasive elements that aim to force, entice, or convince an opponent to
accept a given offer (see section 7 for more details). In particular, we categorise
such approaches under the general term of Persuasive Negotiation (PN) to de-
note the fact that these try to find additional incentives (as opposed to justifying
or elaborating on the goals of an offer) to move an opponent to accept a given
offer (Rahwan et al., 2003a; Ramchurn et al., 2006).

In order to implement a PN mechanism, it is critical that the exchanges be-
tween the negotiating agents follow a given pattern (i.e. ensuring that agents
are seen to execute what they propose and that the negotiation terminates) and
that the agents are endowed with appropriate techniques to generate such ex-
changes (i.e. they can evaluate offers and counter-offers during the negotiation
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process). These requirements can be met through the specification of a proto-
col that dictates what agents are allowed to offer or commit to execute and a
reasoning mechanism that allows agents to make sense of the offers exchanged
and accordingly determine their best response (Rahwan et al., 2003a). Given
this, we present a novel protocol and reasoning mechanism for pairs of agents
to engage in PN in the context of repeated games, in which the participating
agents have to negotiate over a number of issues many times. In particular, we
focus on the exchange of rewards (as opposed to threats or appeals). We do
so because rewards have a clear benefit for the agent receiving it, and entail a
direct commitment by the agent giving it, to continue a long term relationship
which is likely to be beneficial to both participating agents. 1 In addition to the
standard use of rewards as something that is offered as a prize or gift, our model
also allows agents to ‘ask’ for rewards in an attempt to secure better outcomes
in the future, while conceding in the current encounter and therefore closing
the deal more quickly. This latter perspective is common in human-to-human
negotiations where one of the participants may ask for a subsequent favour in
return for agreeing to concede in the current round (Raiffa, 1982; Fisher and
Ury, 1983).

Being more specific still, our PN mechanism constructs possible rewards in terms
of constraints on issues to be negotiated in future encounters and our protocol
extends Rubinstein’s (1982) alternating offers protocol to allow agents to nego-
tiate by exchanging arguments along with their offers (in the form of promises
of future rewards or requests for such promises in future encounters).

Example: A car seller may reward a buyer who prefers red cars with a promise
(or the buyer might ask for the reward) of a discount of at least 10% (i.e. a
constraint on the price the seller can propose next time) on the price of her
yearly car servicing if she agrees to buy a blue one instead at the demanded
price (as the buyer’s asking price for the red car is too low for the seller). Now,
if the buyer accepts, it is a better outcome for both parties; the buyer benefits
because she is able to make savings in future that match her preference for the
red car and the seller benefits in that he reduces his stock and obtains immediate
profit.

We believe such promises are important in repeated interactions for a number
of reasons. First, agents may be able to reach an agreement faster in the present

1 The use of appeals and threats poses a number of problems. For example, the use of
appeals usually assumes agents implement the same deductive mechanism (an overly
constraining assumption in most cases) because appeals impact directly on an agent’s
beliefs or goals which means that such appeals need to adopt a commonly understood
belief and goal representation (Kraus et al., 1998; Amgoud and Kaci, 2004; Amgoud
and Prade, 2005b). In contrast, threats tend to break relationships down and are
not guaranteed to be enforced, which makes them harder to assess in a negotiation
encounter (Hovi, 1998).
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game by providing some guarantees over the outcome of subsequent games. Thus,
agents may find the current offer and the reward worth more than a counter-
offer (which only delays the agreement and future games). Second, by involving
issues from future negotiations in the present game (as in the cost of servicing
in the example above), we effectively expand the negotiation space considered
and, therefore, provide more possibilities for finding (better) agreements in the
long run (Jennings et al., 2001). For example, agents that value future outcomes
more (because of their lower discount factors) than their opponent are able to
obtain a higher utility in future games, while the opponent who values immediate
rewards can take them more quickly. Thirdly, if the reward guarantees the range
of possible outcomes in the next game, the corresponding negotiation space is
constrained by the reward, which should reduce the number of offers exchanged
to search the space and hence the time elapsed before an agreement is reached.
Continuing the above example, the buyer starts off with an advantage next time
she wants to negotiate the price to service her car and she may then not need
to negotiate for long to get a reasonable agreement.

Against this background, this work advances the state of the art in the follow-
ing ways. First, we provide a new alternating offers protocol that extends the
alternating offers protocol and builds upon Bentahar et al. (2004) to specify
commitments that agents make to each other when engaging in persuasive ne-
gotiations using rewards. Specifically, the protocol details, using dynamic logic,
how commitments arise or get retracted as a result of agents promising rewards
or making offers. Thus, by using our protocol, it is possible to keep track of the
commitments made and therefore ensure that they do enact the rewards or offers
they commit to. The protocol also standardises what an agent is allowed to say
or what it can expect to receive from its opponent which, in turn, allows it to fo-
cus on making the important negotiation decisions. Second, as part of an agent’s
reasoning mechanism, we develop a Reward Generation Algorithm (RGA) that
calculates constraints (which act as rewards) on resources that are to be negoti-
ated in future games. The RGA thus provides the first heuristic to compute and
select rewards to be given and asked for. Third, we develop a specific Reward
Based Tactic (RBT) that uses the RGA to generate combinations of offers and
rewards. In so doing, we provide the first PN tactic that considers the repeated
nature of interactions when generating offers and rewards. We then go on to
show that RBT can reach better agreements (up to 26% more utility) in less
time (using 21 times fewer messages) than standard non-persuasive negotiation
tactics.

The remainder of this paper is structured as follows. Section 2 describes the
basic definitions of repeated negotiation games and the properties of the agents.
Section 3 details our PN protocol and section 4 presents the RGA and the
functions used by the agents to evaluate incoming offers and rewards. Given this,
section 5 describes the RBT algorithm. In section 6, we empirically evaluate the
RBT and benchmark it against other standard negotiation algorithms. Section
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7 details related work and section 8 concludes.

2 Repeated Negotiation Games

In this section we formalise the repeated negotiation games within which we
apply PN. Thus, let Ag be the set of agents and X be the set of negotiable
issues. Agents negotiate about issues x1, · · · , xn ∈ X where each one has a value
vi in its domain D1, · · · , Dn. Then, a contract O ∈ O is a set of issue-value
pairs, noted as O = {(x1 = v1), · · · , (xm = vm)}, where O is the set of all
such contracts. 2 We will also note the set of issues involved in a contract O
as X(O) ⊆ X. During negotiation, an agent can limit the range of values it
can accept for each issue, termed its negotiation range and noted as [vxi

min, vxi
max].

Without loss of generality, we require that each variable xi in a contract occurs
at most once and that the number of variables and the values taken by them is
finite.

Given these basic definitions, a negotiation game is one in which an agent starts
by making an offer O = {(x1 = v1), · · · , (xm = vm)} (with or without rewards)
over a set of issues {x1, · · · , xm} ⊆ X and the opponent may then counter-offer or
accept. The agents may then go on counter-offering until an agreement is reached
or the deadline tdead is reached (we superscript it with the agent identifier where
needed). 3 While it is possible to consider infinitely or finitely repeated games, we
focus on the base case of one repetition in this work because we aim to understand
at a foundational level the impact that promises of future rewards may have on
such encounters. We also constrain the games, and further differentiate them
from the case where agents play one game each time independently of the first
one, by allowing the second game to happen if and only if the current game has
a successful outcome (i.e. an agreement is reached within the agents’ deadlines).
In so doing, there is no possibility for agents to negotiate both outcomes in one
negotiation round. The agents may also come to an agreement in the first game
but fail to reach one in the second game, in which case they only obtain utility
from the outcome of the first game. This, we believe, more closely models realistic
applications where agents will engage in long-term relationships only if they can
find some benefit in so doing given the result of their previous agreement (i.e.
reach some agreements prior to continuing their relationship). Such approaches

2 Other operators ≥,≤ can also be used. This means agents can specify a range of
values to enact rather than a specific value. This will be important when we need to
specify rewards in section 4.2.
3 If an agreement is reached, the agents are committed to enacting the deal settled on
according to the protocol defined in section 3. Note, if they cannot be forced to enact
a deal, a trust model such as (Teacy et al., 2006; Ramchurn et al., 2004) can be used
to check for this and the behaviour of the agent can be altered accordingly. However,
the latter case is beyond the scope of this work.
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are common in long-term contracting or relationships as defined in the economic
literature (Muthoo, 1999; Busch and Hortsmann, 1999). Negotiation games are
played in sequence and there may be a delay θ between the end of the first game
and the beginning of the second one. Moreover, during a game, the time between
each transmitted offer is noted as τ .

In each negotiation game, agents can assess the value of offers exchanged using
their utility function. Each agent has a (privately known) utility function over
each issue Uxi

: Dxi
→ [0, 1] and the utility over a contract U : O → [0, 1] is

defined as:

U(O) =
∑

i=1,··· ,m
wiUxi

(vi) (1)

where O = {(x1 = v1), · · · , (xm = vm)}, wi is the weight given to issue xi and∑
wi = 1. We consider two agents α, β ∈ Ag having utility functions designed as

per the Multi-Move Prisoners’ Dilemma (MMPD) (this game is chosen because of
its canonical and ubiquitous nature — see appendix A for more details) (Axelrod,
1984; Tsebelis, 1990; Birk, 2000). According to this game, α’s marginal utility
δU is higher (on an absolute scale) than β’s for some issues, which we note as
Oα, and less for others, noted as Oβ, where Oα ∪Oβ = O. 4 Moreover, given the
delays that exist between and during games, agents’ utilities will be discounted
as follows. In between games, the discount is computed as e−ε(θ+t) and between
offers it is e−ε(τ+t) where t is the time since the negotiation started (note that we
expect θ >> τ generally) and ε is known as the discount factor of the agent. 5 The
value of ε scales the impact of these delays, where a higher value means a more
significant discounting of an offer and a lower value means a lower discounting
effect. Finally, each agent is assumed to have a target utility to achieve over
the two games (noted as L ∈ [0, 2]). This target can be regarded as the agent’s
aspiration level for the combined outcomes of the two games (Faratin et al.,
2002). This target must, therefore, be less than or equal to the sum of the
maximum achievable utility over the two games (2 in the case an agent has a
ε = 0 and exploits both games completely); that is L ≤ 1 + e−ε(θ+t), where 1 is
the maximum achievable utility in an undiscounted game.

Having defined the basic constructs of repeated negotiation games, we summarise
the notation used in table 1. In the next section, we describe the negotiation
protocol. To this end, we build upon the notation presented in this section in

4 By establishing such a relationship between the agents’ utility functions, we aim
to make our model applicable to more realistic settings. Also, we believe it is not
unreasonable to assume that agents could estimate which issues are more important
(i.e. have a higher |δU |) to them or to their opponent. In any case, our mechanism
also applies to the case where agents’ marginal utilities sum to zero (in which case the
agents play a common zero-sum game (Muthoo, 1999)).
5 The exponential decay function is commonly used in bargaining theory to capture
the cumulative discounting effect of delays between offers. Other functions could also
be used according to the particular application context chosen.
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order to clearly specify the semantics of the interaction.

Ag the set of agents (usually α and β).

O the set of contracts (a contract is O ∈ O).

U(O) the utility of a contract.

Oα a contract in which ∀xi ∈ X(Oα), |δUα
xi
| ≥ |δUβ

xi |.
X the set of negotiated issues x1, x2, ....

[vxi
min, vxi

max] the negotiation range of a given issue xi.

t time since first negotiation game started.

θ the delay between two negotiation games.

τ the time between two offers.

εα the discount factor of agent α.

e−εα(θ+t) the discount between games for agent α.

e−εα(τ+t) the discount between offers for agent α.

tαdead the deadline of the negotiation game for α.

Lα the target utility of agent α.
Table 1
Summary of notation used.

3 The Negotiation Protocol

As discussed earlier, negotiation proceeds via an exchange of offers and counter-
offers (Rubinstein, 1982). In general, the protocol specification of this interaction
is rather simple in that there is only one type of commitment upheld by each
agent at any one time (that is enacting the proposal if its offer is accepted). How-
ever, extending the protocol to encapsulate persuasive elements such as rewards
means that other commitments (pertaining to the enactment of the content
of rewards) must be specified for the agents issuing these rewards (Walton and
Krabbe, 1995; McBurney et al., 2003; Bentahar et al., 2004). We term these com-
mitments social commitments since they are pledges made by agents by virtue
of their publicly visible actions or utterances. These commitments can then be
checked by an institution or arbitrator to make sure that the agents are doing
what they are supposed to and thus provide guarantees of proper behaviour
(Rahwan et al., 2003a).

There are a number of representations that can be used to specify how these
commitments can be made or retracted by the illocutions (what the agents say)
and the actions (what the agents do) (Rahwan et al., 2003a). However, given
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that rewards are likely to result in a large number of states and state transitions
and that the enactment of rewards requires clear semantics of actions to be per-
formed, we specify our protocol using Harel’s dynamic logic (DL) (Harel, 1984).
This type of action-based logic is particularly suitable for specifying programs or
sets of actions which have start and termination conditions and constructs simi-
lar to a negotiation encounter. Specifically, we build upon the work of (Bentahar
et al., 2004) to cater for rewards. To this end, we first provide a brief overview of
the constructs of dynamic logic and then specify the syntax and semantics of the
language used to describe the protocol. Finally, we detail the axioms that cap-
ture the impact of illocutions and other actions taken by agents in a negotiation
encounter.

3.1 Preliminaries

Dynamic logic has been proposed as a multimodal logical system to give seman-
tics to programs. A program can be conceived as a combination of actions that
change the state of the world. The main components of DL are thus a set of
atomic programs a0, a1, .. ∈ Π0 and a set of modal formulae Φ to describe the
world states (see (Harel, 1984) for more details). The atomic actions are basic,
indivisible, and execute in a single step. Given this, a program Π is generated
by composing actions using a number of operators such that if a, b ∈ Π then:

• a; b ∈ Π signifies that b is performed after a (i.e. sequential composition).
• a∗ ∈ Π represents an iteration of a an indeterminate number of times.
• ϕ? ∈ Π tests whether the formula ϕ ∈ Φ is satisfied in the current state
• a ∪ b ∈ Π specifies a non-deterministic execution of either a or b.

Moreover, [a]ϕ denotes that after program a ∈ Π is executed, it is necessary that
ϕ is true. 〈a〉ϕ denotes that after program a ∈ Π is executed, it is possible that
ϕ is true. The propositional operators ∧,∨,¬,↔, and 1 can be defined from →
and 0 in the usual way.

DL semantics are based on Kripke-style structures M = (S, τ, ρ) where S rep-
resent the set of states, τ : Φ −→ 2S gives the states where a formula is true,
and ρ : Π → 2S×S is a function taking a program as argument and giving the
corresponding set of pairs of starting and end states that the program connects.

In the following subsections we define a particular theory called PN (for per-
suasive negotiation) over DL to model a persuasive negotiation dialogue. To do
so, we first describe the language, that is the set Π0 of illocutionary (or other)
actions that agents interchange, and the set of formulae Φ that will describe the
state of a negotiation encounter. Given these, we provide a set of axioms that
express the constraints which apply within our persuasive negotiation protocol.
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3.2 The PN Language

In this section we describe the main components of the language. We first for-
malise the notion of contracts as an action that agents can execute. Second, we
describe the illocutions that can be exchanged during the dialogue and, third,
we detail the predicates that are used to represent the state of the world.

3.2.1 Contracts

The central element of PN is the contract that agents negotiate upon. We extend
the notion of a contract given in section 2 to capture the fact that agents execute
elements of a contract. To this end, we note the set of formulae ASG ⊂ Φ as
consisting of atomic assignments of the form xi = vi and conjunctions of atomic
assignments (x1 = v1) ∧ (x2 = v2) ∧ ... ∧ (xn = vn). 6 We also introduce the
operator Do to represent contracts as atomic actions to be more consistent with
the logical language representation used in this section. Thus, what we define as a
contract {(x1 = v1, · · · , (xm = vm)} is equivalent to Do((x1 = v1)∧ · · · ,∧(xm =
vm)). Moreover, a union of contracts {x1 = v1), (x2 = v2)} and {(x3 = v3), (x4 =
v4)} to {x1 = v1), (x2 = v2), (x3 = v3), (x4 = v4)} is equivalent to a conjunction
of the contents of the two contracts, that is, Do((x1 = v1) ∧ (x2 = v2) ∧ (x3 =
v3) ∧ (x4 = v4)).

7

Given the above definitions, a contract Do(ϕ) ∈ O, with ϕ ∈ ASG, represents
the action of making the assignment ϕ true. 8

3.2.2 Illocutions

Agents negotiate by sending illocutions which represent offers and counter-offers.
These illocutions are considered to be actions in our setting as per speech-act
theory (Searle, 1969; Austin, 1975). Illocutions generally talk about other illocu-
tions (to be sent at a later time) or about contracts that can be made between
the pair of negotiating agents. Here our set of illocutions I ⊂ Π0 consists of two

6 Other mathematical operations such as ≤,=,≥ can also be used in contracts as
discussed in section 2.
7 Actually, when committing to the execution of a contract an agent α commits to
make true those variable bindings of issues that are under the agent’s control (that
is, issues in Xα). However to simplify notation we’ll just represent that the agent is
socially committed to the whole contract.
8 Whenever we apply an operator to a formula or action, like in Do(ϕ) or later with
propose, reward, SC, etc..., we actually mean the application of the operator over a
term representing the formula. This is sometimes represented with the Gödel quotes:
Do(�ϕ�). We will, however, abuse notation and omit the quotes.
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general classes. The first consists of the proper negotiation illocutions Ineg, while
the second contains those illocutions Ipers that are added to form the persuasive
part of negotiation. We will denote by Iα and Iβ the set of all illocutions that α
and β can send respectively.

First, negotiation illocutions from Ineg have the general form:

• propose(α, β, p) — denotes that α sends a proposal to β to accept the deal
given in p ∈ O.

• accept(α, β, p) — denotes that α accepts to enact the contract p ∈ O.

Second, persuasive illocutions from Ipers have the general form:

• reward(α, β, p, q) — denotes that α will reward β with q ∈ O∪Iα if β accepts
the contract p ∈ O and p is enacted. As can be seen, q can either be a deal
that is favourable to β or an illocution that will help β in future (e.g. enhance
the reputation of β or an unconditional accept of a deal to be presented at a
later time).

• askreward(α, β, p, q) — denotes that α asks for a reward q ∈ O ∪ Iβ from β
if β accepts the offer presented in p ∈ O and p is enacted.

3.2.3 World Description

As discussed in section 3.1, the actions or programs performed by agents result in
changes in the state of the world. In our model, programs consist of a number of
illocutions or contract executions. To represent the consequences of theses actions
we exploit the theory presented by (Bentahar et al., 2004). In their model, the
authors prescribe commitments that hold in different states of the world and
agents are able to navigate between different states through the actions they
perform. In short, these actions lead to some commitments becoming true or
false. We therefore extend the work of Bentahar et al. to incorporate the notion
of commitment in the framework of persuasive negotiation. To this end, we first
conceive the set of social commitments that can be made in a dialogue as a result
of illocutions being uttered and that can be retracted as other illocutions are
uttered or other actions are executed. At the beginning of a negotiation dialogue
(i.e. before any agent says anything), all the commitments are false. As the
negotiation proceeds, some will become true (active) or false (inactive) according
to the illocutions sent. Some commitments might also become false when some
actions are performed after negotiation. In order to represent commitments in
the negotiation state we need to introduce special operators to describe them:

• SC(α, β, ϕ, q) ∈ Φ denotes a commitment from α to β to enact q given ϕ is
satisfied. Here, q ∈ O∪ Iα, ϕ = Done(a1)∧ · · · ∧Done(an) ∈ Φ to denote that
the commitment is conditional upon the enactment of a number of actions (a1

to an) or ϕ = true to denote that the commitment is unconditional.

10



• Done(a) ∈ Φ where a ∈ Π to denote that action a has been performed.

For instance, SC(α, β, Done(propose(α, β, p); accept(β, α, p)), p) means that in
case β accepts contract p proposed by α then α is also committed to β over the
same contract. Moreover, arbitrary compound formulae in Φ can be constructed
from these atomic formulae and formulae in ASG using the standard connectives
∧,∨,¬. For example SC(α, β, Done(accept(β, α, p))∧Done(p), q) means that α
is committed to doing q if β has accepted an offer p and p has been done.

Building on these basic elements, the set of states S of the DL framework will
be determined, in our setting, by the truth values of three types of formulae; (i)
assignments of values to issues (e.g. (x = v)), (ii) instances of Done predicates
(e.g. Done(p)), and (iii) instances of SC predicates (e.g. SC(α, β, ϕ, p)). Thus,
each state of the world can be described by a (possibly partial) assignment of
the values to some issues, actions that have been already performed, and social
commitments that are active.

Given the definition of the semantics of the PN language, we next describe the
axioms that support the basic rules of our persuasive negotiation protocol.

3.3 The PN Axioms

We first explain the three basic axioms regarding the meaning of the operators
Do and Done:

• [Do(ϕ)]ϕ — after the execution of Do(ϕ), necessarily ϕ is true.
• [a]Done(a) — after executing action a, necessarily the formula Done(a) is

true.
• Done(a; b) → Done(a) ∧Done(b) — the execution of the action sequence a; b

implies that a and b have been performed.

Next, we capture the relationship between illocutions and social commitments.
We avoid the rules depicting the turn-taking procedure that normally happens
in negotiation in order to focus on the essential features of the commitments
with respect to the enactment of proposals and rewards: 9

•
[
propose(α, β, p)

]
SC(α, β,Done(accept(β, α, p)), p)

9 The rules of encounter we use are the ones described in section 2. The logical rep-
resentation of these rules could be further formalised using DL to finer levels of gran-
ularity so as to describe turn-taking, deadlines to send new proposals or rewards,
and withdrawal from the negotiation. Examples of negotiation protocols that cater
for some of these rules can be found in (Parsons et al., 1998; McBurney et al., 2003).
However, here we choose to focus on what we believe to be the bare essentials of a
protocol with respect to persuasive negotiation.
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This means that after propose(α, β, p) is uttered, α commits to enact p if β
accepts the proposal.

•
[
reward(α, β, p, q)

](
SC(α, β,Done(accept(β, α, p)), p)∧SC(α, β,Done(accept(β, α, p))

∧ Done(p), q)
)

This means that after reward(α, β, p, q) is uttered, α commits to its part of
the deal p if β accepts the deal p. Moreover, α commits to make the reward
q ∈ O ∪ Iα happen once the contract p is made true.

•
[
askreward(α, β, p, q)

](
SC(α, β,Done(accept(β, α, p)), p)∧SC(β, α,Done(accept(β, α, p))

∧ Done(p), q)
)
.

This means that after askreward(α, β, p, q) is uttered, α commits to its part
of the deal p if β accepts the contract p. Moreover, β commits to make the
reward q ∈ O ∪ Iβ happen once the contract p is made true.

We next outline the axioms that specify the dynamics of the social commitments
when actions are performed:

• Unconditionally committing to enacting a contract or reward:
SC(α, β, Done(a), p) → [a](¬SC(α, β, Done(a), p) ∧ SC(α, β, true, p))
In this case, once the action a has been done, α is committed to enacting p
(which could be a contract or a reward) without any conditions. This is usually
the case when a is an accept of the offer to do p or when a is a contract that
had to be executed before a reward p were to be given.

• Conditionally committing to enacting a contract or reward:
SC(α, β, Done(a) ∧ ϕ, p) → [a](¬SC(α, β, Done(a) ∧ ϕ, p) ∧ SC(α, β, ϕ, p))
In this case, once action a has been done, α only commits to do p if ϕ is true.
This can happen, for example, if a reward p has been offered and ϕ represents
the enactment of the offer (accepted through action a) conditional upon which
the reward p was to be enacted.

• Enacting a contract or reward:
SC(α, β, true, p) → [p]¬SC(α, β, true, p)
This simply means that a commitment to enact a contract or reward is revoked
once the contract or reward is enacted.

We finally describe the basic axioms that ensure that agents commit to the most
up-to-date contract or rewards:

• Committing to only one contract at a time:
· [propose(α, β, p)]¬SC(α, β,Done(accept(β, α, p′)), p′), for p′ �= p
· [reward(α, β, p, q)]¬SC(α, β,Done(accept(β, α, p′)), p′), for p′ �= p
· [askreward(α, β, p, q)]¬SC(α, β,Done(accept(β, α, p′ )), p′), for p′ �= p
These mean that a commitment to a previous offer is retracted when a new
contract is offered, or a reward is given or asked for with a new offer.

• Committing to only one reward at a time:
· [reward(α, β, p, q)]¬SC(α, β,Done(accept(β, α, p)) ∧ Done(p), q′)), for q′ �= q.
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· [askreward(α, β, p, q)]¬SC(β, α,Done(accept(β, α, p)) ∧Done(p), q′)), for q′ �= q.
These mean that a commitment to a previous reward is retracted when a new
reward is given or asked for.

Using all the above axioms, it is possible to automatically check what agents
are allowed to say or do at any point during the negotiation dialogue and after
the negotiation has ended. This can be achieved by storing each commitment
incurred during the dialogue in a commitment store and, as new illocutions
are issued, these are checked against the commitment store to see if they can be
accepted and then used to make certain existing commitments active or inactive.
Such a mechanism can easily be built into an electronic institution for automated
checking (e.g. (Esteva et al., 2001, 2004; Rahwan et al., 2003a)).

4 The Persuasive Negotiation Strategy

The protocol we have described in the previous section structures interactions
between agents as it allows them to understand the messages exchanged and the
commitments they make while negotiating. However, protocols, such as ours,
do not give any indication about the content of offers or rewards that agents
need to devise in order to reach good agreements, nor do they indicate when
and how to send such offers and rewards (which determine the agents’ strategy).
Therefore, to complement the protocol, it is important to devise mechanisms to
generate and evaluate offers and rewards that they may be committed to enact.
In particular, we do so with respect to the following requirements (Jennings
et al., 1998):

(1) Techniques must exist for generating proposals and for providing the sup-
porting arguments — this demands that agents be endowed with strategies
to generate offers. Here we will assume no prior information about the op-
ponent (except that of the knowledge of a conflict of preferences and the
domain of discourse as per many other models in this area (Faratin et al.,
2002; Fatima et al., 2004)). In such situations, the heuristic-based approach
has a proven track record of eliciting good outcomes and so this is the ap-
proach adopted here. Generally, these mechanisms assume no knowledge
of the opponent and decide on offers and counter-offers according to the
behaviour of the opponent (behaviour-dependent tactics), the deadline of
the agent (time-dependent tactics), and the amount of resources available
(resource-dependent tactics) (Faratin et al., 1998). In this section (and later
ones) we develop a heuristic that is tailored to the problem of repeated ne-
gotiations.

(2) Techniques must exist for assessing proposals and their associated support-
ing arguments — this means that agents need to be able to evaluate the
benefit of proposals and rewards to them. This is normally captured by
evaluating the incoming offers against the agent’s preference structure or
utility function. However, as we will see, in repeated encounters, agents do
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not know the outcome of future games a priori; that is, there exists some
uncertainty about such outcomes. This uncertainty needs to be taken into
account in the decision making of the agents in prior games. Currently, how-
ever, there is no negotiation technique that deals with strategies specifically
tailored for such repeated encounters, but here we aim to use persuasive
negotiation to do so in order to reduce the uncertainty of future outcomes
through the use of rewards.

(3) Techniques must exist for responding to proposals and their associated sup-
porting arguments — here again the heuristic-based models have been shown
to provide good responses to offers and counter-offers. In particular, we will
give special attention to those heuristic-based models that try to achieve
pareto-efficiency in the bargaining encounter because such models have been
shown to take less time to come to better agreements overall (Faratin et al.,
2002). In so doing, we also aim to develop a bargaining mechanism that
seeks the most efficient partitioning of resources.

In general, through persuasive negotiation, we give agents a means of influenc-
ing future negotiations through rewards, rather than just exchanging offers and
counter-offers that only impact the outcome of the present encounter. Given that
negotiation normally occurs over the partitioning of some resource, the rewards,
in our case, aim to constrain this partition by imposing bounds on agreements
that could be achieved in future negotiations. Thus, promises of rewards (asked
for or given) partially determine the partitioning of resources to be negotiated
at a later time (see example in section 1).

To this end, in this section, we develop a Reward Generation Algorithm (RGA)
that generates rewards based on offers calculated by other techniques (such as
resource or behaviour-based tactics). Moreover, in section 5, we develop a specific
persuasive negotiation strategy that builds upon the RGA to generate both offers
and rewards.

From this section onwards, we will focus on the specific features of repeated
negotiation games described in section 2 and abuse the notation slightly to denote
the set of outcomes in the first game by O1 and those in the second by O2 (On

in the more general case). Thus, in the specific setting we consider, the proposal
p and reward q specified by persuasive illocutions such as reward(α, β, p, q) and
askreward(α, β, p, q) are such that p ∈ O1 and q ∈ O2.

10 In so doing, what we
represented as a reward in section 3, for example q ∈ O{α} for a reward given by
α, is now translated to a set of constraints (using operators ≤, =,≥) that α will
abide by in a contract O2 ∈ O2. Similarly, normal negotiation illocutions such
as propose(α, β, p) and accept(α, β, p) only consider offers from the first game,
that is, p ∈ O1.

10 Here we do not consider rewards which could be illocutions as suggested in section
3, but these could easily be implemented by extending the proposed solution. Such an
extension will be considered in future work.
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Given this, we first discuss when rewards can justifiably be used to persuade
an opponent and then move on to describe how such rewards are generated by
combining the different components of the RGA. Finally, we devise evaluation
functions to assess the utility that can be obtained from rewards and the offers
they support. In so doing, we describe how agents decide whether to counter-offer
or accept a given offer.

4.1 When To Use Rewards

In PN, agents try to give rewards or ask for rewards in order to get their opponent
to accept a particular offer. Rewards are about giving a higher utility outcome
to an opponent (when given) or a higher utility to the agent asking for it in the
second game. Given this, rewards are specified in the second game in terms of
a range of values for each issue. Thus, giving a reward equates to specifying a
range such as vx > 0.5 for issue x in O2 ∈ O2 to an agent whose utility increases
for increasing values of x. Conversely, asking for a reward means specifying a
range such as vx < 0.4 in O2 for the asking agent (whose utility increases for
decreasing values of x). Now, agents may find it advantageous to accept such
rewards if it costs them more to counter-offer (due to their discount factor) or
if they risk passing their deadline (or their opponent’s). Here, we do not deal
with the issues related to whether the agents keep to their promises or how to
tackle the uncertainty underlying this (we simply assume they do), but rather we
focus on the reasoning mechanism that the agents require in order to negotiate
using rewards. In more detail, a reward can be given or asked for in the following
contexts:

• A reward is proposed when the agent can still manage to achieve its target L
after reaching an agreement and giving the reward. This may happen if agent
α is asking β to concede in the first game, giving α more utility in the first
game. Agent α may then afford to forsake some utility in the second game
(which it values less due to discounting effects). It may do so by conceding in
the second game and this acts as a reward. Note here that the reward may
cost the sender something as well and it therefore needs to estimate the cost
of this reward with respect to Lα properly before committing to giving the
reward.

• A reward can be asked for by an agent if it is able to concede in the first game
so as to catch up in the second one. In this case, the agent asking for the
reward has some costs in conceding in the first game and entices the opponent
to pledge to something in return (a concession in the second game) for the
concession in the first game. The agent asking for the reward also needs to ask
for a reward that is commensurate with its target and the level of concession
it is making.

The above reasoning is captured in figure 1. As can be seen, given a contract O1

offered by α, a reward from α to β would be to propose a negotiation range that
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Reward =  guarantees share for
 in O2

O1 O2

Agreement in O1 where  concedes
more than 

Negotiable
part

Fig. 1. Determining the outcome of the second game according to the offer made in
the first game.

is more favourable to β (i.e. make offers with high utility for β) in the second
game. The agreement reached in the first game would then be of higher utility
for α. The converse applies when agent α asks β for a reward. These procedures
can be seen as a trade-off mechanism often used in negotiation whereby agents
trade-off gains in the present (or the future) in return for gains in the future (or
in the present) (Raiffa, 1982). In general, there are two main ways agents stand
to gain from using rewards in this manner:

(1) Agents may be able to reach an agreement faster in the first game by pro-
viding some guarantees over the outcome of the second game. For example,
when α specifies that it will negotiate for only a third of the pie in the
second game, β might prefer to accept this offer instead of delaying the
negotiation as it would result in both the first and second pie being worth a
significant amount less than its target Lβ. This, in turn, reduces negotiation
time and hence the less discounted is the outcome in the first and second
games.

(2) The negotiation mechanism can be more efficient in that it allows agents
to explore a larger negotiation space over which they may have different
preferences. This may happen particularly if α has a lower discount factor
than β. For example, β can trade-off a third of the second pie, which its
opponent values more, against higher profits in the first game.

(3) Agents may be able to reach an agreement faster in the second game, since
not much of the negotiation space is left to be searched if a reward has been
given or asked for. For example, α and β only have to negotiate over a third
of the pie in the second game rather than the whole pie.

4.2 The Reward Generation Algorithm

Building on the reasoning mechanism presented in section 4.1, we now develop
our reward generation algorithm (RGA). Its role is to determine the level of
concession made in the first game, and hence set the value of the corresponding
reward, and to decide whether to send it or not. First, we assume that an agent
has some means of generating offers O1 which comply with its negotiation ranges
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for each issue. These can be generated using what is termed a negotiation tactic
(Faratin et al., 1998). In line with much work on negotiating in the presence
of deadlines, we assume the agent’s negotiation tactic concedes to some extent
until an agreement is reached or the deadline is passed. Then, at each step of the
negotiation, based on the concessions made in an offer O1 ∈ O1, RGA computes
the reward O2 ∈ O2 and decides if it is to be asked for or given. In more detail,
algorithm 1 outlines the main steps of RGA which are then detailed in the
following subsections.

Require: O1 ∈ O1, L
1: Compute concessions in Oα

1 and Oβ
1 . % Here the agent determines how much

both agents concede on the issues for which they have a higher and
lower |δU | than their opponent.

2: Select O2 ∈ O2 that matches the level of concession in O1

3: Check whether the combination of O1 and O2 satisfies L, adjust [vmin, vmax] for
second game according to values in O2 and send offer and reward.

Algorithm 1: Main steps of the RGA

4.2.1 Step 1: Compute the Concession Degrees

In this context, the degree to which an agent concedes in any game is equivalent
to the value it loses on some issues to its opponent relative to what the opponent
loses to it on other issues. Assuming (x = vx

1 ) ∈ O1 is the value of an issue x,
and [vx

max, v
x
min] is its negotiation range, then we define:

Ux
1 = Ux(v

x
1 )

Ux
max = max{Ux(v

x
min), Ux(v

x
max)}

Ux
min = min{Ux(v

x
max), Ux(v

x
min)}

From these, we can compute the maximum an agent could get as:

Umax =
∑

x∈X(O1)

wxU
x
max

the minimum as:

Umin =
∑

x∈X(O1)

wxU
x
min

and the actual utility as:

U1 =
∑

x∈X(O1)

wxU
x
1

where wx is α’s relative weight of issue x and
∑

wx = 1. These weights can be
ascribed the same values given to the weight the issue has in the utility function
(see equation 1) and can be normalised for the number of issues considered here.
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Then, the concession degree on the offer O1 is computed as:

con(O1) =
Umax − U1

Umax − Umin
(2)

It is then possible to calculate concessions on issues with higher and lower |δU | for
α using conα(Oα

1 ) and conα(Oβ
1 ) respectively. Then, the complement of conα(Oα

1 )
or conα(Oβ

1 ) (i.e. 1−conα(Oα
1 ) and 1−conα(Oβ

1 )) represents how much β concedes
to α from α’s perspective (or how much α exploits β).

4.2.2 Step 2: Determine the Rewards

To determine which agent concedes more in the game (given that they play a
MMPD), α needs to compare its degree of concession on the issues with higher
|δU | than β (i.e. Oβ

1 ) and those with lower |δU | than β (i.e. Oα
1 ) (in a zero

sum game this is calculated for all issues). This means determining what are
the different conditions when conα(Oβ) is compared with the concession (1 −
conα(Oα)) of β (as perceived by α). To this end, we define three conditions which
refer to the case where α concedes as much as β (COOP ) (i.e. it cooperates),
concedes more to β (CONC) (i.e. it concedes), and concedes less than β (EXPL)
(i.e. it exploits) respectively as follows:

• COOP = true if conα(Oα
1 ) + conα(Oβ

1 ) = 1 (i.e. α has no grounds to give or
ask for a reward).

• CONC = true if conα(Oα
1 ) + conα(Oβ

1 ) > 1 (i.e. α should ask for a reward).
• EXPL = true if conα(Oα

1 ) + conα(Oβ
1 ) < 1 (i.e. α should give a reward).

The above conditions capture the fact that an agent can only ask for a reward
if it is conceding in the first game and can only give one if it is exploiting in
the first game. It is possible to envisage variations on the above rules as agents
may not always want to give a reward to their opponent if they are exploiting in
the first game or they may want to ask for one even if they are not conceding.
However, these behaviours could be modelled in more complex strategies (which
we will consider in future work). But, in so doing, an agent may also risk a failed
negotiation. Here, therefore, we focus on the basic rules that ensure agents try
to maximise their chances of reaching a profitable outcome.

Now, having determined whether an argument is to be sent or not and whether
a reward is to be asked for or given, we can determine the value of the reward.
Given that an agent α aims to achieve its target Lα, the value chosen for a reward
will depend on L and on (conα(Oα

1 ), conα(Oβ
1 )) (i.e. the degrees of concession of

the agent). We will consider each of these points in turn (and ignore the agent
identifier where it is clear from the context).
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Given O1, the first game standing offer, the minimum utility α needs to get in
the second game is l2 = L− U(O1). We then need to consider the following two
cases (remember e−ε(θ+t) is the maximum that can be obtained in the second
game with discounts):

(1) If l2 ≤ e−ε(θ+τ+t) it is still possible for α to reach its target in the second game
(provided the agents reach an agreement in the first one) and, therefore, give
(or ask for) rewards as well. The larger l2 is, the less likely that rewards will
be given (since less can be conceded in the second game and still achieve
L). Note that τ is added to the discounting effect to denote that an agent
will take some time to send the next illocution.

(2) If l2 > e−ε(θ+τ+t), it is not possible to give a reward, but an agent may well
ask for one in an attempt to achieve a value as close as possible to l2.

For now, assuming we know l2 ≤ e−ε(θ+τ+t), it is possible to determine how much
it is necessary to adjust the negotiation ranges for all or some issues in O2 in
order to achieve l2. Specifically, the agent calculates the undiscounted minimum
utility l2

eε(θ+τ+t) it needs to get in the second game. Then, it needs to decide
how it is going to adjust the utility it needs on each issue, hence the equivalent
bound vout for each issue, in order to achieve at least l2

eε(θ+τ+t) . Here, we choose to
distribute the utility to be obtained evenly on all issues. Other approaches may
involve assigning a higher vout (hence a higher utility) on those issues which have
a higher weight in the utility function. In so doing, vout may constrain the agent’s
ranges so much for such issues that its negotiation ranges may not overlap with
that of its opponent and result in no possible agreement between them. Our
approach tries to reduce this risk. Thus, the required outcome vout of an issue in
the second game can be computed as:

vout = U−1
x

(
l2

e−ε(θ+τ+t)

)
(3)

Having computed the constraint vout, the agent also needs to determine how
much it should reward or ask for. To this end, the agent computes the contract
Ō which satisfies the following properties:

conα(Ōα
2 ) = conα(Oβ

1 ) and conα(Ōβ
2 ) = conα(Oα

1 )

This is equivalent to our heuristic described in section 4.1 where the level of
concession or exploitation in the offer in the first game (i.e. here O1 = Oα

1 ∪Oβ
1 )

is mapped to the reward asked for or given in the second one (i.e. here Ō2 =
Ōα

2 ∪Ōβ
2 ). Then, assuming linear utility functions and finite domains of values for

the issues, the above procedure is equivalent to reflecting the level of concession
on issues with higher |δU | by α onto those with higher |δU | for β. This is the
same as inverting equation 2 given a known Umax and Umin (as defined in step
1), and finding vx

1 by assigning Ux
1 = U1 and inverting Ux

1 for each issue (a
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procedure linear in time with respect to the number of issues considered). Let us
assume that for an issue x this results in a bound vr (a maximum or minimum
according to the type of argument to be sent). Thus, from Ō2, α obtains bounds
for all issues in the rewards it can ask from or give to β. Given this, we will now
consider whether to send a reward based on how vr and vout compare.

4.2.3 Step 3: Decide whether to Send the Offers and the Rewards

Assume that α prefers high values for x and β prefers low ones and that it has
been determined that a reward should be offered (the procedure for asking for
the reward is broadly similar and we will highlight differences where necessary).
Now, α can determine whether a reward will actually be given and what its value
should be according to the following constraints:

(1) vr ≥ vout: α can promise a reward defining an upper bound vr on the second
game implying that α will not ask for more than vr. This is because the
target vout is less than vr and α can, therefore, negotiate with a revised
upper bound of v′

max = vr and a lower bound of v′
min = vout. When asking

for a reward, α will ask for a lower bound vr (i.e. v′
min = vr) and negotiate

with its normal upper bound vmax in order to achieve a utility that is well
above its target.

(2) vout > vr: α cannot achieve its target if it offers a reward commensurate
with the amount it asks β to concede in the first game. In this case, α revises
its negotiation ranges to v′

min = vout (with vmax remaining the same). Thus,
the agent does not send a reward but simply modifies its own negotiation
ranges. Now, if it were supposed to ask for a reward, α cannot achieve its
target with the deserved reward. However, it can still ask β for the reward vr

(as a lower bound) and privately bound its future negotiation to v′
min = vout

while keeping its upper bound at vmax. In so doing, it tries to gain as much
utility as possible. 11

Now, coming back to the case where l2 > e−ε(θ+τ+t) (implying vout > vr as
well), the agent that intends to ask for a reward will not be able to constrain
its negotiation range to achieve its target (as in point 2 above). In such cases,
the negotiation range is not modified and the reward may still be asked for (if
CONC = true).

Given the above final conditions, we can summarise the rules that dictate when
particular illocutions are used and negotiation ranges adjusted, assuming an
offer O1 has been calculated and O2 represents the associated reward as shown
in algorithm 2.

11 The difference between the constraint applied by the reward and by the target is
that the reward applies the constraint to both agents, while the latter only applies
separately to each agent according to their individual targets.
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if COOP or (EXPL and vout > vr) for all x ∈ X(O2) then
propose(α, β,O1).

end if
if CONC and l2 ≤ e−ε(θ+τ+t) then

askreward(α, β,O1, O2) and modify [vmin, vmax] for second game.
end if
if CONC and l2 > e−ε(θ+τ+t) then

askreward(α, β,O1, O2).
end if
if EXPL and vout ≤ vr for all x ∈ X(O2) then

reward(α, β,O1, O2) and modify [vmin, vmax] for second game.
end if

Algorithm 2: Step 3 of RGA.

With all this in place, the next section describes how the recipient of the above
illocutions reasons about their contents.

4.3 Evaluating Offers and Rewards

Having discussed how agents would generate rewards, we now describe how an
agent evaluates the offers and rewards it receives. Generally, when agents ne-
gotiate through the standard alternating offers protocol, the proponent accepts
an offer from its opponent only when the next offer the proponent might put
forward has a lower (discounted due to time) utility for itself than the offer
presented to it by their opponent. This is expressed as in rule 1.

Rule 1 Accepting an offer in the usual case.

if U(Onext)·expεβ(τ+t) ≤ U(Ogiven)·exp−εβt then % Ogiven is the offer given
by α and Onext is β’s possible next offer

accept(β, α,Ogiven)
end if

However, agents using persuasive negotiation also have to evaluate the incoming
offer together with the reward they are being asked for or are being given. From
the previous section, we can generally infer that a reward implies a value vr that
defines either a lower or an upper bound for a given issue in the next negotiation
game. For example, a reward to be given by a seller might be a guaranteed
discount (i.e. a lower limit price) on the next purchase by the current buyer
which could also have been a reward requested by the buyer. Therefore, given
this bound, the agent may infer that the outcome of any given issue will lie in
[v′

min, v′
max] which might be equivalent to or different from the agent’s normal

negotiation ranges [vmin, vmax] and may take into account the agent’s target vout

(given its target l2) or the value vr itself.

Generally, we can assume that given a negotiation range [v′
min, v

′
max], an agent

may be able to define an expected outcome of that range using a probability
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distribution (e.g. uniform, normal, gamma) or some reasoning based on its ne-
gotiation strategy (e.g. a conciliatory strategy would expect a lower utility gain
in the second game as compared to a non-conciliatory one when faced with a
non-conciliatory opponent). This probability distribution may be estimated from
previous interactions with the opponent or knowing the behaviour of the oppo-
nent’s bargaining strategy and its relationship with the agent’s own bargaining
position (Fisher and Ury, 1983; Raiffa, 1982). Given this expected outcome for
any issue, the agent may then calculate the expected utility (determined accord-
ing to the bounds set by the reward) of that reward along with the utility of the
offer to which it is tagged. Moreover, using the same procedure it can calculate
the expected utility of any reward or offer that it might want to send next. By
comparing the two sets of utilities, it can then make a decision as to whether to
accept or counter-offer in the next step. We detail such a procedure as follows.

Assume β is the agent that is the recipient of a reward (given or asked for)
and that β prefers small values for the issue x being considered. Then, let β’s
negotiable range be [vmin, vmax] for the issue x and β’s target be lβ2 in the second
game (which implies that it needs at least vβ

out for the issue in the second game).

Now, if β receives reward(α, β, O, Oa) (or askreward(α, β, O, O′
a)), meaning that

Oa is its reward for the second game, then Oa implies that vα
r is the upper bound

proposed by α for each each issue x in Oa (vα
r would be a lower bound in O′

a).
In the meantime, β has calculated another offer Onew with a reward Ob in which
a bound vβ

r is to be given to each issue x in Ob. Then, for each issue x, β
calculates the negotiable ranges for the second game given vα

r as [vmin, vα
r ] (or

[vα
r , min{vout, vmax}] if O′

a is asked for) while it calculates [vβ
r , min{vβ

out, vmax}]
given vβ

r . We assume β can then calculate (using a probabilistic technique) the
expected outcome of each range as evα

x for [vmin, vα
r ] (or [vα

r , min{vout, vmax}] in
the case of O′

a) and evβ
x for [vβ

r , min{vβ
out, vmax}]. Given each of these expected

outcomes for each issue, the overall expected outcomes, EOa and EOb, of the
second game can be calculated for each type of reward respectively as:

U(EOa) =
∑

x∈X(EOa)

wx · U(evα
x ) (4)

U(EOb) =
∑

x∈X(EOb)

wx · U(evβ
x ) (5)

where EOa is the expected outcome of the reward given by α, EOb is the expected
outcome of the reward given by β,

∑
wx = 1 and wx is the weight given to each

issue in the utility function (as per equation (1)). These weights for the second
game may be different from those used in evaluating offers in the first game and
if this is known in advance, the agent will have to compute the value of expected
outcomes in the second game with the future weights in order to be consistent.

Given that the expected outcomes have been calculated, then the agent decides
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to accept or counter-offer using rule 2. This evaluates the offer generated against
the offer received to decide whether to accept the offer received or send the
reward illocution (note the addition of discount factors to reflect the time till
the next game and in sending the counter-offer). Note that the same principle
applies if the agent were about to send an askreward instead.

Rule 2 Evaluating a received reward when about to give or ask for a reward.

if U(Onew) · exp−εβ(τ+t) +U(EOb) · exp−εβ(θ+τ+t) ≤ U(O) · exp−εβt +U(EOa) ·
exp−εβ(θ+t) then

accept(β, α, O)
else

reward(β, α, Onew, Ob) or askreward(β, α, Onew, Ob)
end if

Finally, we consider the case where agent β has received a persuasive offer and
can only reply with another offer without any argument. In this case, β calculates
the expected outcome of the second game without any constraints (i.e. using its
negotiation range [vmin, vmax] to elicit EO′

b). Rule 3 therefore compares the utility
of the offer received against the utility of the offer generated and the outcome
expected in the next game to decide whether to propose or to accept. Note here
that the second game is left more uncertain in this case since the bounds have
not been changed by any reward. This means that the agent cannot guarantee
that it will meet its target and can also result in the agents taking more time to
reach an agreement in the second game (as in the case of non-persuasive tactics
as we show in the next section). As we have seen in this section, the generation of

Rule 3 Evaluating a received reward when about to send a normal offer.

if U(O′
new) · exp−εβ(τ+t) +U(EO′

b) · exp−εβ(θ+τ+t) ≤ U(O) · exp−εβt) + U(EOa) ·
exp−εβ(θ+t) then

accept(β, α, O)
else

propose(β, α, O′
new)

end if

rewards and evaluation of offers assume that there is an offer based upon which
rewards can be computed. Given this, in the next section, we discuss and remove
this assumption by developing a novel tactic that uses the RGA to generate offers
and rewards.

5 The Reward-Based Tactic

As described in the previous section, RGA requires an offer generated by some
negotiation tactic in order to generate the accompanying reward. In this vein,
the most common heuristic-based tactics can be classified as: (i) behaviour-
based (BB) – using some form of tit-for-tat or (ii) time-based – using Boulware
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(BW) (concedes little in the beginning before conceding significantly towards the
deadline) or Conceder (CO) (starts by a high concession and then concedes little
towards the deadline) (Faratin et al., 1998). 12 Now, many of these tactics engage
in positional bargaining (Fisher and Ury, 1983) by starting from a high utility
offer for the proponent (here α) and gradually conceding to lower utility ones.
In turn, this procedure automatically causes RGA to start by promising rewards
and then gradually move towards asking for rewards. This is because these tactics
generate offers that are exploitative at the beginning of the negotiation. As the
agent gradually concedes on its initial offer during the negotiation, the reward
generation mechanism would ask for rewards instead. Thus, it is not possible for
these tactics to ask for rewards at the beginning of the negotiation. This can
significantly reduce the efficiency (in terms of the sum of utilities of the agents)
of the negotiation encounter since one of the agents may be better off conceding
the second game if it has a low discount factor ε and, in return, exploit the first
game (as discussed earlier in section 1). This would mean that the more patient
agent (i.e. the one with a lower discount factor ε) could ask for a reward in the
second game or the other agent could offer a reward in the second game.

To ground our work, we present a novel reward-based tactic (RBT) (based on
Faratin’s trade-off tactic (Faratin et al., 2002)) that either asks for or gives a
reward at any point in the negotiation in order to reach an agreement. To do so,
however, the agent needs to know how to evaluate incoming offers and generate
counter-offers accordingly. We will consider three main cases in calculating the
best response to an offer and a reward. These are:

(1) An offer and a reward have been received and it is possible to counter-offer
with a reward.

(2) It is not possible to counter-offer with a reward and the last offer involved
rewards.

(3) It is not possible to counter-offer with a reward and the last offer did not
involve rewards.

We show how the algorithm deals with each of these cases in turn.

5.1 Case 1: Counter-Offering with a Reward

In this case, an offer and a reward have been received and it is possible to
counter-offer with a reward (according to the RGA). Thus, an agent α needs to
calculate combinations of rewards asked for or given with offers and choose the
combination which it deems most appropriate to send to β. To calculate these
combinations, α first needs to determine the overall utility each combination
should have. To achieve this, we use a hill climbing method similar to Faratin et

12 Other negotiation tactics might also be resource-based or dependent on other factors.
The tactics we select here have been chosen because they are among the most common
studied in the literature (Raiffa, 1982; Faratin et al., 1998).
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al.’s (2002) model. In this method, the agent tries to find an offer that it believes
is most favourable to its opponent, while not necessarily conceding too much. In
our case (particularly for utility functions based on the MMPD), this procedure
equates to the agent trying to gain more utility on the issues on which it has a
higher |δU | and less on those for which it has a lower |δU | than β. 13 In so doing,
the strategy tries to maximise joint gains in the repeated negotiation encounter.

Therefore, to calculate the best combination of offer and reward for an agent α
to send in the hill-climbing approach, α first calculates the utility of the next
offer it intends to send and then finds the offer and reward that optimally match
this utility value. By optimality, in this case, we mean that either the offer or
the reward should also be the most favourable one to β. Thus, the utility of
the next offer is calculated according to the difference that exists between α’s
previous offer and the last one sent by β and the step in utility α wishes to
make from its previous offer. The size of this utility step can be arbitrarily set.
Given a step of size f ∈ [1,∞], the utility step is calculated by the function
Su : O1 ×O2 ×O1 ×O2 × [1,∞] as follows:

Su(O1, O2, O′
1, O′

2, f) =
exp−εt

(
U(O1) exp−2ετ +U(EO2) exp−ε(θ+2τ) −U(O′

1) exp−ετ −U(EO′
2) exp−ε(θ+τ)

)
f

(6)

where O1 and EO2 are α’s previous offer and expected outcome in the second
game from α’s reward O2 respectively, O′

1 and EO′
2 are the current offer and

the expected outcome of β’s reward O′
2 respectively. In case Su returns zero

or a negative value, α would accept the offer and reward (after applying the
evaluation rules defined in section 4.3). When a reward is not specified by the
agents, the utility calculated by the function only considers the offers made by
each agent (i.e. remove U(EO′) and U(EO′

2) from its calculation).

Given the utility step Su, it is then possible to calculate the utility Nu of the
combination of the next offer and reward using the following equation:

Nu = U(O1) exp−ε(2τ+t) +U(EO2) exp−ε(θ+2τ+t) −Su(O1, O2, O
′
1, O

′
2, f) (7)

Given that rewards specify bounds on the negotiation in the second game, each
combination that can be offered in a step represents a space of possible agree-
ments in the second game given an offer in the first one. Therefore, finding a
combination that more closely matches the opponent’s offer and reward equates
to finding another space of offers that is close to the opponent’s space that covers
its latest offer and reward. This procedure is pictured in figure 2.

As can be seen in this figure, in our tactic, α calculates the most favourable
combination of offer and reward for agent β that achieves the utility Nu. In so

13 Note this is different from the point discussed in section 4.2.2 since here we do not
constrain the negotiation ranges, but rather search for offers that may be profitable
to both parties.
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Fig. 2. The hill climbing performed by RBT for an agent α to find an appropriate
reward and offer in response to the offer and reward by agent β. The shaded semi
circles represent spaces over which different offers and rewards have the same utility
for α. Each new offer by α is made closer to agent β’s previous offer.

doing, our tactic aims to make offers that are closest to those preferred by β in
a few steps without losing much utility. In calculating a reward to be given we
take into account the fact that in the MMPD the opponent likes some issues
more than others and by maximising the opponent’s gain on these issues we
ensure that the reward is more attractive to the opponent. In the same way,
when a reward is asked for, the associated offer is calculated such that the
values of the issues in the offer are more favourable to the opponent on those
issues it prefers most according to the MMPD. To calculate these offers and

Given previously received and proposed offers and rewards, find (O1, O2) such
that:

– maximise conα(Oα
2 ) to give a reward to β.

– maximise conα(Oβ
2 ) to ask for a reward from β.

subject to:
– Uα(O1, O2) = Nu
– ∀(x = v) ∈ O1, O2, vmin ≤ v ≤ vmax % i.e. all values need to be within the

negotiation range.

Optimisation Model 1: Computing the best counter-offer and reward.

rewards, we solve the problem defined by optimisation model 1 using Linear
Programming techniques in order to calculate the reward that is either most
favourable to β or to α. Algorithm 1 therefore runs through the RGA to find
the best possible rewards and the associated offers whose combined utility are
equal to Nu. However, Algorithm 1 can also fail to find an optimal output (as
a result of the constraints being too strong (e.g. the target L being too high)
or the optimizer not being able to find the solution in the specified number of
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steps) and, in these cases, we resort to the procedure described in Case 2.

5.2 Case 2: Counter-Offering without Rewards given Previous Rewards

In this case, the agent cannot find a combination of an offer and a reward whose
utility matches Nu. Therefore, the agent calculates an offer using one of the
standard heuristic-based tactics outlined at the beginning of this section. In this
case, BB tactics would not be appropriate to generate an offer given previous
offers by the opponent since these offers may also be associated to rewards. This
means that the offers by themselves (which would be used in BB to calculate
the next offer) do not exactly depict the concessions that the agent has made
leading to BB tactics misunderstanding the behaviour of the opponent. This,
in turn, could lead to an offer by a BB agent where it concedes more than it
should. Therefore, either BW or CO are used to generate the offer since these
are independent of the previous offers made by the opponent.

5.3 Case 3: Counter-Offering without Rewards given No Previous Rewards

In the event that β only proposes an offer without any rewards, our tactic needs
to be able to respond by a similar procedure (as in case 1) in order to continue
the same step-wise search for an agreement. In this case, our tactic calculates the
offer whose utility is equal to Nu (without U(EO′

2) in equation 7). Moreover,
the offer calculated is such that it is the one that is most similar to the offer by
β. This is achieved by solving the problem defined in the optimisation model 2.
This calculates an offer O1 such that O1 maximises the level of concession the
opponent likes most as in the previous case while still achieving Nu. In case the
issues being negotiated are qualitative in nature, the similarity based algorithm
by (Faratin et al., 2002) may be used.

Given previously received and proposed offers, find (O1) such that:
– maximise conα(Oα

1 ) % i.e. maximise α’s concessions on issues β has a high |δU |.
subject to:

– Uα(O1) = Nu
– ∀(x = v) ∈ O1, vmin ≤ v ≤ vmax % i.e. all values need to be within the negotiation

range.

Optimisation Model 2: Computing the best counter-offer.

6 Experimental Evaluation

In this section, we describe a series of experiments that aim to evaluate the ef-
fectiveness and efficiency of our PN reasoning mechanism. To this end, we pitch
agents using the RGA and RBT against a number of non-persuasive negotia-
tion tactics using standard benchmark metrics. We first detail the experimental
settings and describe the types of agents we benchmark our algorithm against
as well as the metrics used in our tests. Given this, we provide the results of
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these tests and go on to analyse the performance of the RBT under different
parameter settings.

6.1 Experimental Settings

The scenario we consider involves agents playing two negotiation games as per
the rules discussed in section 2. The general settings that apply to the two
negotiation games are as follows:

• The pair of negotiating agents have their utility functions shaped by the
MMPD (as discussed in appendix A). The actual utility the opponent obtains
for particular values of the issues are not known since utilities are private.
Thus agents α and β negotiate over 4 issues x1, ..., x4 where x1 and x2 (e.g.
price or bandwidth) are more valued by α than β, while x3 and x4 (e.g. usage
of service or time of payment), are more valued by β than α.

• The agents have their utility functions Uα and Uβ specified over each issue as
per table 2. As can be noted, the weights and gradients of the utility functions
are chosen such that they respect the conditions of the MMPD (as detailed in
appendix A).

• The maximum time for a negotiation game to take place (tmax) is set to 2
seconds, which allows around 300 illocutions to be exchanged between the two
agents. 14 Unless stated otherwise, the agents’ deadlines, tαdead and tβdead, are
then defined according to a uniform distribution between 0 and 2 seconds.

• εα and εβ — the discount factors are set to a value between 0 and 1 drawn
from a uniform distribution (unless stated otherwise).

• Lα and Lβ — the targets of the agents are drawn from a uniform distribution
between 0 and 2 (unless stated otherwise).

• θ and τ — θ is set to 0.5 seconds (meaning that the second game is discounted
by exp−0.5ε) for each agent while τ is set to 0.0001 (meaning that the utility
of each offer is discounted by exp−0.0001ε) to simulate instantaneous replies
(unless stated otherwise).

• [vmin, vmax] — the negotiation range for each issue and each agent are defined
(and privately known) using λ, the degree of alignment of the negotiation
ranges. For example, if λ = 1, the two negotiation ranges overlap completely,
while if the degree of alignment is 0, the negotiation ranges do not overlap
at all. The degree of alignment is arbitrarily set to 0.8 to represent the fact
that agents have a reasonably large set of possible agreements that they could
reach and still achieve their target.

14 Experiments were run using MATLAB 7.1 on a 2GHz Intel PC with 1 GB of RAM.
Preliminary experiments with the negotiation tactics suggest that if the agents do not
come to an agreement within this time period, they never achieve any agreement even
if the maximum negotiation time is extended.
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Agent
Utility function and weight of each issue

Ux1, wx1 Ux2 , wx2 Ux3 , wx3 Ux4 , wx4

α 0.4x1, 0.5 0.9x2, 0.2 1 − 0.2x1, 0.2 1 − 0.6x2, 0.1

β 1 − 0.2x1, 0.4 1 − 0.6x2, 0.1 0.9x2, 0.3 0.4x1, 0.2
Table 2
Utility functions and weights of issues for each agent.

We will further assume that the first offer an agent makes in any negotiation
is selected at random (but having a high utility for the agent). Also, the first
agent to start the negotiation is chosen at random. This random choice reduces
any possible first-mover advantage a strategy may have over another (i.e. which
loses less utility due to discount factors). Moreover, in order to calculate the
expected outcome of the second game (as discussed in section 4.3), agents draw
the outcome for each issue from a normal distribution with its mean centred
in the middle of the agent’s negotiation range for the second game with a vari-
ance equal to 0.5. Finally, in all our experiments we use ANOVA (ANalysis Of
VAriance) to test for the statistical significance of the results obtained.

6.2 Populations of Negotiating Agents

In order to benchmark the RBT against standard negotiation tactics, we create
three groups of agents. First, we create agents which use RBT to negotiate in
the first game. These agents then use any of the standard tactics (discussed in
section 5) in the second game. Second, we create a group of agents, called PNT
(for Persuasive Negotiation Tactics), which use the RGA rewards. They do so by
generating offers using standard tactics (BB, BW, or CO as defined in section
5) and plug in such offers in the RGA to obtained the compatible rewards. In
the second game, PNT agents simply use the same standard tactics to generate
offers. Third, we create a group of agents, called NT (for Negotiation Tactics),
which only use standard negotiation tactics to generate offers in both games (see
(Faratin et al., 1998) on how to implement standard tactics in more detail).

In the following experiments, we use homogeneous populations of 80 agents for
each of NT, PNT, and RBT and also create a heterogeneous population of equal
numbers of RBT and PNT agents (40 each) which we refer to as PNT&RBT to
study how RBT and PNT agents perform against each other.

6.3 Efficiency Metrics

As argued in section 1, one of goals of PN is to achieve better agreements faster
than standard negotiation mechanisms. To test whether our PN model achieves
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this, we use the following metrics:

• Average number of offers — this is the average number of offers that agents
need to exchange before coming to an agreement. To calculate this, we record
the number of offers made each time an agreement is reached and calculate the
average of these over the total number of negotiations. Note that each time
an offer is made a short time τ elapses. A lower average equates to a shorter
time before agents come to an agreement (mutatis mutandis if the average is
high). Moreover, the lower this average, the lower is the loss in utility as a
result of the discount factors ε. Thus we can define a time-efficient tactic as
one that takes a relatively small number of offers to reach an agreement.

• Success rate — this is the ratio of agreements reached over all pairs of games to
the number of times agents meet to negotiate. The larger this success rate, the
better the negotiation tactic is at finding an attractive offer for the opponent.

• Average utility per agreement — this is the sum of the utilities of both negoti-
ating agents over all agreements divided by the number of agreements reached.
The higher this value, the better is the strategy at finding an outcome that
brings a high utility to both participating agents. Thus we define a socially
efficient negotiation tactic as one which brings a high sum of utility in the
outcome.

• Expected utility — this is equal to the average utility weighted by the proba-
bility that an agreement is reached. The probability is calculated by dividing
the total number of agreements by the number of encounters agents have.
Thus, if the agents find an agreement on all encounters, there is a probability
of 1 that they will come to an agreement in a future encounter. A strategy
with a high expected utility is one which is most likely to reach high utility
agreements every time it meets other strategies.

Having defined our evaluation metrics, we next detail the results of our experi-
ments.

6.4 Comparing Persuasive and Non-Persuasive Strategies

When agents play two negotiation games, in the first one, NT (without the re-
ward generation mechanism) is only able to make offers and evaluate offers, while
PNT is able to both generate and evaluate offers and rewards. Given that persua-
sive strategies like PNT and RBT can constrain their rewards according to their
target L (as shown in section 4.2.2), we also need to allow other non-persuasive
tactics to constrain their ranges accordingly to ensure a fair comparison. Thus,
we allow all tactics to constrain the ranges of the issues in the second game ac-
cording to their target whenever they reach agreements without the use of any
rewards (i.e. using only a propose illocution). The procedure to do so is similar
to that described in section 4.2.2 where vout, as calculated in equation (3), is
used as the bound on the negotiation range of the second game but without the
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use of rewards.

Given this, we postulate a number of hypotheses regarding the performance of
RGA and RBT and describe the results which validate them.

Hypothesis 1 Negotiation tactics that use the RGA are more time efficient
than those that do not.

This hypothesis follows from the fact that we expect rewards to help agents find
an agreement faster. We impose the following basic settings on the interactions:
Lα = Lβ = 0.8, tαdead = tβdead = 1s, εα = εβ = 0.1, θ = 1s, and λ = 0.8. These
settings are chosen to represent symmetric conditions for both agents and im-
pose relatively few constraints on the two negotiation games that agents play.
The symmetric nature of the interaction ensures that no tactic is in a more ad-
vantageous position to its opponent. Here we recorded the average number of
offers (the lower this number the more time efficient the agents are) an agent
makes in order to reach an agreement. For all populations of tactics, each agent
meets another agent 50 times and this is repeated 15 times and the results are
averaged. We recorded the results in table 3. Thus, it was found that NT takes
an average of 547 offers to reach an agreement, while PNT agents take 58 and
the combined PNT and RBT population takes around 56 offers per agreement.
The performance of only RBT agents is significantly better than the other pop-
ulations since they reach agreements within only 26 offers (which is less than
NT by a factor of 21). 15 These results validate hypothesis 1. Now, the reason
for the superior performance of persuasive tactics in general is that the rewards
make offers more attractive and, as we expected, the shrinkage of negotiation
ranges in the second game (following from the application of the rewards) further
reduces the negotiation space to be searched for an agreement. The additional
improvement by RBT can be attributed to the fact that every RBT agent cal-
culates rewards and offers (through the hill-climbing algorithm) that give more
utility to its opponents on issues for which they have a higher marginal utility
(as explained in section 5). Hence, this is faster than for PNT&RBT in which
only one party (the RBT) performs the hill-climbing.

These results suggest the outcomes of RBT and PNT populations should be less
discounted and should also reach more agreements (since they take less time to
reach an agreement and hence do not go over the agents’ deadlines). However,
it is not clear whether the utility of the agreements reached will be significantly
higher than for NT agents. This leads to the following hypothesis.

Hypothesis 2 Negotiation tactics that use the RGA achieve a higher success

15 Using ANOVA, it was found that, using a sample size of 15 for each population,
and α = 0.05, that F = 2210 > Fcrit and p = 8 × 10−74, hence that the results are
statistically significant (i.e. the difference between the means of the distribution are
not the same).
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Tactic No. of offers Success Rate Average Utility Expected Utility

RBT 26 1.0 2.02 2.02

PNT&RBT 56 1.0 1.95 1.95

PNT 58 0.99 1.9 1.88

NT 547 0.87 1.84 1.6
Table 3
Benchmark results.

rate, expected utility, and average utility than those that do not.

To test this hypothesis, we run the same experiments as in the previous case and
record the average utility per agreement and the number of agreements reached.
Thus, it is possible to calculate the expected utility, average utility per encounter,
and the success rate per game as explained earlier. These are recorded in table
3.

Thus it was found that the success rate of persuasive strategies is generally
much higher than NT strategies (0.87/encounter for non-persuasive strategies,
0.99/encounter for PNT strategies only, 1.0/encounter for RBT and PNT, and
1.0/encounter for RBT only). 16 This result clearly shows that the use of RGA
increases the probability of reaching an agreement. The similar performance of
RBT and PNT&RBT and the difference between PNT&RBT and PNT shows
that RBT agents, as well as being able to find agreements readily with their
similar counterparts, are also able to persuade PNT agents with more attrac-
tive offers. This is confirmed by the fact that the average utility of persuasive
strategies is generally higher (i.e. 1.9/encounter for PNT, 1.95/encounter for
PNT&RBT, and 2.02/encounter for RBT) than NT (i.e. 1.84/encounter). Note
that the difference in utility between NT and other tactics would be much greater
if discount factors εα and εβ were bigger (given the high average number of offers
NT uses (i.e. 547)).

Given the trend in success rate and average utility, the expected utility follows
a similar trend with NT agents obtaining 1.6/encounter, PNT 1.88/encounter,
RBT and PNT 1.95/encounter, and 2.02/encounter for RBT agents only. 17 Gen-

16 Using ANOVA, it was found that for a sample size of 15 for each population of
PNT, PNT and RBT, and PNT only, with α = 0.05, F = 8.8 > Fcrit = 3.15 and
p = 4.41 × 10−4. These results confirm that there is a significant difference between
the means of PNT and the other strategies. The success rate of NT agents were always
lower than the other populations in all elements of the sample.
17 These results were validated statistically using ANOVA, where it was found that
F = 3971 > Fcrit = 2.73, and p = 7.36× 10−80, for a sample size of 15 per population
and α = 0.05. These results mean that there is a significant difference between the
means of the populations.
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erally speaking, from the above results, we can conclude that RGA, used together
with basic tactics, allows agents to reach better agreements much faster and more
often.

These results also suggest that PNT agents reach broadly similar agreements
(in terms of their utility) to NT agents (if we discount the fact that rewards
significantly reduce the time to reach agreements and increase the probability
of reaching an agreement). Now, as discussed in section 5, PNT agents usually
generate offers first (starting from high utility ones as for the NT agents) and
then calculate the rewards accordingly. Given this, the agents tend to start by
giving rewards and end up asking for rewards. As the negotiation proceeds (if
the offers are not accepted), the offers generally converge to a point where agents
concede nearly equally on all issues (irrespective of the marginal utilities of the
agents) and the rewards converge to a similar point. This, in turn, results in a
lower overall utility over the two games than if each agent exploits the other
one in each game in turn. Now, if rewards are selected in a more intelligent
fashion, as in RBT, the agents reach much higher overall utility in general. This
is because agents exploit each other more on the issues for which they have a
higher marginal utility than their opponent. This is further demonstrated by the
results of the RBT agents which suggest they reach agreements that have high
utility for both participating agents. It can also be noticed that the performance
of mixed populations of RBT and PNT agents perform less well than RBT
agents and slightly better than a pure PNT population (see results above). This
suggests that the RBT agents can find agreements that convince their PNT
opponent more quickly as they are able to propose better rewards and offers
than PNT agents. However, it is not apparent whether RBT agents are able to
avoid being exploited by their PNT counterparts in such agreements which RBT
tries to make more favourable to PNT agents (as described in section 5). Given
this, we postulate the following hypothesis:

Hypothesis 3 Agents using RBT are able to avoid exploitation by standard
tactics connected to RGA (i.e. PNT).

In order to determine which tactic is exploited, we recorded PNT’s and RBT’s
average utility separately. 18 Thus, it was found that on average, both RBT
and PNT agents obtained about the same average utility per agreement (i.e.
0.96/encounter). This result validates the above hypothesis and suggests that the
hill-climbing mechanism of RBT agents calculates offers that can convince the
opponent without reducing the utility of both RBT and PNT agents significantly
(i.e. in small steps) and also that it maximises joint gains through algorithm 1.

In general, through the above experiments we have empirically demonstrated the

18 We validated this result using ANOVA with a sample of size 15 per strategy and
α = 0.05. Thus it was found that the null hypothesis (i.e. equal means for the two
samples) was validated with F = 0.13 < Fcrit = 4.10 and p = 0.71 > 0.05.
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usefulness of rewards in bargaining. Thus, we have achieved our initial aim of
using PN to enable agents to achieve better agreements faster. In the following
section, we further study RBT to see how it is affected by different conditions
in the environment to understand what are the important factors that affect the
efficiency of our persuasive negotiation strategy.

6.5 Evaluating the Reward Based Tactic

In this section we further explore the properties of RBT by studying its behaviour
when key attributes of the agents are varied. As can be deduced from section 4,
there are a large number of attributes that can affect the behaviour of RBT, but
here we will focus on the following main ones which we believe have a significant
impact on both our reward generation component and the behaviour of RBT.
These attributes are:

(1) L — the target determines the size of the reward that can be given to or
asked for as determined by vout in equation (3) and the procedure described
in section 4.2.2. Given this, varying L allows us to study the effectiveness
of PN in general as the possibility of asking for or giving a reward changes.
Moreover, we aim to study the effect of one agent having a lower or higher
target than its opponent on the outcomes of negotiations.

(2) ε — the discount factor dictates the utility of offers, as well as rewards. In
particular, we aim to see how RBT and our reward generation mechanism
can help agents that have different discount factors find good agreements.

(3) θ — the delay before the second game is played determines the value of the
reward. Increasing this value can significantly reduce the value of a reward
to an agent. By varying θ we aim to see how it impacts on the use of rewards
during negotiation and how this affects the outcome of each game.

In all of these experiments we compute the 95% confidence interval of each
result and plot these as error bars on the appropriate graphs in order to show
the statistical significance of the results. 19

First we investigate the impact of the negotiation target L on the outcome of
negotiations. In this context, L is used to decide whether a reward should be
sent or not and what the negotiation ranges of an agent should be in the second
game (see section 4.2.2). The higher the value of L, the less agents are likely
to be able to construct rewards. This is because an agent may have to shrink
the negotiation range in the second game more in order to achieve a higher L
over the two games. Therefore, we expect the agents to achieve fewer deals and

19 If the error bars overlap any two points, it indicates that there is no significant
difference between these points. Otherwise there is a significant difference with a 95%
confidence level.
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have a corresponding lower overall expected utility. Moreover, in the case where
only one agent has a high L, then the opponent’s rewards are less likely to be
accepted because these rewards are less likely to allow the agent to achieve its
target, and hence the agents are less likely to come to agreements or take more
offers to come to any agreement. In this case we would also expect the agent
with the higher L to negotiate more strongly and constrain the second game
more such that it should get a higher utility than its opponent. To investigate
these intuitions, we will consider a pair of agents α and β that use RBT and
postulate the following experimental hypothesis:

Hypothesis 4 The higher the value of Lα relative to Lβ, the higher is the av-
erage utility of α compared to that of β.

To test hypothesis 4 we ran an experiment where the agents were made to
negotiate using similar settings as in the previous section, except for the fact
that Lα was varied between 0 and 1.5 while Lβ was kept fixed at 0.5. The results
of the experiment are shown in figure 3.
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Fig. 3. Expected utility, average number of offers, and average utility of agents when
Lα is varied.

As can be seen from figure 3(a), the overall expected utility of both agents rises
sharply at Lα = 0.7 and there is a sharp rise in the number of offers exchanged
between the two agents (in figure 3(b)). Moreover it was found that the success
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rate of the agents did not drop. The main cause for the jump in expected utility
and rise in the average number of offers can be explained by the results shown
in figure 3(c). As can be seen, from Lα = 0.7, α’s utility gradually rises while
β’s utility sharply falls. This means that α exploits β on all the issues that are
negotiated.

In more detail, in order to obtain Lα = 0.7 and above, α would need to exploit β
in the first game on all the issues it prefers more than β or exploit β on all issues
(which it likes less or more than β) in the second game. This can be deduced
from the weights used in the utility functions shown in table 2. Therefore, at
this point, α and β are likely to exploit each other maximally on the issues they
prefer in each game. This results in a high point in utility since it represents the
cooperate-cooperate point in the MMPD (hence the peak in figure 3(a)). When
Lα < 0.7, the agents can still find agreements without completely exploiting
their opponent on any issue and therefore agree to proposals and rewards that
result in a lower overall utility since the outcome then lies further away from the
cooperate-cooperate point of the MMPD.

Beyond Lα = 0.7, it becomes harder for α to give or ask for any rewards. This
is because as Lα increases, the use of rewards decreases as α’s ability to concede
in either game decreases (since it needs to achieve a high target) and α can
only constrain its negotiation ranges more and more in the second game in
trying to achieve its target (as discussed in section 4.2.3). However, given that
Lβ = 0.5 < Lα, β can still afford to be exploited by α and still manage to reach
its target over the two games. Hence the success rate of the two agents does not
decrease. However, given the more stringent demands of α, the agents are likely
to exchange a larger number of offers (i.e. β conceding a significant number of
times) until an agreement is reached.

In general, these results validate hypothesis 4 and also confirm our intuition
that α’s bargaining power should increase with respect to its target. Given these
results, it can be expected that if the second game were less discounted, α could
have started exloiting β at a higher value than 0.75. We will therefore explore
such discounting effects on the negotiation and investigate the effect of increasing
both agents’ targets at the same time to see the general behaviour of the system
as the discounts and targets are varied.

Before doing so, however, we next study the effect of the discount factor εα on
the outcome of the negotiation (keeping εβ = 0.5). In this case, a low value of
εα equates to a low discounting effect on the outcome of the two games and
conversely for a high value of εα. Therefore we can expect that as εα gets higher
the agreements reached in the two games would be much more discounted and
hence result in a lower overall expected utility. Moreover, with higher ε values,
agents will find it harder to achieve their target L as they will value both offers
(and counter-offers) and rewards less. Agents are then likely to take more offers to
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reach an agreement and reach fewer agreements as well. In the case where only εα

is varied, we would expect that the agent with the higher discount factor would be
more likely to accept any offer by its opponent since counter-offering might take
up time that discounts its own offer more than the one offered by the opponent.
This means that the more patient agent is likely to get its offers more easily
accepted (i.e. take fewer numbers of offers on average) and exploit its opponent
more. Hence, as predicted by game theoretic models of bargaining (Muthoo,
1999), the more patient agent gets an increasingly higher average utility than its
less patient opponent as the difference between their discount factors increases.
We therefore postulate the following hypothesis:

Hypothesis 5 The higher the value of εα relative to εβ, the less agents are likely
to reach agreements and the more offers they will take to reach an agreement.

To test this hypothesis, we ran a similar experiment as above apart from the
fact that we kept the target for both agents at Lα = Lβ = 0.5 and we varied
εα between 0 and 4 (while keeping εβ = 0.5). In this context, it is obvious that
the overall expected utility of the agents will decrease when εα increases (and
the utility α gets decreases as a result of the discounting effect). Given this we
recorded the average utility of each agent and the number of offers they take to
reach an agreement. The results are shown in figure 4.
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by α and β as εα is varied.

Fig. 4. Average utility and average number of offers made as εα is varied.

As can be seen from figure 4(a), β’s utility slightly decreases as εα rises. The
number of offers used by the agents also rises significantly as εα increases beyond
1.44. This is because, beyond εα = 1.44, the discounting of the second game is
such that it is worth less than 0.5 (assuming α exploits all issues in the second
game). Thus, it becomes impossible for α to ask for rewards and it can only
rely on giving rewards. Moreover, as the discounting effect increases, it also
becomes harder for β to convince α with them. Eventually, as time passes, the
agents can only rely on offers and α constrains its negotiation ranges in the next
game so as to achieve its target. Given this, negotiations take even more time in
the second game (as in the previous experiment). Therefore, the target slightly
reduces the advantage of β’s patience (i.e. in having a lower discount factor) in
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this type of game. It was also found that the success rate of the agents does
not significantly decrease (from 1 to 0.999) after εα = 1.44. This suggests that
the agents sometimes run out of time trying to convince each other. This may
happen when a poor agreement is reached in the first game and α constrains its
negotiation ranges in the second game so much that no agreement is possible.
These results therefore validate hypothesis 5.

Given the above results, we can expect that the combined effect of an increasing
target and an increasing discount factor should significantly reduce the expected
utility of both agents and increase the number of offers they need to make to
come to an agreement. We therefore postulate the following hypotheses:

Hypothesis 6 The higher the value of Lα and Lβ, the lower the expected utility
of both agents.

Hypothesis 7 The higher the value of εα and εβ, the less agents are likely to
reach agreements and the more offers they will take to reach an agreement.

Therefore, we varied both agents’ discount factors and targets to see which had
a stronger effect on the negotiation outcomes. The plot of the expected utility
and the success rate is shown in figure 5.
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Fig. 5. Varying the target and discount factor of α and β and the resulting expected
utility and number of agreements reached.

As can be seen from figure 5(a), the expected utility is more significantly affected
by Lα and Lβ. 20 The results confirm hypotheses 6 and 7. A jump in utility (as
in the experiment for hypothesis 4) is noticed at particular values in the agents’
target, corresponding to points where the agents need to try and exploit each
other maximally and constrain their negotiation ranges in the second game so as
to achieve this. However, beyond a certain point, agents are not able to exploit
each other maximally any more and cannot use rewards to achieve their target.

20 Note that jumps above a success rate of 1 (similarly for jumps of expected utility
above 2) are only due to curve fitting rather than actual results.
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This results in a decrease in the number of agreements reached as shown in
figure 5(b). Moreover, we notice that the point at which the expected utility
drops relative to target values decreases in ε. This confirms our initial intuition
that the discount factor influences to some extent the effect of the target on the
expected utility.

We also recorded the average number of offers made by the agents to see the
impact of the target and discount factors on it. The results are shown in figure
6. As can be seen, the drop in expected utility is reflected by the jump in the
number of offers made. The region where the peak occurs corresponds to values
of the targets and discount factors where the agents are still able to use rewards
to persuade each other and significantly shrink their negotiation ranges in the
second game to reach their target. Beyond this peak (i.e. for higher values of the
targets in particular), the agents can only find agreements in the first game and
they do so according to the hill- climbing mechanism of RBT (which guarantees
that they meet in a few number of steps). Note that the plateau at low values of
L is at a lower value than that at high values of L, suggesting that rewards can
significantly reduce the number of offers made to reach an agreement compared
to those that only make offers using the hill climbing method.
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Fig. 6. Impact of L and ε on the average number of offers.

Finally, given that higher values of ε decrease the probability that agents reach
an agreement and increase the number of offers exchanged, we expect a similar
effect for higher values of the delay. This is because a longer delay decreases the
value of rewards to both agents, and hence reduces the probability of reaching
each agent’s target L. Therefore, we expect that the longer the delay θ, the lower
the success rate of the agents and the higher the average number of offers needed
to reach an agreement. Given this, we postulate the following hypothesis:

Hypothesis 8 The higher the value of θ, the less likely it is that agents will use
rewards and the more offers they take to reach an agreement.
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As for the above hypotheses, we ran a similar experiment keeping Lα = Lβ = 0.5
and εα = εβ = 0.5, varied θ between 0 and 5 seconds, and recorded the expected
utility of the agents. The success rate of the agents did not decrease significantly,
while the number of offers significantly increased when θ increased beyond 3
seconds as shown on figure 7(a). These results confirm hypothesis 8. The reason
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Fig. 7. Impact on offers and rewards when varying θ.

for the jump in the number of offers at θ = 3 has a similar explanation to that
in the previous experiment for εα = 1.44. Indeed at θ = 3, the total value of
the second game decreases below 0.5 and decreases the value of rewards that
can be given or asked for. This results in the agents only being able to make
offers without rewards and hence they increase the constraints on the second
negotiation, which, in turn, increases the number of offers needed to reach an
agreement. To confirm these results, we also recorded the number of agreements
reached without the use of rewards. As shown in figure 7(b), it was indeed found
that the number of agreements reached through without the use of rewards
increases as θ increases.

7 Related Work

In this paper we have dealt with both repeated negotiations and PN. We previ-
ously presented a preliminary version of our PN strategy in (Ramchurn et al.,
2006). In this paper, we have elaborated on the protocol, discuss the evalua-
tion functions in more detail, and thoroughly evaluate the associated reasoning
mechanism. In the following subsections we survey the main work that has been
carried out in both areas and distinguish ours from it.

7.1 Repeated Negotiations

Repeated negotiations or repeated games have long been studied in game theory
(Osborne and Rubinstein, 1990). In particular, the closest work to ours in this
area is that of Muthoo (1995, 1999) who analysed the equilibrium offers that
arise when agents bargain repeatedly over a number of issues. In a similar vein,
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Busch and Hortsmann (1999) have analysed the equilibrium offers that arise
when agents need to decide whether to negotiate all the terms of a long term
relationship in one go or settle the agreement incrementally at different points
in time. Their results imply that it might be better in some cases to go for short
term deals rather than long term ones since the former imply lower negotiation
costs. In our case, the heuristics we employ in the RGA follow a similar line of
thought in that the outcome of the second game is not completely negotiated in
the first one. This, in turn, reduces the time to come to an agreement and hence
agents do not lose a significant amount of utility due to discounting effects.

In the multi-agent agent systems area, repeated negotiations have mostly been
considered in terms of repeated (sequential) auctions (Fatima et al., 2001; Brandt
and Weiss, 2001; Fatima et al., 2005). These works have looked at equilibrium
strategies that agents should use in such auctions under settings of complete
information. Our work differs from this, and the game theoretic approaches in
general, in that we look at a decentralised bargaining interaction where agents
do not have any knowledge about their opponent and need to find the best
agreements possible. This is, we believe, a more realistic situation although it
requires us to turn to heuristic methods and empirical evaluations rather than
analytical solutions and proofs.

7.2 Persuasive Negotiation

A number of approaches to PN have considered various aspects of the problem
over the last few years since the seminal work of Sycara (1985, 1990, 1992) and
the challenges identified by Tohmé (1997) and Jennings et al. (1998). First, we
note the work on the language to describe the domain (hence the content of
rewards), as well as to communicate persuasive arguments (Sierra et al., 1998;
Kraus et al., 1998; Parsons et al., 1998). In our work, we mainly build upon
(Sierra et al., 1998) in order to construct the domain and communication lan-
guages for the use of rewards. However, our work differs in that we additionally
consider rewards that can be asked for and we also specify social commitments
that are entailed by illocutions exchanged during negotiations. Moreover, we
additionally specify a reasoning mechanism and a tactic for PN.

Second, in terms of reasoning mechanisms for PN, we note the work of (Kraus
et al., 1998) which specifies arguments such as threats, rewards, or appeals,
in terms of logic statements. However, the semantics of such arguments are
not completely specified and the choice over which argument to send is made
according to a number of ad hoc rules. Building upon this, (Ramchurn et al.,
2003) proposed a reasoning mechanism that also considered threats, rewards, and
appeals. In their case, arguments were abstract elements that gave some utility to
the agents. The choice of the arguments to send was then determined according to
how trustworthy an opponent is using a number of fuzzy rules (Ramchurn et al.,
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2004). More recently, (Amgoud and Prade, 2005a,b) provided a formal model
of arguments (such as threats, rewards, and explanatory arguments) along with
the logic to determine the force of an argument. They also specify a mechanism
to identify conflicts between threats, rewards, or appeals. Their conception of
rewards is similar to ours in that they capture the gains from the reward in
terms of the gains from the goals that the reward achieves. However, they do not
specify any negotiation protocol, nor any negotiation algorithm that determines
when and with which offers to send rewards or threats. Moreover, they do not
study how threats and rewards bring about better negotiation outcomes.

In general, none of the above approaches have ever concretely instantiated argu-
ments in terms of a standard negotiation scenario as we do. Moreover, none of
the above algorithms have been benchmarked against standard negotiation al-
gorithms, and hence, the gains they claim to generate have never been properly
quantified. In contrast, we have shown that our approach can generate significant
gains over standard negotiation tactics in various respects.

8 Conclusions

In this paper we have presented a comprehensive model of persuasive negotiation
that enables agents to achieve better deals in repeated encounters than was
previously possible using standard negotiation tactics. In particular, we focus on
the use of rewards, as rhetorical arguments, that can either be given or asked
for. Specifically, these rewards define the constraints that can be imposed on
the set of possible agreements in future negotiation games, contingent upon the
opponent agreeing to the offer they support in the current encounter.

The model consists of two parts: a protocol and a reasoning mechanism. In
terms of the protocol, we have used dynamic logic to specify the commitments
that arise in persuasive negotiation based on the exchange of rewards. In so
doing, we ensure that the negotiation dialogue between agents can be checked
for consistency and that the ensuing commitments are stored. Our PN protocol
is the first to consider the commitments that result from asking for or giving out
rewards in a negotiation encounter.

In terms of the reasoning mechanism, we define how an agent can generate, se-
lect, and evaluate rewards and offers. This decision making model is composed
of the Reward Generation Algorithm that computes rewards that can be asked
from or given to an opponent and a set of functions that permit the evalua-
tion of incoming and outgoing offers and rewards. The RGA is based on the
simple principle that concessions made in previous games need to be compen-
sated for by future rewards. We have also shown how the RGA can easily be
connected to non-persuasive negotiation tactics in order to generate rewards in
repeated encounters. Building upon this decision making model, we developed
a new Reward Based Tactic that permits the generation of rewards to be asked
for or given to an opponent at any point in the negotiation. The RBT strives to
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achieve pareto-efficient deals by ensuring that the most preferred outcomes are
selected for the negotiating agents. In so doing, it has been shown to reduce the
number of offers that agents need to make to come to an agreement, and also to
enable agents to achieve higher utility deals than standard benchmark tactics in
the MMPD domain.

In particular, our results show that RGA can enable agents using standard ne-
gotiation tactics to make a 17% gain in utility in repeated encounters. More
importantly, RBT has been shown to generate agreements that are 26% better
than these standard tactics using 21 times fewer messages. Note that these re-
sults are only indicative of the possible improvement that PN could bring since
our agents are made to interact under the specific setting of an MMPD. Other
settings could be envisaged, but we expect similarly positive results since the
MMPD is generally considered to capture the canonical properties of the inter-
actions we aim to apply PN to. Moreover, we have analysed the RBT’s properties
and shown that the most important factor that impacts on the number of of-
fers exchanged and the average utility achieved is the target that the agents set
themselves to achieve. An agent’s target determines how aggressively it will try
to come to an agreement and when it can offer or ask for rewards. Thus, the
higher the target, the less likely it will be able to give rewards and the more
likely it will be to ask for rewards. In the extreme case, given the principle we
apply in the RGA, agents may not be able to claim or give rewards at all since
they may have to avoid making any concession in order to achieve their target.

In general, our work raises a number of theoretical and practical issues. First, in
allowing for rewards in repeated encounters, we extend the bargaining problem
initially posed by Rubinstein (1982). Now, such problems are usually studied
to deduce their equilibrium properties using bargaining theory (Muthoo, 1999).
This is important in order to understand the interplay of such factors as the
agents’ targets and discount factors and their impact on the negotiation outcome.
However, we believe that PN mechanisms like ours will undoubtedly generate
more complex interaction scenarios. These scenarios will therefore raise a number
of more complex theoretical issues that will need to be addressed.

Second, the fact that an agent’s reasoning mechanism is much more sophisti-
cated than that for standard negotiation tactics, indicates that the design of
such agents is likely to become more challenging as the complexity of the argu-
ments they can exchange increases. This means more structured approaches in
terms of methodologies and frameworks, will be needed for designing PN agents
(Rahwan et al., 2007). Such approaches should help define and standardise the
reasoning mechanism of agents in such a way that different types of arguments,
protocols, or decision making functionalities can be interconnected and adapted
to fit particular application contexts.

Third, while we have shown that PN can be beneficial to the constituent agents,
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it is also important to study which system-wide properties emerge when PN
mechanisms are used. In this vein, it is usually expected that the decentralised,
bilateral negotiations based on the standard negotiation tactics we presented
can rarely achieve the level of efficiency guaranteed by centralised auction-based
approaches. However, given that PN techniques can support much richer interac-
tions than existing automated bilateral negotiation mechanisms, it is possible to
exchange more meaningful information which could lead agents to achieve better
deals (as in our case). This could, in turn, lead to better efficiency at the system
level. Hence, it is important to study how beneficial such PN mechanisms could
be relative to auction-based approaches and identify the trade-offs that result
from their use.

Finally, while RBT has been shown to be better than the standard tactics in
MMPD-based repeated encounters, it is but one of many other tactics that could
be envisaged in the future to be used in different or similar contexts. Given
this, it would be interesting to use techniques such as evolutionary game theory
or genetic algorithms to see how these strategies change the performance of
agents when pitted against other different strategies (Weibull, 1995). This would
help determine which strategy to choose when an agent is placed in any given
population.
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A Devising Utility Functions

The Prisoner’s dilemma (PD) is well known for its applicability to very general
forms of interactions (Axelrod, 1984). In devising utility functions according to
the PD, we aim to build more realistic and interesting interaction scenarios than
zero-sum games (Rubinstein, 1982; Muthoo, 1999). In particular, the character-
isation of the agents’ utility functions in terms of a PD is done so as to model
general interactions where each agent (in a pair) prefers some issues more than
his counterpart. This is commonly the case where, for example, high-volume
traders are able to enjoy economies of scale such that they value the price of the
goods they sell less than what individual customers probably would. Another
example would be a car seller who has high costs in getting a car with a special
colour while the buyer may not have such strong feelings for such a colour.

With respect to the PD, in the case of a bargain, cooperation means that the
agent agrees to concede while a defection means that the agent exploits its
opponent. In order to devise utility functions that are appropriate for this work
(which assumes that more than two values may be enacted for any issue) we
require that there be more than just two moves (i.e. Cooperate or Defect) that
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are present in the standard version of the PD. In particular, we need a continuous
scale of cooperation between these two extremes. To this end, we extend the
Prisoner’s dilemma to the Multi-Move Prisoner’s dilemma (MMPD) (Birk, 2000;
Prechelt, 1996; Tsebelis, 1990). In the MMPD, actions (or moves) are considered
to be the enactment of the contents of a contract (e.g. paying for goods, delivering
goods). Both the interaction partners have their own actions dictated by the part
of the contract that they have to enact (e.g. seller delivers goods and buyer pays
for the goods at a given time). Agents may also have more than one issue to take
care of (e.g delivery of goods and ensuring they are of a certain quality) and for
each issue a discrete number of possible values can be given (e.g. paying after 3
days, 4 days,... or delivering after 1 month, 2 months).

In the following section, we first define the action set (possible moves) of the
agents which will interact via the MMPD. Then, we provide a formal definition
of the MMPD (with respect to multi-issue contracts). The last subsection shows
how we can devise the utility functions of the agents so that they can engage in
a MMPD. These utility functions are then used by the agents in experiments we
describe in section 6.

A.1 The Action Set

Whenever a contract is signed, each agent is given its part of the contract to
enact. In order to simplify notation, we will note as Oα those issues that α enacts
in a contract and Oβ as those that β enacts (which is a slight modification to the
formalism we introduced in section 2). In effect, the achievement of the issue-
value pairs (xi = vi) in an agent’s part of the contract is its ‘action’ or ‘move’ in
the game. Thus, an agent α can generate its action set O(Oα) for the MMPD by
defining all the possible assignments of the values of the issues that it controls.
This is expressed as:

O(Oα) = {Oα = {x1 = v1, ..., xn = vn} | xi ∈ X(Oα), vi ∈ Dxi
} (A.1)

Each agent thus has all its possible actions defined and these actions result in a
payoff for each agent similar to a prisoner’s dilemma with a discrete multi-action
set (as opposed to a binary action set).

A.2 The Game

The MMPD is represented as a matrix where each row (and column) corresponds
to a particular degree of cooperation from one of the agents. Therefore, a contract
O between agents α and β can be represented as a point in the matrix where
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Oα
i is α’s action and Oβ

k is β’s action such that O = Oα
i ∪ Oβ

k . The sub-indexes
of the different contracts correspond to a row i and a column k respectively in
the matrix. We assume that a total order applies over all the possible contracts
(in the matrix) according to the utility of each contract to the agent concerned
when moving along a single row or column. This means that for an agent α,
Oα

i and Oα
j , where j > i, are two possible executions but Oα

j is a defection (or
exploitation) by α (or a cooperative move i.e. a concession by β) resulting in
greater utility for α and utility loss for β, if β agrees on Oβ

k (i.e. staying on the
same column). Let Oα be the set of contracts handled by α and Oβ similarly for
β.

We can then define the multi-move Prisoner’s dilemma as follows for Oα
j repre-

senting a defection from Oα
i by α and Oβ

l representing a defection from Oβ
k by

β:

Definition 9 Two agents α and β engage in a multiple-move prisoner’s dilemma
(MMPD) over the contracts they can choose iff, for any four points in the matrix:

∀Oα
i , Oα

j ∈ Oα, where Uα(Oα
i ) < Uα(Oα

j ) and ∀Oβ
k , Oβ

l ∈ Oβ where Uβ(Oβ
k ) <

Uβ(Oβ
l ), the following rules are respected:

(1) Defection Rules (an agent can exploit another’s cooperation by defecting (i.e.
exploiting), but ends up with a lower payoff if the other side also defects):

Uα(Oα
i ∪ Oβ

l ) < Uα(Oα
j ∪ Oβ

l ) < Uα(Oα
i ∪ Oβ

k ) < Uα(Oα
j ∪ Oβ

k ),

Uβ(Oα
i ∪ Oβ

l ) > Uβ(Oα
j ∪ Oβ

l ) > Uβ(Oα
i ∪ Oβ

k ) > Uβ(Oα
j ∪ Oβ

k ),

(2) Pareto Efficiency Rules (the sum of the rewards when both cooperate (i.e.
concede) is higher than the sum obtained if either or both of the agents defect
(i.e. exploit)):

Uα(Oα
i ∪ Oβ

k ) + Uβ(Oα
i ∪ Oβ

k ) > Uα(Oα
j ∪ Oβ

k ) + Uβ(Oα
j ∪ Oβ

k )

Uα(Oα
j ∪ Oβ

k ) + Uβ(Oα
j ∪ Oβ

k ) > Uα(Oα
j ∪ Oβ

l ) + Uβ(Oα
j ∪ Oβ

l )

From the above rules it is then possible to derive the following payoff matrix for
any pair of possible contracts to be chosen by both agents:

α’s part/β’s part Oα
i Oα

j

Oβ
k Uβ(Oα

i ∪ Oβ
k ), Uα(Oα

i ∪ Oβ
k ) Uβ(Oα

j ∪ Oβ
k ), Uα(Oα

j ∪ Oβ
k )

Oβ
l Uβ(Oα

i ∪ Oβ
l ), Uα(Oα

i ∪ Oβ
l ) Uβ(Oα

j ∪ Oβ
l ), Uα(Oα

j ∪ Oβ
l )

Table A.1
Multi-Move Prisoner’s Dilemma.

49



We next define the utility functions that do respect the payoff structure of the
MMPD. To this end, we propose the following theorem:

Theorem 10 Let X be a given set of issues, α and β be two agents, with
Xα being issues under α’s control and Xβ being issues under β’s control (with
X = Xα∪Xβ). Assume that the utility for α of a contract O = (x1 = v1, . . . , xn =
vn) over issues X(O) ⊆ X is of the form Uα(O) =

∑
xi∈X(O) ωα

x · Uα
xi

(vi) and
analogously for agent β, Uβ(O) =

∑
xi∈X(O) ωβ

x · Uβ
xi

(vi), where Uα
xi

and Uβ
xi

are
the utility functions for α and β of the individual issue xi. Moreover we assume
that Uα

x (v) and Uβ
y (u) are differentiable (strictly) increasing functions for any

x ∈ Xα(O) and y ∈ Xβ(O) respectively, and differentiable (strictly) decreasing
otherwise.

Then, Uα and Uβ respect the aforementioned defection and Pareto-efficiency
rules of a multi-move Prisoner’s dilemma if the following conditions are satisfied:

(i)

ωβ
x · (−dUβ

x

dx
) > ωα

x · dUα
x

dx
(A.2)

for all issues x ∈ Xα(O).
(ii)

ωα
y · (−dUα

y

dy
) > ωβ

y · dUβ
y

dy
(A.3)

for all issues y ∈ Xβ(O)

where the inequalities are point-wise.

PROOF. Without loss of generality, we may assume X(O) = {x, y}, Xα = {x}
and Xβ = {y}. Let O = (x = v, y = u) be the agreed contract. We begin
by considering a defection by agent α in an an issue x from the value v to
a value v′ such that Uα(v′) > Uα(v) (given that everything else remains the
same). For an easier notation we will write Uα(v, u) to denote the utility of
agent α on a contract (x = v, y = u), similarly for agent β, and U(v, u) for
Uα(v, u)+Uβ(v, u). From the defection and Pareto-efficiency rules of the MMPD
we have the condition

U(v, u) > U(v′, u),

and using our assumptions on the utilities Uα and Uβ (from equations A.2 and
A.3), this means:

ωα
xUα

x (v) + ωβ
xUβ

x (v) > ωα
xUα

x (v′) + ωβ
xUβ

x (v′) (A.4)

that is, we have the equivalent condition to be required:

ωβ
x(Uβ

x (v) − Uβ
x (v′)) > ωα

x (Uα
x (v′) − Uα

x (v)). (A.5)
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Now, under general assumptions, we have:

Uα
x (v′) − Uα

x (v) =
∫ v′

v

dUα
x

dx
· dx (A.6)

and:

Uβ
x (v) − Uβ

x (v′) = −
∫ v′

v

dUβ
x

dx
· dx (A.7)

Hence, applying the condition expressed in equation A.2 of the theorem to equa-
tions A.6 and A.7 we have equation A.5 satisfied, and hence U(v, u) > U(v′, u)
as well (where u′ is a defection by α from u). Similarly, the same procedure
can be applied to equations A.6 and A.7 above using equation A.3 such that a
defection by agent β changing the agreed value y = u to any new value y = u′,
with Uβ(u′) > Uβ(u) (given the opponent does not defect in each case), yields
U(v, u) > U(v, u′).

Finally, if both agents defect to say x = v′ and y = u′, with Uα(v′) > Uα(v)
and Uβ(u′) > Uβ(u) (given all else stays the same), then we obviously have the
desired inequalities which actually express the Pareto-efficiency rules:

U(v, u) > max(U(v′, u), U(v, u′)) ≥ min(U(v′, u), U(v, u′)) > U(v′, u′) (A.8)

while still having the following defection rules satisfied: Uα
x (v) < Uα

x (v′), Uβ
y (u) <

Uβ
y (u′) and Uα

y (u) > Uα
y (u′), Uβ

x (v) > Uβ
x (v′) (given all else stays the same). �

If the utility function of an agent α for each issue in a contract satisfies the
conditions expressed in equations A.2 and A.3 with respect to its opponent β,
then the two agents follow a prisoner’s dilemma. These utility functions generally
mean that α has a higher marginal utility than β on some issues (e.g. issues y
in theorem 10) and a lower marginal utility on other issues (e.g. issues x in
theorem 10). Then, each agreement that they could reach represents a different
degree of exploitation or concession by one of the parties concerned. The degree
of concession is determined by the difference that exists between the maximum
value that an agent could obtain (if it exploited its opponent on all issues) and
the value of the agreement chosen (see equation (2)). The higher the exploitation,
the higher utility loss is expected from a particular contract for the opponent.
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