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ABSTRACT

Understanding the gap between a musical score and a real
performance of that score is still a challenging problem.
To tackle this broad problem, researchers focus on specific
instruments and/or musical styles. Hence, our research is
focused on the study of classical guitar and aims at de-
signing a system able to model the use of the expressive
resources of that instrument. Thus, one of the first goals
of our research is to provide a tool able to automatically
identify expressive resources in the context of real record-
ings. In this paper we present some preliminary results on
the identification of two classical guitar articulations from
a collection of chromatic exercises recorded by a profes-
sional guitarist. Specifically, our system combines several
state of the art analysis algorithms to distinguish among
two similar guitarists’ left hand articulations such as legato
and glissando. We report some experiments and analyze
the results achieved with our approach.

1. INTRODUCTION

An affective communication between listeners and perform-
ers can be achieved by the use of instruments’ expressive
resources [1, 2, 3]. Expressive resources play also an im-
portant role to clarify the musical structure of a piece [4, 5,
6]. Although each instrument provides a collection of spe-
cific expressive capabilities, its use may vary depending on
the musical genre or the performer.

Our research on musical expressivity is focused on the
study of classical guitar and aims at designing a system
able to model the use of the expressive resources of that
instrument. As a first stage of our research we are devel-
oping a tool able to automatically identify the use of guitar
articulations.

There are several studies on plucked instruments and
guitar synthesis such as on extraction of expressive param-
eters for synthesis [7, 8]. However, expressive articula-
tion analysis from real guitar recordings has not been fully
tackled. The analysis of a guitar performance is complex
because guitar is an instrument with a rich repertoire of
expressive articulations.

In guitar playing both hands are used: one hand is used
to press the strings in the fretboard (commonly the left
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hand) and the other to pluck the strings. Strings can be
plucked using a single plectrum called a flatpick or by di-
rectly using the tips of the fingers. The hand that presses
the frets is mainly determining the notes while the hand
that plucks the strings is mainly determining the note on-
sets and timbral properties. However, left hand is also in-
volved in the creation of a note onset and different expres-
sive articulations like legato, glissando, grace notes, or vi-
bratos [8].

In a previous research [10], we proposed a system able
to detect attack-based articulations and distinguish among
legato and grace notes. The goal of this paper is to ex-
tend the capabilities of the existing system to distinguish
among legato and glissando articulations. In both, legato
and glissando, left hand is involved in creation of the note
onset.

In the case of ascending legato, after plucking the string
with the right hand, one of the fingers of the left hand
(not already used for pressing one of the frets), presses a
fret causing another note onset. Descending legato is per-
formed by plucking the string with a left-hand finger that
was previously used to play a note (i.e. pressing a fret).

The case of glissando is similar but this time after pluck-
ing one of the strings with the right hand, the left hand fin-
ger that is pressing the string is slipped to another fret also
generating another note onset. Notice that we are not con-
sidering here grace notes that are played in a similar way
than glissando.

When playing legato or glissando on guitar, it is com-
mon for the performer to play more notes within a beat
than the stated timing enriching the music that is played.
A powerful legato and glissando can be differentiated be-
tween each other easily by ear. However, in a musical
phrase context where the legato and glissando are not iso-
lated, it is hard to differentiate among these two expressive
articulations.

The structure of the paper is as follows: Section 2 de-
scribes our methodology for legato and glissando deter-
mination and differentiation. Specifically, our approach
uses aperiodicity information to identify articulations, his-
tograms to compute the density of the peak locations, and
a symbolic aggregate approximation (SAX) representation
to characterize the articulation models. Next, Section 3
focuses on the experiments conducted to evaluate our sys-
tem. Last section, Section 4, summarizes current results
and proposes the next research steps.
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Figure 1: Main diagram of our model, which contains three sub models; Extraction, Model Builder and Preprocessing

2. SYSTEM ARCHITECTURE

In this paper we propose a new system able to identify two
expressive articulations: legato and glissando. To that pur-
pose we use a Region Extraction module that is part of a
previous development [10]. The regions identified by the
region extraction module are the inputs to the new com-
ponents: the Models Builder and the Detection component
(see Figure 1). In this section, first we briefly present the
region Extraction. Next, we describe our preliminary re-
search to select the appropriate descriptor to analyze the
behavior of legato and glissando. Finally, we explain the
new two components, Model Builder and Detection.

2.1 Extraction of Candidates

Guitar performers can apply different articulations by us-
ing both of their hands. However, the kind of articulations
that we are investigating (legato and glissando) are per-
formed by the left hand. Although they (legato and glis-
sando) can cause onsets, these onsets are not as powerful
in terms of energy and also have different characteristics
in terms of harmonicity, comparing to the plucking onsets
[11]. Therefore, we need an onset determination algorithm
suitable to differentiate between plucking onsets and left-
hand onsets.

The first task of the extraction module is to determine
the onsets caused by the plucking hand, i.e. right hand on-
sets. As right hand onsets are more percussive than left
hand onsets we use a measure appropriate to this feature.
HFC is a measure taken across a signal spectrum and can
be used to characterize the amount of high-frequency con-
tent (HFC) in the signal [12]. As Brossier [13] stated, High
Frequency Content (HFC) measure is effective with percu-
ssive onsets but less successful determining non-percussive
or legato phrases. Then, HFC is sensitive for abrupt onsets
but not enough sensitive to the changes of fundamental fre-
quency caused by the left hand.

Aubioonset library [14] gave us the opportunity to tune
the peak-picking and silence threshold. One of the key
stages of candidate extraction is to optimize peak-picking
and silence thresholds in a way that only the plucking hand
onsets are determined and the pitch changes due to legato

Figure 2: High Frequency Content onsets from the Region
Extraction module.

or glissando are not determined as onsets. In order to find
suitable parameters for this goal, before running our model,
we used a set of hand annotated recordings. Our set is a
concatenated audio file which contains 24 non-expressive
notes, 6 glissando and 6 legato notes. We hand annotated
the onsets of non-expressive, legato and glissando notes.
What we want to obtain from Aubioonset was the onsest of
the plucking hand. Since this annotated set contains the ex-
act places of onset that we want to obtain from Aubioonset,
this set can be considered as our ground truth. After test-
ing with different parameters, we achieved the best results
with the following values for algorithm parameters: 1 for
peak-picking threshold and −85db for silence threshold.

An example of the resulting onsets proposed by HFC is
shown in Figure 2. Specifically, in the exemplified record-
ing six notes are played following the pattern detailed in
experiments (see Figure 16) where only 5 of them are pluck-
ing onsets. In Figure 2 detected onsets are marked as ver-
tical lines. Between third and fourth detected onsets an
expressive articulation (legato) is present. Thus, HFC suc-
ceeds because it only determines the onsets caused by the
right hand.

The second task performed by the extraction module is
to analyze the sound fragment between two onsets. First,
each portion between two plucking onsets is analyzed indi-
vidually. Specifically, two points are determined: the end
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Figure 3: Example of detection of a candidate to an ex-
pressive articulation.

of the attack and the release start. From experimental mea-
sures, we determined attack finish position as 10ms after
the amplitude reaches its local maximum. We determined
the release start position as the final point where local am-
plitude is equal or greater than 3 percent of the local maxi-
mum. Only the fragment between these two points is con-
sidered for the further analysis because the noisiest part of
a signal is the attack part and the release part of a signal
contains unnecessary information for pitch detection (see
[15] for details).

We use additional algorithms with a lower threshold in
order to capture the changes in fundamental frequency in-
side the sound fragment. Specifically, complex domain al-
gorithm [16] is used to determine the peaks and Yin [17]
is used for the fundamental frequency estimation. Figure 3
shows fundamental frequency evolution between the cen-
tral region presented in Figure 2. The change of frequency
detected points out a possible candidate of expressive ar-
ticulation. More details can be found in [10].

2.2 Selecting a Descriptor

After extracting the regions candidates to contain expres-
sive articulations, the next step was to analyze them. Be-
cause different expressive articulations (legato vs glissando)
should present different characteristics in terms of changes
in amplitude, aperiodicity, or pitch[8], we focused the anal-
ysis on comparing these deviations.

We built representations of these three features (ampli-
tude, aperiodicity, and pitch). Representations helped us
to compare different data with different length and density.
As we stated above, we are mostly interested in changes:
changes in High Frequency Content, changes in fundamen-
tal frequency, changes in amplitude, etc. Therefore, we ex-
plored the peaks in the examined data because peaks are
the points where changes occur.

As an example, Figures 4 and 5 show, from top to bot-

Figure 4: Different features of a legato example. From top
the bottom, representations of amplitude, pitch and aperi-
odicty of the examined legato region.

Figure 5: Different features of a glissando example. From
top the bottom, representations of amplitude, pitch and
aperiodicty of the examined Glissando region.

tom, amplitude evolution, pitch evolution, and changes in
aperiodicity. As both Figures show, glissando and legato
examples, the changes in pitch are similar. However, the
changes in amplitude and aperiodicity present a character-
istic slope.

So, as a first step we concentrated on determining which
descriptor could be used. To make this decision, we built
models for both aperiodicty and amplitude by using a set
of training data. The details of this model construction will
be explained in Section 2.4. As a result, we obtained two
models (for amplitude and aperiodicity) for both legato and
glissando as is shown in Figure 6 and Figure 7. Analyzing
the results, amplitude is not a good candidate because the
models behave similarly. In contrast, aperiodicity models
present a different behavior. Therefore, we selected aperi-
odicity as the descriptor.

2.3 Preprocessing

Before analyzing and testing our recordings, we applied
two different preprocessing techniques to the data in order
to make them smoother and ready for comparison.

2.3.1 Smoothing

As expected, aperiodicity portion of the audio file that we
are examining includes noise. Our first concern was to
avoid this noise and obtain a nicer representation. In or-
der to do that first we applied a 50 step running median
smoothing. Running median smoothing is also known as
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Figure 6: Amplitude models of glissando and legato.

Figure 7: Aperiodicity models of glissando and legato.

median filtering. Median filtering is widely used in digi-
tal image processing because under certain conditions, it
preserves edges whilst removing noise. In our situation
since we are interested in the edges and in removing noise,
this approach fits our purposes. By smoothing, the peaks
locations of the aperiodicity curves become more easy to
extract. Figure 8 and Figure 9 exemplify the smoothing
process and show the results we pursued.

2.3.2 Envelope Approximation

After obtaining a smoother data, an envelope approxima-
tion algorithm was applied. The core idea of the envelope
approximation is to obtain a fixed length representation of
the data, specially considering the peaks and also avoiding
small deviations by connecting these peak approximations
linearly. The envelope approximation algorithm has three
parts: peak peaking, scaling of peak positions according to
a fixed length, and linearly connecting the peaks. After the
envelope approximation, all the data regions we are inves-
tigating had the same length, i.e. regions were compressed
or enlarged depending their initial size.

We collect all the peaks above a pre-determined thresh-
old. Next, we scale all these peak positions. For instance,
imagine that our data includes 10000 bins and we want to
scale this data to 1000. And lets say, our peak positions are
: 1460, 1465, 1470, 1500 and 1501. What our algorithm
does is to scale these peak locations dividing all peak lo-
cations by 10 (since we want to scale 10000 to 1000) and
round them. So they become 146, 146, 147, 150 and 150.
As seen, we have 2 peaks in 146 and 150. In order to fix

Figure 8: Aperiodicity .

Figure 9: Smoothed Aperiodicity.

this duplicity, we choose the ones with the highest peak.
After collecting and scaling peak positions, the peaks are
linearly connected. As shown in Figure 10, the obtained
graph is an approximation of the graph shown in Figure 9.
Linear approximation helps the system to avoid consecu-
tive small tips and dips.

In our case all the recordings were performed at 60bpm
and all the notes in the recordings are 8th notes. That is,
each note is half a second, and each legato or glissando
portion is 1 second. We recorded with a sampling rate of
44100, and we did our analysis by using a hop size of 32
bins, i.e. 44100/32 = 1378 bins. We knew that this was
our highest limit. For the sake of simplicity, we scaled our
x-axis to 1000 bins.

2.4 Building the Models

After applying the preprocessing techniques, we obtained
equal length aperiodicity representations of all our expres-
sive articulation portions. Next step was to construct mod-
els for both legato and glissando by using this data. In
this section we describe how we constructed the models
cited briefly in the Section 2.2 (and shown in Figure 6 and
Figure 7). The following steps were used to construct the
models: Histogram Calculation, Smoothing and Envelope
approximation (explained in Section 2.3), and finally, SAX
representation. In this section we present the Histogram
Calculation and the SAX representation techniques.
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Figure 10: Envelope approximation of a legato portion.

(a) Legato Histogram (b) Glisando Histogram

Figure 11: Peak histograms of our legato and glissando
training sets.

2.4.1 Histogram Calculation

Another method that we are using is histogram envelope
calculation. We use this technique to calculate the peak
density of a set of data. Specifically, a set of recordings
containing 36 legato and 36 glissando examples (recorded
by a professional classical guitarist) was used as training
set. First, for each legato and glissando example, we deter-
mined the peaks. Since we want to model the places where
condensed peaks occur, this time we use a threshold which
is 30 percent and collect the peaks which have amplitude
values above this threshold. Notice that the threshold is
different than the used in envelope approximation. Then,
we used histograms to compute the density of the peak lo-
cations. Figure 11 shows the resulting histograms.

After constructing the histograms, as shown in Figure 11,
we used our envelope approximation method to construct
the envelopes of legato and glissando histogram models
(see Figure 12).

2.4.2 SAX: Symbolic Aggregate Approximation

Although the histogram envelope approximations of legato
and glissando in Figure 12 are close to our purposes, they
still include noisy sections. Rather than these abrupt changes
(noises), we are interested in a more general representation
reflecting the changes more smoothly.

SAX (Symbolic Aggregate Approximation) [18], is a
symbolic representation used in time series analysis that
provides a dimensionality reduction while preserving the
properties of the curves. Moreover, SAX representation
makes the distance measurements easier. Then, we applied

(a) Legato Final Envelope (b) Glisando Final Envelope

Figure 12: Final envelope approximation of peak his-
tograms of legato and glissando training sets.

(a) Legato SAX Representation (b) Glisando SAX Representation

Figure 13: SAX representation of legato and glissando fi-
nal models.

the SAX representation to histogram envelope approxima-
tions.

As we mentioned in Section 2.3.2, we scaled the x-axis
to 1000. We made tests with step sizes of 10 and 5. As
we report in the Experiments section, an step size of 5
gave better results. We also tested with step sizes lower
than 5, but the performance clearly decreased. Since we
are using an step size of 5, each step becomes 100 bins
in length. After obtaining the SAX representation of each
expressive articulation, we used our distance calculation
algorithm which we are going to explain in the next sec-
tion.

2.5 Detection

After obtaining the Sax representation of our glissando and
legato models, we divided them into 2 regions, a first re-
gion between bins 400 and 600, and a second region be-
tween bins 600 and 800 (see Figure 14).

For the expressive articulation excerpt, we have the en-
velope approximation representation with the same length
of the SAX representation of final models. So, we can
compare the regions. For the final expressive articulation
models (see Figure 13) we took the value for each region
and compute the deviation (slope) between these two re-
gions. We make this computation for both legato and glis-
sando models separately.

We also compute the same deviation for each expres-
sive articulation envelope approximation (see Figure 15).
But this time, since we do not have SAX representation,
for each region we do not have single values. Therefore,
for each region we compute the local maxima and take the
deviation (slope) of these two local maxima. After obtain-
ing this value, we compare it with the numbers that we
obtained from both final models of legato and glissando. If
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(a) Legato (b) Glisando

Figure 14: Peak occurrence deviation.

Figure 15: Expressive articultion difference.

the deviation value is closer to the legato model, we anno-
tate this expressive articulation as a legato and vice versa.

3. EXPERIMENTS

The goal of the experiments was to test the accuracy of our
approach. Because legato and glissando can be played in
ascending or descending intervals, we were also interested
in studying the results considering these two movements.
Additionally, since in a guitar there are three nylon and
three metallic strings, we also studied the results on these
two sets of strings.

Borrowing from Carlevaro’s guitar exercises [19], we
recorded a collection of ascending and descending chro-
matic scales. Legato and glissando examples were recorded
by a professional classical guitar performer. The performer
was asked to play chromatic scales in three different re-
gions of the guitar fretboard. Specifically, we recorded
notes from the first 12 frets of the fretboard where each
recording concentrated in 4 specific frets. The basic exer-
cise from the first fretboard region is shown in Figure 16.
Each scale contains 24 ascending and 24 descending notes.
Each exercise contains 12 expressive articulations (the ones
connected with an arch). Since we repeated the exercise
at three different positions, we obtained 36 legato and 36
glissando examples.

We presented all the 72 examples to our system. Then,
our system proposed a possible expressive articulation as
described in Section 2. Results are reported in Table 1.

First, we may observe that a step size of 5 is the most ap-
propriate setting. This result corroborates that a higher res-
olution when discretizing is not required and demonstrates

Step Size
Recordings 5 10
Ascending Legato 100% 100%
Descending Legato 66.6% 72.2%
Ascending Glissando 83.3% 61.1%
Descending Glissando 77.7% 77.7%
Glissando Metallic Strings 77.7% 77.7%
Glissando Nylon Strings 83.3% 61.1%
Legato Metallic Strings 86.6% 80%
Legato Nylon Strings 73.3% 86.6%

Table 1: Performance of our model applied to test set

that the SAX representation provides a powerful technique
to summarize the information about changes.

The overall performance for legato identification is 83.5%.
Notice that ascending legato reaches a 100% of accuracy
whereas descending legato achieves a 66.6%. Regarding
glissando, there is no difference between ascending or de-
scending accuracy (83.3%,77.7%). Finally, analyzing the
results when considering the string type, the results show a
similar accuracy.

4. CONCLUSION

In this paper we presented some preliminary results on the
identification of two classical guitar articulations, legato
and glissando, from a collection of chromatic exercises
recorded by a professional guitarist. Our approach uses
aperiodicity information to identify the articulation and a
SAX representation to characterize the articulation mod-
els.

Reported results show that our system is able to differ-
entiate successfully among these two articulations. Our
next goal is to study the capabilities of our approach in
the context of a real performance. To avoid the analysis
on a polyphonic recording, we plan to use an hexaphonic
pickup.

5. ACKNOWLEDGMENTS

This work was partially funded by NEXT-CBR (TIN2009-
13692-C03-01), IL4LTS (CSIC-200450E557) and by the
Generalitat de Catalunya under the grant 2009-SGR-1434.
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[17] A. de Cheveigné and H. Kawahara, “Yin, a funda-
mental frequency estimator for speech and music,” The
Journal of the Acoustical Society of America, vol. 111,
no. 4, pp. 1917–1930, 2002.

[18] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experienc-
ing sax: a novel symbolic representation of time se-
ries,” Data Mining and Knowledge Discovery, vol. 15,
pp. 107–144, October 2007.

[19] A. Carlevaro, “Serie didactica para guitarra,” vol. 4,
Barry Editorial, 1974.

463


	 1. Introduction
	 2. System Architecture
	2.1 Extraction of Candidates
	2.2 Selecting a Descriptor
	2.3 Preprocessing
	2.3.1 Smoothing
	2.3.2 Envelope Approximation

	2.4 Building the Models
	2.4.1 Histogram Calculation
	2.4.2 SAX: Symbolic Aggregate Approximation

	2.5 Detection

	 3. Experiments
	 4. Conclusion
	 5. Acknowledgments 
	 6. References



