
TempoExpress, a CBR Approach to Musical
Tempo Transformations

Maarten Grachten, Josep Llúıs Arcos, and Ramon López de Mántaras

IIIA, Artificial Intelligence Research Institute,
CSIC, Spanish Council for Scientific Research,

Campus UAB, 08193 Bellaterra, Catalonia, Spain,
{maarten,arcos,mantaras}@iiia.csic.es,

http://www.iiia.csic.es

Abstract. In this paper, we describe a CBR system for applying musi-
cally acceptable tempo transformations to monophonic audio recordings
of musical performances. Within the tempo transformation process, the
expressivity of the performance is adjusted in such a way that the result
sounds natural for the new tempo. A case base of previously performed
melodies is used to infer the appropriate expressivity. Tempo transfor-
mation is one of the audio post-processing tasks manually done in audio-
labs. Automatizing this process may, therefore, be of industrial interest.

1 Introduction

In this paper we describe a CBR system, TempoExpress, that automatically
performs musically acceptable tempo transformations. This paper significantly
extends previous work [1], that addressed the process of performance annotation,
a basic step to construct the cases needed in the CBR system described now.

The problem of changing the tempo of a musical performance is not as trivial
as it may seem. When a musician performs a musical piece at different tempos,
the performances are not just time-scaled versions of each other, as if the same
performance were played back at different speeds. Together with the changes
of tempo, variations in musical expression are made [3]. Such variations do not
only affect the timing of the notes, but can involve for example the addition or
deletion of ornamentations, or the consolidation/fragmentation of notes. Apart
from the tempo, other domain specific factors seem to play an important role in
the way a melody is performed, such as meter, and phrase structure.

Tempo transformation is one of the audio post-processing tasks manually
done in audio-labs. Automatizing this process may, therefore, be of industrial
interest.

In section 2, we will present the overall structure of TempoExpress. In sec-
tion 3, we briefly explain the processes involved in case and problem repre-
sentation. Section 4 describes the crucial problem solving phases of the CBR
mechanism, retrieval and reuse. In section 5, some initial results are presented.
Conclusions and future work are presented in section 6.

Transformation
AudioMelodic

Description

Input
Problem

CBR

WAV

oTempo (T)
OutputDesired

WAV

XML

Performance
Annotation

Analysis
Musical

MIDI

XML

Fig. 1. Overview of the basic TempoExpress components

2 Overview of TempoExpress

TempoExpress consists of three main parts and two additional parts. The main
parts are the melodic description module, the CBR problem solving module,
and the audio transformation module. The additional parts are the performance
annotation module and the musical analysis module (see figure 1). The melodic
description module generates a melodic description of the input recording, that
represents information about the performance on a musical level. This informa-
tion is used together with the score of the performed melody (as a MIDI file),
and the desired tempo of the output performance, to construct an input prob-
lem. CBR is then applied to obtain a solution for the problem in the form of a
melodic description of the new performance. The audio transformation produces
an audio file, based on the original audio and the new melodic description.

Since the main information in the input problem and the cases (the melodic
material of the score and the annotated performance) is of sequential nature,
we apply edit distance techniques in the retrieval step, as a means to assess
similarities between the cases and the input problem. In the reuse step we employ
constructive adaptation [13], a reuse method for synthetic tasks. This method
constructs a solution to a problem by searching the space of partial solutions for
a complete solution that satisfies the solution requirements of the problem.

2.1 Melodic Description and Audio Transformation

The melodic description and audio transformation are not part of the research
reported here. These processes are being implemented within a common research
project by members of the Music Technology Group (MTG) of the Pompeu
Fabra University, using signal spectral modeling techniques (see [6] for a detailed
description). The output of the melodic description process (and input of the
audio transformation process), is a description of the audio in XML format, that
adheres to (and extends) the MPEG7 standard for multimedia description [5].
This description includes information about the starting and ending of notes,
their pitches and amplitudes.

3 Case/Problem Representation

In this section, we will explain the various aspects of the construction of cases
from available information. To construct a case, a score (in MIDI format) is
needed. This score is represented internally as a sequence of note objects, with
the basic attributes like pitch, duration and temporal position. This score is
analyzed automatically to obtain a more abstract representation of the melody,
called I/R representation. This procedure is explained in subsection 3.1. Further-
more, an input performance at a particular tempo is needed. The performance
is not stored literally, but rather a performance annotation is constructed to
describe how the elements from the performance relate to the elements from
the score. This procedure is explained in detail in [1], and is briefly reminded in
subsection 3.2. The performance annotation is stored as a solution, associated to
a particular input description that applies to the performance (in our case, the
tempo of the performance). Lastly, the desired output tempo is also included as
a part of the problem description, specifying what the solution should be like.

3.1 Music Analysis

To prepare cases, as well as the input problem, music analysis is performed on
the musical score that was provided. The analysis is used in the problem solving
process, for example to segment musical phrases into smaller groups of notes,
and to perform retrieval of cases. The musical analysis is based on a model for
melodic structure, that is explained below.

The Implication/Realization Model Narmour [11,12] has proposed a the-
ory of perception and cognition of melodies, the Implication/Realization model,
or I/R model. According to this theory, the perception of a melody continuously
causes listeners to generate expectations of how the melody will continue. The
sources of those expectations are two-fold: both innate and learned. The innate
sources are ‘hard-wired’ into our brain and peripheral nervous system, according
to Narmour, whereas learned factors are due to exposure to music as a cultural
phenomenon, and familiarity with musical styles and pieces in particular. The
innate expectation mechanism is closely related to the gestalt theory for visual
perception [9]. Gestalt theory states that perceptual elements are (in the process
of perception) grouped together to form a single perceived whole (a ‘gestalt’).
This grouping follows certain principles (gestalt principles). The most impor-
tant principles are proximity (two elements are perceived as a whole when they
are perceptually close), similarity (two elements are perceived as a whole when
they have similar perceptual features, e.g. color or form, in visual perception),
and good continuation (two elements are perceived as a whole if one is a ‘good’
or ‘natural’ continuation of the other). Narmour claims that similar principles
hold for the perception of melodic sequences. In his theory, these principles take
the form of implications: Any two consecutively perceived notes constitute a
melodic interval, and if this interval is not conceived as complete, or closed, it is

�
�
�

����� �
�
� �

�
�
�
�

�

�

�
�

�

�
�

�

�

�

D R IR VRIDP VPIP

4
4

3

P ID P P

All Of Me

Fig. 2. Top: Eight of the basic structures of the I/R model. Bottom: First measures of
All of Me, annotated with I/R structures

an implicative interval, an interval that implies a subsequent interval with cer-
tain characteristics. In other words, some notes are more likely to follow the two
heard notes than others. Two main principles concern registral direction and in-
tervallic difference. The principle of registral direction states that small intervals
imply an interval in the same registral direction (a small upward interval im-
plies another upward interval, and analogous for downward intervals), and large
intervals imply a change in registral direction (a large upward interval implies
a downward interval and analogous for downward intervals). The principle of
intervallic difference states that a small (five semitones or less) interval implies a
similarly-sized interval (plus or minus 2 semitones), and a large intervals (seven
semitones or more) implies a smaller interval. The definitions of ‘small’, ‘large’,
and ‘similarly sized’ intervals are specified by the I/R model [11].

Based on these two principles, melodic patterns can be identified that either
satisfy or violate the implication as predicted by the principles. Such patterns are
called structures and labeled to denote characteristics in terms of registral direc-
tion and intervallic difference. Eight such structures are shown in figure 2(top).
For example, the P structure (‘Process’) is a small interval followed by another
small interval (of similar size), thus satisfying both the registral direction princi-
ple and the intervallic difference principle. Similarly the IP (‘Intervallic Process’)
structure satisfies intervallic difference, but violates registral direction.

Additional principles are assumed to hold, one of which concerns closure,
which states that the implication of an interval is inhibited when a melody
changes in direction, or when a small interval is followed by a large interval.
Other factors also determine closure, like metrical position (strong metrical po-
sitions contribute to closure, rhythm (notes with a long duration contribute to
closure), and harmony (resolution of dissonance into consonance contributes to
closure). The closure in each of these dimensions add up to the total closure.
The occurrence (and degree) of closure at a given point in the melody determines
where the structures start and end. For example, on a note where strong closure
appears (e.g. closure in meter, harmony and rhythm at the same time), the in-
terval between that note and the next will not be perceived as implicative, and
therefore there is no structure describing that interval. When no closure occurs
at all, every interval implies a new interval, and since the structures describe
two subsequent intervals, this causes a chaining, or overlapping of structures.

We have designed an algorithm to automate the annotation of melodies with
their corresponding I/R analyses. The algorithm implements most of the ‘innate’
processes mentioned before. The learned processes, being less well-defined by the
I/R model, are currently not included. Nevertheless, we believe that the resulting
analysis have a reasonable degree of validity, since the analyses generated for
melodic examples given in [11] were in many cases identical to the analyses
proposed by Narmour. An example analysis is shown in figure 2(bottom). This
example shows various degrees of structure chaining: the first two structures
(P and ID) are not chained, due to strong closure (meter and rhythm); the
second pair of structures (ID and P) are strongly chained (sharing two notes,
one interval), because closure is inhibited by ‘ongoing’ rhythms (like triplets);
the last pair of structures (P and P) are chained by one note, because of weak
closure (only in meter).

3.2 Performance Annotation

In addition to the score and its musical analysis, the cases in the case base, as well
as the problem specification, contain a performance of that score by a musician.
The raw format of the performance is an audio file. Using the melodic description
mechanism described in section 2.1, we obtain a melodic description of the audio,
in XML format. This description contains a sequence of note descriptors, that
describe the features like start and end times, pitch, energy of the notes, as
they were detected in the audio file. In order to be informative, the sequence of
note descriptors is to be mapped to the notes in the score, since this mapping
expresses how the score was performed. For example, it allows us to say that a
particular note was lengthened or shortened, or played early or late.

But the mapping between score notes and performed notes does not neces-
sarily consist of just 1-to-1 mappings. Especially in jazz performances, which is
the area on which we will focus, performers often favor a ‘liberal’ interpreta-
tion of the score. This does not only involve changes in expressive features (like
lengthening/shortening durations) of the score elements as they are performed,
but also omitting or adding notes. Thus, one can normally not assume that the
performance contains a corresponding element for every note of the score, nei-
ther that every element in the performance corresponds to a note of the score.
Taking these performance liberties into account, a description of a musical per-
formance could take the form of a sequence of performance events, that represent
the phenomena like note deletions or additions that occured in the performance.

From this perspective the edit distance [10] is very useful, since performance
events can be mapped in a very natural way to edit operations for sequences of
score and performance elements. A performance annotation can then be obtained
in the form of a sequence of performance events, by constructing the optimal
alignment between a score and a performance, using the edit distance. The set of
performance events/edit operations we use is a slight revision of the set proposed
by Arcos et al. [1]. It includes:

Transformation Representing the reproduction of a score note, possibly with
several kinds of transformations, such as change of pitch, duration and tem-
poral position

Insertion Representing the occurrence of a performance note that does not
correspond to any score note

Ornamentation A special case of insertion, where the inserted note (or pos-
sibly more than one) has very short duration, and is played as a lead-in to
the next note

Deletion Representing the occurrence of a score note that does not correspond
to any performance note

Fragmentation Representing the reproduction of a score note by playing two
or more shorter notes (adding up to the same total duration)

Consolidation Representing the reproduction of two or more score notes by
playing a single longer note (whose duration equals the sum of the score note
durations)

We defined the costs of these operations as functions of the note attributes
(pitch, duration and onset). However, rather than fixing the relative importance
of the attributes (as in [1]), we parametrized the cost functions to be able to
control the importance of each of the note attributes in each of the cost functions,
and the relative costs of edit operations. This setup enables us to tune the
performance annotation algorithm to produce annotations that correspond to
intuitive human judgment. We have used a genetic algorithm [8] to tune the
parameters of the cost functions, which substantially improved the accuracy of
annotation over untuned settings.

4 Problem Solving

In this section, we will explain the steps taken to transform the performance
presented as input into a performance of the same score at a different tempo.
The first step is the retrieval of relevant cases from the case base. In the second
step, the retrieved cases are selectively used to obtain a new sequence of perfor-
mance events. This sequence can then be used to modify the XML description
of the performance. Based on this modified description, the original audio file is
transformed to obtain the final audio of the performance at the desired tempo.

4.1 Retrieval

The goal of the retrieval step is to form a pool of relevant cases, that can possibly
be used in the reuse step. This done in the following three steps: firstly, cases
that don’t have performances at both the input tempo and output tempo are
filtered out; secondly, those cases are retrieved from the case base that have
phrases that are I/R-similar to the input phrase; lastly, the retrieved phrases are
segmented. The three steps are described below.

Case filtering by tempo In the first step, the case base is searched for cases
that have performances both at the tempo the input performance was played,
and the tempo that was specified in the problem description as the desired output
tempo. The matching of tempos need not be exact, since we assume that there
are no drastic changes in performance due to tempo within small tempo ranges.
For example, a performance played at 127 beats per minute (bpm) may serve as
an example case if we want to construct a performance at 125 bpm.

I/R based retrieval In the second step, the cases selected in step 1 are assessed
for melodic similarity to the score specified in the problem description. In this
step, the primary goal is to rule out the cases that belong to different styles of
music. For example, if the score in the problem description is a ballad, we want
to avoid using a bebop theme as an example case. Note that the classification of
musical style based on just melodic information (or derived representations) is far
from being an established issue. Nevertheless, there is some evidence [7] that the
comparison of melodic material at different levels of abstraction yields different
degrees of discriminatory power. For example comparing on the most concrete
level (comparing individual notes) is a good way to find out which melodies in a
set are nearly identical to a particular target melody. But if the set of melodies
does not contain a melody nearly identical to the target, the similarity values
using this measure are not very informative, since they are highly concentrated
in a single value. On the other hand, comparisons based on more abstract de-
scriptions of the melody (e.g. melodic contour, or I/R analyses), tend to produce
a distribution of similarity values that is spread out through the spectrum more
equally. Thus, these measures tell us in a more informative way how similar two
melodies are (with respect to the other melodies in the set), even if they are
considerably different. As a consequence, a melodic similarity measure based on
an abstract representation of the melody seems a more promising approach to
separate different musical styles.

We use the I/R analysis of the melodies to assess similarities. The measure
used is an edit distance. The edit distance measures the minimal cost of trans-
forming one sequence of objects into another, given a set of edit operations (like
insertion, deletion, and replacement), and associated costs. We have defined edit
operations and their corresponding costs for sequences of I/R structures (see [7]
for more details). The case base is ranked according to similarity with the target
melody, and the subset of cases with similarity values above a certain threshold
are selected. The resulting set of cases will contain phrases that are roughly
similar to the input score.

Segmentation In this step, the melodies that were retrieved in the second step
are segmented. The motivation for this twofold. Firstly, using complete melodic
phrases as the working unit for adaptation is inconvenient, since a successful
adaptation will then require that the case base contains phrases that are nearly
identical as a whole to the input phrase. Searching for similar phrase segments
will increase the probability of finding a good match. Secondly, the segmentation

4
4

3

4
4

3

4
4

3

Fig. 3. Segmentation of the first phrase of ‘All of Me’, according to I/R structures.
The segments correspond to single I/R structures, or sequences of structures if they
are strongly chained (see subsection 3.1)

is motivated by the intuition that the way a particular note is performed does
not only depend of the attributes of the note in isolation, but also on the musical
context of the note. Therefore, rather than trying to reuse solutions in a note-by-
note fashion, it seems more reasonable to perform the reuse segment by segment.
This implies that the performance of a retrieved note is only reused for a note
of the input phrase if their musical contexts are similar.

Melodic segmentation has been addressed in a number of studies (e.g. [16][2]),
with the aim of detecting smaller musical structures (like motifs) within a phrase.
Many of them take a data driven approach, using information like note interonset
intervals (IOI) and metrical positions to determine the segment boundaries. Our
method of segmentation is based on the I/R representation of the melodies. This
may seem quite different from the approach mentioned above, but in essence it
is similar. The melodies are split at every point where the overlap of two I/R
structures is less than two notes (see subsection 3.1). This overlap is determined
by the level of closure, which is on its turn determined by factors like metrical
posisiton and IOI. The resulting segments usually correspond to the musical
motifs that constitute the musical phrase, and are used as the units for the
stepwise construction of the output performance. As an example, figure 3 displays
the segmentation of the first phrase of ‘All of Me’ (the complete phrase is shown
in figure 2).

4.2 Reuse

In the reuse step a performance of the input score is constructed at the desired
tempo, based on the input performance and the set of retrieved phrase segments.
This step is realized using constructive adaptation [13], a technique for reuse that
constructs a solution by a best-first search through the space of partial solutions.
In this subsection, we will first explain briefly how the reuse step can in general
be realized as best-first search, and then we will explain how we implemented
the functions necessary to make the search-algorithm operational in the context
of performance transformation.

In constructive adaptation, partial solutions of the problem are represented
as states. Furthermore, a function HG must be defined for generating a set of
successor states for a given state. The state space that emerges from this func-
tion and the state that represents the empty solution (generated by a function
Initial-State), is then searched for a complete solution that satisfies certain
constraints (through a function Goal-Test). The resulting state is transformed

to a real solution by a function SAC. The order of expansion of states is controlled
by a function HO that orders the states in a best-first manner. The search process
is expressed in pseudo code below.

Initialize OS = (list (Initial-State Pi))
Function CA(OS)

Case (null OS) then No-Solution

Case (Goal-Test (first OS)) then (SAC (first OS))
Case else

Let SS = (HG (first OS))
Let OS = (HO (append SS (rest OS)))

(CA OS)

Fig. 4. The search process of constructive adaptation expressed in pseudo code. Func-
tions HG and HO are Hypotheses Generation and Hypotheses Ordering. Variables OS
and SS are the lists of Open States and Successor States. The function SAC maps the
solution state into the configuration of the solution. The function Initial-State maps
the input problem description Pi into a state. From Plaza and Arcos [13]

We explain our implementations of the functions Initial-State, HG, HO,
Goal-Test, and SAC below.

Initial-State The function Initial-State returns a state that is used as the
starting point for the search. It takes the input problem description (the score,
analysis, input-performance, and desired output tempo) as an argument. In our
case, the state contains a sequence of score segments, and a slot for storing
the corresponding performance segments (none of which is filled in the initial
state, obviously). Furthermore, there is a slot that stores the quality of the
partially constructed performance, as a number. We will explain the derivation
of this number in the next subsection. Figure 5 shows the initial state for a short
musical fragment (containing two segments).

Hypothesis-Generation (HG) The Hypothesis-Generation function takes a
state as an argument and tries to find a sequence performance events for one
of the unprocessed score segments in the state. We will illustrate this procedure
step by step, using the first segment of the initial state in figure 5 as an example.
The steps are presented graphically in figure 7 (at the last page of this paper).

The first step is to find the segment in the pool of retrieved melodic segments
that is most similar to the input score segment. The similarity is assessed by cal-
culating the edit distance between the segments (the edit distance now operates
on notes rather than on I/R structures, to have a finer grained similarity as-
sessment). A mapping between the input score segment and the best matching
retrieved segment is made.

In the second step, the performance annotation events (see subsection 3.2
and [1]) corresponding to the relevant tempos are extracted from the retrieved
segment case and the input problem specification (both the input tempo Ti and

o

4
4

4
4

T : 120 Quality: 0

Perf@T i

Score:

? ?Perf@T :o

+

Fig. 5. Example of an initial state in Constructive Adaptation. Ti is the tempo of the
input performance; To is the desired output tempo

the output tempo To for the retrieved segment case, and just Ti from the input
problem specification).

The third step consists in relating the annotation events of the retrieved
segment to the notes of the input segment, according to the mapping between
the input segment and the retrieved segment, that was constructed in the first
step. For the notes in the input segment that were mapped to one or more notes
in the retrieved segment, we now obtain the tempo transformation from Ti to
To that was realized for the corresponding notes in the retrieved segment. It is
also possible that some notes of the input segment could not be matched to any
notes of the retrieved segment. For such notes, the retrieved segment can not be
used to obtain annotation events for the output performance. Currently, these
gaps are filled up by directly transforming the annotation events of the input
performance (at tempo Ti) to fit the output tempo To (by scaling the duration
of the events to fit the tempo). In the future, more sophisticated heuristics may
be used.

In the fourth step, the annotation events for the performance of the input
score at tempo To are generated. This is done in a note by note fashion, us-
ing rules that specify which annotation events can be inferred for the output
performance of the input score at To, based on annotation events of the input
performance, and the annotation events of the retrieved performances (at Ti and
To). To illustrate this, let us explain the inference of the Fragmentation event for
the last note of the input score segment (B)in figure 7. This note was matched to
the last two notes (A, A) of the retrieved segment. These two notes were played
at tempo Ti as a single long note (denoted by the Consolidation event), and
played separately at tempo To. The note of the input segment was also played
as a single note at Ti (denoted by a Transformation event rather than a Consol-
idation event, since it corresponds to only one note in the score). To imitate the
effect of the tempo transformation of the retrieved segment (one note at tempo
Ti and two notes at tempo To), the note in the input segment is played as two
shorter notes at tempo To, which is denoted by a Fragmentation event (F).

In this way, adaptation rules were defined, that describe how the tempo
transformation of retrieved elements can be translated to the current case. In
figure 7, two such rules are shown. If the antecedent part matches the constel-
lation of annotation events, the tempo transformation in the consequent part
can be applied. It can occur that the set of rules contains no applicable rule
for a particular constellation, in particular when the performances at Ti of the

retrieved note and the input note are too different. For example, if the score
note is played as a Transformation event, but the retrieved note is deleted in the
performance at Ti, then the performances are too different to make an obvious
translation. In this case, the annotation events from the input performance are
transformed in the same way as in the case where no corresponding note from
the retrieved segment could be found (see the third step of this subsection).

The mismatch between the input segment and the retrieved segment and the
inability to find a matching adaptation rule obstructs the use of case knowledge
to solve the problem and forces TempoExpress to resort to default mechanisms.
This will affect the quality of the solution. To reflect this, the value of the quality
slot of the state (see figure 5) is calculated as the number of input score notes
for which annotation events could be inferred from retrieved cases, divided by
the total number of notes processed so far (that is, the sum of all notes in the
processed input segments, including the current input segment).

Hypothesis-Ordering (HO) The Hypothesis-Ordering function takes a list
of states (each one with its partial solution) and orders them so that the states
with the most promising partial solutions come first. For this ordering, the qual-
ity value of the states is used. In our current implementation, the quality value
is only determined by one factor, roughly the availability of appropriate cases.
Another factor that should ideally influence the quality of the states is the ‘co-
herence’ of the solution. For example, if the notes at the end of one segment
were anticipated in time (as a possible effect of a Transformation event), then
anticipation of the first notes of the next segment will not have the typical effect
of surprise, since the listener will experience the performance as being shifted
forward in time, instead of hearing a note earlier than expected. We are cur-
rently incorporating the detection and evaluation of such phenomena into the
Hypothesis-Ordering function, so that this functionality will soon be available.

Goal-Test The Goal-Test function is called on the best state of an ordered list of
states to test if the solution of that state is complete and satisfies the constraints
imposed upon the desired solution. The completeness of the solution is tested by
checking if all segments of the input score have a corresponding segment in the
performance annotation for the output tempo. The constraints on the solution
are imposed by requiring a minimal quality value of the state. In our case, where
the quality value represents the ratio of notes for which annotation events were
obtained using retrieved cases (a value between 0 and 1), the quality value is
required to be superior or equal to 0.8.

State-to-Solution (SAC) The State-to-Solution function takes the state that
passed the goal-test and returns a solution to the input problem. This step con-
sists in building a complete performance annotation from the annotation events
for the score segments (basically concatenation of the events). The new perfor-
mance annotation is used to adapt the XML description of the original audio

file, by changing attribute values, and possibly deleting and inserting new note
descriptors. Finally, the audio transformation module (which is under develop-
ment) generates a new audio file, based on the new XML description.

4.3 Retain

When the solution that was generated is satisfying to the listener, and when the
quality of the solution is high (that is, default adaptation operations have been
scarcely used, or not at all), it is retained as a case that includes the input score,
the input performance, and the newly generated performance.

5 Results

Although the TempoExpress is operational, there are some components that need
improvement. In particular, the case base is still of limited size (it contains ten
different phrases from three different songs, played at approximately ten different
tempos). Nevertheless, some good results were obtained for some melodies. We
have performed a tempo transformation of a phrase from Once I Loved (A.C.
Jobim). The original performance of the phrase was at a tempo of 55 beats per
minute (bpm), and using the CBR system, the performance was transformed to
a tempo of 100 bpm. For comparison, the tempo transformation was also realized
using uniform time stretching of the original sound file (i.e. the durations of all
notes in the original performance are lengthened by a single scaling factor, while
leaving the pitches of the notes unchanged). Figure 6 shows the audio signals of
the original sound, and the two transformations. Notable differences between the
two transformations occur in the notes 3 to 9 (the numbered vertical lines in the
views indicate the start of the notes). Note that in the CBR transformation, the
eighth note is missing, due to a consolidation. Furthermore, those notes have
considerable variations of duration in the CBR transformation, whereas they
are more regularly played in the uniformly time stretched version (as in the
original), making the latter sound somewhat mechanical at the faster tempo.
Slight changes in the dynamics can also be observed, e.g in note 1 and 12. The
sound files from the example are publicly available in mp3 format, through the
world-wide web1.

6 Conclusions and Future Work

In this paper, we have described TempoExpress, an application for applying
musically acceptable tempo transformations to monophonic audio recordings
of musical performances. TempoExpress has a rich description of the musical
expressivity of the performances, that includes not only timing deviations of
performed score notes, but also represents more rigorous kinds of expressivity
such as note ornamentation, and consolidation. Within the tempo transformation
process, the expressivity of the performance is adjusted in such a way that the
1 http://www.iiia.csic.es/~maarten/cbr/tempo-transformation

Fig. 6. Audio signals of a part of the first phrase of Once I Loved. The upper view
shows original sound file (55 bpm), the middle view shows a tempo transformation by
uniform time stretching, and the lower view shows a tempo transformation using the
CBR system. The vertical lines indicate the positions of the note onsets

result sounds natural for the new tempo. A case base of previously performed
melodies is used to infer the appropriate expressivity.

Future work includes elaborating the reuse step, to put more musical con-
straints on the way in which partial solutions can be combined. Also, we intend
to add more cases to the case base, to broaden the range of problems that can
be satisfyingly solved by the system. Finally, a more thorough evaluation of the
results is necessary. This could be done for example by quantitatively comparing
transformed performances to performances at the final tempo by a musician, or
by a blinded evaluation of performances by a panel.

6.1 Related Work

In the field of expressive music performance generation, Widmer [17] has taken
a data mining approach to discover rules that match expressive phenomena to
musical patterns. Friberg et al. [4] have proposed a set of performance rules that
was constructed with the help of musical experts. Serra et al. [14] have applied a
CBR approach to expressive music performance. They designed SaxEx, a system
for adding expressiveness to inexpressive performances of melodies. Some design
choices in TempoExpress were adapted from this application. Suzuki has recently
presented Kagurame, a CBR system for the expressive performance of a musical
score [15]. All of the above approaches either generate expressive performances
only based on a score, or apply a transformation to an inexpressive performance
(SaxEx). Thus, as opposed to TempoExpress, they don’t consider any expressive
information as input to the system.

Acknowledgments This research has been partially supported by the Spanish

Ministry of Science and Technology under the project TIC 2003-07776-C2-02 “CBR-

ProMusic: Content-based Music Processing using CBR” and EU-FEDER funds. The

authors acknowledge the Music Technology Group of the Pompeu Fabra University for

providing the melodic description and audio transformation modules.

References

1. J. Ll. Arcos, M. Grachten, and R. López de Mántaras. Extracting performer’s be-
haviors to annotate cases in a CBR system for musical tempo transformations.
In Proceedings of the Fifth International Conference on Case-Based Reasoning
(ICCBR-03), 2003.

2. E. Cambouropoulos. The local boundary detection model (lbdm) and its applica-
tion in the study of expressive timing. In Proceedings of the International Computer
Music Conference (ICMC’2001), Havana, Cuba, 2001.

3. P. Desain and H. Honing. Tempo curves considered harmful. In ”Time in contem-
porary musical thought” J. D. Kramer (ed.), Contemporary Music Review. 7(2),
1993.

4. A. Friberg. Generative rules for music performance: A formal description of a rule
system. Computer Music Journal, 15 (2):56–71, 1991.

5. E. Gómez, F. Gouyon, P. Herrera, and X. Amatriain. Using and enhancing the
current mpeg-7 standard for a music content processing tool. In Proceedings of
Audio Engineering Society, 114th Convention, Amsterdam, The Netherlands, 2003.

6. E. Gómez, A. Klapuri, and B. Meudic. Melody description and extraction in the
context of music content processing. Journal of New Music Research, 32(1), 2003.

7. M. Grachten, J. Ll. Arcos, and R. López de Mántaras. A comparison of different
approaches to melodic similarity, 2002. Second International Conference on Music
and Artificial Intelligence (ICMAI).

8. M. Grachten, J. Ll. Arcos, and R. López de Mántaras. Evolutionary optimization
of music performance annotation. In CMMR 2004, Lecture Notes in Computer
Science. Springer, 2004. To appear.

9. K. Koffka. Principles of Gestalt Psychology. Routledge & Kegan Paul, London,
1935.

10. V. I. Levenshtein. Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10:707–710, 1966.

11. E. Narmour. The Analysis and cognition of basic melodic structures : the
implication-realization model. University of Chicago Press, 1990.

12. E. Narmour. The Analysis and cognition of melodic complexity: the implication-
realization model. University of Chicago Press, 1992.

13. E. Plaza and J. Ll. Arcos. Constructive adaptation. In Susan Craw and Alun
Preece, editors, Advances in Case-Based Reasoning, number 2416 in Lecture Notes
in Artificial Intelligence, pages 306–320. Springer-Verlag, 2002.

14. X. Serra, R. Lopez de Mantaras, and J. Ll. Arcos. Saxex : a case-based reason-
ing system for generating expressive musical performances. In Proceedings of the
International Computer Music Conference 1997, pages 329–336, 1997.

15. T. Suzuki. The second phase development of case based performance rendering
system “Kagurame”. In Working Notes of the IJCAI-03 Rencon Workshop, pages
23–31, 2003.

16. D. Temperley. The Cognition of Basic Musical Structures. MIT Press, Cambridge,
Mass., 2001.

17. G. Widmer. Machine discoveries: A few simple, robust local expression principles.
Journal of New Music Research, 31(1):37–50, 2002.

4444

44 44

4444 44

P
er

f.@

P
er

f.@

P
er

f.@

4
3

2
1

T o

T o
T

T
O

T
T

T
T

C
T

T

T
T

T
T ii

T

T
O

T
F

R
et

rie
ve

d
S

eg
m

en
t

In
pu

t S
eg

m
en

t

T i
T

T
T

T
T

T
T

O
T

T o

T
T

T
C

T i
T

T
O

T
T

T

T o
i

T

T
T

O

T o
i

T

In
pu

t

R
et

r.

In
pu

t

IF
T

H
E

N

T

T o
i

T

T

T o
i

T
C

T
T

F

R
et

r.

In
pu

t

IF
T

H
E

N

In
pu

t

A
da

pt
at

io
n

ru
le

s
fo

r
an

no
ta

tio
n

ev
en

ts
, e

.g
.

F
ig

.
7
.

T
h
e

p
ro

ce
ss

o
f

h
y
p
o
th

es
is

g
en

er
a
ti

o
n
.

In
st

ep
1
,

a
m

a
p
p
in

g
is

m
a
d
e

b
et

w
ee

n
th

e
in

p
u
t

sc
o
re

se
g
m

en
t

a
n
d

th
e

m
o
st

si
m

il
a
r

se
g
m

en
t

fr
o
m

th
e

p
o
o
l
o
f
re

tr
ie

v
ed

se
g
m

en
ts

.
In

st
ep

2
,
th

e
p
er

fo
rm

a
n
ce

a
n
n
o
ta

ti
o
n
s

fo
r

th
e

te
m

p
o
s

T
i

a
n
d

T
o

a
re

co
ll
ec

te
d
.
In

st
ep

3
,

th
e

p
er

fo
rm

a
n
ce

a
n
n
o
ta

ti
o
n

ev
en

ts
a
re

g
ro

u
p
ed

a
cc

o
rd

in
g

to
th

e
m

a
p
p
in

g
b
et

w
ee

n
th

e
in

p
u
t

sc
o
re

a
n
d

re
tr

ie
v
ed

sc
o
re

.
In

st
ep

4
,

th
e

a
n
n
o
ta

ti
o
n

ev
en

ts
a
re

p
ro

ce
ss

ed
th

ro
u
g
h

a
se

t
o
f
ru

le
s

to
o
b
ta

in
th

e
a
n
n
o
ta

ti
o
n

ev
en

ts
fo

r
a

p
er

fo
rm

a
n
ce

a
t

te
m

p
o

T
o

o
f
th

e
in

p
u
t

sc
o
re

se
g
m

en
t

