
Search Trajectory Networks
of Population-Based Algorithms

in Continuous Spaces

Gabriela Ochoa1(B) , Katherine M. Malan2 , and Christian Blum3

1 University of Stirling, Scotland, UK
gabriela.ochoa@stir.ac.uk

2 Department of Decision Sciences, University of South Africa, Pretoria, South Africa
malankm@unisa.ac.za

3 Artificial Intelligence Research Institute (IIIA-CSIC), Campus of the UAB,
Bellaterra, Spain

christian.blum@iiia.csic.es

Abstract. We introduce search trajectory networks (STNs) as a tool
to analyse and visualise the behaviour of population-based algorithms
in continuous spaces. Inspired by local optima networks (LONs) that
model the global structure of search spaces, STNs model the search tra-
jectories of algorithms. Unlike LONs, the nodes of the network are not
restricted to local optima but instead represent a given state of the search
process. Edges represent search progression between consecutive states.
This extends the power and applicability of network-based models to
understand heuristic search algorithms. We extract and analyse STNs
for two well-known population-based algorithms: particle swarm optimi-
sation and differential evolution when applied to benchmark continuous
optimisation problems. We also offer a comparative visual analysis of the
search dynamics in terms of merged search trajectory networks.

Keywords: Continuous optimisation · Local optima networks ·
Metaheuristics behaviour · Search trajectory networks

1 Introduction

There is a lack of tools for understanding the dynamics of heuristic search algo-
rithms and the global structure of fitness landscapes. It is also difficult to visu-
alise high-dimensional search spaces. Local optima networks (LONs) [15,24] help
to fill this gap by providing a compressed model of landscapes, where nodes are
local optima and edges possible transitions among them. LONs model the dis-
tribution and connectivity pattern of local optima, and thus help to characterise
the underlying landscape global structure. Once a network model has been con-
structed, it can be visualised and analysed with the plethora of powerful ana-
lytical and visualisation tools provided by the science of complex networks [14].
However, there are limitations to LONs, as they have been applied mainly to
c© Springer Nature Switzerland AG 2020
P. A. Castillo et al. (Eds.): EvoApplications 2020, LNCS 12104, pp. 70–85, 2020.
https://doi.org/10.1007/978-3-030-43722-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-43722-0_5&domain=pdf
http://orcid.org/0000-0001-7649-5669
http://orcid.org/0000-0002-6070-2632
http://orcid.org/0000-0002-1736-3559
https://doi.org/10.1007/978-3-030-43722-0_5

STNs of Population-Based Algorithms in Continuous Spaces 71

fully enumerated networks [10,15,24], combinatorial optimisation in the con-
text of single-point metaheuristics [16,22] or population-based approaches where
there there is a local search component [4,23]. The major limitation of LONs is
that the nodes have been restricted to local optima of standard neighbourhood
operators, and only recently have been extended to large-neighbourhoods within
hybrid metaheuristics [1]. The contributions of this article are as follows:

– To propose search trajectory networks (STNs) as a tool to analyse and visu-
alise the behaviour of population-based algorithms.

– To show how the concept of STNs could be implemented in the context of
continuous search spaces.

– To conduct STN analyses of two well-known evolutionary algorithms in con-
tinuous optimisation.

– To conduct a visual comparative analysis of the studied algorithms using
merged STNs.

2 Population-Based Algorithm Behaviour

In the last few decades there has been a huge increase in the number of meta-
heuristics inspired by different natural and social phenomena. One of the prob-
lems with all of these new algorithms is that it is not clear whether they are
in fact “new”. When the metaphor is stripped away, is the search process any
different from the search process of existing established algorithms [20]?

Combined with this increase in the choice of algorithms is the lack of expert
knowledge required to use the algorithms effectively. It has taken many decades
of empirical and theoretical research for well-established metaheuristics to be
understood even to a very limited extent. Every new approach comes with a
blank record of established knowledge around behaviour with respect to algo-
rithm setup, parameter choices and suitable or unsuitable problem classes. A
need clearly exists for approaches to analysing search algorithm behaviour.

It is often stated that the success of any metaheuristic boils down to finding
the right balance between exploration and exploitation (or the broader concept of
intensification/diversification [2]). However, there is no generally accepted under-
standing of the concept in the evolutionary computing research community [8].
Part of the problem is that controlling this aspect of algorithmic behaviour is
not trivial. In the case of evolutionary algorithms, there are three levels at which
exploration/exploitation can be controlled [8]: at individual level (when solutions
share information with each other), at sub-individual level (when solutions are
combined) and at gene level (when components of individual solutions are mod-
ified).

In population-based algorithms, exploration/exploitation is related to the
notion of diversity. The more diverse or spread-out the solutions in the popu-
lation are, the more the algorithm is exploring. Conversely, if the solutions are
clustered closely together in the search space, then the algorithm is exploiting
a specific part of the search space. The way in which diversity changes over

72 G. Ochoa et al.

time is therefore one approach to characterising the behaviour of a population-
based algorithm. Bosman and Engelbrecht [3] proposed a single numerical mea-
sure called diversity rate of change (DRoC) for characterising the exploration-
exploitation trade-off in particle swarms. Their premise was that the profile of
the reduction in diversity (measured using the average Euclidean distance around
the centre of the swarm [17]) could be captured by the slopes of a two-piecewise
linear approximation of the diversity over time. Although diversity provides one
important view of algorithm behaviour, it ignores where in the search space the
population is moving and hence whether convergence is premature or not.

The STN model proposed in this paper provides a complementary view of
the behaviour of population-based algorithms. Instead of studying the diversity
of the population over time, we study the trajectory of a representative solution
(the current best solution) over time. The visualisations and metrics of STNs
provide an additional tool for analysing algorithm behaviour that may provide
insights that are not captured by commonly used convergence plots or the DRoC
measure.

3 Search Trajectory Networks (STNs)

Our proposal to provide new insights into the search dynamics of different algo-
rithms is to model their search trajectories by means of a network model. Specif-
ically, we modify the local optima networks (LON) model [15] to analyse the
trajectories of population-based algorithms. We also use the recently proposed
idea [1] of merging the network models induced by two different algorithms in
order to compare their trajectories with a graphical support.

In order to define a network model, we need to specify the nodes and edges.
The relevant definitions are given below, as well as a description of the sampling
process to construct the network models.

Trajectory. A sequence of solutions corresponding to the best solution in the
population over time. The frequency of recording the best solution is controlled
by a parameter.

Location. A partition of the search space containing a subset of solutions within
a predefined neighbourhood.

Nodes. The nodes correspond to the locations of the corresponding best solu-
tions in a trajectory. The set of nodes is denoted by N .

Edges. Edges are directed and connect two consecutive locations of best solu-
tions in the search trajectory. Edges are weighted with the number of times a
transition between two given nodes occurred during the process of sampling and
constructing the STN. The set of edges is denoted by E.

Search Trajectory Network (STN). Is the directed graph GSTN = (N,E),
with node set N , and edge set E as defined above.

STNs of Population-Based Algorithms in Continuous Spaces 73

Sampling and STN Model Construction. The STNs were generated for a selection
of well-studied benchmark instances. For each of these instances an STN was
constructed by aggregating all the unique nodes and edges encountered across
10 independent runs (search trajectories) of each algorithm. The details of the
sampling and STN setup are given in Sect. 4.4.

4 Experimental Setting

This section describes the algorithms and problems used in the experiments as
well as the setup required for the STN model.

4.1 Candidate Algorithms

Two candidate population-based algorithms were chosen for testing the pro-
posed STN model – one evolutionary, namely differential evolution (DE), and
one swarm-based, namely particle swarm optimisation (PSO). The particular
version of DE used in the study was DE/rand/1 [21], with uniform crossover,
a population size of 50, a scale factor of 0.5, and a crossover rate of 0.5. The
version of PSO used in the study was traditional global best PSO [6,12] with
an inertia weight term [19], 50 particles, 1.496 for both the cognitive and social
acceleration constants, and 0.7298 for the inertia weight (although the optimal
choice of parameters is problem dependent, this is a common choice that works
reasonably well for many problems [7]).

Note that no parameter tuning was performed on the two algorithms. The
purpose of this paper is to introduce a mechanism for understanding and con-
trasting population-based algorithm behaviour in continuous spaces. No judge-
ments are made on the performance of DE in relation to PSO. We are rather
showing that if one search process is more successful than another on a particular
problem, the STN model can shed some light on why this is the case.

The behaviour of the two candidate algorithms can be understood on a high
level as follows:

– DE/rand/1: At each iteration, new perturbed solutions are formed for each
individual of the population by adding a scaled weighted difference between
two other random solutions in the population to another random solution. A
trial solution is then formed through crossover of the current solution with
the perturbed solution. If the trial solution is better, then it will replace the
current solution. On a high level DE/rand/1 can be understood as each solu-
tion being attracted towards a combination of three other random solutions
of the population, but only moving if the new combination is better.

– Global best PSO: At each iteration, the position of each solution is influ-
enced by three terms: the solution’s previous velocity, the position of the best
solution in the individual trajectory and the position of the best solution of
the population. All solutions therefore have two attractors: the current best
solution in the population and the previous best solution in the individual’s
trajectory. The solution will move regardless of whether it is better or not.

74 G. Ochoa et al.

A significant difference between the two algorithms is in the size of the neigh-
bourhood for sharing information. In the case of DE/rand/1, the neighbourhood
is three other individuals, whereas for global best PSO, the neighbourhood is
the entire population, since all solutions are attracted towards one global best
solution.

4.2 Benchmark Functions

A sample of five minimisation benchmark functions (defined in Table 1) with dif-
ferent characteristics were chosen for testing the proposed STN model. Function
instances were chosen that demonstrated performance differences between the
two candidate algorithms in our preliminary experiments. The purpose was to
investigate whether the STN visualisations and metrics could be used to explain
relative algorithm success and failure for problems in different dimensions. Two-
dimensional plots of the functions are provided in Fig. 1 to provide insight into
the global structure of the problems.

Quadric (also known as Schwefel 1.2) [25] is the only unimodal function.
Michalewicz [13] is multimodal, but also has large plateaus at high fitness values.
Schwefel 2.26 [25] is multimodal and also multi-funnelled. Both Salomon [18] and
Rana [18] are extremely rugged, but Salomon has a single-funnel global structure
(evident in Fig. 1d), whereas Rana has a multi-funnel structure. Figure 1e shows
the Salomon function zoomed in to the domain around the origin (the global
optimum), showing that the function “resembles a pond with ripples” [18] on a
micro scale.

Table 1. Benchmark functions

Function Definition Domain

Michalewicz f(x) = − ∑D
i=1 sin(xi)

(
sin(ix2

i /π)
)2p

xi ∈ [0, π]

Quadric f(x) =
∑D

i=1

(∑i
j=1 xj

)2

xi ∈ [−100, 100]

Rana

f(x) =

D∑

i=1

xi sin(α) cos(β)

+
(
x(i+1)modD + 1

)
cos(α) sin(β), D ≥ 2,

α =
√

|xi+1 + 1 − xi|, β =
√

|xi + xi+1 + 1|

xi ∈ [−512, 512]

Salomon f(x) = − cos
(
2π

∑D
i=1 x2

i

)
+ 0.1

√∑D
i=1 x2

i + 1 xi ∈ [−100, 100]

Schwefel 2.26 f(x) = − ∑D
i=1

(
xi sin(

√|xi|)
)

xi ∈ [−500, 500]

4.3 Experimental Runs

Ten runs of each of the two candidate algorithms (using the parameters specified
in Sect. 4.1) were executed on the five benchmark problem instances: Michalewicz

STNs of Population-Based Algorithms in Continuous Spaces 75

 0
 0.5

 1
 1.5

 2
 2.5

 3 0
 0.5

 1
 1.5

 2
 2.5

 3

(a) Michalewicz (b) Quadric

-400
-200

 0
 200

 400 -400
-200

 0
 200

 400

(c) Rana

-100

-50

 0

 50

 100-100

-50

 0

 50

 100

(d) Salomon

-1.5
-1

-0.5
 0

 0.5
 1

 1.5 -1.5
-1

-0.5
 0

 0.5
 1

 1.5

(e) Salomon (smaller domain)

-400
-200

 0
 200

 400 -400
-200

 0
 200

 400

(f) Schwefel 2.26

-100

-50

 0

 50

 100-100

-50

 0

 50

 100

Fig. 1. Plots of two-dimensional versions of the benchmark functions used in the exper-
iments

in 5D, Quadric in 10D, Rana in 3D, Salomon in 3D and Schwefel 2.26 in 5D.
Each run had a budget of 5000 ×D function evaluations (100 ×D iterations for
a population size of 50). The positions and fitness values of the best solutions in
the current population were saved to represent the trajectories.

To ensure that the visualisations were not too cluttered, the best solutions
of every Dth iteration were stored. Problems of different dimensions therefore

76 G. Ochoa et al.

had representative trajectories of equal length (100 in this case). The fitness of
solutions was stored rounded off to a precision of 10−8.

4.4 STN Setup

In a discrete domain, nodes of the STN could be modelled as unique solutions.
In the continuous domain, however, considering unique solutions is not feasible,
so each node instead represents a number of solutions that are within a spec-
ified non-overlapping sub-space of the solution space, which we call a location.
A location can therefore be thought of as a small portion of the search space
through which trajectories might pass. Each solution in the trajectory is rep-
resented by one node in the STN, but the same node may represent multiple
solutions (meaning that the trajectories passed through the location multiple
times).

In this study, a solution precision parameter (SP) was used to portion the
continuous search space into equal-sized discrete portions equal to a hypercube
with length 10−SP . For example, if SP = 2, then the solution space is divided
into hypercubes of size 10−2 and each node in the STN is equivalent to one of
these hypercubes or locations. Solutions are mapped to locations by rounding
off all components of the position to the nearest 10−SP to determine the identity
of the enclosing hypercube.

To extract meaningful insights from the STN model, the value of the param-
eter SP should decrease as the search space increases. In this study, (assuming
that the domain of values is the same for each dimension of the problem) the
value for SP was expressed as a function of the range of the domain (xmax−xmin)
and dimension (D) of the problem as follows: SP is set to 2 − n, where n is the
largest integer for which the following is true:

(xmax − xmin) × D ≥ 10n. (1)

For example, given a problem in 3 dimensions with domain [−1, 1] in all dimen-
sions, SP would be set to 2, since 2 × 3 ≥ 100, so n = 2−0 = 2. For this problem,
a location/node in the STN would be equivalent to a unique 10−2 ×10−2 ×10−2

cube in the search space.
Since each location comprises multiple solutions, there are many different

fitness values for each location. For visualisation purposes, each location in the
trajectory was assigned a representative fitness value equal to the minimum
fitness value of all visited solutions within that location.

5 Results

5.1 Visualisation

Visualisation is a powerful tool for network data analysis, allowing us to appre-
ciate structural features difficult to infer from the raw data and statistical anal-
ysis. The network visualisations in Figs. 2 and 3 model the search trajectories

STNs of Population-Based Algorithms in Continuous Spaces 77

traversed by 10 independent runs of both candidate algorithms on the bench-
mark instances. Plots were produced with the R statistics package, using graph
layout methods implemented in the igraph library [5]. Specifically, we considered
force-directed layout algorithms, such as Fruchterman-Reignold [9] and Kamada-
Kawai [11]. Force-directed layout algorithms are based on physical analogies and
do not rely on any assumptions about the structure of the networks. These algo-
rithms strive to satisfy the following generally accepted criteria [9]:

– Vertices are distributed roughly evenly on the plane (a circle in the igraph
implementation).

– The number of crossing edges is minimised.
– The lengths of edges are approximately uniform.
– The inherent symmetries in the networks are respected, i.e., sub-networks

with similar inherent structure are usually laid out in a similar manner.

The left plots in Figs. 2, 3 and 4, show the STNs 2D force-directed layouts,
while the right plots give a 3D visualisation of the same layouts where the z
coordinate indicates the fitness values. In the 3D plots, locations appearing lower
in the plot have better fitness as we are dealing with minimisation problems. The
features of the nodes and edges in all the STN visualisations (Figs. 2, 3 and 4)
reflect properties of the search dynamics. The size of the nodes is proportional
to their incoming degree (number of incoming edges), which indicates how often
a node was visited and thus ‘attracts’ the search process. The nodes and edges
visited by only one of the two algorithms are distinguished in different colours;
light orange for PSO, and blue for DE. The initial locations for all runs are
visualised as yellow nodes. Both algorithms started from the same 10 randomly
generated initial solutions, so each yellow node has one blue (DE) and one orange
(PSO) outgoing edge. Red nodes illustrate the location of the global optimum.
Nodes in green indicate locations that were visited (shared) by both algorithms
in their combined search trajectories, while dark grey nodes represent the end
point of search trajectories, i.e. where the final location was not the location
containing the global optimum. A visualisation legend summarising the colours
used in Figs. 2, 3 and 4 is given in Fig. 2(a).

The STN visualisation of the Salomon function (Fig. 3(b)) appears crowded
towards its centre. In order to have a clearer perspective, Fig. 4 shows a zoomed
view near the global optimum. Specifically, the plots in Fig. 4 visualise the sub-
graph containing the nodes which are within the first quantile in fitness value;
that is, the best 25% of the set of nodes.

5.2 Structural and Performance Metrics

Table 2 reports the following STN metrics for each algorithm:

– nodes: The total number of nodes, which corresponds to the number of unique
locations visited.

– edges: The total number of edges, which corresponds to the number of unique
search transitions between locations.

78 G. Ochoa et al.

Locations visited by PSO
Search transitions by PSO
Locations visited by DE
Search transitions by DE
Locations visited by both algorithms
Locations at the start of runs
Locations at the end of runs
Location of the global optimum

(a) Visualisation legend.

(b) Michalewicz function D = 5, SP = 1.

(c) Quadric function D = 10, SP = −1.

Fig. 2. Merged STN visualisations for functions 1 and 2. The visualisation legend is
shown at the top. The dimension D, and solution precision SP are indicated in the
captions. The left plots use a force-directed layout, while the right plots use the same
layout and adds a 3rd dimension indicating fitness. (Color figure online)

STNs of Population-Based Algorithms in Continuous Spaces 79

(a) Rana function D = 3, SP = −1.

(b) Salomon function D = 3, SP = 0.

(c) Schwefel 2.26 function D = 5, SP = −1.

Fig. 3. Merged STN visualisations for functions 3, 4 and 5. The dimension D, and
solution precision SP used for each function are indicated in the captions. For each
function, the left plot uses a force-directed layout, while the right plot considers the
same layout and adds a 3rd dimension indicating fitness. (Color figure online)

80 G. Ochoa et al.

Fig. 4. Zoomed merged STN visualisation for the Salomon function. The plots show
only those nodes within the first quantile of fitness values (i.e. the best 25% solutions).
The left plot uses a force-directed layout, while the right plot considers the same layout
and adds a 3rd dimension indicating fitness. (Color figure online)

– ends: The number of (unique) nodes corresponding to the end of runs. These
include both the global optimum and other locations to which the runs con-
verged.

– avg. path length: Average (with standard deviation) path length from start
to end nodes. The length of a path is the number of edges it contains.

The table also reports the success rate of the algorithms as a percentage of the
10 runs that ended in the global optimum location. For example, in the case of
DE on the Michalewicz problem instance, 8 out of the 10 runs reached the node
that contains the global minimum.

The values in Table 2 indicate that the PSO trajectories are generally longer
than those of DE, with the exception of the Quadric function. This means that
the best solution in the PSO population traversed through more nodes than the
best solution in the DE population. This could be as a result of the absence of
elitism in the PSO implementation, resulting in more exploration than DE (that
did use elitism), except in the unimodal function (Quadric) where the single
global best attractor resulted in faster convergence to the global optimum.

Table 3 reports network metrics for the merged STNs that include the tra-
jectories of both DE and PSO. The columns report, from left to right, the total
number of nodes, the total number of edges, the number of end nodes, and the
number of shared nodes, that is, locations visited by both algorithms. Remem-
ber that both algorithms start from the same 10 initial solutions, so the 10 start
nodes are always shared. The global optimum is also a shared visited node in
most functions, except Rana where PSO was not able to converge to it. Table 3
indicates that other search points are shared between the algorithms in all func-
tions, with Salomon having the largest number of shared nodes.

STNs of Population-Based Algorithms in Continuous Spaces 81

Table 2. STN structural metrics and success rate of each algorithm.

Nodes Edges Ends Avg. path length Success (%)

DE PSO DE PSO DE PSO DE PSO DE PSO

Michalewicz 61 76 71 81 2 3 7.01.88 7.52.63 80 40

Quadric 154 93 160 92 1 1 15.13.51 9.21.55 100 100

Rana 49 211 54 249 2 10 4.70.95 13.57.22 90 0

Salomon 85 131 129 221 3 7 8.31.21 10.42.08 80 30

Schwefel 2.26 81 138 80 143 1 4 8.02.11 12.63.23 100 50

Table 3. Merged STN structural metrics.

Nodes Edges Ends Shared

Michalewicz 120 151 2 17

Quadric 233 252 1 14

Rana 245 303 10 15

Salomon 178 338 3 38

Schwefel 2.26 205 220 4 14

Metrics on merged STNs, such as those given in Table 3, can be used to
provide insight into the nature of problems in relation to each other. For example,
in the case of the Michalewicz function there are far fewer nodes than for the
other algorithms (recall that all recorded trajectories were of equal length). This
could be due to the neutrality present in the function (see Fig. 1a), resulting in
less movement of the best solution, due to lack of information in the landscape.

5.3 Performance Comparison

In the following we analyse the behaviour of the two candidate algorithms on
the basis of the graphics from Figs. 2, 3 and 4 and the metrics from Tables 2, 3
and 4. Remember that both the graphics and the metrics were generated on the
basis of 10 runs per algorithm and per function.

Michalewicz Function. The STN concerning the Michalewicz function (see
Fig. 2(a)) shows two important attractors: the global minimum (red dot) and
the large grey dot. In addition, smaller attractors such as the smaller grey dot
can be identified. The success rate of DE for this problem is 80%, while the one
for PSO is 40%. The graphics clearly show that, although both algorithms are
attracted by the portion of the search space representing the large grey dot, DE
is much better than PSO at escaping from this basin of attraction (see the thick
blue edge to the global optimum node). Moreover, note that a number of PSO
runs are attracted by the smaller grey dot, but that none of these runs is able
to escape from there. The opposite is the case for DE: although two runs are

82 G. Ochoa et al.

attracted by the smaller grey dot, the algorithm is able to leave from there and
to proceed with the search. Finally, note that the search trajectories of PSO can
be seen to be generally longer than those of DE (also reflected in the average
path length in Table 2).

Quadric Function. The STN obtained for the Quadric function shows that all
runs—for both DE and PSO—are attracted by the global minimum. This is
reasonable, because this function does not have any local minima. Moreover,
with respect to the considered precision, all runs of PSO and DE finally reach
the location containing the global minimum (success rate of 100% – see Table 2).
However, consulting Table 4 we can see that the DE runs finish, on average,
further from the global minimum than the PSO runs. This indicates that DE
suffers from premature convergence in the case of function Quadric. Interestingly,
the search trajectories of DE (in terms of the number of steps) are clearly longer
than those of PSO (visually and seen in Table 2) indicating that PSO took a
more direct route in the direction of the global optimum.

Rana Function. Already a first visual inspection of the STN for the Rana
function (see Fig. 3(a)) indicates that this function is very different from the
Michalewicz and Quadric functions. This is also evident in the merged metrics
of Table 3, showing more unique nodes than for all other functions. In fact, PSO
does not seem to be attracted by any particular part of the search space and
can be seen to have 10 different end points (Table 2), compared to only 2 for
DE. The normalised average distance from the end of the PSO trajectories to
the global minimum is ≈0.5 (Table 4), which is about half the distance between
the two most distant points in the search space. This divergent behaviour is
also reflected in the low success rate – no PSO runs end in the location of the
global minimum, while DE has a success rate of 90%, that is, nine out of 10 runs
end in the global minimum node. Moreover, the trajectories of DE are rather
short and seem to move towards the global minimum without suffering from too
many detours (also reflected in the low average path length in Table 2). On the
opposite, PSO comes often back to the same solutions (portions of the search
space), which is indicated by directed cycles in the STN.

Salomon Function. The Salomon function is another example of a function that
is characterised by a big valley structure (like Quadric, for example). However,
instead of being smooth, there are many ripples (see Fig. 1(d) and Fig. 1(e)). In
each of these ripples we find numerous local minima of the same quality. The STN
for this function (see Fig. 3(b)) nicely shows that both algorithms move rather
quickly towards the global minimum. Then, however, they get often stuck in the
last or in the second-last ripple. In fact, note that DE has a success rate of 80%,
while PSO has a success rate of 30% (Table 2). The fact that both algorithms
have difficulties in overcoming the last ripple before reaching the global minimum
is shown in a zoomed visualisation of the merged STN shown in Fig. 4. Note that
some of the green and grey dots located on that ripple are actually larger in size

STNs of Population-Based Algorithms in Continuous Spaces 83

Table 4. Normalised average distances of the end of the search trajectories from the
global minimum of each considered function. The value of the algorithm that, on aver-
age, finishes closer to the global minimum is indicated in bold font.

Algorithm Benchmark function

Michalewicz Quadric Rana Salomon Schwefel 2.26

DE 2.305e−02 5.702e−06 8.080e−02 6.645e−04 4.637e−08

PSO 6.426e−02 7.947e−14 5.058e−01 2.020e−03 1.752e−01

than the red dot representing the global minimum. This means that these nodes
have more incoming edges than the global minimum node.

Schwefel 2.26 Function. From the 2D graphics of the considered functions in
Fig. 1 it can be seen that Schwefel 2.26 is somewhat related to Rana, in the
sense that there are rather high-quality basins of attraction scattered all over the
search space. This observation goes in line with the fact that the end of the PSO
trajectories are, on average, again much further away from the global minimum
than the ones of DE (see Table 4). Moreover, studying the STN graphics from
Fig. 3(c) it can be observed that there are four of the 10 PSO runs that converge
to basins of attraction rather far away from the global minimum. Interestingly,
three of these four runs are attracted by the same basin of attraction. Moreover,
as in the case of Rana, the PSO trajectories are—in terms of the number of
steps—longer than those of DE.

As a general conclusion we might say that for those functions with rugged
landscapes and high-quality solutions scattered all over the search space, an
algorithm with elitism and multiple attractors (as with DE/rand/1) seems to be
more successful than an algorithm without elitism and a shared global attractor
(as with global best PSO).

6 Conclusion

We proposed a network-based model to characterise and visualise the search
behaviour of population-based metaheuristics: search trajectory networks
(STNs). We tested the model by studying the search process of two well-known
algorithms (DE and PSO) when optimising a set of continuous benchmark func-
tions with different characteristics and dimensions. Our analysis illustrates that
the qualitative (visualisations) and quantitative (network metrics) analysis of
STNs give insight into the convergence behaviour of algorithms and their per-
formance differences. STNs allow us to observe and quantify which portions of
the search space attract the process and thus act as traps in the way of locating
the global optimum. We can also identify frequently traversed areas of the search
space by a given algorithm or pair of algorithms. We argue that this information
gives new insights in understanding the dynamics of metaheuristics, and thus

84 G. Ochoa et al.

can be used to improve their design and to inform the selection of the most
suitable algorithm for a given problem.

Future work will generalise the model to combinatorial optimisation and
other metaheuristics, and will analyse real-world optimisation problems. We
will also explore further case scenarios where intriguing performance differences
among algorithms are observed, which can potentially be clarified with our pro-
posed analysis.

References

1. Blum, C., Ochoa, G.: A comparative analysis of large neighborhood search and
construct, merge, solve & adapt by means of merged local optima networks (sub-
mitted)

2. Blum, C., Roli, A.: Metaheuristics in combinatorial optimization. ACM Comput.
Surv. 35(3), 268–308 (2003)

3. Bosman, P., Engelbrecht, A.P.: Diversity rate of change measurement for particle
swarm optimisers. In: Dorigo, M., et al. (eds.) ANTS 2014. LNCS, vol. 8667, pp.
86–97. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09952-1 8

4. Chicano, F., Whitley, D., Ochoa, G., Tinós, R.: Optimizing one million variable
NK landscapes by hybridizing deterministic recombination and local search. In:
Genetic and Evolutionary Computation Conference, GECCO 2017, pp. 753–760.
ACM (2017)

5. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
Int. J. Complex Syst. 1695, 1–9 (2006)

6. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Pro-
ceedings of the Sixth International Symposium on Micromachine and Human Sci-
ence, pp. 39–43 (1995)

7. Eberhart, R., Shi, Y.: Comparing inertia weights and constriction factors in par-
ticle swarm optimization. In: Proceedings of the IEEE Congress on Evolutionary
Computation, vol. 1, pp. 84–88 (2000)

8. Eiben, A.E., Schippers, C.A.: On evolutionary exploration and exploitation. Fun-
dam. Inform. 35(1–4), 35–50 (1998)

9. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Softw. Pract. Exper. 21(11), 1129–1164 (1991)

10. Herrmann, S., Ochoa, G., Rothlauf, F.: Pagerank centrality for performance pre-
diction: the impact of the local optima network model. J. Heuristics 24(3), 243–264
(2018)

11. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.
Process. Lett. 31(1), 7–15 (1989)

12. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the
IEEE International Joint Conference on Neural Networks, pp. 1942–1948 (1995)

13. Mishra, S.K.: Performance of repulsive particle swarm method in global optimiza-
tion of some important test functions: a Fortran program. Technical report, Social
Science Research Network (SSRN), August 2006

14. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford
(2010)

15. Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins
and local optima networks. In: Genetic and Evolutionary Computation Conference,
GECCO, pp. 555–562. ACM (2008)

https://doi.org/10.1007/978-3-319-09952-1_8

STNs of Population-Based Algorithms in Continuous Spaces 85

16. Ochoa, G., Veerapen, N.: Deconstructing the big valley search space hypothesis.
In: Chicano, F., Hu, B., Garćıa-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595,
pp. 58–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30698-8 5

17. Olorunda, O., Engelbrecht, A.P.: Measuring exploration/exploitation in particle
swarms using swarm diversity. In: 2008 IEEE Congress on Evolutionary Compu-
tation (IEEE World Congress on Computational Intelligence). IEEE, June 2008

18. Price, K.V., Storn, R.M., Lampinen, J.A.: Appendix A.1: Unconstrained uni-modal
test functions. In: Price, K.V., Storn, R.M., Lampinen, J.A. (eds.) Differential Evo-
lution: A Practical Approach to Global Optimization. Natural Computing Series,
pp. 514–533. Springer, Berlin (2005). https://doi.org/10.1007/3-540-31306-0

19. Shi, Y., Eberhart, R.: A modified particle swarm optimizer. In: Proceedings of the
1998 IEEE World Congress on Computational Intelligence, pp. 69–73 (1998)

20. Sörensen, K.: Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 22(1),
3–18 (2013)

21. Storn, R., Price, K.: Minimizing the real functions of the ICEC’96 contest by differ-
ential evolution. In: Proceedings of the International Conference on Evolutionary
Computation, pp. 842–844 (1996)

22. Thomson, S.L., Ochoa, G., Verel, S.: Clarifying the difference in local optima net-
work sampling algorithms. In: Liefooghe, A., Paquete, L. (eds.) EvoCOP 2019.
LNCS, vol. 11452, pp. 163–178. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-16711-0 11

23. Veerapen, N., Ochoa, G., Tinós, R., Whitley, D.: Tunnelling crossover networks for
the asymmetric TSP. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa,
G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 994–1003. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-45823-6 93

24. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with
neutrality. IEEE Trans. Evol. Comput. 15(6), 783–797 (2011)

25. Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans.
Evol. Comput. 3(2), 82–102 (1999)

https://doi.org/10.1007/978-3-319-30698-8_5
https://doi.org/10.1007/3-540-31306-0
https://doi.org/10.1007/978-3-030-16711-0_11
https://doi.org/10.1007/978-3-030-16711-0_11
https://doi.org/10.1007/978-3-319-45823-6_93

	Search Trajectory Networks of Population-Based Algorithms in Continuous Spaces
	1 Introduction
	2 Population-Based Algorithm Behaviour
	3 Search Trajectory Networks (STNs)
	4 Experimental Setting
	4.1 Candidate Algorithms
	4.2 Benchmark Functions
	4.3 Experimental Runs
	4.4 STN Setup

	5 Results
	5.1 Visualisation
	5.2 Structural and Performance Metrics
	5.3 Performance Comparison

	6 Conclusion
	References

