
Container loading for nonorthogonal objects with
stability and load bearing strength compliance

Blind for submission

Abstract—A feasible solution for a container loading problem
is the exact order, position and orientation in which the objects
are loaded into the container. However, the more constraints are
taken into account, the more complex the problem is. Several
algorithms have been proposed to load objects with different
shapes and taking into account a few constraints. Nevertheless,
most of the approaches restrict the shape to be orthogonal (i.e.,
standard boxes) and constraints like stability or load bearing
strength were not considered.
The aim of this paper is to provide an approach to solve
the problem of loading orthogonal and non-orthogonal boxes,
considering them as polyhedral. In addition, our proposal deals
with constraints on the dimensions of the container, whether
every box can be rotated in any of the three dimensions, the
maximum load bearing strength and also the minimum stability
required. To solve the problem with the characteristics mentioned
above a data structure is proposed to represent the i-th state of
the container’s loading process by storing the height values and
the remaining load bearing strength of the objects inside the
container.

I. INTRODUCTION

Container loading is a significant area for companies en-
gaged in the transportation of goods and logistics in which
the optimization of the resources play an important role.

Container loading problems can be formalized by defining
the properties of the container and the objects. Also there is
the need to take into account some constraints that determines
whether the final solution is acceptable. After these defini-
tions the container loading problem becomes a constrained
optimization problem whose function to maximize is the
container’s space allocated.

Getting an optimal solution is almost unreachable because
they are NP-hard problems [9]. Due to this, heuristic methods
have to be considered. Those methods usually are specialized
by loading the same kind of boxes. This paper deals with the
generalization of those methods and the generalization will be
done by enabling the load of standard boxes, dodecahedron
and hexagonal prisms.

This paper extends [16] by introducing a new heuristic
approach that loads the container by evaluating a set of criteria.
This is in contrast of the vertex management approach used in
e.g. [13], [16]. In addition, while we previously used a local or
global search, we consider here an exploration of the weight’s
space.

We will assess the performance of our approach when
dealing with orthogonal boxes by solving the benchmark
created by Bischoff and Ratcliff [3]. Later on, we will present
the performance of our approach applied to non-orthogonal
objects running our proposed benchmark for polyhedral boxes.

The structure of this paper is as follows. In Section 2,
we describe step by step the heuristic described in [2] to
load standard boxes and its extension for nonorthogonal boxes
while giving a detailed overview of the criteria used for box
selection. In Section 3, we explain how to deal with the
problem of getting feasible spaces where to load each box
and how to aggregate the criteria. In Section 4, we describe
the experiments we have performed and the results obtained.
This paper finishes with conclusions and future work.

II. NONORTHOGONAL OBJECTS: THE HEURISTIC

In this paper we propose an extension of the method
proposed by E.E. Bischoff [2] to deal also with nonorthogonal
boxes, in particular, dodecahedra and prisms. The container is
loaded box by box, applying a heuristic to assess the suitability
of the different options for where and how each box could be
loaded. Formally, all boxes to be allocated are represented as
an array of boxes ordered by volume in decreasing order. Then,
at a given point, when a new box is needed, a box is selected
on the basis of five criteria. Each criterion is considered for
each box, each possible box rotation and for each feasible
location.

In general, the following steps can be distinguished in the
approach:

1. Identify all fully supported spaces
2. Identify all feasible placements for single boxes
3. Evaluate the box-space combinations found
4. Select combination with the highest score and

place the box
5. Update relevant parameters

We give below a description of each of these steps. Fur-
thermore, we describe in detail the third step, the one used
to evaluate the box-space combinations found considering the
five criteria.

1) Identify all fully supported spaces: The first step to
allocate a box into the container is to identify the available
empty spaces which can be considered as candidates for
containing the box. When the box can be rotated, different
rotations might lead to different sets of possible empty spaces.
So, we have to search for the empty spaces of each possible
rotation.

The occupation of the container is supported with a 2D
data structure representing container’s length and width. The
value of each single position of the matrix represents an empty
position in case of a 0 and the height of a occupied space in
case of a value greater than 0. Details on how to maintain



this matrix updated after loading a box, and also on how to
identify the available spaces are described in Section 3.

Furthermore, to finally consider a space able to fit a box,
it has to satisfy a maximum load bearing capacity constraint.
In this way, another 2D data structure is needed to maintain
updated the remaining load bearing strength of every single
space. The aim of this second data structure is to ensure the
satisfaction of the maximum load bearing strength but the
operation is almost the same as the one used to identify all
possible empty spaces.

2) Identify all feasible placements for single boxes: The
next step is to filter all the candidate spaces found, and
keep only those that can contain the box. Part of this step
can be done while identifying all fully supported spaces. For
example, we can filter the possible box-space combinations
found in the previous step by removing the spaces with height
values (basement height + box height) larger than the height
of the container. Another filter is to remove the box-space
combinations not able to fit the box in process.

After applying the filters we are ready to calculate for all the
box-space combinations found the criteria. This is described
in the next step.

3) Evaluate the box-space combinations found: E.E.
Bischoff in [2] proposed five criteria to evaluate the different
box-space combinations. We describe their rationale and our
adapted criteria which are based on the ones of Bischoff
but taking into account that the boxes to be loaded can be
nonorthogonal.

Criterion 1 (+): Relation between box size and position
of loading surface. This criterion supports loading big boxes
on the bottom so we may have opportunities to load smaller
boxes on them. We have applied this criterion as suggested by
E.E. Bischoff. In our case, we consider the difference between
the height of the container H and the vertical position where
the space is located SH . This difference is then multiplied by
the result of the box volume VB .

C1 = (H − SH)VB

Criterion 2 (+): Match between box and space dimen-
sions. This second criterion assesses the similarity between
a box and the space dimensions. Our approach changes the
implementation of this criterion but maintains its rationale. If
SA means the amount of available space in this region and
SN denotes the needed space to load on this region the box
in process, then we can write the formula of the criterion as
follows.

C2 = 1 − SA − SN

SA

This criterion will reach 1 when SA = SN , maximum
similarity; and 0 when SN = 0, minimum similarity; and
values in the range (0,1) otherwise.

Criterion 3 (-): Unusable space generated. Unlike the
previous criteria this one penalizes the difference between box
and space dimensions because it can generate new unusable
spaces after fitting the box in process. In some sense, this

criterion is the opposite of the previous one but taking into
account if the type of the box in process is a prism, a
dodecahedron or a simple orthogonal box. Hence this criterion
will be weighted with a bigger value in case of dodecahedron
(α = 1.4) because of the fact that this kind of box generates
more unusable spaces than a prism or an orthogonal box. In
the same way, in the case of prisms (α = 1.2) the weight
will be bigger than the one in the case of orthogonal boxes
(α = 1).

C3 = α(SA − SN )

Criterion 4 (+): Potential for building column of identical
boxes. This criterion supports the cases that maximize the
similarity between box and space dimensions and minimize the
unusable space generated while remaining boxes of the same
type. The only modification we have done in this criterion
is to use the volume of the different kind of boxes. In this
formula m

′
i means the number of boxes of the same type as

the actual one that remains unloaded. H , SH and VB has the
same meaning than in the first criterion and di1, di2 and di3

represents the box’s length, width and height. SL and Sw takes
the value of the container’s length and width. This criterion
also takes into account the minimum load bearing capacity on
the top surface Btop on which the actual box will be placed. Its
value is calculated as the minimum between bi3 (the maximum
load bearing on the top of the actual box) and Bmin − wi

di1di2
(the difference between the minimum spaces remaining load
bearing and the loss of load bearing capacity will be generated
in case we load the actual box).

C4 = min{m′
i,

H−SH

di3
, 1 +

Btopdi1di2

wi
} × VB

SLSw

Btop = min{bi3, Bmin − wi

di1di2
}

Criterion 5 (-): Relative loss in load bearing capacity.
This criterion adversely affects the total score of the box-space
combination in case we take into account the load bearing
capacity of the different box types. A big value of this criterion
means that we are trying to load a heavy box on the top of
another one decreasing its load bearing capacity and causing
a strong impact on subsequent placement opportunities. With
this criterion we want to reward loading heavy boxes in low
altitudes, the best reward is given when the heavy box is placed
on ground levels.

C5 = (Bavg − Btopdi1di2) × H−SH−di3
di3

This formula will be applied only if C5 meets the following
inequation:

Btop

H−SH−di3
< Dmax

Otherwise C5 = 0. Hence with this criterion we only
penalize when after loading the box, we surely know that the
box with largest density cannot be placed in the future above
the loaded box.

4) Select the combination with the highest score and place
the box: Once we have the value of the five criteria for



each feasible box-space combination, the overall score for
each combination is calculated as a weighted sum of the five
criteria. In Section 3, we explain how to aggregate the five
criteria as an overall score using a weighted sum.

5) Update relevant parameters: This final step depends
on the data structure used to represent the boxes inside the
container. The data structures used in our approach are two 2D
matrices. Then, a modified version of the flood fill scan line
algorithm [22] give us the spaces available in the matrix and
also updates the container’s spaces filling them with the new
height values (basement height + box height). To update the
data structure representing the remaining load bearing strength,
we consider for every single space (every space represents
the shape of the box in process) the difference between the
remaining load bearing strength and the loss caused by the
load of the box in process.

III. NONORTHOGONAL OBJECTS: SOLVING THE PROBLEM

In this Section we describe in more detail some of the
steps exposed above. In particular, we discuss how to identify
all fully supported spaces, how to handle the stability and
load bearing strength constraints and how to calculate the
overall score for every box-space combination to select the
one with highest score to load the current box. Also, we
will describe how we ensure the stability and maximum load
bearing strength compliance.

We start describing how to keep up to date the 2D matrix
data structure we have used to identify all free spaces, the
algorithm applied to obtain the candidate spaces to load the
box in process, and how we applied filters to identify all
feasible placements of single boxes. Later on, we will describe
the second 2D data structure used to control the load bearing
ability and, afterwards, we will show how we adapted the
criteria and how we used them to calculate the overall score.

A. Getting potential spaces where to load the box

Two methods have been used to get the box-space combi-
nations but both use the same data structure. A 2D matrix,
length × width of the container, contains the up to date
height of all boxes already loaded. Each space found by these
methods is described by its area and starting position X , Y
and Z . The area is used to filter the spaces according to the
free space needed to load the box. The spaces’ precision is in
centimeters because the container’s dimensions are expressed
in centimeters.

The first method gets the spaces looking on the entire 2D
matrix for spaces of the same height. When they are found, the
space is marked as visited and the starting coordinate found is
defined as its position, and the amount of marked coordinates
is defined as its area. The search is done along the x-axis
and the y-axis. One of the disadvantages of this method is the
value assigned to the starting position of the space because
when used to load a box might cause a collision. I.e., a space
with a big area can produce a collision when loading the box
because the position is under a dodecahedron. To prevent this

Fig. 1. Snapshot of an hypothetical second step of the container loading
process after one box has been loaded and then two feasible spaces where to
load the following box are found (in different grey tones).

Fig. 2. 2-D matrix structure values for the example in Figure 1. The two
feasible spaces are represented by the value 5 and 0 corresponding to the
height of every single space.

type of problem, we require the space to have almost the same
length and width than the box.

The second method proposed is based on the first one. In
this case, however, the starting position of the space is a vertex.
Formally, the vertex management approach [13] uses a list
of vertexes where objects can be loaded. The first vertex is
(0, 0, 0) and after a box is loaded the corresponding vertex
is removed from the list adding some new vertexes. For all
box’s types three new vertexes are added, (x i + wi, yi, zi),
(xi, yi + di, zi) and (xi, yi, zi + hi), where (xi, yi, zi) states
for the reference position of the box b i and wi, di, hi repre-
sents its dimensions. In case of a nonorthogonal box some
heuristically selected vertexes are added too in order to allow
the possibility to load small boxes below a dodecahedron or
to form honeycomb-like structures with prisms. This second
approach obtains spaces with less probability of collision while
loading.

The procedure to maintain the heights up to date in the 2D
matrix is applied after every box bi is loaded. The input of



Fig. 3. Dodecahedron with the corresponding vertexes for the vertex
management approach used in the second method for getting potential spaces
where to load the box.

Fig. 4. Hexagonal prism with the corresponding vertexes for the vertex
management approach used in the second method for getting potential spaces
where to load the box.

this procedure is the box’s position, length and width. The
output of the procedure is the height for all coordinates (i, j)
for i = xi to xi +di and j = yi to yi+wi. Figure 2 represents
the updated state of the 2D matrix once the box in Figure 1
has been loaded.

B. Handling the load bearing strength constraint

The method proposed to support the maximum load bearing
strength associated to each dimension of a box is based in
another 2D data structure similar to the one used to get the
potential spaces where to load the box. The same procedure
is applied after every single box is loaded inside the container
and it takes into account the remaining load bearing strength of
the space before the box was loaded, the box’s weight and the
box’s load bearing strength. Hence, the input of this procedure
is the box’s position, length and width and also the box’s load
bearing capacity and weight. The output of the procedure is
the remaining load bearing strength after the box has been
loaded or the box’s load bearing strength in case the former is
bigger than the latter. If the cells with the value 5 in Figure 2
are replaced by the remaining box’s load bearing strength then
we get the updated state of the 2D data structure that supports
the load bearing constraint.

C. Handling the stability constraint

To ensure the compliance of the stability constraint, we use
the two dimensional data structure used to get potential spaces
where to load the box. This is an easy process where we
have to ensure that the height values corresponding to the
space where to load the box are most of them equal to the
box’s starting at coordinate zi. The percentage of equal values
can be used to ensure a degree of stability. This is to say, if
we ensure a 100% stability compliance all the height values
corresponding to the space where to load the box have to be
equal to zi.

D. Criteria: overall score

Taking into account the criteria above, the following score
is computed for each box:

E(box) = v1C′
1(box) + v2C′

2(box) + v3C′
3(box) + v4C′

4(box) + v5C′
5(box)

In this definition, we have assumed that all criteria, includ-
ing criteria 3 and 5, are positive and that their values are
bounded (they belong to the unit interval). In addition, we
require the weights vi add to one (i.e.,

∑5
i=1 vi = 1). In

this way, the expression is a weighted mean of the criteria.
Formally, C ′

i = Ci/ri where ri = maxn
k=1rk for i = 1, 2,

and 4, and C ′
i = Ci/ri where ri = minn

k=1rk for i = 3 and
5.

E. Procedures to find out the best weights vi

The score given above is used for selecting which of
the available boxes should be loaded next in the container.
Nevertheless, the score depends on the weights vi. We have
studied a few different approaches to define the weights v i.
We describe them briefly below.

Note that the goal is to obtain weights, that in average, result
into a good volume of occupation for all the problems in the
benchmarks.

The first procedure used to investigate the effect of the
different weights while loading the container is the pure
random search. This procedure turned out not very useful
because the volume occupation in case of very similar weights
became the same, and we had very similar values for different
generated random weights. Another approach was to apply
the Simplex method of Nelder and Mead [14]. Again this
procedure turned out unusable for the same reason. Due to
these bad results, we studied the behavior of a large set of
possible weights values in some representative problems and
then extrapolate to all the problems in the benchmark.

In particular, we have considered all weights in the set

{(v1, . . . , v5)|vi ∈ {0, 0.25, 0.5, 0.75, 1}and

5∑

i=1

vi = 1}.

The results obtained are analysed in Section 4.



587 233 220
10 29.3680757000
108 0 76 0 30 1 20 246.24 0.02824 0.16575 0.11365
110 0 43 1 25 1 11 118.25 0.26897 0.13148 0.17733
92 1 81 1 55 1 9 409.86 0.00902 0.33191 0.25007
81 0 33 1 28 1 9 74.84 0.24737 0.27825 0.21347

120 1 99 1 73 1 9 867.24 0.03681 0.25852 0.14228
111 0 70 1 48 1 13 372.96 0.26002 0.14047 0.32586
98 0 72 1 46 1 4 324.58 0.07571 0.29199 0.26801
95 0 66 0 31 1 12 194.37 0.09286 0.06752 0.08617
85 0 84 0 30 1 9 214.20 0.34896 0.23626 0.35238
71 0 32 1 25 1 10 56.80 0.01198 0.15825 0.32711

Fig. 5. First problem in the wtpack4 problem’s file. It corresponds to a
container of dimensions (587, 233, 220) and boxes of 10 different shapes.

IV. EXPERIMENTS

In this section we describe the experiments performed
and analyze the results. Two sets of experiments have been
considered. The weights used in the experiments are listed
below. Later on, we will use w1 to mean weights 1 an so on:

• weights 1 = [0.5, 0, 0.5, 0, 0]
• weights 2 = [0.078445, 0.338914, 0.108992, 0.210489, 0.2631581]
• weights 3 = [0.254426, 0.016283, 0.154418, 0.328976, 0.245895]

A. Bischoff and Ratcliff files

To compare our approach to previous works dealing only
with orthogonal boxes we have considered the problems de-
scribed in [3] and accessible through the web site in [19]. They
consist of 7 sets of 100 problems. In each set, all problems
have the same number of different boxes, although the sizes
of the boxes are not the same. Figure 5 represents one of
the problems from the set of problems wtpack4 (10 different
boxes’s shapes ). In the figure, the first row corresponds to the
dimensions of the container, the second row to the number of
different boxes and the total volume, the other rows include
the pairs (dimension, vertical position?) – the latter being a
boolean value 0/1 indicating whether the dimension can be
put in vertical position-, the number of boxes, and additional
information about the boxes (weight and maximum load on
the corresponding surface). Test files can be found in [21].

Table I shows the results when applying the second method
described in Section III-A for getting the potential spaces
where to load the box. The results we have obtained when
just considering the stability constraint (LBA OFF) are slightly
worst than the ones obtained by Bischoff and Ratcliff. A
difference of about 5% or less is obtained. Nevertheless,
difference is at the cost of permitting additional shapes for
the boxes. In any case, for some of the particular problems
we achieve a good score e.g.. 87.51% or 89.23%.

To show the impact of the load bearing ability constraint on
the container loading process, Table I also shows the results
when considering five different degrees of load bearing ability
LBA. Starting from a degree of load bearing strength, (LBA
TEST 1), and decreasing the load bearing strength down to
(LBA TEST 5). The results shows that the relation between
the volume occupied is directly proportional to the average
time needed to load all the containers in each wtpack set of
problems. That is, the smaller the average volume occupied,
the smaller the average computational time. This is because
when the load bearing constraint is less permissive, the number
of boxes that are able to be loaded are less. So the main

wtpack1 wtpack2 wtpack3 wtpack4 wtpack5 wtpack6 wtpack7

LBA OFF 75.41 75.49 75.94 75.40 75.74 75.52 75.36
LBA TEST 1 63,61 63,68 63,80 63,63 63,60 63,43 63,60

Avg. LBA TEST 2 59.10 58.90 58.66 59.15 59.08 59.33 59.02
Occup. LBA TEST 3 57.66 57.27 58.02 57.30 58.00 57.99 57.82
(%) LBA TEST 4 56.11 56.31 56.15 56.23 56.12 56.30 56.03

LBA TEST 5 54.15 54.18 53.87 54.01 53.93 53.95 53.67

LBA OFF 86.36 87.51 87.44 86.77 86.95 86.77 89.23
LBA TEST 1 85,20 84,81 85,47 84,23 85,07 84,76 86,00

Max. LBA TEST 2 85.20 85.60 85.60 84.94 84.81 86.14 85.03
Occup. LBA TEST 3 85.60 86.00 84.94 85.56 84.03 85.74 85.34
(%) LBA TEST 4 85.60 86.18 84.81 85.07 85.38 84.23 85.20

LBA TEST 5 83.06 83.32 83.46 82.52 83.72 84.03 83.32

LBA OFF 06.04 06.26 06.00 05.99 05.77 05.73 06.68
LBA TEST 1 17,57 17,24 17,05 17,60 17,36 17,66 17,67

St. LBA TEST 2 19.84 20.03 19.81 20.25 20.19 19.89 19.88
Dev. LBA TEST 3 20.50 20.46 20.48 20.46 20.39 19.87 20.45
(%) LBA TEST 4 21.13 21.12 20.95 21.43 20.96 21.17 21.16

LBA TEST 5 22.41 22.36 22.03 22.11 22.22 22.04 22.06

LBA OFF 24.86 24.03 24.17 25.44 24.84 26.06 25.06
LBA TEST 1 24,49 24,07 24,00 23,39 23,64 23,66 23,55

Avg. LBA TEST 2 21.66 18.38 18.75 21.69 22.68 22.07 19.04
Time LBA TEST 3 20.07 17.63 18.19 18.50 19.34 21.74 21.97
(sec.) LBA TEST 4 17.74 16.71 17.43 17.01 17.75 16.78 16.86

LBA TEST 5 16.29 15.94 15.67 16.25 16.23 16.31 16.45

TABLE I
AVERAGE OCCUPATION, MAXIMUM OCCUPATION, STANDARD DEVIATION

AND AVERAGE EXECUTION TIME WHEN PROCESSING THE BISCHOFF AND

RATCLIFF FILES WITHOUT CONSIDERING THE LOAD BEARING ABILITY

(LBA OFF) AND WHEN CONSIDERING IT WITH DECREASING DEGREES OF
LOAD BEARING ABILITY (LBA TEST 1. . . 5).

Case Boxes Dodec. Hex. prism First Method. w1-w2-w3 Second Method. w4-w5-w6
Case 1 100%
Case 2 50% 50% 60.14-60.01-60.93 57.97-58.18-58.2
Case 3 50% 50% 48.00 -47.70-48.02 51.09-50.80-50.96
Case 4 100% 51.14-53.83-51.74 47.40-48.56-47.85
Case 5 50% 50% 42.21-42.23-41.49 42.73-43.33-42.53
Case 6 100% 34.96-35.00-34.72 39.38-40-39.46
Case 7 33% 33% 33% 48.22-48.96-48.31 43.34-44.46-43.86

TABLE II
DESCRIPTION OF OUR VARIATION OF BISCHOFF AND RATCLIFF FILES

CONSIDERING LOAD BEARING STRENGTH, AND MEAN OCCUPANCY

ACCORDING TO BOX TYPES, METHOD USED AND WEIGHTS APPLIED.

impact on the average time needed to load the containers
is proportional to the time spent to evaluate the box-spaces
combinations and to detect the collisions. In contrast, it is not
so relevant the 2D data structure management process to deal
with the load bearing ability.

Figure 6 and Figure 7 depicts these results. A strange effect
of the different degrees of LBA is present in Figure 7. While
the average volume occupied remains almost constant from
wtpack1 to wtpack5 for all tests, the average time varies more
in some tests rather than others. This can be explained with
the fact that each wtpacki has different boxes’ sizes and the
same volume can be occupied with different combinations of
boxes, e.g. either loading three little boxes or loading one big
box with triple in size. The former may need more time to
load the three boxes than the latter. And the degree of load
bearing ability is applied to each box’s type so we won’t have
any problem loading the big box but we may not be able to
load the boxes one above the other because the remaining load
bearing strength.

B. Variation of Bischoff and Ratcliff files

This is a variation of the files described in the previous
section, where other kinds of boxes are also permitted. We
have considered, as in the Bischoff and Ratcliff files, sets of
3, 5, 8, 10, 12, 15 and 20 different box types. Then, for each



Fig. 6. Average occupation when processing the Bischoff and Ratcliff files
without considering the load bearing ability (LBA OFF) and when considering
it with decreasing degrees of load bearing ability (LBA TEST 1. . . 5).

Fig. 7. Average processing time when processing the Bischoff and Ratcliff
files without considering the load bearing ability (LBA OFF) and when
considering it with decreasing degrees of load bearing ability (LBA TEST
1. . . 5).

of these sets of boxes, we have considered different cases
corresponding to different proportions of boxes of different
shapes. Table II gives the 7 cases considered. That is, we
have considered the case of only boxes (as in Bischoff and
Ratcliff files), the case of 50% regular orthogonal boxes and
50% hexagonal prisms, the case of 50% regular orthogonal
boxes and 50% dodecahedron, etc. The data files are publicly
available trough the web page given in [21].

As expected, the results obtained are worse than the ones
when only orthogonal boxes were considered. For example, the
worst case is when only dodecahedra are considered. However,
this is natural because its shape leaves empty spaces that
cannot be filled with standard size boxes.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have considered the container loading prob-
lem for nonorthogonal objects. Our approach has been applied
to three types of objects: typical boxes (orthogonal boxes),
dodecahedra and hexagonal prisms. We have presented the
results of our approach that are similar to the ones described
in Bischoff and Ratcliff but permitting its application to the
new types of objects considered and taking into account both
the stability and maximum load bearing ability constraints.

As future work we consider the extension of the approach to
take into account a correct distribution of the weight and also
increase the mean occupancy when considering dodecahedra
and hexagonal prisms.

VI. ACKNOWLEDGMENTS

This work is partially supported by the Spanish Ministe-
rio de Fomento (project PON, T27/2006) and MEC (CON-
SOLIDER INGENIO 2010 CSD2007-00004, and TSI2007-
65406-C03-02) and by the Generalitat de Catalunya (AGAUR,
2006BE-2 00338).

REFERENCES

[1] Birgin, E. G., Mart́inez, J. M., Ronconi, D. P. (2005) Optimizing the
packing of cylinders into a rectangular container: A nonlinear approach,
European Journal of Operational Research, 160, 19-33.

[2] Bischoff, E. E. (2006) Three-dimensional packing of items with limited
load bearing strength, European Journal of Operational Research, 168,
952-966.

[3] Bischoff, E. E., Ratcliff, M. S. W. (1995) Issues in the Development
of Approaches to Container Loading, Omega Int. J. of Management
Sciences, 23:4 377-390.

[4] Bortfeldt, A., Gehring, H. (2001) A hybrid genetic algorithm for the
container loading problem, European Journal of Operational Research,
131, 143-161.

[5] Bortfeldt, A., Gehring, H., Mack, D. (2003) A parallel tabu search
algorithm for solving the container loading problem, Parallel Computing,
29 641-662.

[6] Davies, A. P., Bischoff, E. E. (1999) Weight distribution considerations in
container loading, European Journal of Operational Research, 114, 509-
527.

[7] Dyckhoff, H. (1990) A typology of cutting and packing problems,
European Journal of Operational Research, 44, 145-159.

[8] Dyckhoff, H., Finke, U. (1992) Cutting and Packing in Production and
Distribution, Physica, Heidelberg.

[9] Eley, M. (2002) Solving container loading problems by block arrange-
ment, European Journal of Operational Research, 141, 393-409.

[10] Eley, M. (2003) A bottleneck assignment approach to the multiple
container loading problem, OR Spectrum, 25 45-60.

[11] Gehring, H., Bortfeldt, A. (1997) A Genetic Algorithm for Solving the
Container Loading Problem, Int. Trans. Operational Research, 4:5/6, 401-
418.

[12] George, J. A., George, J. M., Lamar, B. W. (1995) Packing different-
sized circles into a rectangular container, European Journal of Operational
Research, 84, 693-712.

[13] Miyamoto, S., Endo, Y., Hanzawa, K., Hamasuna, Y. (2006) Metaheuris-
tic Algorithms for Container Loading Problems: Framework and Knowl-
edge Utilization, J. of Advanced Intelligence and Intelligent Informatics,
11:5 51-60.

[14] Nelder, J. A., Mead, R. (1965) A simplex method for function mini-
mization, Computer Journal, 7, 308-313.

[15] Pisinger, D. (2002) Heuristics for the container loading problem, Euro-
pean Journal of Operational Research, 141, 382-392.

[16] Torra, V., Cano, I. Miyamoto, S., Endo, Y. (2008) Container loading
for nonorthogonal objects using local search and simulated annealing,
Submitted.

[17] Zachmann, G. (1994) Exact and Fast Collision Detection, Diploma
Thesis, Technischen Universitt Darmstadt.

[18] Zachmann, G. (2000) Virtual Reality in Assembly Simulation Collision
Detection, Simulation Algorithms, and Interaction Techniques, PhD Dis-
sertation, Technischen Universitt Darmstadt.

[19] http://people.brunel.ac.uk/˜mastjjb/jeb/orlib/files/wtpack1.txt (to
wtpack7.txt)

[20] http://www.cs.unc.edu/˜geom/collide/
[21] http://www.iiia.csic.es/˜vtorra/projecte.pon/
[22] http://www.student.kuleuven.be/˜m0216922/CG/floodfill.html


