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Abstract. In this paper we provide a sound and complete logic to for-
malise and reason about f -indices of inclusion. The logic is based on
finite-valued �Lukasiewicz logic �Ln and its S5-like modal extension S5(�Ln)
with additional unary operators.

1 Introduction

Inclusion is one of the most fundamental relations between sets. In previous
work [10], it was shown how the degree of inclusion between two L-fuzzy sets
can be represented in terms of a function that specifically determines the minimal
modifications required in one L-fuzzy set to be included (in Zadeh’s sense) in
another.

The key idea was the notion of f -inclusion, which defines a family of crisp
binary relations between L-fuzzy sets that are used as indexes of inclusion and,
subsequently, we define the f -index of inclusion as the most suitable f -inclusion
under certain criteria. In addition, it was shown that the f -index of inclusion
satisfies versions of many common axioms usually required for measures of inclu-
sion in the literature, namely the axiomatic approaches of Kitainik [8] and Sinha-
Dougherty [14].

In [11], the f -index was shown to be definable by means of a fuzzy conjunction
which is part of an adjoint pair. Moreover, it is also proven in [11] that when
the undelying structure in the modus ponens inference rule is given by adjoint
pairs, the f -index provides the maximum possible truth-value in the conclusion
obtained by fuzzy modus ponens using any other possible adjoint pair.

In this paper, we continue the study of the logical properties of the f -index
of inclusion. Specifically, we provide a first step towards a logical account of the
notion of f -index of inclusion for fuzzy sets in the frame of an S5-like modal logic
over the n-valued �Lukasiewicz logic with truth-constants �Lc

n. We take advantage
of the good logical and expressive properties of this logical setting to define the
logic I�Ln to reason about f -indexes of inclusion between n-valued propositions.

The paper is structured as follows. After this introduction, we first provide
the necessary background on finite-valued �Lukasiewicz logic and its S5-like modal
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extension S5(�Lc
n), and on the f -index of inclusion of fuzzy sets. Then in Sect. 3 we

define a logic I�Ln based on S5(�Lc
n) with additional unary operators to formalise

and reason about f -indices of inclusion. We finish with some prospects for future
work.

2 Preliminaries

2.1 The Finite-Valued �Lukasiewicz Logic

Consider the propositional language L whose set of formulas FmL is built from
a finite set of propositional variables V ar, the connective → (implication) and
truth constants r for each r ∈ V�Ln = {0, 1

n−1 , . . . , n−2
n−1 , 1} for some fixed natural

n ≥ 2. Further connectives are defined as follows:

¬φ := φ → 0 φ ∧ ψ := φ ⊗ (φ → ψ)
φ ⊗ ψ := ¬(φ → ¬ψ) φ ⊕ ψ := ¬(¬φ ⊗ ¬ψ)
φ ∨ ψ := ((φ → ψ) → ψ) φ ≡ ψ := (φ → ψ) ⊗ (ψ → φ)

with φ and ψ being arbitrary formulas.1

A propositional evaluation is a mapping e : V ar → V�Ln that is extended to
formulas as follows: if φ and ψ are formulas and r ∈ V�Ln, then

e(φ → ψ) = e(φ) ⇒ e(ψ) and e(r) = r,

where x ⇒ y = min(1, 1 − x + y) for x, y ∈ �Ln. Note that x ⇒ y = 1 iff x ≤ y.
The set of all such evaluations will be denoted by Ωn. Notice that, in particular,
for every formula φ and ψ and for every e ∈ Ωn, we have:

e(¬φ) = 1 − e(φ) e(φ ∧ ψ) = min(e(φ), e(ψ))
e(φ ⊗ ψ) = max(e(φ) + e(ψ) − 1, 0) e(φ ⊕ ψ) = min(1, e(φ) + e(ψ))
e(φ ∨ ψ) = max(e(φ), e(ψ)) e(φ ≡ ψ) = 1 − |e(φ) − e(ψ)|.

A formula φ is said to be satisfiable if there exists an e ∈ Ωn such that
e(φ) = 1. In such a case we say that e is a model of φ and e is a model of a set
of formulas T if e is a model of every formula in T . A tautology is a formula φ
such that e(φ) = 1 for each e ∈ Ωn. A formula φ is a semantic consequence of a
set of formulas Γ , written as Γ |= φ, if it holds that every model of Γ is also a
model of φ.

This logic based on the language L, which we will denote by �Lc
n, has a sound

and a strongly complete axiomatization, see e.g. [4] for details. In particular, the
axioms of �Lc

n are

1 For the sake of simplicity, along this paper we will use the same symbol to denote
both a logical language L and its corresponding set of formulas FmL built in the
usual way. This will be done with no danger of confusion.
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(�L1) ϕ → (ψ → ϕ),
(�L2) (ϕ → ψ) → ((ψ → χ) → (ϕ → χ)),
(�L3) ((ϕ → 0) → (ψ → 0)) → (ψ → ϕ),
(�L4) ((ϕ → ψ) → ψ) → ((ψ → ϕ) → ϕ),
(�L5) (n − 1)ϕ ≡ nϕ,
(�L6) (kϕk−1)n ≡ nϕk, for each k ∈ {2, . . . , n − 2} not dividing n − 1,
(Q1) (r1 → r2) ≡ min{1, 1 − r1 + r2}, for each r1, r2 ∈ V�Ln,

and the only deduction rule is modus ponens (from φ and φ → ψ infer ψ).
Axioms (�L1)-(�L4) form an axiomatization for �Lukasiewicz logic, and in axioms
(�L5) and (�L6), kϕ is an abbreviation for ϕ⊕ k. . . ⊕ϕ (k repetitions) and ϕk

for ϕ⊗ k. . . ⊗ϕ (k repetitions). Axiom (Q1) is a bookkeeping axiom for truth-
constants. It is needed to derive how truth-constants are combined with the
different connectives.

�Lc
n is strongly complete in the following sense: if � denotes the notion of

proof defined from the set of axioms of �Lc
n and modus ponens, then we have that

for any countable (possibly infinite) set of formulas T ∪{ψ}, it holds that T � ψ
iff T |= ψ. A formula ψ that can be proven from the axioms of �Lc

n and modus
ponens is called a theorem; in this case we will write � ψ.

For each formula φ we will denote by Δφ the formula φn. Since we only have
n truth values this formula is Boolean. Indeed, it is easy to check that

e(Δφ) =
{

1, if e(φ) = 1
0, if e(φ) < 1

Note that Δ corresponds to the well-known Baaz-Monteiro projection operator
[1,13].

Remark 1. For every formula ϕ of �Lc
n and for every nonempty subset S of Ωn

we can associate a fuzzy subset fϕ of S. Precisely, fϕ : S → �Ln is defined by the
stipulation

fϕ : w ∈ S �→ w(ϕ) ∈ V�Ln.

Conversely, given S and a fuzzy set f : S → V�Ln, we can define a formula ϕf of
�Lc

n such that f = fϕf
. Precisely, let

ϕf :=
∧

w∈S

(1w → f(w))

where 1w :=
∧

p∈V ar Δ(p ≡ w(p)) is such that f1w
is the characteristic function

of w in S.
This description of formulas as fuzzy sets will allow us to describe mathe-

matical properties of fuzzy sets in the logical framework. In the present paper,
we will deal with a logical treatment of the f -index of inclusion between fuzzy
sets that we will recall in Subsect. 2.2.

Now, we recall the logic S5(�Lc
n) from [2], an S5-like modal extension of the

logic �Lc
n. To this end, let L�

n be the expansion of the language Ln of the logic �Lc
n
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by a unary modal operator �. An S5(�Lc
n)-interpretation for formulas in L�

n is a
mapping σ determined by a pair (w,S),2 where w ∈ Ωn is a �Ln-evaluation and
S ⊆ Ωn is a set of �Ln-evaluations such that w ∈ S. Formally, each pair (w,S)
determines the map σ : L�

n → V�Ln by the following stipulations:

– if ϕ ∈ Ln, σ(ϕ) = w(ϕ)
– σ(�ψ) = inf{(w′, S)(ψ) | w′ ∈ S}; (in particular, if ψ ∈ Ln, σ(�ψ) =

inf{w′(ψ) | w′ ∈ S})
– σ(ϕ 	 ψ) = σ(ϕ) 	 σ(ψ), for 	 being a connective of �Lukasiewicz logic

We will denote by Σ the set of S5(�Lc
n)-interpretations, i.e. Σ = {σ = (w,S) ∈

Ωn × 2Ωn | w ∈ S}. We say that σ ∈ Σ is a model of a formula ϕ, written
σ |= ϕ, when σ(ϕ) = 1.

Now, let us recall from [2] the definition of the logic S5(�Lc
n) as the modal

logic over �Lc
n whose axioms and rules are:

(�Ln) Axioms of �Lc
n

(M1) �(ϕ ∧ ψ) → (�ϕ ∧ �ψ)
(M2) �(r → ϕ) ≡ (r → �ϕ)
(M3) �(ϕ ⊕ ϕ) ≡ (�ϕ ⊕ �ϕ)
(K) �(ϕ → ψ) → (�ϕ → �ψ)
(T) �ϕ → ϕ
(4) �ϕ → � � ϕ
(5) ¬�ϕ → �¬�ϕ

Rules: modus ponens and necessitation for �

The logic S5(�Lc
n) is proved in [2, Theorem 2, Proposition 2] to be strongly

complete with respect to the class of structures Σ defined above.

Theorem 1. Let T ∪ {ϕ} be a countable set of formulas in L�
n . Then Γ � ϕ iff

for all σ ∈ Σ such that σ |= γ for all γ ∈ Γ , then σ |= ϕ.

2.2 The f-Index of Inclusion

The f -index of inclusion represents the inclusion between fuzzy sets by means
of mappings from [0, 1] to [0, 1]. This feature is an important difference from
the standard approaches [6,8,14,16], where the inclusion of one fuzzy set into
another is given, in general, by a value in the unit interval [0, 1]. Not any mapping
from [0, 1] to [0, 1] can be used to represent the f -index of inclusion: the set of
possible assignable mappings is introduced below, together with the basic notion
of f -inclusion.

Definition 1 (cf. [12]).

– The set of indexes of inclusion, denoted by F , consists of every monotonically
increasing mapping f : [0, 1] → [0, 1] such that f(x) ≤ x for all x ∈ [0, 1].

2 Actually, we will henceforth identify both notations σ and (w, S) to indicate this
map, and we can even write σ = (w, S).
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– Let A and B be two fuzzy sets over the same universe U , and consider f ∈ F .
We say that A is f -included in B (denoted by A ⊆f B) if and only if the
inequality f(A(u)) ≤ B(u) holds for all u ∈ U .

The suitability of the set F as a proper set of indexes to represent the inclu-
sion is explained in [9,10,12]. In order to choose a convenient index among all in
F to represent a specific inclusion between two fuzzy sets, in [12], we introduced
the following definition.

Definition 2 (f-index of inclusion [12]). Let A and B be two fuzzy sets over
a same domain. The f -index of inclusion of A in B, denoted by Inc(A,B), is
defined as

Inc(A,B) = max{f ∈ F | A ⊆f B}
The previous definition is correct, in the sense that it can be proved that

the set {f ∈ F | A ⊆f B} has always a maximum for every pair of fuzzy sets
A and B. An interesting interpretation of the f -index of inclusion is given by
considering mappings f ∈ F as modifiers of membership degrees. Accordingly,
the lesser pointwisely the mapping f ∈ F is, the greater the modification is.
Therefore, taking the maximum f ∈ F such that A ⊆f B is equivalent to
consider the minimal modifications of membership degrees in A to include it
into B in the Zadeh’s sense. This interpretation brings the f -index of inclusion
closer to the notion of truth stressers in fuzzy logic [3,5,7,15], since they modify
truth degrees. This relation is used in the next section to define a unary operator
in V�Ln.

Lastly, we recall two interesting results of the f -index of inclusion that will
be used in the next section. The first one determines an analytical structure of
the f -index of inclusion.

Theorem 2 (cf. [10]). Let A and B be two fuzzy sets over U , then

Inc(A,B)(x) =
∧

u∈U
{B(u) ∧ x | x ≤ A(u)},

for all x ∈ [0, 1].

The second result provides some properties that support the use of the f -
index of inclusion as a representation of the inclusion between fuzzy sets.

Theorem 3 (cf. [10]). Let A,B and C be fuzzy sets over U . The following
properties hold:

1. (Full inclusion) Inc(A,B) = id if and only if A(u) ≤ B(u) for all u ∈ U .
2. (Null inclusion) Inc(A,B) = ⊥ if and only if there is a set of elements in the

universe {ui}i∈I ⊆ U such that A(ui) = 1 for all i ∈ I and
∧

i∈I B(ui) = 0.
3. (Pseudo transitivity) Inc(B,C) ◦ Inc(A,B) ≤ Inc(A,C).
4. (Monotonicity) If B(u) ≤ C(u) for all u ∈ U then, Inc(C,A) ≤ Inc(B,A).
5. (Monotonicity) If B(u) ≤ C(u) for all u ∈ U then, Inc(A,B) ≤ Inc(A,C).
6. (Transformation Invariance) Let T : U → U be a bijection on U , then

Inc(A,B) = Inc(A ◦ T,B ◦ T ).
7. (Relationship with intersection) Inc(A,B ∩ C) = Inc(A,B) ∧ Inc(A,C).
8. (Relationship with union) Inc(A ∪ B,C) = Inc(A,C) ∧ Inc(B,C).
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3 A Logic to Reason About the F-Index of Inclusions
over �Lc

n

In this section we introduce an axiomatic extension of the finite-valued fuzzy
modal logic S5(�Lc

n) with new unary operators �ϕ,ψ, one for every pair of formulas
ϕ,ψ from Lc

n, that will provide us with a logical formalisation of the f -index
of inclusion between fuzzy concepts represented as propositions in �Lc

n. Recall
the representation of formulas as fuzzy sets from Remark 1. In this section, by
truth-stresser we will mean a non-decreasing function τ : V�Ln → V�Ln such that
τ(x) ≤ x for all x ∈ V�Ln.

We start by defining the syntax and semantics of our logic, and later we
axiomatise it.

3.1 Syntax and Semantics

Let IL, where I stands for inclusion, be the expansion of the modal language
L�

n by adding to its signature a unary operator �ϕ,ψ for every pair of formulas
ϕ,ψ from Ln.

The semantics for IL is still given by pairs σ = (w,S) ∈ Σ, which now
further interpret the new operators �ϕ,ψ.

– If ϕ ∈ L�
n , then σ(ϕ) is defined as in S5(�Lc

n) (see Sect. 2.1). Moreover, for
each ϕ ∈ L�

n we denote by ϕσ its corresponding fuzzy set on S defined as:
ϕσ(w′) = σ′(ϕ), where σ′ = (w′, S). Note that if ϕ ∈ Ln then σ′(ϕ) = w′(ϕ)
and hence the fuzzy set associated to ϕ is defined as in Remark 1.

– σ interprets operators �ϕ,ψ as one-place functions σ(�ϕ,ψ) : V�Ln → V�Ln

defined as

σ(�ϕ,ψ) = max{τ : V�Ln → V�Ln truth-stresser | τ(ϕσ) ≤ ψσ}.

– Finally, as customary, the interpretation by σ of a formula (�ϕ,ψχ) is defined
as follows: σ(�ϕ,ψχ) = σ(�ϕ,ψ)(σ(χ)). In particular, if χ ∈ Ln, then
σ(�ϕ,ψχ) = σ(�ϕ,ψ)(w(χ)).

Obviously, we can give a similar meaning to �ϕ,ψ than the one given to the
f -index of inclusion in the previous section. Firstly, note that the inequality
τ(ϕσ) ≤ ψσ holds if, and only if, σ validates the implication ϕτ → ψ, where ϕτ

is the formula defined as

ϕτ :=
∨

s∈V�Ln

Δ(ϕ ≡ s) ∧ τ(s),

and, as it can be easily checked, it is such that (ϕτ )σ = τ(ϕσ).3 Secondly, the
larger the truth stresser (as a mapping), the smaller the degree of truth stress
3 Indeed, if w(ϕ) = r0, then w(ψ) = maxr min(w(Δ(ϕ ≡ r), τ(r)) =

= max(maxr �=r0 w(Δ(ϕ ≡ r)∧ τ(r)), w(Δ(ϕ ≡ r0)∧ τ(r0)) = max(0, min(1, τ(r0)) =
= 0 ∨ τ(r0) = τ(w(ϕ)).
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(semantically). For example, the identity mapping imposes no truth stress, while
the mapping ⊥ (which always takes the value 0) imposes a drastic truth stress
that makes false even true statements. Therefore, �ϕ,ψ determines the minimal
amount of truth stress in ϕ we need to make the formula ϕ → ψ valid. In other
words, we can rewrite the definition of the semantics of �ϕ,ψ as

σ(�ϕ,ψ) = max{τ : V�Ln → V�Ln truth-stresser | σ |= ϕτ → ψ}.

We will use the notation ΣI to refer to the set of interpretations (w,S) ∈ Σ
when applied to the expanded language IL as prescribed above.

Two remarks are in order here:

(i) As in the case of modal formulas �ϕ, the interpretation of formulas of the
type �ϕ,ψ by a pair σ = (w,S) does not actually depend on the particular
world w but only on the set S.

(ii) By Theorem 2, we have that σ(�ϕ,ψϕ) = min{w′(ψ) | w′ ∈ S,w(ϕ) ≤
w′(ϕ)} ∧ w(ϕ) = min{ψσ(w′) | w′ ∈ S, ϕσ(w) ≤ ϕσ(w′)} ∧ ϕσ(w).

3.2 The Logic I�Ln : Axiomatic System, Soundness and Completeness

Based on the properties of the f -index of inclusion recalled in Sect. 2.2, we
axiomatically define the logic I�Ln as an axiomatic expansion of S5(�Lc

n) as fol-
lows, where we make use of the intended semantics of the modal S5 operator �
as a sort of universal quantifier over the set of interpretations.

Definition 3. Axioms and rules of I�Ln are those of S5(�Lc
n) plus:

(A1) �(�ϕ,ψχ → χ)
(A2) �(�ϕ,ψϕ → ψ)
(A3) Δ � (�γ,δϕ → ψ) → �(�γ,δχ → �ϕ,ψχ)
(A4) �(Δ(γ → δ) → (�ϕ,ψγ → �ϕ,ψδ))
(A5)

∨
s∈V�Ln

�(�ϕ,ψr ≡ s), for any r ∈ V�Ln

(A6) �(Δ(ϕ ≡ r) → (τ(r) → �ϕ,ϕτ
ϕ)), for any truth-stresser τ

The above mentioned fact that the modal S5 operator � behaves as a uni-
versal quantifier over the set of evaluations, shows that the above axioms force
a behavior of �ϕ,ψ that reflects that of the f -indexes of inclusion functions. In
particular:

– Axiom (A1) states that for all evaluations the value of �ϕ,ψ in χ takes a
lower value than χ itself. This hence reflects the property that every index of
inclusion function f satisfies f(x) ≤ x.

– Axiom (A2), encodes the fact the result of applying the index of inclusion of
ϕ in ψ to the fuzzy set given by ϕ is indeed included into the fuzzy set given
by ψ.
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– Axiom (A3) captures the maximality property of the index of inclusion; that
is the function associated to �ϕ,ψ is the maximal one among those that,
applied to ϕ, give a fuzzy set included into ψ.

– Axiom (A4) is monotonicity, while axiom (A5) states that the index of inclu-
sion of a constant function is constant as well. These two axioms are needed
to prove that �ϕ,ψ is indeed interpreted as a function.

– Axiom (A6) expresses a technical property of the functions like �ϕ,ψ that
will be used below to prove that the truth-stressers defined in this way are
sufficiently many to ensure that the maximal stresser is attained within the
set of functions �ϕ,ψ.

All these intuitive semantic interpretations of the axioms are supported by
the semantics of the operators �ϕ,ψ given above, which faithfully reflect in turn
the properties of the f -indices of inclusion described in Sect. 2.2. Then, it is not
difficult to show that the above axioms are indeed sound.

Proposition 1. I�Ln is sound with respect to the class of structures ΣI .

Since I�Ln is an axiomatic expansion of S5(�Lc
n), one can reduce proofs in

I�Ln to proofs in S5(�Lc
n) taking the axioms (A1)-(A6) as additional premises. In

the following, Ax(I �Ln) will stand for all the instances of the additional axioms
(A1)-(A6).

Lemma 1. For any set of I�Ln-formulas T ∪ {φ}, it holds that T �I �Ln
φ iff

T ∪ {Ax(I �Ln)} �S5(�Lc
n) φ, where �S5(�Lc

n) stands for proof in pure S5(�Lc
n).

Finally, we can prove that I�Ln is (sound and) complete with respect to the
semantics previously defined.

Theorem 4. For any set of I�Ln-formulas, T ∪ {φ} we have that, T �I �Ln
φ iff

T |=I �Ln
φ.

Proof. (Sketch). Assume T ��I �Ln
φ. By the above Lemma 1, this means that

T∪{Ax(I �Ln)} ��S5(�Lc
n) φ, and by completeness of S5(�Lc

n), T∪{Ax(I �Ln)} �|=S5(�Lc
n)

φ. Therefore, there exists an S5(�Lc
n)-interpretation σ = (w,S) ∈ Σ such that

σ(T ) = σ(Ax(I �Ln)) = 1 and σ(φ) < 1. It remains to prove that in fact σ belongs
to ΣI , that is, that σ correctly interprets formulas of the kind �ϕ,ψχ as specified
in Sect. 3.1.

If ϕ,ψ ∈ L are propositional, the fact that σ evaluates to 1 all the axioms
(A1)-(A6) implies a set of conditions on the evaluation by σ = (w,S) of formulas
of the kind �ϕ,ψχ. In particular, axioms (A4) and (A5) allow us to interpret each
operator �ϕ,ψ as a unique unary function on V�Ln, and the rest of the axioms
allows one to prove that such a function is indeed the f -inclusion index of ϕ into
ψ, once they are interpreted as fuzzy sets on S. This shows that σ ∈ ΣI , hence
T �|=I �Ln

φ, and the proof is completed.
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4 Conclusions and Future Work

In this paper we have provided a first step towards a logical account of the
notion of f -index of inclusion for fuzzy sets in the frame of an S5-like modal
logic over the n-valued �Lukasiewicz logic with truth-constants. We have taken
advantage of the good logical and expressive properties of this logical setting
to define the logic I�Ln to reason about f -indexes of inclusion between n-valued
propositions. Actually, our goal has been to syntactically link a particular truth-
stresser, corresponding to the modality �ϕ,ψ, to each pair of formulas ϕ and
ψ in order to represent ‘ ‘the minimal amount of truth stress in ϕ we need to
make the formula ϕ → ψ valid”, not just to consider different and arbitrary
truth-stressers in a logic. The question whether we can do all this without this
syntactical link between pairs of formulas ϕ,ψ and modalities �ϕ,ψ is left for
further work, although we think it can be a difficult task.

Note that equivalence classes of formulas determine the same truth-stresser
by the modalities (i.e., ϕ ≡ ϕ′, ψ ≡ ψ′ �I �Ln

�ϕ,ψχ ≡ �ϕ′,ψ′χ), thus in fact there
are only finitely-many distinct modalities, but that fact does not invalidate the
use of both modalities �ϕ,ψ and �ϕ′,ψ′ in the language of the logic I�Ln.

As for future work, we plan the study in depth the connection of modali-
ties with the deduction theorem of �Lukasiewicz logic or the existence of truth
stressers, if any, that cannot be represented as a modality of the type �ϕ,ψ.
We also plan to consider a more general many-valued logical setting, lifting the
assumption of dealing with finitely-many truth-degrees.
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