®

Check for
updates

A Logic to Reason About f-Indices
of Inclusion over L,

Tommaso Flaminio!®™) | Lluis Godo', Nicolds Madrid?,
and Manuel Ojeda-Aciego?

1 TIIA-CSIC, 08193 Bellaterra, Spain
{tommaso,godo}@iiia.csic.es
2 Departamento Matematica Aplicada, Universidad de M4laga, 20071 Mélaga, Spain
{nicmadlab,aciego}@uma.es

Abstract. In this paper we provide a sound and complete logic to for-
malise and reason about f-indices of inclusion. The logic is based on
finite-valued Lukasiewicz logic L, and its S5-like modal extension S5(L,)
with additional unary operators.

1 Introduction

Inclusion is one of the most fundamental relations between sets. In previous
work [10], it was shown how the degree of inclusion between two L-fuzzy sets
can be represented in terms of a function that specifically determines the minimal
modifications required in one L-fuzzy set to be included (in Zadeh’s sense) in
another.

The key idea was the notion of f-inclusion, which defines a family of crisp
binary relations between L-fuzzy sets that are used as indexes of inclusion and,
subsequently, we define the f-index of inclusion as the most suitable f-inclusion
under certain criteria. In addition, it was shown that the f-index of inclusion
satisfies versions of many common axioms usually required for measures of inclu-
sion in the literature, namely the axiomatic approaches of Kitainik [8] and Sinha-
Dougherty [14].

In [11], the f-index was shown to be definable by means of a fuzzy conjunction
which is part of an adjoint pair. Moreover, it is also proven in [11] that when
the undelying structure in the modus ponens inference rule is given by adjoint
pairs, the f-index provides the maximum possible truth-value in the conclusion
obtained by fuzzy modus ponens using any other possible adjoint pair.

In this paper, we continue the study of the logical properties of the f-index
of inclusion. Specifically, we provide a first step towards a logical account of the
notion of f-index of inclusion for fuzzy sets in the frame of an S5-like modal logic
over the n-valued Lukasiewicz logic with truth-constants L. We take advantage
of the good logical and expressive properties of this logical setting to define the
logic IL,, to reason about f-indexes of inclusion between n-valued propositions.

The paper is structured as follows. After this introduction, we first provide
the necessary background on finite-valued Lukasiewicz logic and its S5-like modal
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extension S5(L¢), and on the f-index of inclusion of fuzzy sets. Then in Sect. 3 we
define a logic IL,, based on S5(L¢) with additional unary operators to formalise
and reason about f-indices of inclusion. We finish with some prospects for future
work.

2 Preliminaries

2.1 The Finite-Valued Lukasiewicz Logic

Consider the propositional language £ whose set of formulas F'm, is built from
a finite set of propositional variables Var, the connective — (implication) and
truth constants 7 for each r € VL,, = {0, -1+, ..., 2=2 1} for some fixed natural

n > 2. Further connectives are defined as follows: nr
~¢:=¢—0 PAY =0 (¢ — )
PR Y= (¢ — ) PDY =(=¢ @ )
PV = ((¢ =) =) p=v:=(p =YW — )

with ¢ and 1 being arbitrary formulas.’
A propositional evaluation is a mapping e : Var — VL, that is extended to
formulas as follows: if ¢ and v are formulas and r € VL,,, then

e(p — ) =e(¢) = e(v) and e(7) = r,

where z = y = min(1,1 — x + y) for 2,y € L,. Note that z = y =1 iff x < y.
The set of all such evaluations will be denoted by 2,,. Notice that, in particular,
for every formula ¢ and v and for every e € €,,, we have:

e(=p) =1 —e(9) e(¢ A y) = min(e(), e(y))
e(¢ ® ) = max(e(¢) +e(¥) —1,0)  e(¢®¢) = min(1,e(9) +e(y))
e(¢ V) = max(e(9), e(4)) e(¢p=1) =1—le(d) —e(¥)].

A formula ¢ is said to be satisfiable if there exists an e € €2, such that
e(¢) = 1. In such a case we say that e is a model of ¢ and e is a model of a set
of formulas T if e is a model of every formula in T. A tautology is a formula ¢
such that e(¢) = 1 for each e € Q,,. A formula ¢ is a semantic consequence of a
set of formulas I', written as I' |= ¢, if it holds that every model of I" is also a
model of ¢.

This logic based on the language £, which we will denote by L, has a sound
and a strongly complete axiomatization, see e.g. [4] for details. In particular, the
axioms of L are

! For the sake of simplicity, along this paper we will use the same symbol to denote
both a logical language £ and its corresponding set of formulas F'm, built in the
usual way. This will be done with no danger of confusion.
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(L) ¢ = (¥ — o),

(£2) (¢ =) = (¥ = x) = (¢ = X))

L3) (p—=0) = —0) = @ — ),

E4) (g = 1) =) = (V= ¢) = ¢),

(£5) (n—1)p =nyp,

(L6) (k=1 = npP, for each k € {2,...,n — 2} not dividing n — 1,
(Ql) (71 — 72) = min{l,1 —ry + 7o}, for each r1,79 € VL,

and the only deduction rule is modus ponens (from ¢ and ¢ — 1 infer ).
Axioms (L1)-(L4) form an axiomatization for Lukasiewicz logic, and in axioms
(L5) and (L6), kg is an abbreviation for ¢@® .%. @y (k repetitions) and ¥
for o® k. @p (k repetitions). Axiom (Q1) is a bookkeeping axiom for truth-
constants. It is needed to derive how truth-constants are combined with the
different connectives.

LY is strongly complete in the following sense: if F denotes the notion of
proof defined from the set of axioms of L, and modus ponens, then we have that
for any countable (possibly infinite) set of formulas T'U {¢}, it holds that T F ¢
iff T = 4. A formula v that can be proven from the axioms of L, and modus
ponens is called a theorem; in this case we will write - 1.

For each formula ¢ we will denote by A¢ the formula ¢™. Since we only have
n truth values this formula is Boolean. Indeed, it is easy to check that

[ Life(¢) =1
o(A¢) = {o, if e(¢) < 1

Note that A corresponds to the well-known Baaz-Monteiro projection operator
[1,13].

Remark 1. For every formula ¢ of L{ and for every nonempty subset S of €2,
we can associate a fuzzy subset f, of S. Precisely, f, : S — L,, is defined by the
stipulation

forweS—w(p) e VL,.

Conversely, given S and a fuzzy set f : S — VL, we can define a formula ¢ of
Ly, such that f = f,,. Precisely, let

weS

where 1, := A oy, Alp = w(p)) is such that fy, is the characteristic function
of win S.

This description of formulas as fuzzy sets will allow us to describe mathe-
matical properties of fuzzy sets in the logical framework. In the present paper,
we will deal with a logical treatment of the f-index of inclusion between fuzzy
sets that we will recall in Subsect. 2.2.

Now, we recall the logic S5(L¢) from [2], an S5-like modal extension of the
logic LE. To this end, let £ be the expansion of the language £,, of the logic LS,
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by a unary modal operator . An S5(LE )-interpretation for formulas in L5 is a
mapping o determined by a pair (w, S),?> where w € Q,, is a L,-evaluation and
S C Q, is a set of L,-evaluations such that w € S. Formally, each pair (w,S)
determines the map o : LS — VL, by the following stipulations:

—if g € Ly, a(p) = w(p)

- o(ty) = inf{(w', S)(¥) | w' € S}; (in particular, if v € L,, o(ly) =
inf{w'(¢) | w" € S})

— o(px) =o(p) * (1), for x being a connective of Lukasiewicz logic

We will denote by X the set of S5(L{,)-interpretations, i.e. X = {o = (w,S) €
Q, x 2% | w € S}. We say that 0 € ¥ is a model of a formula ¢, written
o | ¢, when o(p) = 1.

Now, let us recall from [2] the definition of the logic S5(L:) as the modal
logic over L, whose axioms and rules are:

(L
(M
(M
(M
(
(

n) Axioms of L¢

) Bl Ay) — (e ABY)

) (T —¢) = (T — Ly)

) Ble® ¢) = (Hp & Hyp)

) Blp = ¥) — (Bp — y)

) He —

) B — e

) -y — -0y

Rules: modus ponens and necessitation for [

G’&wawH

The logic S5(L¢,) is proved in [2, Theorem 2, Proposition 2| to be strongly
complete with respect to the class of structures X defined above.

Theorem 1. Let TU{p} be a countable set of formulas in LY. Then I' - ¢ iff
for all o € X such that o = for ally € I, then o = ¢.

2.2 The f-Index of Inclusion

The f-index of inclusion represents the inclusion between fuzzy sets by means
of mappings from [0,1] to [0,1]. This feature is an important difference from
the standard approaches [6,8,14,16], where the inclusion of one fuzzy set into
another is given, in general, by a value in the unit interval [0, 1]. Not any mapping
from [0,1] to [0,1] can be used to represent the f-index of inclusion: the set of
possible assignable mappings is introduced below, together with the basic notion
of f-inclusion.

Definition 1 (cf. [12]).

— The set of indezes of inclusion, denoted by F, consists of every monotonically
increasing mapping f: [0,1] — [0,1] such that f(x) < x for all x € [0,1].

2 Actually, we will henceforth identify both notations ¢ and (w,S) to indicate this
map, and we can even write o = (w, S).
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— Let A and B be two fuzzy sets over the same universe U, and consider f € F.
We say that A is f-included in B (denoted by A C; B) if and only if the
inequality f(A(u)) < B(u) holds for all uw € U.

The suitability of the set F as a proper set of indexes to represent the inclu-
sion is explained in [9,10,12]. In order to choose a convenient index among all in
F to represent a specific inclusion between two fuzzy sets, in [12], we introduced
the following definition.

Definition 2 (f-index of inclusion [12]). Let A and B be two fuzzy sets over
a same domain. The f-index of inclusion of A in B, denoted by Inc(A, B), is
defined as

Inc(A,B) =max{f € F| ACy B}

The previous definition is correct, in the sense that it can be proved that
the set {f € F | A Cy B} has always a maximum for every pair of fuzzy sets
A and B. An interesting interpretation of the f-index of inclusion is given by
considering mappings f € F as modifiers of membership degrees. Accordingly,
the lesser pointwisely the mapping f € F is, the greater the modification is.
Therefore, taking the maximum f € F such that A C; B is equivalent to
consider the minimal modifications of membership degrees in A to include it
into B in the Zadeh’s sense. This interpretation brings the f-index of inclusion
closer to the notion of truth stressers in fuzzy logic [3,5,7,15], since they modify
truth degrees. This relation is used in the next section to define a unary operator
in VL,,.

Lastly, we recall two interesting results of the f-index of inclusion that will
be used in the next section. The first one determines an analytical structure of
the f-index of inclusion.

Theorem 2 (cf. [10]). Let A and B be two fuzzy sets over U, then

Inc(A, B)( /\{B YAz |z < A(u)},
ucl

for all x € [0,1].

The second result provides some properties that support the use of the f-
index of inclusion as a representation of the inclusion between fuzzy sets.

Theorem 3 (cf. [10]). Let A,B and C be fuzzy sets over U. The following

properties hold:

1. (Full inclusion) Inc(A, B) = id if and only if A(u) < B(u) for allu € U.

2. (Null inclusion) Inc(A, B) = L if and only if there is a set of elements in the
universe {u; yier €U such that A(u;) =1 for alli € I and )\;c; B(u;) = 0.

3. (Pseudo transitivity) Inc(B,C) o Inc(A, B) < Inc(A,C).

4. (Monotonicity) If B(u) < C(u) for all u € U then, Inc(C,A) < Inc(B, A).

5. (Monotonicity) If B(u) < C(u) for all w € U then, Inc(A, B) < Inc(4,C).

6. (Transformation Invariance) Let T: U — U be a bijection on U, then
Inc(A,B) =Inc(AoT,BoT).

7. (Relationship with intersection) Inc(A, BN C) = Inc(A, B) A Inc(A,C).

8. (Relationship with union) Inc(AU B,C) = Inc(A,C) A Inc(B,C).
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3 A Logic to Reason About the F-Index of Inclusions
over L’

In this section we introduce an axiomatic extension of the finite-valued fuzzy
modal logic S5(L¢,) with new unary operators [, 4, one for every pair of formulas
,v¥ from L¢, that will provide us with a logical formalisation of the f-index
of inclusion between fuzzy concepts represented as propositions in Lf. Recall
the representation of formulas as fuzzy sets from Remark 1. In this section, by
truth-stresser we will mean a non-decreasing function 7 : VL,, — VL,, such that
7(x) <z for all x € VL,,.

We start by defining the syntax and semantics of our logic, and later we
axiomatise it.

3.1 Syntax and Semantics

Let ZL, where 7 stands for inclusion, be the expansion of the modal language
EE by adding to its signature a unary operator [, , for every pair of formulas
w, from L,,.

The semantics for ZL is still given by pairs ¢ = (w,S) € X, which now
further interpret the new operators O .

~ If ¢ € LY then o(¢) is defined as in S5(LS) (see Sect.2.1). Moreover, for
each ¢ € EE we denote by ¢, its corresponding fuzzy set on S defined as:
vo(w') = 0d’(¢), where o’ = (w',S). Note that if ¢ € L,, then o’(¢) = w'(¢)
and hence the fuzzy set associated to ¢ is defined as in Remark 1.

— o interprets operators O, 4 as one-place functions (0, ) : VL, — VL,
defined as

0(0y,p) = max{r : VL,, — VL,, truth-stresser | 7(¢,) < s }.

— Finally, as customary, the interpretation by o of a formula (O, X) is defined
as follows: o(Oyux) = o(0pw)(0(x)). In particular, if x € L,, then

o(0px) = 0(Lp,y)(w(x)):

Obviously, we can give a similar meaning to O, than the one given to the
f-index of inclusion in the previous section. Firstly, note that the inequality
T(ps) < 1, holds if, and only if, o validates the implication ¢, — 1, where @,
is the formula defined as

\/ Alp=3) A7(s),

seVL,

~

and, as it can be easily checked, it is such that (¢;), = 7(¢s).> Secondly, the
larger the truth stresser (as a mapping), the smaller the degree of truth stress

# Indeed, if w(p) = o, then w(y)) = max, min(w(A(p =7),7(r)) =
= max(max,.r, W(A(p =T) AT(r)), w(A(p = 7o) AT(r0)) = max(0, min(1, 7(ro)) =
=0V 7(ro) = 7(w(p)).
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(semantically). For example, the identity mapping imposes no truth stress, while
the mapping L (which always takes the value 0) imposes a drastic truth stress
that makes false even true statements. Therefore, [, ,, determines the minimal
amount of truth stress in ¢ we need to make the formula ¢ — 1 valid. In other
words, we can rewrite the definition of the semantics of O, 4 as

o(0,,p) = max{7 : VL,, — VL,, truth-stresser | ¢ = ¢, — 9¥}.

We will use the notation X7 to refer to the set of interpretations (w, S) € X
when applied to the expanded language ZL as prescribed above.
Two remarks are in order here:

(i) As in the case of modal formulas [y, the interpretation of formulas of the
type Oy, by a pair o = (w, ) does not actually depend on the particular
world w but only on the set S.

(ii) By Theorem 2, we have that o(0, y»¢) = min{w/(¢)) | w' € S,w(p) <
W ()} Aw(p) = min{uis (w') | 0 € S, 00 (w) < g0 (W)} Ao (w).

3.2 The Logic IL,,: Axiomatic System, Soundness and Completeness

Based on the properties of the f-index of inclusion recalled in Sect.2.2, we
axiomatically define the logic IL, as an axiomatic expansion of S5(L) as fol-
lows, where we make use of the intended semantics of the modal S5 operator [
as a sort of universal quantifier over the set of interpretations.

Definition 3. Azioms and rules of IL,, are those of S5(L;,) plus:

(A1) B(0pux — x)

(A2) D(0p e — )

(Ag) A - (D%(g(p — ’(/)) — D(D%(SX — D%’GbX)
(A4) D(A(y = 6) — (Op,py — Op,p6))

(A5) ¢ Vi, B(O,,yT =5), for any r € VL,

(A6) O(A(e =7) — (1(r) — Oy e, 9)), for any truth-stresser T

The above mentioned fact that the modal S5 operator [J behaves as a uni-
versal quantifier over the set of evaluations, shows that the above axioms force
a behavior of U, that reflects that of the f-indexes of inclusion functions. In
particular:

— Axiom (A1) states that for all evaluations the value of O, in x takes a
lower value than x itself. This hence reflects the property that every index of
inclusion function f satisfies f(x) < .

— Axiom (A2), encodes the fact the result of applying the index of inclusion of
@ in 9 to the fuzzy set given by ¢ is indeed included into the fuzzy set given

by .
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— Axiom (A3) captures the maximality property of the index of inclusion; that
is the function associated to U, is the maximal one among those that,
applied to ¢, give a fuzzy set included into .

— Axiom (A4) is monotonicity, while axiom (A5) states that the index of inclu-
sion of a constant function is constant as well. These two axioms are needed
to prove that [, 4 is indeed interpreted as a function.

— Axiom (A6) expresses a technical property of the functions like O, , that
will be used below to prove that the truth-stressers defined in this way are
sufficiently many to ensure that the maximal stresser is attained within the
set of functions [, 4.

All these intuitive semantic interpretations of the axioms are supported by
the semantics of the operators U, , given above, which faithfully reflect in turn
the properties of the f-indices of inclusion described in Sect. 2.2. Then, it is not
difficult to show that the above axioms are indeed sound.

Proposition 1. IL, is sound with respect to the class of structures X71.

Since IL, is an axiomatic expansion of S5(L¢), one can reduce proofs in
IL,, to proofs in S5(LS) taking the axioms (A1)-(A6) as additional premises. In
the following, Ax(IL,) will stand for all the instances of the additional axioms

(A1)-(A6).

Lemma 1. For any set of IL,-formulas T U {¢}, it holds that T ‘Frp, ¢ iff
TU{Ax(IL,)} Fssze) ¢, where Fgs(rey stands for proof in pure S5(Ly,).

Finally, we can prove that IL,, is (sound and) complete with respect to the
semantics previously defined.

Theorem 4. For any set of IL,-formulas, T U {¢} we have that, T Frz, ¢ iff
T Erz, ¢.

Proof. (Sketch). Assume T Fpp,, ¢. By the above Lemma 1, this means that
TU{Ax(ILy)} Vsswe) ¢, and by completeness of S5(Ly,), TU{Az(ILy)} Fsswe)
¢. Therefore, there exists an S5(L;,)-interpretation o = (w,S) € X such that
o(T) =o(Az(IL,)) =1 and o(¢) < 1. It remains to prove that in fact o belongs
to X1, that is, that o correctly interprets formulas of the kind O,y X as specified
in Sect. 3.1.

If p,¢ € L are propositional, the fact that o evaluates to 1 all the axioms
(A1)-(A6) implies a set of conditions on the evaluation by o = (w, S) of formulas
of the kind O, x. In particular, axioms (A4) and (A5) allow us to interpret each
operator L, y as a unique unary function on VL,, and the rest of the axioms
allows one to prove that such a function is indeed the f-inclusion index of ¢ into
1, once they are interpreted as fuzzy sets on S. This shows that o € X!, hence
T W11, ¢, and the proof is completed.
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4 Conclusions and Future Work

In this paper we have provided a first step towards a logical account of the
notion of f-index of inclusion for fuzzy sets in the frame of an S5-like modal
logic over the n-valued Lukasiewicz logic with truth-constants. We have taken
advantage of the good logical and expressive properties of this logical setting
to define the logic IL,, to reason about f-indexes of inclusion between n-valued
propositions. Actually, our goal has been to syntactically link a particular truth-
stresser, corresponding to the modality [, 4, to each pair of formulas ¢ and
1 in order to represent ‘‘the minimal amount of truth stress in ¢ we need to
make the formula ¢ — 1 valid”, not just to consider different and arbitrary
truth-stressers in a logic. The question whether we can do all this without this
syntactical link between pairs of formulas ¢, and modalities O, is left for
further work, although we think it can be a difficult task.

Note that equivalence classes of formulas determine the same truth-stresser
by the modalities (i.e., ¢ = ¢, ¢ = ¢’ b1, Oy wXx = Oy g x), thus in fact there
are only finitely-many distinct modalities, but that fact does not invalidate the
use of both modalities U,y and Uy 4 in the language of the logic IL,,.

As for future work, we plan the study in depth the connection of modali-
ties with the deduction theorem of Lukasiewicz logic or the existence of truth
stressers, if any, that cannot be represented as a modality of the type [, 4.
We also plan to consider a more general many-valued logical setting, lifting the
assumption of dealing with finitely-many truth-degrees.
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