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1 Introduction

Methods for probability updating, of which Bayesian conditionalization is the most well-known and
widely used, are modeling tools that aim to represent the process of modifying an initial epistemic state,
typically represented by a prior probability function P, which is adjusted in light of new information.
Notably, updating methods and conditional sentences seem to intuitively share a deep connection, as
is evident in the case of conditionalization. Starting with a probability P, the question of what the
probability of an event B is, given that A holds (i.e., P(B | A)), appears to involve conditional reasoning
of the form "if A then B". Indeed, Adams [1]] argues that the assertability of (indicative) conditionals,
represented as "if A then B", aligns with the corresponding conditional probability P(B | A). However,
this intuitive connection between conditionals and updating methods has been challenged by Lewis’s
celebrated triviality result [20]. This result demonstrates that conditional probability P(B | A) cannot
generally be equated with the probability of the corresponding conditional, P(A > B), without leading to
trivializing constraints on the initial probability functions.

Building upon these foundational works, research on the relationship between updating methods and
conditionals has been and continues to be prolific. This research has primarily focused on understanding
whether and how updating methods can be semantically represented in terms of conditional connectives,
or conversely, what kind of updating methods are associated with specific semantic conditional operators
(see, for instance, [22, (9,115,110, (7, 23]).

The present work contributes to this line of research and aims at shedding new light on the rela-
tionship between updating methods and conditional connectives. Departing from previous literature that
often focused on a specific type of conditional or a particular updating method, our goal is to prove gen-
eral results concerning the connection between conditionals and their probabilities. This will allow us to
characterize the probabilities of certain conditional connectives and to understand what class of updating
procedures can be represented using specific conditional connectives. Broadly, we adopt a general per-
spective that encompasses a large class of conditionals and a wide range of updating methods, enabling
us to prove some general results concerning their interrelation.

Let us begin by providing some background. As observed in [14] (see also [9]), conditionalization
updating can be situated within the broader context of imaging updating methods. Thge imaging method
was initially introduced by Lewis [20] as a way to circumvent his triviality result and it hs been extended
and generalized by several authors, notably by Gérdenfors [[12]. While conditionalization is an updating
method that requires only an algebra of events and a (positive) probability function, imaging methods
update an a prior probability by employing a closeness relation among possible worlds (the atoms of the
algebra), often interpreted as a measure of similarity. This closeness relation imposes a certain structure
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on the underlying set of possible worlds that is employed within the context of imaging updating methods
to determine which possible worlds the probability mass should be redistributed to, typically the closest
(most similar) ones to a given one.

Such a closeness relation can also be used to specify the truth conditions of a wide range of condi-
tional connectives, such as variably strict conditionals [19] and preferential conditionals [3} 21, [11]. The
informal idea is that a conditional a > b is true at a world w if and only if b is true in the closest a-worlds
to w, i.e., those closest worlds that make a true. The structure of closeness has been represented through
various model-theoretic frameworks, among which ordered models and sphere models are particularly
noteworthy. Sphere models were prominently used by Lewis [19] as the intended semantic device for
specifying the truth conditions of variably strict conditionals (including counterfactual conditionals),
while ordered models have been used, for example, to specify the truth conditions of preferential condi-
tionals. Consequently, this closeness relation of possible worlds has been employed both in specifying
imaging-like updating methods and in establishing a semantics for a large class of conditional connec-
tives. Hence, intuitively, one might expect a deep relationship between imaging-like updating methods
and conditionals based on a closeness relation, given that both rely on the same structure.

Our investigation will specifically focus on these two dimensions: imaging-like updating methods
and conditionals, both having a semantics grounded on a closeness relation. Given our aim for gener-
ality, we will slightly deviate from the standard model-theoretic approach to conditionals and updating
methods that relies on sphere models or ordered models to represent closeness relations, and we will uti-
lize models based on selection functions. Notably, certain classes of ordered models and sphere models
have equivalent representations in terms of selection functions (see, e.g., [18] and also [[13]). One of the
main advantages of the selection function is its technical utility: it is a very general tool for representing
a general structure over worlds. However, one of its main shortcomings is conceptual: while orders and
spheres offer an intuitive representation of a certain closeness relation, the relation induced by a selection
function can sometimes be obscure and abstract.

In the present contribution we aim to provide a further generalization of imaging methods by rely-
ing on this more general setting of selection functions. Simultaneously, we aim to present results that
conceptually enhance the understanding of certain updating procedures and selection function models.
Inspired by this generality, we will primarily work within an algebraic setting, which also generalizes
possible worlds models and imaging updating methods. Our basic framework will consist of a finite
Boolean algebra A, whose domain is denoted by the corresponding non-bold italic letter A, and whose
atoms, forming the set at(A), will be thought as possible worlds. The finite algebra A will be equipped
with a probability function P, whence at(A) will be endowed with a probability distribution that we still
denote by P. The structure on A that we need to establish our general updating methods is represented
by two basic tools (more technical details will be provided in the next sections):

* aselection function f: A x at(A) — A that, for every atom o € at(A) and every a € A, specifies an
element of A that correspond to the set of worlds closest to o according to a;

« a function A : A x at(A) — [0, 1]/2A)] that will be used to determine how to distribute the proba-
bility mass of each ¢ € at(A) to its closest worlds f(a, @).

While the next section will introduce the basic notions and results that constitute the ground of our inves-
tigation, Section [3| will connect selection function-based conditionals with modalities and probabilities,
while Section 4] will more directly deal with general updating methods. We will end the present paper
with some conclusions that will be put forward in Section [5



130 Conditionals Based on Selection Functions

2 Selection Functions and Conditionals

Let us begin by establishing the fundamental components that define our framework. Boolean algebras
will be presented in their usual language (A,V,—, L, T) of type (2,2,1,0,0) and where the implication
operator — will be defined as a — b = —a VV b. All Boolean algebras that we consider in this paper are
assumed to be finite; a generic Boolean algebra will be denoted by A and the set of its atoms is given by
at(A) ={oy,...,0,}. Let o(X) stand for the powerset of a set X. Thus, A and @(at(A)) are isomorphic
algebras whence we shall henceforth identify elements of A with subsets of at(A) and use a typical set-
theoretical notation without danger of confusion. For instance, for a € A, we will write |a| to denote the
cardinality of the subset of at(A) below a itself. Moreover, for a,b € A we write a C b to state that a lies
below b in the lattice order of A while, when o € at(A) and a € A we will simply write & € a to denote
that & is an atom among those that lie below a.

A selection function for A is a mapping f : A x at(A) — A that associate to each pair of an atom and
an element of A another element of A that we will identified with a set of atoms of A as observed above.
Initially, we do not impose any further properties on this function. Intuitively, the selection function
specifies the set of closest worlds (atoms) to a given world, relative to a certain element. For instance,
f(a,o) represents the set of worlds closest to o, as determined by a. For every selection function
f:Axat(A) — A, let us define an selection function-based conditional operator (or simply a conditional
operator)

> AXA—A

as follows: for all a,b € A,
a>rb={acat(A)| f(a,a) Cb}. (1)

In other words, for all o € at(A),
a€arybiff f(a,a) Cb.

As we have already anticipated, this algebraic setting has a very intuitive possible-worlds semantic coun-
terpart: an atom o belonging to a > b can be regarded as the possible world o making a > b true.
Consequently, given an intuitive interpretation of the selection function in terms of a closeness relation,
the above condition is telling us that a > b is true at & if and only if all the closest a-worlds make b true.

This closeness relation, specified by f, is at this stage very general while it can be instantiated in
different ways to represent, for instance, an order of similarity [19] or normality among worlds [3]]. The
logical properties of >, will be induced by the constraints imposed on f, i.e., the type of closeness
relation we aim to represent. Indeed, having imposed no specific properties on the selection function f
does not inherently explain why the operator > defined as above should be considered a conditional
operator. For example, it might be desirable that a > a is always true, or that > satisfies the modus
ponens inference rule, and so on. All these properties can be enforced by imposing relevant constraints
on the closeness relation involved in evaluating the conditional, namely the selection function. Below,
we list several relevant constraints, including some that are discussed in [[18]]: consider a finite Boolean
algebra A and a selection function f : A x at(A) — A, we can define the following properties for all
o€ at(A):

s f(Lio)=1 (emptyness)
e forac A\{Ll}, f(a,x) # L (normality)
e fora €A, f(a,a) Ca (identity)

s ifaca,thenac f(a,a) (centering-1)
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» if @ €a,then f(a,a) C o (centering-2)
cifaca, fla,a)=a (centering)
s |fla, o) <1 (uniqueness)
* if f(a,00) Cband f(b,cx) C a, then f(a,a) = f(b,a) (well-order)
e flavb,a) Caor flaVb,a)Cbor f(aVvb,a)= f(a,a)V f(b,) (nesting)

The connection to the corresponding conditional connective is straightforward, and this allows to
prove the following result, which readily follows from the conditions imposed on the selection function
and equation (1) and from well-known results proved in [18]:

Fact 1. Consider a finite Boolean algebra A and a selection function f : A X at(A) — A; the following
hold for all a,b,c € A, and alld € A\ {L}:

l>ra=T f satisfies emptyness
d>rbC—(d>y—b) f satisfies normality
a>pa=T f satisfies identity
a>ybC—aVb f satisfies centering-1
aNbCar>ysb f satisfies centering-2

aNbCa>ybC—aVvb

(a>f-b)V(a>rb)=T

(asb)AN(br>ra)C(a>yrc) <> (b>fc)

((avb)>ra)V((aVb) >y b)V(((aVb)>yc) = ((@a>yc) A(byc)))

f satisfies centering
f satisfies uniqueness
f satisfies well-order
f satisfies nesting

teseoeOTO

For convenience, we may refer to > as to a counterfactual conditional when f satisfies the following
properties: (i) identity, (ii) well-ordering, (iii) nesting, and (iv) centering. We call > a variably strict
conditional when f satisfies (i) identity, (ii) well-ordering, and (iii) nesting. Finally, we use the term
Stalnaker conditional for >y when f satisfies (i) identity, (ii) well-ordering, (iii) nesting, (iv) centering,
and (v) uniqueness. This terminology is justified by well-established results in the literature implying
that that when > is a counterfactual conditional, it satisfies precisely the logical principles of Lewis’s
counterfactuals, namely it obeys the conditional logic C1 (see [18]). When > is a variably strict con-
ditional, it obeys the conditional logic CO (see [18]]), which is the basic variably strict conditional logic
(see [19]). And when 1> is a Stalnaker conditional, it obeys the logic C2 (see [18]]), which corresponds
to Stalnaker’s logic of conditionals [25]].

3 Modalities and Probabilities

In this section, we will establish some key results concerning the relationship between normal modal op-
erators and selection functions. These results will subsequently be employed as a tool to begin exploring
the connection between selection function-based conditionals and probability.
Consider a finite Boolean algebra A and a selection function f : A x at(A) — A; let the binary relation
R} Cat(A) x at(A) be defined as follows: for all & € A, R}, () = f(a, ). In other words,
aR.B iff B € f(a, ).

For each such Rg , let Dg : A — A be defined as standard normal modal operator: for all b € A

[ (b) = {o € at(A) | R (a) C b} = {a € at(A) | f(a, @) C b}
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Notice that Dg is, indeed, a normal modal operator in the sense of [2, Definition 1.42], that is to say,
[T =T and Elf (b— ¢) € (O4b — Ol ). Moreover, since R} (t) = f(a, &), comparing the latter with
(T) we can immediately show the following result:

Fact 2. For a finite Boolean algebra A and a selection function f : A x at(A) — A; for all a,b € A, it
holds that
acarvpbiffacOi(b).

In other words, for every a € A, a > (-) and Dg() are the same unary operator on A. This implies
that selection function-based conditionals can also be equivalently defined in terms of a family of indexed
normal modal operators, {Dé,r | a € A}, each of which behaves as a conditional with a fixed antecedent.
Consequently, the structure (A, {Dﬁ: taea) forms a Boolean algebra with operators in the sense of [2].
Following standard practice in modal logic, we define <>£x as —D£ —xand forallb € A

O4(b) ={B € at(A) | RI(B)Ab # L}.

Treating a conditional (binary) operator as a family of indexed normal modal (unary) operators provides
a valuable framework for gaining new insights into the properties of conditional operators. This approach
allows us to leverage the well-established behavior of normal modal operators and to demonstrate rel-
evant results that connect the properties of a selection function f (and consequently, the corresponding
conditional > ¢) with the properties of the induced indexed modal operators. The following result con-
tributes to this direction:

Fact 3. For a finite Boolean algebra A and selection function f : A x at(A) — A the following holds for
alla € A: | |
|f(ava)|:1<$(f0rallx€A, \:‘gx:ogx)

Proof. The identity Ux = {x holds in a Boolean algebra with a modal operator (A,[J) iff its associated
Kriple frame (at(A),R) satisfies that for all o € at(A), there exists a unique B € at(A) such that aRf3,
and hence R is a function from at(A) to itself, [2]. Thus in particular, (J £x = <>ax for all x € A if and only
if R-Z: is a function and hence, if and only if, for all , there is a unique 8 such that OtRf B, that is to say,
there exists a unique f € f(a, ). Therefore, if and only if |f(a, @)| = 1. O

We now have the basic ingredients to begin investigating the relationship between conditionals and
probability using the introduced general framework. For our investigation we will henceforth always
assume that probability functions are positive, i.e., they assign 0 only to the impossible event. Given the
finite algebraic environment we are adopting, this choice comes at no cost. So, let P: A — [0,1] be a
positive probability on a finite Boolean algebra A and consider a selection function f : A x at(A) — A.
Then, given the above assumptions and definitions, we define

anb Z P

acar b

That is, the probability of a conditional a t>¢ b is given by the sum of the probabilities of the atomic
states (worlds) where the conditional is satisfied. In other words, P(a >y b) represents the probability
that the conditional a > b is true. Directly from Fact@, we obtain the following.

Fact 4. For a finite Boolean algebra A, a selection function f : A x at(A) — A, and probability P : A —
[0, 1] the following holds for all a,b € A:

P(a >y b) = P(T}(b)).
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As a direct consequence of the above Fact[d]and by the main results of [I7], the map defined as
Platy (1) =PO4() e

is a belief function in the sense of Dempster-Shafer theory [5]. Clearly, this observation does not preclude
the possibility that P(a > (-)) is a probability function for some a € A.

Let us now examine in more detail this connection between conditionals and belief functions. First,
recall that belief functions differ from probability functions in their treatment of disjunction: probabilities
are additive, satisfying P(aV b) = P(a) + P(b) — P(a A b), whereas belief functions, denoted Bel, are
superadditive, that is to say, Bel(a\ b) > Bel(a) + Bel(b) — Bel(a A\ D).

Besides the axiomatic definition of belief functions, that the interest reader can find for instance
in [16]] and on which we will not rely for the rest of the present paper, it is convenient to recall how
belief functions can be described in terms of their mass distribution. Specifically, every belief function
is induced by a mass distribution m over a Boolean algebra A, i.e., a function m : A — [0, 1] such that
Y scam(a) = 1. From this mass distribution, the belief function is then defined as follows:

Bel(a) = Z m(a). (3)

bCa

Observe that, while probability functions on A are fully determined by distributions on at(A), belief
functions on A are fully described by mass functions on A itself, and not only on its atoms. This easy
observation marks the key difference between the two uncertain measures.

Given this definition, we can more vividly represent the belief function induced by a conditional > ¢
according to equation 2] by appealing to a generalization of the imaging-like updating method for belief
functions introduced in [6]. Specifically, let us consider a finite Boolean algebra A, a selection function
f A xat(A) — A, and a probability P: A — [0,1]. For a given element a € A we can define a mass
distribution m, : A — [0, 1] as follows: m,(b) = Y. f(a,a)—» P(@). Then the corresponding imaged belief
function is:

Bezaw):zmm:z( ) P<a>>= ) @
af =c

cCh cCh (a,00 o:f(a,a)Ch
As a consequence, we obtain the following:

Fact 5. Consider a finite Boolean algebra A, a selection function f : A x at(A) — A, and a probability
P: A — [0,1], the following holds for all a,b € A:

Platy (-)) = P(O(-)) = Bela(")

P(a >y b) = P(T}(b)) = Bela(b)

Specifically, the probability of a selection function conditional a > b is equal to the corresponding
belief function of the consequent imaged on the antecedent, i.e. Bel, (D).

This general result implies that the probability of a broad class of conditionals can be characterized
in terms of an updated belief function. For instance, variably strict conditionals, which encompass both
Stalnaker conditionals and Lewis counterfactuals (see [[19, [18]]), are known to be characterizable as se-
lection function-based conditionals. Similarly, preferential conditionals [21} [11 [3]] also fall under this
category. Indeed, the semantics of preferential conditionals is typically defined using preorders, such
that a preferential conditional a I> 7 b is true at a world « if and only if the minimal a-worlds with respect
to the preorder associated with o are also b-worlds. This semantics can be reformulated such that the
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set of minimal a-worlds, with respect to the preorder associated with ¢, constitutes a selection function
f(a, ). Hence, the aforementioned result also holds for preferential conditionals. This result general-
izes Lewis’s [20] work on Stalnaker conditionals. Lewis demonstrated that the probability of a Stalnaker
conditional a > b corresponds to the probability of the consequent b imaged on the antecedent a. Essen-
tially, the probability of a Stalnaker conditional aligns with a specific updated probability distribution.
Given that belief functions generalize probabilities, our finding indicates that the probability of selec-
tion function-based conditionals generally follows an updated belief function, and in specific instances,
for instance in the case of Stalnaker conditionals, this updated belief function can indeed reduce to a
probability, thereby implying Lewis’s original result (further details are in subsequent sections).

Therefore, it is legitimate to ask under what conditions the belief function induced by a conditional
is also a probability function. The next result provides an answer to this question, bringing together
some of the results seen so far and characterizing the conditions under which the map defined in (2)) is a
probability function.

Proposition 1. Consider a finite Boolean algebra A, a selection function f : A X at(A) — A, and a
positive probability P : A — [0,1], for all a € A, the following conditions are equivalent:

(i) P(ar>¢ () : A —[0,1] is a probability function,
(ii) |f(a, )| =1,
(iii) R is a function,
(iv) forall x € A, Dgx = <>'£x.

Proof. The equivalence between (ii), (iii), and (iv) follows from Fact [3| and the definition of R}. We
now prove that (iv) implies (i). Indeed, if Dgx = <>£x holds for all x € A, we have that Dé: distributes
over disjunction, namely D£ (cVb) = DZ; cV D{; b, and so, by Fact[5] we would have that Bel,(cV b) =
Bel,(b) + Bel(b) — Bel,(c Ab). Namely, the belief function Bel, is additive and hence a probability;
namely P(a >y (-)) : A — [0,1] is a probability function. We now prove that (i) implies (ii). Let us
reason by contraposition and assume that f doesn’t satisfy uniqueness, namely that there is an atom
o and an element a € A such that |f(a,o)| > 1 or f(a,o) = L. If the former holds, let b = f(a, &),
then, by definition of Bel,, we would have that Bel,(b) > 0, since m,(b) > 0. Thus, take € b so that
b= BV (bA—-PB), and then one has Bel,(b) > Bel,(B) + Bel,(b N —~f3), whence Bel, is not additive.
Finally, if f(a,o) = L, then Bel,(L) > 0. Therefore, Bel, is not a probability either. So, by Fact
P(a >y (-)) is not a probability. O

The above results are general findings concerning conditionals and probability, and they can be in-
terpreted as having limitative implications. On one hand, they demonstrate that the probability of a
selection function-based conditional aligns with imaged belief functions. On the other hand, they estab-
lish that the belief function induced by a conditional is a probability function if and only if the selection
function underlying the conditional satisfies the uniqueness property. Given these general results, we
can now proceed to investigate whether more specific relationships exist between updating methods for
probability and selection function-based conditionals.

4 Dealing with General Updates

As briefly mentioned in the introduction, Lewis [20] introduced imaging as an alternative to condition-
alization for updating a probability measure P : A — [0, 1]. Roughly, this procedure changes the initial
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probability P by acting as if a certain event a holds. This update is accomplished by leveraging a sim-
ilarity structure among possible worlds (or, equivalently, a selection function): the updated a-imaged
probability P, is obtained by shifting the probability mass of each atom « to its closest a-world. Cru-
cially, this updating procedure relies on a uniqueness assumption: for each o € at(A), there is only one
closest a-world to which « transfers its probability mass P(c¢t). Girdenfors [12] further generalized
Lewis’s imaging by relaxing this uniqueness assumption, allowing for multiple closest worlds. Building
on this prior work and drawing inspiration from Giienther [14], we now introduce a general framework
for defining updating methods for probabilities that generalizes both Lewis and Gérdenfors’s imaging.
First, given a finite Boolean algebra A and a selection function f : A x at(A) — A, we define a
distribution function for f asamap A : A x at(A) — [0, 1]24)] satisfying the following constraints:

* Aa,a)(B) =0if and only if B ¢ f(a, )

¢ Y A (a7 OC) (ﬁ ) =1
Bes(aa)
Observe that the second item above states that, for all a € A and a € at(A), A(a,a) is a probability
distribution on f(a, o).
Now, consider a finite Boolean algebra A, a positive probability P : A — [0, 1], a selection function
f:Axat(A) — A, and distribution function A : A x at(A) — [0,1]/2A)] for f. Given an element a €
A\ { L}, we can define a probability distribution P* over at(A) as follows: for all B € at(A)

BrB) = Y Aaa)B)-Pla) Q)
a:fef(a,0)

Specifically, the probability distribution Pj (+) is obtained by redistributing the original probability
mass of each atom o among all atoms in f(a, o), resulting in a new probability distribution. Hence, the
corresponding updated probability function can be expressed as:

Prb)=Y PI(B) =Y ( ) l(a,a)(ﬁ)-P(a)) (6)

Beb Beb \a:Bef(a,a)

Pal (+) represents an updated probability distribution where the shift of probability mass is performed
according to the selection function f. The constraints imposed on the distribution function A ensure
that P2(-) is indeed a probability distribution. Moreover, all the probability mass is transferred to the
atoms selected by f. Indeed, the following result can be proven from equation [6|and the definition of the
distribution function A:

Fact 6. Consider a finite Boolean algebra A, a selection function f : A x at(A) — A and a distribution
mass A : A x at(A) — [0,1]2A)] Fora € A\ { L}, PX(") is a probability function

According to the general updating method for probabilities defined above, which utilizes the distri-
bution function A, several different updating procedures can be represented, including conditionalization
[14]), imaging [20], and general imaging [12]]. Furthermore, since A allows for considerable flexibility in
the redistribution of probability mass, numerous other updating procedures, beyond these standard and
common ones, can also be defined within this framework.

Having established this foundation, an important question remains: what is the relationship between
selection function-based conditionals and A-updating methods for probability? In light of the preceding
results, we can demonstrate that these updating methods can be characterized as a probability induced
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by a conditional only in specific cases, thus proving that selection function-based conditionals cannot
capture the entire scope of A-updating procedures.

First, let us prove a general result concerning the relationship between the probability of conditionals
and updating methods, namely that the probability of a conditional a > b (with f satisfying normality)
will always be less than or equal than the corresponding A-updated probability of b given a:

Fact 7. Consider a finite Boolean algebra A, a selection function f : A x at(A) — A satisfying normality,
and a distribution mass A : A x at(A) — [0,1]2®), For a € A\ {_L}, and for all b € A,

P(a>yb) < P} (D)

Proof. (Sketch) We show that for any o € a 1> b, the initial probability mass of P(«) contributes to the
calculation of P}(b). Specifically, let us consider o € at(A) such that & € a 1> b. This implies that
f(a,a) C b. According to the definition of P*(-), the probability mass P(c) is redistributed among the
elements in f(a, ot). However, since f(a, a) C b, we know that for every 8 € f(a, o), B € b. This implies
that the mass P(«) from every a € a > b is redistributed among atoms that are below b. Consequently,
this mass will be included in the summation that yields P*(b). Thus, we have ¥ e e pPa) < PX(b),

which is equivalent to P(a 1> ; b) < P} (b). O

We now have all the necessary components to show the conditions under which the probability of a
conditional corresponds to an updated probability.

Theorem 1. Consider a finite Boolean algebra A, a selection function f : A x at(A) — A satisfying
normality, a distribution function A : A x at(A) — [0,1]2A) and a positive probability P : A — [0, 1].
The following holds:

(forallac A\{L} and b € A, P(at>; b) = PX(b)) & f satisfies uniqueness

Proof. (Sketch) («<). This direction is straightforward. (=) By contraposition, assume that f doesn’t
satisfy uniqueness, namely there are o and a such that | f(a, ¢t)| > 1, by normality. Then, by Proposition
we have that P(a >/ (-)) is not a probability function, hence, a fortiori, it cannot be P2 (-) which is
a probability by Fact [6} therefore there must be some a € A\ {_L} and b € A such that P(a > b) #
PX(b). O

In conclusion of this section, let us examine the previous result in more detail. First of all, let us
observe that if f satisfies the uniqueness constraint (along with normality), then for all a € A\ { L},
P(a >y (-)) and P2(-) coincide. This is because, under uniqueness, A(a, o), being a probability distri-
bution on f(a, ) = {B}, it can only take values of 0 or 1; specifically, A (a,o)(B) = 1 and 0 otherwise.
This means that each world (or atom) « transfers its entire probability mass to its unique closest a-world,
as determined by f. Hence, due to uniqueness, the mass mi,, reduces to a probability distribution.

Conversely, when f does not satisfy uniqueness, it generally holds that for some a,b € A, witha # L,
P(at>yb) < P}(b) as the following example shows.

Example 1. Let us consider the algebra A of three atoms, i.e. at(A) = {a,0n,03}. Furthermore,
conforming to our convention, let us represent the elements of A as subsets of at(A).

Let us consider the selection function f such that f({op,03},00) = {w, 03}, f({on, 05}, 00) =
{0} and f({on,a3},3) = {o}. Notice that f does satisfy normality, yet not the uniqueness property
because | f({on, 05}, 00)| = 2.

Let P be a positive probability on A and A be a distribution function. Recall from what we stated at
the very beginning of this section that for all a € A and « € atA, A(a, &) is a probability distribution on
fla, ). Thus, assuming A to be positive, we have that
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* AM{a, 03}, 1) distributes postively on f({on, 03}, 01) = {00, a3} and therefore
l({OQ,O@},OC])(OCz) > 0 and l({az,ag},al)(%) >0y

* A({,03}, ) can only assign 1 to o being Q the unique element in its domain.
Then, by definition:
* P{az, a5} >y o) = P(f({on, a5}, 02)) = P(0);

* Pl oy (02) = A({on, a5}, o) (02) - Plon) + A ({on, 05}, ) (00) - P(on) = A({a, 05}, o) (o) -
P(oy)+1-P(a).
Therefore, since P is positive and A({op, a3}, 1) (o) >0,

P({00,05} By @) < Py 1 (02).

5 Conclusion

The present work aimed to demonstrate that the probability of selection function conditionals can be
characterized in terms of updated belief functions within the framework of Dempster-Shafer theory.
Conversely, classical Bayesian probabilistic updates (defined in terms of A) cannot be characterized as
the probability of a selection function conditional, except in a highly restricted case, specifically when the
set of closest worlds involved in defining both the update and the conditional is a singleton. These results
are quite general, as selection function conditionals represent a broad class of conditionals, including
variably strict conditionals and preferential conditionals.

The results presented here can be further generalized to gain new insights into the logic of condi-
tionals. In particular, the finding that the probability of selection function-based conditionals can be
represented as a belief function suggests that this type of conditional might be representable in terms of a
standard normal modal operator from modal logic. Indeed, our results in Section 3 can be further general-
ized to explore whether selection function-based conditionals can be represented as a > b = O(a — b),
where — can be another binary connective. Previous work in this direction by [22]] has shown that
Lewis counterfactuals a > ¢ b can be represented as (J(b | a) within the framework of Boolean algebras
of conditionals [8], where (- | -) is a conditional that satisfies suitable algebraic counterparts of the laws
of conditional probability. Given that Lewis counterfactuals are a specific type of selection function con-
ditional, our findings in this work suggest that the representation result in [22] can also be extended to
other kinds of selection function conditionals by imposing appropriate constraints on L.

On a more conceptual level, we have shown that a broad class of updating methods, including con-
ditionalization, cannot be interpreted as the probability that a certain conditional connective holds. A
question remains open regarding whether there exists a specific operator whose probability can represent
these kinds of updating methods. Our results here indicate that the possible candidates are limited.
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