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Abstract. Constructive adaptation is a search-based technique for gen-
erative reuse in CBR systems for con�guration tasks. We discuss the
relation of constructive adaptation (CA) with other reuse approaches
and we de�ne CA as a search process in the space of solutions where
cases are used in two main phases: hypotheses generation and hypothe-
ses ordering. Later, three di�erent CBR systems using CA for reuse are
analyzed: con�guring gas treatment plants, generating expressive mu-
sical phrases, and con�guring component-based software applications.
After the three analyses, constructive adaptation is discussed in detail
and some conclusions are drawn to close the paper.

1 Introduction

Classically, adaptation methods have been classi�ed as generative reuse versus
transformational reuse [1]. Derivational (or analogical) replay is the paradig-
matic method of generative reuse and has been used in planning tasks. The
basic idea in derivational replay is that the trace of the problem solving process
in a retrieved case is obtained and replayed (re-instantiated) into the context of
the current problem. In transformational reuse there are a number of transfor-
mational operators that are applied to (a copy of) the solution of a retrieved
case until a solution consistent with the new problem is achieved. Constructive
Adaptation (CA) is a form of generative reuse in that the solution of the new
problem is constructed (rather than transformed). For this reason it is similar
(but not identical) to derivational replay. However, constructive adaptation uses
the solution of retrieved cases as such, not the trace of solving the case.

Constructive adaptation, in abstract terms, can be described as a search
process in the space of solutions where cases are used in two main phases: hy-
potheses generation and hypotheses ordering. Before explaining the technique of
constructive adaptation we discuss its relation with other generative and trans-
formational techniques for reuse in x2. Then, we present in x3 the main elements
of constructive adaptation and the search process over states (representing par-
tial solutions) that is at the core of CA. For better understanding CA three
CBR systems using constructive adaptation as reuse method are analyzed. These



CBR systems perform tasks where solutions are complex structures of elements
in widely di�erent domains. The three CBR systems have the tasks of con�gur-
ing gas treatment plants, generating expressive musical phrases, and con�guring
component-based software applications. After analyzing the CA reuse process
in three CBR systems, constructive adaptation is discussed in detail in x4, and
�nally some conclusions are drawn to close the paper.

2 Reuse in a nutshell

There have been several studies with the goal to systematize the di�erent adap-
tation techniques used in CBR [13,14]. In this section we will briey summarize
di�erent approaches to adaptation exclusively with the goal of understanding
the relation of constructive adaptation with other existing techniques. We will
�rst discuss the notions of reuse and adaptation, then we will review the major
adaptation techniques and compare them with constructive adaptation.

We can distinguish analytical tasks from synthetic tasks; we will see that
reuse is quite di�erent for CBR systems performing analytical or synthetic tasks.
An analytical task is one in which solutions are expressed as an enumerated col-
lection of elements, typically called classes |and thus the task is usually called
classi�cation or identi�cation. A synthetic task is one where the number of solu-
tions is so large that they are not enumerated; instead there are solution elements
and a solution is a composite structure of these elements. The possible composi-
tions determine the solution search space, and problem solving is a process that
is able to �nd a composition that is a solution. Instead of saying that classi�ca-
tion CBR has no adaptation and synthetic CBR has adaptation, the notion of
reuse was introduced in [1] in order to encompass the processing of knowledge
obtained from retrieved cases in synthetic and analytical tasks. Thus, synthetic
tasks have adaptation techniques for realizing the reuse process, while analytical
tasks have techniques that assess the retrieved cases for deciding which is the
solution of a problem. For instance, in k-nearest neighbor the retrieve process
determines the number k and those cases that are most similar to the problem,
while the reuse process uses that information with a speci�c technique|e.g.
using retrieved cases to \vote" on classes and taking as solution the class with
most votes.

Concerning adaptation techniques for reuse on synthetic tasks, they fall into
two families: transformational adaptation and generative adaptation. Transfor-
mational adaptation (see [9, 10]) takes the description of a problem and a re-
trieved case (including the solution description) and transfers the retrieved so-
lution by modifying it until a new solution structure is achieved that is \con-
sistent" (or \adequate") for the new problem. Transformational adaptation can
be analyzed in more detail, for instance compositional adaptation is de�ned in
[13] and [14] as a form of adaptation where solution parts coming from multiple
cases are adapted and combined together. For our purposes, we will consider
compositional adaptation as a modality of transformational adaptation where
the solution structures being transformed originate not from one but several



Table 1. Comparison of derivational, constructive, and transformational methods for
reuse considering the basis of information used to take decisions and the way a solution
is build.

Method Basis Solution

Generative
Derivational

Constructive

trace
case

construct
construct

Transformational case transform

cases. This view is consistent with the fact that both derivational adaptation
(e.g. derivational analogy in [11]) and constructive adaptation (as shown later
in the paper) may use information from one or several cases1.

Derivational (or generative, as sometimes is called) adaptation is based on
augmenting the case representation to detailed knowledge of the decisions taken
while solving the problem, and this recorded information (e.g. decisions, options,
justi�cations) is used to \replay" them in the context of the new problem. As
originally de�ned in derivational analogy [6] for planning systems the cases con-
tain traces from planning process performed to solve them; also it is stated that
in Prodigy/Analogy stored plans are annotated with plan rationale and reuse
involves adaptation driven by this rationale [12].

Let us de�ne generative adaptation as a process that uses information from
retrieved cases to construct a (new) solution for the current problem. From this
point of view, we have two large families of adaptation techniques: transforma-
tional adaptation (including compositional, structural, etc varieties) and gener-
ative adaptation | that includes both derivational adaptation and constructive
adaptation. Table 1 shows the main features of these techniques:

Generation vs. Transformation. The solution is generated (using case infor-
mation) in generative adaptation while it is derived by transforming old solu-
tion(s) in transformational adaptation;

Cases vs. Traces. Derivational adaptation use annotations of the problem
solving process (the \trace") in the retrieved cases while constructive adaptation
uses just the cases (i.e. a description of the problem and the solution without
intermediate information about how the system went from problem to solution
during problem solving).

In the following sections we will present constructive adaptation as a reuse
method for con�guration tasks, where we use con�guration as a general term for
tasks where the solution is a structure of relations among elements. Speci�cally,
we will present applications of constructive adaptation to the design of plants
for gas treatment (x 3.1), generation of expressive musical phrases (x 3.2) and
con�guration of CBR systems based on software components (x 3.3). We will not
consider planning tasks in our framework; although it could be included in this

1 Another distinction is made in [14] between transformational and structural adap-
tation; since both are based on reorganizing solution elements provided by retrieved
cases it will suÆce for our purpose here to subsume structural adaptation as a
modality that �ts in our de�nition of transformational adaptation



generic de�nition planning involves a very specialized collection of approaches
(both in the case-based planning approaches and in the planning community at
large) that focus on the sequential structure of plans.

3 Constructive adaptation

Succinctly, constructive adaptation (CA) is a form of best-�rst heuristic search
in the space of solutions that uses information from cases (solved problems) to
guide that search. Di�erent modalities of CA can be developed: e.g. the search
process can be exhaustive or not, the representation of cases and states can be
identical or not. We are now going to characterize CA in more detail by de�ning
its two constitutive processes or functions: Hypotheses Generation an Hypotheses
Ordering. Subsequently, we will show three speci�c realizations of CA in three
di�erent CBR systems.

Let us start de�ning a case Ci = (Pi;Ki) as a pair of problem description Pi

and a solutionKi. The problem description Pi include the problem requirements
Req(Pi), usually the input provided by the user. Since the solution is a con�gura-
tion, we can consider that |given a CBR system using a representation language
with concepts and relations| a con�guration is a structure of those concepts
and relations. Let us denote K the set of possible con�gurations expressible in
a language. Notice that the set K contains both partial and complete con�gura-
tions; thus we will note the set of complete con�gurations KC � K. The solution
of a case is a con�guration that is both complete and valid. A con�guration
Ki is complete when Ki 2 KC . Moreover, we say that a solution is valid if
Sat(Req(Pi);Ki), i.e. if the solution satis�es the input requirements.

Constructive adaptation works upon states. A state is a domain-speci�c rep-
resentation of the information needed to represent a partially speci�ed solu-
tion, in our case a partial con�guration. We will assume that there is a function
SAC : S ! K (where S is the set of states expressible in a CBR system) such
that given a state s 2 S as input SAC yields a corresponding (partial) con�gu-
ration K 2 K in the language used in the case base. Notice that a state contains
more information than the partial con�guration: it may contain the user input
requirements, intermediate values used for problem solving, etc. There are CBR
systems that may use the case representation itself as a way to represent a state
| this option is often taken in transformational adaptation, since transformation
rules and operators are de�ned upon the structure of cases.

In general, however, representation of state and case need not be identi-
cal. We introduce this distinction not only for theoretical clari�cation, but also
for practical purposes: it has been convenient to implement state representa-
tion as distinct from case representation. The rationale can be summarized as
follows: cases have representation biased towards storing and retrieving \ex-
perience episodes" of problem solving, while states have representation biased
towards the search-based problem solving.

After introducing the basic elements of CA (cases, con�gurations, and states)
we will describe the process of constructive adaptation shown in Figure 1. The



Initialize OS = (list (Initial-State Pi))

Function CA(OS)
Case (null OS) then No-Solution

Case (Goal-Test (first OS)) then (SAC (first OS))
Case else

Let SS = (HG (first OS))
Let OS = (HO (append SS (rest OS)))

(CA OS)

Fig. 1. The search process of constructive adaptation expressed in pseudo code. Func-
tions HG and HO are Hypotheses Generation and Hypotheses Ordering. Variables OS
and SS are the lists of Open States and Successor States. The function SAC maps the
solution state into the con�guration of the solution. Function Initial-Statemaps the
input requirement Pi into a state.

CA process is a best-�rst search process with two basic functions (Hypotheses
Generation and Hypotheses Ordering) and two auxiliary functions (Goal Test
and Initial State). Goal Test is simply a function that given a state s checks
whether or not it is a solution|i.e. if the corresponding con�guration SAC(s)
is complete and valid. Initial State is a function that maps from the input re-
quirements of the system Req(Pi) to the initial state received by CA.

The process of Hypotheses Generation is domain speci�c and can use knowl-
edge acquired from cases (CK) and from domain models containing general
knowledge (GK), or both. Given s, an open state, Hypotheses Generation \ex-
pands" this state, i.e. generates the successor states of s. The essential idea of
Hypotheses Generation is that when several options exist about elements or re-
lations that can be added to the con�guration of the state SAC(s) then each
option is considered a possible hypothesis, and a new (successor) state is gener-
ated incorporating one hypothesis.

In order to decide which open state s is selected to be expanded the Hy-
potheses Ordering function is used to rank the open states; CA (see Fig. 1) then
selects the best one according to this ordering. The process of Hypotheses Or-
dering is domain speci�c and can use knowledge provided by cases (CK) and
from domain models containing general knowledge (GK), or both.

The CA search process is summarized in Fig. 1. CA starts receiving (a list
with) an initial state generated from the problem description Pi by auxiliary
function Initial State. The CA algorithmworks with an ordered set of hypotheses,
the list of open states OS. Being recursive, CA checks �rst the termination
conditions: a) if OS is empty all possible states have been explored, and CA
terminates because there is no solution , and b) if the best state in OS (the �rst
in the ranking of open states) passes the Goal Test this state is a solution for Pi.
The recursive step in Fig. 1 generates the successor states SS of the best state in
OS using the Hypotheses Generation function and they are added to the open
states OS ; then the list OS is re-ordered using the Hypotheses Ordering function
and this is passed to the recursive call of CA.



Since Hypotheses Generation and Hypotheses Ordering are both domain-
speci�c (as well as the representation of state) the explanation so far of CA
has been very abstract. The best way to understand more concretely CA is
through several case studies where speci�c CBR systems use speci�c Hypotheses
Generation and Hypotheses Ordering functions. The following sections describe
constructive adaptation in several CBR systems focusing on how states a rep-
resented, and how Hypotheses Generation and Hypotheses Ordering use case
knowledge (CK) and domain knowledge (GK).

3.1 Design of gas treatment plants

T-Air is a case-based reasoning application developed for aiding engineers in the
design of gas treatment plants [2] developed at the IIIA for the Spanish company
tecnium. The gas treatment is required in many and diverse industrial processes
such as the control of the atmospheric pollution due to corrosive residual gases
which contain vapors, mists, and dusts of industrial origin. Examples of gas
treatments are the absorption of gases and vapors such as SO2, CLH, or CL2;
the absorption of NOx with recovering of HNO3; the absorption of drops and
fogs such as PO4H3 or ClNH4; dust removal in metallic oxides; and elimination
of odors from organic origin.

The main problem in designing gas treatment plants is that the diversity
of possible problems is as high as the diversity of industrial processes while
the experimental models about them is small. The knowledge acquired by en-
gineers with their practical experience is the main tool used for solving new
problems. For the design of gas treatment plants about forty di�erent types of
main equipment have been covered. We also started with a case-base compris-
ing one thousand solved problems (cases) involving, each of them, from two to
twenty di�erent types of equipment.

A solution for a T-Air problem (Fig. 2) is a con�guration holding the required
equipments (mainly scrubbers, pumps, tanks, and fans), the design and working
parameters for each equipment, and the topology of the installation (the gas
circuit and the liquid circuits). The CBR process is organized on three task levels:
a) selecting the class of chemical process to be realized, b) selecting the major
equipments to be used (and their inter-connections), and c) adding auxiliary
equipment and assessing the values for the parameters of each equipment.

A state in T-Air contains information about a) the input requirements, b)
the corresponding partial con�guration, c) a collection of open issues, and d)
hypotheses supporting cases. The open issues represent the collection of decisions
pending to be resolved in the state's partial con�guration. For every hypothesis
incorporated into a state a set of supporting cases is recorded; they are the cases
from which this particular hypothesis was derived. The initial state is formed by
the input requirements plus the initial open issue| namely, selecting the class
of the chemical process to be realized.

Hypotheses Generation. The successor function takes the best state (see
below how \best" is assessed) and selects as current issue one of the open issues
| this selection is based on a domainmodel (GK). If the issue belongs to the task



Fig. 2. A solution in T-Air is the structure of equipments of a gas treatment plant.

level of chemical process class the new hypotheses are generated using a case-
based process (CK). T-Air retrieves cases based on the input requirements (and
some derived features inferred from the requirements). Then T-Air generates
one hypothesis (a successor state) for each chemical process class found in the
retrieved cases. For instance, odor elimination can be solved by adsorption2 or
absorption. The successor states for adsorption and absorption will also record
the supporting cases corresponding to each hypothesis.

If the open issue belongs to the task level of equipment selection the new
hypotheses are generated using a case-based process (CK). T-Air retrieves cases
based on the input requirements and the chemical process class; a new hypoth-
esis is generated by each \core equipment" found in the retrieved cases. A new
hypothesis is a new state with a partial con�guration that incorporates one of
the \core equipments", the new open issues corresponding to this equipment,
and the supporting cases for the hypothesis. For instance, odor elimination with
absorption can be realized with the core equipment \two scrubbers, a pump, and
a fan" or \one multiventuri, a pump, and a fan".

If the open issue belongs to the third task level the hypotheses to be generated
concern auxiliary equipment and parameter assessment. The major parameters
are assessed using a case-based process (CK) because there are no analytical
models capable of estimating them, and the tecnium company experience (rep-
resented as cases) is the only available knowledge3. However, when a parameter
is assessed to have a certain value, this may provoke the rising of new open
issues that need to be solved. These open issues can be solved adding auxil-

2 Adsorption is the use of solids for removing substances from either gaseous or liquid
solutions.

3 There are less critical parameters that can computed using analytical methods, and
T-Air uses them when available.



iary equipment to the con�guration. For instance, when the chemical reaction
is exothermic and the gas ow exceeds a certain threshold a new open issue for
refrigerating the involved equipment is generated. This issue can be solved by
the addition of a refrigerator as auxiliary equipment.

Hypotheses Ordering. The ordering of hypotheses is performed by an
assessment heuristic based on both domain knowledge (GK) and cases (CK).
The assessment heuristic takes into account several dimensions: i) estimated
overall cost (GK), ii) plant overall reliability (GK and CK), iii) critical parameter
values (GK), and iv) supporting cases (CK). The assessment heuristic receives a
state as input and estimates these dimensions on the partial con�guration that
corresponds to that state; the pending states are ordered by this heuristic. This
means that, all other things equal, the T-Air system will �rst explore the states
corresponding to con�gurations that have greater number of related cases in the
case base.

Finally, the Goal-Test function checks whether a state is a solution |i.e.
whether the con�guration of the state is complete and valid (using domain
knowledge). The search process is not exhaustive because there is no guarantee
that the Hypotheses Generation function will generate all possible hypotheses.
Hypotheses Generation uses cases retrieved from the case base to pinpoint the
hypothesis to be considered.

3.2 Expressive music generation

SaxEx [4] is a system for generating expressive performances of melodies based
on examples of human performances (currently SaxEx is focused in tenor saxo-
phone interpretations of standard jazz ballads). The input of SaxEx is a musical
phrase with a sound track and a score in Midi format plus some a�ective labels
characterizing the intended mood for the expressive performance. In the nota-
tion introduced in x3 this input is the Req(P ) part of the problem description.
Two musical theories are used by SaxEx: Narmour's implication/realization (IR)
model and Lerdahl and Jackendo�'s generative theory of tonal music (GTTM).
SaxEx employs IR and GTTM to construct two complementary models of the
musical structure of the phrase. While the IR model holds an analysis of melodic
surface, the GTTM model concentrates on the hierarchical structures associated
with a piece. The problem description P is formed both by the input Req(P )
and the musical structures inferred using these domain models.

A solution for a problem in SaxEx is a sequential structure of notes belonging
to a phrase, where each note has an associated expressive model. The expres-
sive model holds the following parameters: sound amplitude (dynamics); note
anticipations/delays (rubato); note durations (rubato); attack and release times
(rubato and articulation); vibrato frequency and vibrato amplitude of notes;
articulation mode of each note (from legato to staccato); and note attacks (al-
lowing e�ects such as reaching the pitch of a note starting from a lower pitch
or increasing the noise component of the sound). Summarizing, a solution is
achieved when each note has an assigned value for each expressive parameter.



A state in SaxEx contains information about i) the input requirements, ii) the
expressive models generated up to this point, and iii) the set of open notes (the
notes in the phrase without an expressive model). The initial state is formed by
the input requirements and all the notes of the musical phrase as open notes.

Hypotheses Generation. Given a state s Hypotheses Generation selects
the next note from open notes and uses cases (CK) for generating several ex-
pressive models for that note |each one embodied in a new successor state.
Notice that the hypotheses generated are expressive models and not individual
expressive parameters. For each note, a set of similar notes is retrieved using the
mechanism of perspectives [3]. Analyzing the expressive models of the retrieved
notes, with the help of musical knowledge that constrain over the possible com-
binations of values, several (alternative) expressive models are generated, each
with an assessment of note similarity |comparing the problem note and the
retrieved notes involved in each expressive model.

Hypotheses Ordering.The ordering of hypotheses uses domain knowledge
(GK) and case knowledge (CK). Domain knowledge assesses the coherence of the
di�erent expressive models in a state. This assessment takes into account that the
expressive models represent the way the melody (a sequence) will be performed.
SaxEx establishes two kinds of main coherence criteria: smoothness and variation.
Moreover, these criteria are established both over single expressive parameters
(e.g. pitch, attack) and over the relations among expressive parameters (e.g.
the relation between pitch and attack). Smoothness and variation are basically
contradictory: the �rst tends to iron out strong variations, while the second,
variation, is against repetition of structures and thus strengthens variations.
The resulting expressive performance deals with the trade-o�s among them with
the aim of striking an overall balance pleasant to the ear. Case knowledge is
used to estimate an overall similarity value of a state with respect to the cases
used in generating that state. This is done by aggregating the note similarity
values of the notes with expressive model belonging to the state. The Hypotheses
Ordering function combines these two assessment values into a state \goodness"
value and ranks the open states according to these values.

Finally, the Goal-Test function just checks that the solution is complete and
valid. Validity in SaxEx is de�ned by two threshold values of smoothness (min)
and variation (max) that have to be satis�ed by a �nal state. Smoothness and
variation thresholds can be set by the user according to her particular musical
interests.

3.3 Component-based software con�guration

Finally, we will present a CBR system using CA for con�guring software applica-
tions from a library of software components called CBR broker. The CBR broker
only assumes that the software components are expressed in the UPML (Univer-
sal Problem-solving Methods Language) formalism [7]. In a nutshell, UPML can
describe tasks (what is to be achieved), problem-solving methods (how can a task
be achieved), and domain models (knowledge needed to achieve tasks). Task and
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Fig. 3. A con�guration in the WIM multiagent system. A box contains the binding of
a task and a PSM, while a cylinder is a domain model.

PSMs (problem-solving methods) are characterized by their input/output sig-
nature and their competence; the competence of a task or PSM is described by
preconditions (statements of what is supposed to hold for the component to be
applicable) and postconditions (statements about what holds after applying the
component). A domain model is characterized by properties of the knowledge it
contains.

A PSM elementary or be can decomposed into subtasks; when a PSM is
a decomposition the CBR broker has to �nd which PSMs can achieve those
(sub) tasks and when the PSM is elementary the CBR broker has to �nd which
domain models are required. The CBR broker receives as input a competence
requirement specifying the preconditions, postconditions and available domain
models for building a target application. The output of the CBR broker is a
con�guration: a structure specifying a) for a task, a speci�c PSM able to achieve
that task, and b) for each elementary PSM, which domainmodels are used | we
call those association bindings (see Fig. 3). We say a con�guration is complete
when all bindings have been resolved, and valid when the input competence
requirement is satis�ed; a con�guration is a solution when it is complete and
valid. The CBR broker stores in the case base those con�gurations obtained in
the past and CA uses them to guide the search process over the solution space.

The CBR broker has been used in a multi-agent system for retrieval and
integration of medical information in databases called WIM (Web Information
Mediator) [8]. The Problem Solving Agents register their competence as PSMs
into a Library using the UPML language. When a User Agent has some par-
ticular task to achieve for its user it sends a competence requirement to the
broker, that interacts with the Librarian Agent to obtain UPML speci�cations
and �nally reaches a complete and valid con�guration. Since a con�guration is
just an abstract speci�cation there is now the need to operationalize it into a
working system|in this case, a team of agents with the adequate competences.



This process of team formation is achieved by a negotiation process between the
CBR broker and the registered Problem Solving Agents [8].

A state in CBR broker corresponds to a partial con�guration. A state holds
information about tp-bindings (task/PSM bindings), preconditions and postcon-
ditions. The closed bindings is the collection of task/PSM bindings in the partial
con�guration of that state. The open bindings are those bindings not yet resolved
(tasks without a PSM bound to it). Moreover, a state has open (resp. closed)
preconditions and postconditions: they are those pre- and postconditions not
yet satis�ed (resp. already satis�ed) by the current partial con�guration. The
initial state is created from the input competence requirement: the input pre-
conditions are closed preconditions (we assume they are satis�ed) and the input
postconditions are open postconditions.

Hypotheses Generation.The CBR broker takes one task T from the open
bindings; several hypotheses can be generated for T , each one a PSM capable of
achieving T . The CBR broker uses the notion of component matching to select
PSMs that can meaningfully achieve a task. Component matching is de�ned
as follows: a PSM M matches a task T when a) their input/output signatures
are consistent, b) all the postconditions of T are satis�ed by M , and c) all the
preconditions of M are satis�ed by T 4.

For each PSM that matches T a new state is generated where T is bound to
one of these PSMs. The new tp-binding is called current tp-binding and is added to
the closed bindings. Moreover, the rest of the information of the state is updated
as follows. If the new PSM has subtasks they are added to open bindings; if the
new PSM is elementary the required domain models are associated with it (if
some are not available this new state is not valid and is not generated). The
open postconditions satis�ed by the postconditions of the new PSM are deleted
and become closed postconditions, while its new preconditions become open
preconditions.

Notice that only general knowledge (GK) is used in Hypotheses Generation,
since the options are retrieved from the UPML library using the notion of com-
ponent matching. Because of this, CBR broker performs an exhaustive search
with respect to the Library of components being used.

Hypotheses Ordering. The CBR broker uses only case knowledge (CK)
to rank the open states (the partial con�gurations); the cases are pairs Ci =
(Pi;Ki) where Pi is the input competence requirement andK is the con�guration
found for that input. First, the CBR broker computes the similarity between
the problem P and each case input description Pi using the LAUD structural
similarity distance[5]5. Thus, LAUD provides a ranking over the set of cases in

4 Notice that this condition is the converse of the previous one. The reason is that
preconditions are assumptions about what is true in the world so that a component is
applicable. If a PSM can achieve the same postcondition requiring less assumptions
than the task speci�ed, the PSM still satis�es that task.

5 A structural similarity is needed because the problem descriptions are represented
as feature terms; in particular, pre- and postconditions are sets of feature terms that
require a distance measure capable to deal with relational cases.



Table 2. Dimensions that characterize Constructive Adaptation (CA) in the three
CBR systems reviewed. Keywords used in the table: GK = General (Domain) Knowl-
edge, CK = Case (based) Knowledge.

CA Dimensions T-Air SaxEx CBR Broker

Hypothesis Generation GK & CK CK GK

Hypothesis Ordering GK & CK GK & CK CK
Exhaustive Search No No Yes

the case base. The next step is to transfer this knowledge to the set of open states
and rank them accordingly. Since each open state incorporates a new hypothesis
in the form of the current tp-binding, the CA-broker searches in the ranked
cases which Ci has the same task/PSM binding in the solution. The state is
given as endorsement value the similarity of the highest ranking case containing
the state's current tp-binding and all the open states are ranked according to
their endorsement values.

Finally, Goal-Test checks whether a state is a solution, i.e. there are no open
bindings and all input competence requirements pre- and postconditions are
satis�ed by the closed pre- and postconditions.

4 Constructive adaptation revisited

After the description of three CBR systems using constructive adaptation (CA)
we can review the basic notions of this reuse technique. Basically, CA is a gener-
ative technique for reuse (since CA constructs a solution using case information).
We have seen in the exempli�ed CBR systems that both general domain knowl-
edge (GK) and case knowledge (CK) can be used inside CA and that they can be
used for generating hypotheses and/or ordering hypotheses. Table 2 characterizes
several dimensions of constructive adaptation, with the columns characterizing
the three CBR systems reviewed in x3.

The �rst dimension, Hypothesis Generation, speci�es whether general do-
main knowledge (GK) and/or case knowledge (CK) is used in generating new
hypotheses while generating successor states. We can see that T-Air uses both
GK and CK while SaxEx and the CBR Broker use only CK and GK respectively.
The second dimension, Hypothesis Ordering, speci�es whether general domain
knowledge (GK) and/or case knowledge (CK) is used in ordering the hypotheses
to be considered (i.e. ranking the open states). We can see that the CBR Broker
uses only CK while the other two combine general and case knowledge.

Finally, the Exhaustive Search dimension speci�es whether the search process
is able to consider all possible solutions. Only the CBR Broker performs an
exhaustive search (with respect to the totality of the components in the Library).
Since the three systems provide just one solution (and not all valid solutions)
this means that exhaustivity only assures that when no solution is found it's
because it does not exist. The reason for being exhaustive is that Hypothesis
Generation uses GK to retrieve all components in the Library that match a



task speci�cation; retrieved cases are used only to order the hypotheses. T-Air

and SaxEx are not exhaustive because CK and GK is used to focus the search
process only on those hypotheses that have some endorsement from general or
case knowledge. Exhaustivity is not a good thing per se, it is a property that
a system may or may not need. T-Air has as a user an engineer of tecnium
company that uses past cases (plants engineered by tecnium) to achieve rapid
prototyping of new plants. There are always several solutions and the system
helps to �nd the good ones in terms of economy and ease of construction. In
SaxEx the number of possible solutions is always so large that exhaustivity is
not an issue.

5 Conclusions

The overall view of constructive adaptation, at this point, is that it's a exible
technique for using cases and general knowledge in CBR systems for synthetic
tasks. The three reviewed CBR systems have quite di�erent application domains,
and the only common aspect is that the solution to be built by CBR is a complex
structure of elements. Constructive adaptation o�ers a way to organize reuse
processes into the well founded paradigm of state-based search, and clari�es the
phases where cases (and general knowledge) can be used, namely generation
and ordering of hypotheses. The exact way in which cases are used to make the
decisions involved in generation and ordering is open and may vary from one
application domain to the other. However, applying CA to these CBR systems,
understanding how to use cases was easy once we had a clear idea of what a state
was in the system. As a lesson learned from these experiments we can say that
the main issue to apply CA was to clarify what information was to be present in
a state; once this was clear the rest of the elements in CA were easy to design:
hypotheses generation and ordering, and goal test.

Let us consider now the relation between constructive adaptation and deriva-
tional reply: in x2 we considered both as techniques for generative reuse, the dif-
ference being that derivational reply uses cases augmented with problem solving
data (the trace that is later replayed while CA just uses the cases |conceived as
(P; S) problem solution pairs. This di�erence comes from the distinction of states
and cases in CA. When the solution state is found, a solution con�guration is
built, but no \trace" information is stored| trace information is contained in
the search branches that generate, evaluate and discard states, and it is dis-
carded when only the �nal con�guration S is stored in a case. The reason why it
is so in CA was simply because this information was not needed. In retrospect,
we think this di�erence is due to the nature of planning tasks and the type of
search process required for planning. A plan is a sequential structure with a total
or a partial order. Planning can be seen as a search problem but its nature has
required that AI researchers developed speci�c methods, heuristics, and repre-
sentations for planning tasks. Thus, we think that recording trace information on
plans stored as cases comes naturally because it �ts this specialized approaches
of search processes for planning.



Our approach, however, has been focused on con�guration tasks where a
solution is a structure of elements and their relations. Constructive adaptation
proceeds by adding elements to the solution and relating it to the other elements;
if more than one element can be added, these alternative options are interpreted
as alternative hypotheses embodied in several states. Cases can be used for
generating and ordering hypotheses, and for this purpose there was no need to
store in cases information about the trace of the search process. The information
needed from the cases can be directly obtained from their solution structures, in
a speci�c way adequate for each application domain.

Finally, there are di�erent types of search processes that can be implemented
in the framework of constructive adaptation. The search process in adapting
cases can be exhaustive when all options (hypotheses) are always generated
and cases are used to rank the order in which each combination of hypotheses
(state) is explored| e.g. the CBR broker of x3.3. However, in applications where
there is no general knowledge available cases can be used to generate alterna-
tive hypotheses; this process is performed in the SaxEx system although general
(musical) knowledge is also used.

Generating hypothesis from a case base does not imply that the search pro-
cess of CA is exhaustive or not: it depends on the case base and on the kind
of memory search that the retrieval method performs. We have seen that T-Air

and SaxEx are not exhaustive, but the reason for this concerns the type of CBR
system being developed. It is possible to have an exhaustive search process in
CA when hypotheses are generated from CK and not GK, as in the following
example. Consider a variant of the CBR broker where there is no Library of
UPML components and just a case base of con�gurations of components. Let
us suppose that the case base has a number of cases that assures that every
component originally in the Library is used in at least one con�guration case. In
this scenario, the CBR broker can use the de�nition of component matching in
x3.3 to search the memory of con�gurations and �nd all components that satisfy
some requirements. Therefore, with certain conditions on the case base (when
the number and variety of cases are a good sample the possible solutions) and on
the retrieval method over cases (�nding all items relevant for a speci�c context)
the CA search process can be exhaustive.
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