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Abstract. We enhance real-time search algorithms with bounded prop-
agation of heuristic changes. When the heuristic of the current state is
updated, this change is propagated consistently up to k states. Applying
this idea to HLRTA*, we have developed the new HLRTA*(k) algorithm,
which shows a clear performance improvement over HLRTA*. Experi-
mentally, HLRTA*(k) converges in less trials than LRTA*(k), while the
contrary was true for these algorithms without propagation. We provide
empirical results showing the benefits of our approach.

1 Introduction

Real-time search interleaves planning and action execution in an on-line man-
ner. This allows to face search problems in domains with limited information,
where it is impossible to perform the classical search approach: planning first
the whole solution off-line, and then executing such solution. For these domains,
interleaving planning and action execution is needed: planning explores some
local search space selecting the best action from that limited exploration, and
action execution carries out that action, causing changes in the world. The pro-
cess repeats until achieving a solution. To assure completeness, real-time search
has to record in a hash table those actions that have been executed. Often, there
is an upper bound on the computing time that the planning phase can take.

Real-time search is also useful for domains with complete information whose
search spaces are too large to be explored in practice. In such cases, real-time
search is a suitable alternative to the impractical off-line search [7].

A number of algorithms have been proposed to perform real-time search. They
are based on the following strategy. Assuming an initial finite heuristic values,
the algorithm explores a search space local to the current state and updates
its heuristic accordingly, backing up costs. Then, the algorithm moves to the
next state where exploration/updating is repeated. The process is iterated until
finding a goal state. Some of these algorithms can find optimal solutions: solving
repeatedly the same problem instance performance improves and they converge
eventually to optimal paths.
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In the author’s knowledge the first proposed real-time search algorithms were
RTA* and LRTA* in the seminal work by Korf [9]. While RTA* performs rea-
sonably well in the first trial, it does not converge to optimal paths. On the
contrary, LRTA* converges to optimal paths with a worse performance in the
first trial. Both approaches are combined in the HLRTA* algorithm [11].

Instead of updating the heuristic of one (the current) state only, we have
proposed to propagate the heuristic change consistently up to k states [6]. We
call this idea bounded propagation, and we have applied it to LRTA* [6,5],
producing the LRTA*(k) algorithm. Experimental results show that LRTA*(k)
causes large benefits on the first solution, convergence and solution stability
with respect to LRTA*, at the extra cost of longer planning steps. In this paper,
we apply bounded propagation to HLRTA*, producing the new HLRTA*(k)
algorithm. This is not a direct extension of the work done in LRTA*(k): HLRTA*
deals with two heuristics h1 (always admissible) and h2 (admissible under some
circumstances) that require a careful handling, since propagation is done on
admissible heuristic values. Experimental results show that bounded propagation
causes the same kind of benefits on the first solution, convergence and solution
stability. These results show that, for k > 1, HLRTA*(k) converges in less trials
than LRTA*(k), while the contrary was true for the original algorithms.

The paper structure is as follows. In Section 2 we revise existing work on
real-time search, with special emphasis on HLRTA*. In Section 3 we present
the idea of bounded propagation. In Section 4, we describe the new HLRTA*(k)
algorithm, showing its correctness and completeness. In Section 5, we provide
experimental results of HLRTA*(k) on classical real-time benchmarks. Finally,
in Section 6 we extract some conclusions from this work.

2 Real-Time Search: RTA*, LRTA* and HLRTA*

The state space is defined as (X, A, c, s, G), where (X, A) is a finite graph, c :
A �→ [0,∞) is a cost function that associates each arc with a finite cost, s
is the start state, and G ⊂ X is the set of goal states. X is a finite set of
states, and A ⊂ X ×X − {(x, x)|x ∈ X} is a finite set of arcs. Each arc (v, w)
represents an action whose execution causes the agent to move from v to w.
The state space is undirected: for any action (x, y) ∈ A there exists its inverse
(y, x) ∈ A with the same cost c(x, y) = c(y, x). The successors of a state x are
Succ(x) = {y|(x, y) ∈ A}. A path (x0, x1, x2, . . .) is a sequence of states such
that every pair (xi, xi+1) ∈ A. The cost of a path is the sum of costs of the
actions in that path. A heuristic function h : X �→ [0,∞) associates with each
state x an approximation h(x) of the cost of a path from x to a goal. h∗(x) is the
minimum cost to go from x to a goal. h is said to be admissible iff h(x) ≤ h∗(x),
∀x ∈ X . A path (x0, x1, . . . , xn) with h(xi) = h∗(xi), 0 ≤ i ≤ n is optimal.

RTA* works as follows. From the current state x, it performs lookahead at
depth d, and updates h(x) to the max {h(x), 2nd min [k(x, v) + h(v)]}, where
v is a frontier state and k(x, v) is the cost of the path from x to v. Then, it
moves to y, successor of x, with minimum c(x, y) + h(y). This state becomes
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the current state and the process iterates, until eventually finding a goal. This
process is called a trial.

RTA* is a correct and complete algorithm in finite state spaces with positive
edge costs, finite heuristic values and where a goal state is reachable from every
state [9]. However, it is unable to improve its performance when solving repeat-
edly the same instance. This is due to the 2nd min updating strategy. To solve
this issue, the LRTA* algorithm was proposed [9]. It behaves like RTA*, except
that h(x) is updated to the max {h(x), min [k(x, v) + h(v)]}. This updating
rule assures admissibility, provided the original heuristic was admissible. Then,
the updated heuristic can be reused for the next trial. LRTA* is a correct and
complete algorithm, that converges to optimal paths when solving repeatedly
the same instance, keeping the heuristic estimates of the previous trial.

RTA* works fine in the first trial but there is no guarantee to convergence
after successive trials to optimal paths. LRTA* converges but it performs worse
than RTA* in the first trial. Would it not be possible to combine them? The
answer is the HLRTA* algorithm [11]. HLRTA* keeps for each visited node two
heuristic values, h1 and h2, which correspond to the heuristic updating of LRTA*
and RTA* respectively. In addition, it keeps in d(x) the next current node from
x. The interesting result here is that when search has passed through x, and it
backtracks to x from d(x) (that is, when it goes back to x through the same arc
it used to leave) then h2 estimate is admissible and it can be used instead of h1

[11]. Since HLRTA* always keeps admissible heuristic estimates, they are stored
between trials and it converges to optimal paths, in the same way that LRTA*
does. Experimentally, HLRTA* requires more trials than LRTA* to converge [4].

The HLRTA* algorithm with lookahead at depth 1 and with h admissible
appears in Figure 1. Like in [9], we assume the existence of Succ and h0 func-
tions, which when applied to a state x generate its set of successors and its
initial heuristic estimate, respectively. Procedure HLRTA* initializes the heuristic
estimates h1 and h2 of every state to h0 and 0 respectively. It also initializes
d(x) with null. Then it repeats the execution of HLRTA-trial until convergence
of the heuristic function, i.e., until h1 does not change anymore. At this point,
an optimal path has been found. Procedure HLRTA-trial performs a solving
trial on the problem instance. It initializes the current state x with the start s,
and executes the following loop until finding a goal. First, it performs lookahead
from x at depth 1, updating its heuristic estimates accordingly (call to function
HLRTA-LookaheadUpdate1). Second, it selects state y of Succ(x) with minimum
value of c(x, y) + h(y) as next state (breaking ties randomly). Third, it executes
an action that passes from x to y. At this point, y is the new current state and
the loop iterates. Note that the heuristic estimators computed in a trial are used
as initial values in the next trial.

Function HLRTA-LookaheadUpdate1 performs lookahead from x at depth 1. If
it happens that search moves back to a state v ∈ Succ(x) through the same arc
it moved forward (that is, d(v) = x), then h2(v) is admissible and H(v) takes it.
Otherwise, H(v) takes h1(v). Then, h1(x) and h2(x) are updated accordingly. If
h1(x) changes, the function returns true, otherwise it returns false.
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procedure HLRTA*(X, A, c, s, G)
for each x ∈ X do h1(x)← h0(x); h2(x)← 0; d(x)← null;
repeat
HLRTA-trial(X, A, c, s, G);
until h1 does not change;

procedure HLRTA-trial(X, A, c, s, G)
x← s;
while x /∈ G do

dummy ← HLRTA-LookaheadUpdate1(x);
y ← argminw∈Succ(x)[c(x, w) + H(w)];
execute(a ∈ A such that a = (x, y));
d(x)← y; x← y;

function HLRTA-LookaheadUpdate1(x): boolean;
for each v ∈ Succ(x) do

if d(v) = x then H(v) = h2(v);
else H(v) = h1(v);

y ← argminv∈Succ(x)[c(x, v) + H(v)];
z ← arg 2nd minv∈Succ(x)[c(x, v) + H(v)];
if h2(x) < c(x, z) + H(z) then h2(x)← c(x, z) + H(z);
if h1(x) < c(x, y) + H(y) then h1(x)← c(x, y) + H(y); return true;
else return false;

Fig. 1. The HLRTA* algorithm

In addition to the mentioned RTA*, LRTA* and HLRTA*, there are more
algorithms for real-time search. The weighted and bounded versions of LRTA*
[10]; FALCONS [3], that uses the classical heuristic g(x) + h(x); eFALCONS
[4], a hybrid between HLRTA* and FALCONS; a new version of LRTA* [8];
and γ−Trap [1], an algorithm that controls the exploration vs. exploitation
trade-off.

3 Bounded Propagation

As search progresses, heuristic values of visited states are updated. Using the
information obtained at the lookahead phase, we can better estimate the cost
of reaching a goal from a visited state, and this new information is stored in
the heuristic value of that state. This is a general strategy in real-time search
algorithms. So far, most algorithms limit heuristic updating to the current state.
Recently, we have proposed to propagate consistently the change of heuristic
estimate of the current state up to k states, not necessarily distinct. We call
this idea bounded propagation, since changes are propagated up to a bound or
limit of k states per step. The propagation occurs on the successors of the state
that changes its heuristic estimate. If one of these successors changes, this is
again propagated on its own successors. This process is iterated with a limit of
k considered states. Propagation improves the heuristic quality while keeping it
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admissible, so search will find better heuristic estimates in the future states that
will help find a solution sooner.

We have applied bounded propagation to LRTA*, producing the LRTA*(k)
algorithm (in fact, LRTA* is just a particular case of LRTA*(k) with k = 1).
LRTA*(k) performance improves greatly with respect to LRTA*, in terms of
first solution quality, convergence and solution stability [6]. However, bounded
propagation requires longer planning steps, since propagating to k states is com-
putationally more expensive than propagating to one (the current) state. Nev-
ertheless, benefits are important and the extra requirements on planning time
are moderate, so if the application can accommodate longer planning steps, the
use of bounded propagation is strongly recommended. Precise results depends
on the parameter k (the higher k the more benefits at the cost of longer planning
steps) and the specific problem considered. It is important to mention that these
benefits are asymptotically limited.

Let x be the current state, and let us assume that h(x) changes. Its new
value is h(x) = minv∈Succ(x)[c(x, v) + h(v)]. Some steps later, if it happens
that h(w) changes, w ∈ Succ(x), then h(x) might change again, so x should
be reconsidered. But if w is not the state with minv∈Succ(x)[c(x, v) + h(v)], no
matter the change in h(w), h(x) will not change, because the minimum of its
successors has not changed its heuristic. That state is called a support for h(x).

Formally, we say that state y is support of h(x), denoted y = supp(x), iff
y = argminv∈Succ(x) [c(x, v)+h(v)]. The previous paragraph describes a simple
property of bounded propagation: if state y changes its heuristic estimate, only
those states x successors of y such that y is their support could change its
heuristic estimate. A successor state z not supported by y will not change: z is
supported by other state and as far this state does not change its heuristic, z will
not change. Bounded propagation can benefit from this property, by propagating
those states which are supported by the state that has changed its heuristic.
The use of supports requires a table that records for each expanded state its
corresponding support.

Since propagation is limited up to k states, it is meaningful to consider which
states are the most adequate to be updated. Originally, we decided to limit
propagation to states already expanded in the current trial. This and other
alternatives are discussed in [5].

4 HLRTA*(k)

HLRTA*(k) is the algorithm that combines HLRTA* with bounded propagation.
The rationale for this combination is as follows. First, it is reasonable to expect
that HLRTA* would benefit from bounded propagation in the same way that
LRTA* does, improving first solution quality, convergence and solution stability.
Second, it has been observed experimentally that HLRTA* convergence is slower
than LRTA* [4]. Since bounded propagation improves convergence, its combina-
tion with HLRTA* could be quite beneficial. Experimental results, reported in
Section 5, clearly justify these assumptions.
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The HLRTA*(k) algorithm appears in Figure 2. The main differences with
HLRTA* appear in the HLRTA-Trial procedure: HLRTA-LookaheadUpdate1 is
replaced by HLRTA-LookaheadUpdateK. This procedure performs the updating
of the current state plus bounded propagation. HLRTA* updating involves the
first and second minima of heuristic values among successors of the current state,
while propagation considers the first minimum only. These strategies are consid-
ered in HLRTA-LookaheadUpdate2min and HLRTA-LookaheadUpdate1min. This
last function returns true when h1 has changed as consequence of propagation,
false otherwise.

Bounded propagation is done in the HLRTA-LookaheadUpdateK procedure.
If x is the current state of search, it initializes queue Q with capacity for k
elements. After performing the 2nd minima update of x, it enters the following
loop. While Q is not empty, it extracts the first state v from Q and performs
1st minima updating. If this updating has caused some change in h1(v), it has
to be propagated, so the successors of v are entered in Q, provided the following
conditions: there is room (cont > 0), a successor w has some chance to modify
its heuristic estimator (v = supp(w)), and w belongs to the path of expanded
states in the current or previous executions. As final remark, we stress the point
that d(x), the state that search moves from the current state, gets value null
before the updating process. This is required to avoid that an old value of d(x)
could cause an erroneous propagation of heuristic estimates before it takes the
next state to which search moves on.

It is not difficult to see that HLRTA*(k) is a complete algorithm. Theorem 2 of
[11] on the completeness of HLRTA* remains valid, since stored heuristic values
increase with the length of the path. To prove convergence to optimal paths it is
required to assure that h1 remains admissible after bounded propagation, with
the following lemma.

Lemma 1(from [2], modified). Let x ∈ X −G, h1, h2 and H as in HLRTA*. If
h1(x)← max(h1(x), minv∈Succ(x)(c(x, v) + H(v)) then h1(x) ≤ h∗(x).

Proof. If h1(x) ≥ minv∈Succ(x)(c(x, v) + H(v)) there is nothing to prove. Oth-
erwise, there is an optimal path from x to a goal that passes through a successor
w. Then, h∗(x) = c(x, w) + h∗(w) ≥ c(x, w) +H(w). To see this, remember that
H(w) may be h1(w) (in which case H(w) is obviously admissible) or h2(w). In
general, h2(w) is not admissible, except through the path from x to w, provided
that last time w was visited search moved to x as next state. In that particular
case h2(w) is admissible [11]. But this is the case in which H(w) can take value
h2(w), when d(w) = x. Therefore, H(w) is admissible through the path from x
to w, so we can write h∗(x) = c(x, w) + h∗(w) ≥ c(x, w) + H(w). In particu-
lar, this is true for the minimum c(x, v) + H(v) among successors of x, that is,
h∗(x) ≥ minv∈Succ(x)(c(x, v) + H(v)). So h1(x) ≤ h∗(x).

With this result, the proof of HLRTA* convergence to optimal paths (Theo-
rem 5 of [11]) is also valid for HLRTA*(k), since it requires admissibility of h1

stored heuristic. Therefore, HLRTA*(k) is a correct and complete algorithm that
converges to optimal paths over repeated trials on the same problem instance.
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procedure HLRTA*(k)(X, A, c, s, G)
for each x ∈ X do h1(x)← h0(x); h2(x)← 0; supp(x)← null;
path← 〈s〉;
repeat
HLRTA(k)-trial(X, A, c, s, G, k);
until h1 does not change;

procedure HLRTA(k)-trial(X, A, c, s, G, k)
x← s;
while x /∈ G do

d(x)← null;
HLRTA-LookaheadUpdateK(x, k, path);
y ← argminw∈Succ(x)[c(x, w) + H(w)];
execute(a ∈ A such that a = (x, y));
path← add-last(path, y);
d(x)← y;
x← y;

procedure LookaheadUpdateK(x, k, path)
Q← 〈x〉;
cont← k − 1;
HLRTA-LookaheadUpdate2min(x);
while Q �= ∅ do

v ← extract-first(Q);
if HLRTA-LookaheadUpdate1min(v) then

for each w ∈ Succ(v) do
if w ∈ path ∧ cont > 0 ∧ v = supp(w) then

Q← add-last(Q, w);
cont← cont− 1;

procedure HLRTA-LookaheadUpdate2min(x)
for each v ∈ Succ(x) do

if d(v) = x then H(v) = max{h1(v), h2(v)};
else H(v) = h1(v);

z ← arg 2nd minv∈Succ(x)[c(x, v) + H(v)];
if h2(x) < c(x, z) + H(z) then h2(x)← c(x, z) + H(z);

function HLRTA-LookaheadUpdate1min(x): boolean;
for each v ∈ Succ(x) do

if d(v) = x then H(v) = max{h1(v), h2(v)};
else H(v) = h1(v);

y ← argminv∈Succ(x)[c(x, v) + H(v)];
supp(x)← y;
if h1(x) < c(x, y) + H(y) then h1(x)← c(x, y) + H(y); return true;
else return false;

Fig. 2. The HLRTA*(k) algorithm
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5 Experimental Results

We compare the performance of HLRTA*(k), for different values of k, with
RTA* (first trial only), HLRTA*, LRTA*, LRTA*(k) and FALCONS (first trial,
convergence and stability). In HLRTA*(k) and LRTA*(k) we maintain the table
of supports and heuristics values between trials [5]. As benchmarks we use these
four-connected grids where an agent can move one cell north, south, east or
west: Grid35, grids of size 301 × 301 with a 35% of obstacles placed randomly.
In this type of grid heuristics tend to be only slightly misleading. Grid70, grids
of size 301 × 301 with a 70% obstacles placed randomly. In this type of grid
heuristics could be misleading. Maze, acyclic mazes of size 181 × 181 whose
corridor structure was generated with depth-first search. Here heuristics could
be very misleading.

Results are averaged over 1000 different instances. In grids of size 301× 301
the start and goal state are chosen randomly assuring that there is a path from
the start to the goal. In mazes, the start is (0,0), and the goal is (180,180). As
initial heuristic we use the Manhattan distance. Results for HLRTA*(k), RTA*,
HLRTA* and FALCONS appear in Table 1. For LRTA* and LRTA*(k) results
appear in Table 2. The results are presented in terms of solution cost (×103),
number of expanded states (×103) and time per step (×10−6 seconds), for the
first trial; convergence (trials ×103 to converge); and stability indexes [10].

In the first trial, the effect of propagation is better in HLRTA*(k) than in
LRTA*(k). For low values of k, the solution cost obtained with HLRTA*(k) is
better than the solutions obtained by LRTA*(k) and the others algorithms for
all benchmarks (except for Grid35 and k = 6). For HLRTA*(k) in Grid35 and
Grid70, as the value of k increases the cost of the solution improves, but in
Maze the solution cost is similar for all values of k. Therefore, in Maze it is
better to use small values of k, since high values of k means more computation
per step. For high values of k the cost of solution obtained with LRTA*(k) and
HLRTA*(k) are similar. The smallest solution cost is obtained by HLRTA*(k)
and LRTA*(k) with k =∞. Comparing with RTA*, HLRTA*(k) algorithm finds
better solutions from k = 6 on in Grid35, and k = 1 on in Grid70 and Maze.
Comparing with FALCONS, HLRTA*(k) always produces better solutions in
Grid35, Grid70 and Maze.

Considering convergence, HLRTA*(k) obtains optimal solutions with less cost
than HLRTA*, LRTA* and FALCONS for all the values of k tested on the
three benchmarks. The effect of propagation is better in HLRTA*(k) than in
LRTA*(k); thus with low values of k, HLRTA*(k) obtains better results than
LRTA*(k). With high values of k, the solution cost obtained with LRTA*(k) and
HLRTA*(k) are similar. Solution cost decreases monotonically as k increases. We
observe that the worse the heuristic information is, the better HLRTA*(k) be-
haves with respect to its competitors (results are better in Maze than in Grid70,
and in Grid70 than in Grid35). Considering trials to convergence, HLRTA*(k)
requires substantially less trials than HLRTA*. The number of trials decreases
steadily as k increases, from approximately a third of the trials with k = 6.
Comparing with FALCONS, it performs better for high values of k in Grid35,
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Table 1. Results for the first trial (left), convergence (middle) and stability (right) for
HLRTA*(k), HLRTA*, RTA* and FALCONS. Average over 1000 instances.

Grid35
k Cost% Mem.% T/Step% Cost% Trials% Mem.% T/Step% IAE ISE ITAE ITSE SOD

100% 46.8 4.6 0.79 6202.2 5.0 45.1 0.8 ×106 ×109 ×108 ×1011 ×105

1 (HLRTA*) 100% 100% 100% 100% 100% 100% 100% 3.8 20.1 54.5 75.5 12.1
6 37% 87% 157% 39% 34% 100% 146% 1.6 6.1 8.4 13.3 5.0
15 24% 85% 193% 25% 20% 100% 186% 1.0 3.6 3.3 5.6 3.2
500 21% 123% 358% 5% 3% 99% 477% 0.3 1.1 0.1 0.2 0.7
∞ 20% 126% 480% 1.3% 0.6% 93% 1355% 0.07 0.5 0.006 0.02 0.2
RTA* 66% 69% 39% - - - - - - - - -
FALCONS 2058% 191% 54% 65% 13% 244% 55% 3.7 3898.1 6.3 88.3 10.6

Grid70
100% 40.0 1.5 0.75 669.8 0.6 1.66 0.77 ×103 ×106 ×104 ×107 ×102

1 (HLRTA*) 100% 100% 100% 100% 100% 100% 100% 125.4 2037.1 719.4 1598.1 512.2
6 51% 102% 167% 29% 25% 100% 126% 58.9 498.0 127.5 188.9 172.2
15 38% 103% 211% 18% 14% 100% 159% 43.6 289.4 62.9 92.4 118.8
500 10% 102% 574% 4% 2% 100% 450% 10.1 25.0 4.3 5.9 28.4
∞ 7.4% 107% 3157% 1.0% 0.6% 100% 1723.3% 2.3 4.7 0.3 0.5 0.2
RTA* 106% 100% 43% - - - - - - - - -
FALCONS 194% 102% 47% 96% 28% 104% 49% 480.9 17268.5 4088.3 46665.2 1244.5

Maze
100% 11.4 7.2 0.71 11227.2 3.2 15.4 0.69 ×105 ×109 ×106 ×1010 ×104

1 (HLRTA*) 100% 100% 100% 100% 100% 100% 100% 0.3 0.3 0.3 0.2 1.3
6 102% 101% 159% 18% 18% 100% 113% 0.25 0.3 0.07 0.07 0.9
15 99% 99% 212% 8% 7% 101% 122% 0.25 0.4 0.05 0.07 1.0
500 98% 98% 745% 1% 0.4% 101% 717% 0.25 0.4 0.04 0.08 1.1
∞ 100% 100% 1644% 0.3% 0.08% 101% 11506% 0.25 0.4 0.04 0.08 1.0
RTA* 309% 100% 47% - - - - - - - - -
FALCONS 772% 147% 52% 193% 25% 120% 52% 189.4 1136.2 7072.6 43695.6 680.8

Table 2. Results for the first trial (left), convergence (middle) and stability (right) for
LRTA* and LRTA*(k). Average over 1000 instances.

Grid35
k Cost% Mem.% T/Step% Cost% Trials% Mem.% T/Step% IAE ISE ITAE ITSE SOD

100% 46.8 4.6 0.79 6202.2 5.0 45.1 0.8 ×106 ×109 ×108 ×1011 ×105

1 (LRTA*) 147% 104% 43% 105% 51% 100% 45% 5.2 56.5 38.1 130.9 15.9
6 35% 75% 87% 48% 34% 100% 82% 2.2 9.3 11.7 24.5 6.5
15 26% 79% 113% 29% 21% 99% 104% 1.3 5.1 4.4 8.8 3.9
500 21% 79% 249% 5% 3% 100% 308% 0.3 1.3 0.1 0.3 0.8
∞ 20% 132% 336% 1.3% 0.6% 93% 998% 0.07 0.5 0.006 0.02 0.2

Grid70
100% 40.0 1.5 0.75 669.8 0.6 1.66 0.77 ×103 ×106 ×104 ×107 ×102

1 (LRTA*) 366% 99% 45% 118% 52% 100% 48% 509.1 24227.7 2029.2 9145.2 1174.8
6 125% 98% 76% 53% 29% 100% 75% 200.0 3110.0 600.0 1520.0 533.0
15 67% 100% 100% 31% 17% 100% 93% 100.0 1110.0 231.0 501.0 327.0
500 13% 103% 317% 5% 3% 100% 266% 20.0 64.0 8.1 16.4 51.2
∞ 7% 107% 2093% 1% 0.6% 100% 1296% 2.0 4.7 0.3 0.5 0.2

Maze
100% 11.4 7.2 0.71 11227.2 3.2 15.4 0.69 ×105 ×109 ×106 ×1010 ×104

1 (LRTA*) 5145% 114% 49% 247% 50% 90% 49% 221.6 5338.3 6952.1 120297.1 1331.1
6 1498% 106% 83% 101% 24% 96% 89% 87.3 1100.0 1580.0 15000.0 531.0
15 819% 102% 113% 57% 12% 99% 117% 50.5 485.0 556.0 4010.0 301.8
500 241% 101% 445% 9% 2% 100% 434% 8.0 43.1 14.3 57.6 42.6
∞ 102% 101% 3743% 0.4% 0.1% 101% 10128% 0.3 0.4 0.05 0.08 1.1

and gets better results in Grid70 and Maze for all values of k. Comparing with
LRTA*, it perform better for all values of k. Comparing with LRTA*(k) it per-
forms equal or better for all values of k. The good results of HLRTA*(k) come at
the cost of extra computation, that is, longer planning time. It is worth noticing
that low values of k generate large improvements in solution cost and number of
trials, with a limited effect in planning time per step. For instance, with k = 6,
the total cost to converge to optimal path is divided by a factor of approximately
3, the number of trials is divided by a factor of approximately 4, at the cost of
increasing the time per step by a factor around 1.3.
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To measure solution stability we computed the indices IAE, ISE, ITAE, ITSE,
and SOD [10]. Smaller values mean better stability of solutions. HLRTA*(k)
outperforms HLRTA*, LRTA* and LRTA*(k) for all k values tested in all indices
for the three benchmarks. For k = ∞ LRTA*(k) is similar to HLRTA*(k).
Something similar happens when comparing with FALCONS, except for index
ITAE on Grid35 for k = 6, where FALCONS obtains better results.

6 Conclusions

As in the case of LRTA*, bounded propagation of heuristic changes is quite
beneficial when applied to HLRTA*, improving first solution, convergence and
solution stability, at the extra cost of longer planning steps. Experimentally, for
k > 1, HLRTA*(k) requires less trials than LRTA*(k) to converge to optimal
paths, when the contrary happens for k = 1.
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