
Engineering Open Environments

with

Electronic Institutions

Josep Ll. Arcos a Marc Esteva b Pablo Noriega a

Juan A. Rodŕıguez-Aguilar a Carles Sierra a

a Artificial Intelligence Research Institute, IIIA

Spanish Council for Scientific Research, CSIC

08193 Bellaterra, Barcelona, Spain.

{sierra,jar,pablo,arcos}@iiia.csic.es

Voice: +34 93 580 95 70 Fax: +34 580 96 61

bGraduate School of Library and Information Science

University of Illinois at Urbana-Champaign

501 E. Daniel Street, Champaign, IL 61820

esteva@uiuc.edu

Voice: +1 217 265 0235 Fax: +1 217 244 3302

Abstract

Nowadays, with the expansion of Internet, there is a need of methodologies and soft-

ware tools to ease the development of applications where distributed homogeneous

entities can participate. Multiagent systems, and electronic institutions in partic-

ular, can play a main role on the development of this type of systems. Electronic

institutions define the rules of the game in agent societies, by fixing what agents

are permitted and forbidden to do and under what circumstances. The goal of this

Preprint submitted to Elsevier Science 10 November 2004

paper is to present EIDE, an integrated development environment for supporting

the engineering of multiagent systems as electronic institutions.

Key words: Multiagent system, Agent Oriented Software Engineering

1 Introduction

The promises and functionality that the proposals of Open Systems antici-

pated in the eighties (e.g. Hewitt (Hewitt, 1986)) are now ever more pertinent

for system development given the pervasiveness of IT and the added acces-

sibility brought about by the World Wide Web. However, the challenges of

building open systems are still considerable, not only because of the inher-

ent complexity involved in having adequate interoperation of heterogeneous,

independent, distributed, autonomous components, but also because of the

significant difficulties of deployment and adoption of the amalgamated sys-

tems.

We have been developing a technology to address these challenges.

We do not claim to be dealing with Open Systems in their full complexity, but

rather addressing a restricted —albeit significant enough— type of openness:

that present in interactions that involve autonomous, independent entities that

are willing to conform to a common, explicit, set of interaction conventions.

We will call these a-open systems 1 .

For that type of open systems we have been engineering an artifact that focuses

in the interactions and their compliance. We call it Electronic Institutions

(EIs).

1 Openness is limited by the adscription to the conventions

2

The idea behind EIs is to mirror the roles traditional institutions play in the

establishment of “the rules of the game”–a set of conventions that articulate

agents’ interactions– but in our case applied to agents (humans or software

entities) that interact through messages whose (socially relevant) effects are

known to interacting parties. The essential roles EIs play are both descriptive

and prescriptive: the institution makes the conventions explicit to participants,

and it warrants their compliance 2 .

EIs —as artifacts— involve a conceptual framework to describe agent inter-

actions as well as an engineering framework to specify and deploy actual in-

teraction environments. In this paper we look into the EI artifact from a

methodological perspective: we discuss the notions that underly the concep-

tual framework and show how the system development process can be carried

out with the ad-hoc software tools we have developed. We have been de-

veloping the EI artifact for some time and advocating that open MAS can

be properly designed and implemented with it, as witnessed by some of the

group’s publications (Noriega, 1997; Esteva et al., 2001; Rodŕıguez-Aguilar,

2001; Esteva, 2003). Our experiences in the deployment of applications as EIs,

e.g. (Rodŕıguez-Aguilar et al., 1997; Cuńı et al., 2004) make us confident of

the validity of this approach.

In what follows, in fact, we will look into EIs as a framework for developing

multiagent systems (MAS). We do so for two reasons, first because a-open

systems can be viewed as a type of MAS, where the entities that interoperate

in the open system are simply thought of as agents. Secondly, because, in that

2 In terms of Simon’s engineering design abstractions, EIs are the –social– inter-
face layer between the problem space the participating systems deal with, on one
side, and the internal decision or functional intricacies of the various participating
systems, on the other.

3

light, some recent methodologies and conceptual proposals for MAS engineer-

ing are then relevant for a-open systems. Our approach, as we shall show, has

things in common with some of those methodologies and conceptual propos-

als, however we believe that it contributes to the engineering of this type of

MAS through three salient distinctive features:

(1) It is socially-centered, and neutral with respect to the participating agents

internals and the application domain of their interactions.

(2) It has a uniform conceptual framework to manage components and inter-

actions that prevails through the different views (high-level specification,

implementation, monitoring, . . .) of a given system.

(3) It has an interaction-centered methodology that is embedded in a suit of

software tools that support the system development cycle from specifica-

tion to deployment.

In this paper we will illustrate how the EI framework can be used to engineer

full-fledged a-open MAS. In Section 2 we discuss the ideas that constitute

the conceptual EI framework and in Section 3 the tools we have developed

to operationalize our methodology. In Section 4 we sketch an actual EI-based

system that we developed using the EI artifact.

2 Electronic Institutions

We mentioned, following D.C. North (North, 1990), that traditional institu-

tions can be viewed as “a set of artificial restrictions that articulate agent

interactions”. Analogously, when looking at computer-mediated interactions

we think of Electronic Institutions as a regulated virtual environment where

4

the relevant interactions among participating entities take place.

This crude picture may become sharper by describing the theoretical compo-

nents that operationalize it. We start by making some operational assumptions

explicit:

(1) Participating entities are agents. In the accepted sense of being persis-

tent, identifiable, communication-capable software or humans, capable of

adopting commitments.

(2) Interactions are repetitive.

(3) All interactions are speech acts. That is, any and every interaction is –or

is tagged by– a message that has some effect on the shared environment

where agents interact.

(4) Only illocutions uttered by participating agents have effect on the shared

environment.

All things considered these are rather innocent assumptions whose basic pur-

pose is to facilitate the definition of a regulated environment. Assumption 1

is simply a convenient use of terminology that turns EIs into a sort of MAS

without loss of content either way. Assumptions 2, 3, and 4, is what we have

called the “dialogical stance” by which we conceive interactions as repetitive

dialogues. This dialogical stance is mostly a conventional device that brings

dialogical notions –and performatives– into our framework, it allows for a

convenient intuitive descriptions of many EI features such as scenes and per-

formative structure but it burdens other –like scene transitions– with some

artificiality. Assumptions 3 and 4 are needed to operationalize the normative

character of the interaction environment.

We may now get into clarifying what we mean by “relevant interactions in

5

a regulated environment”. In order to do that we will discuss the three con-

stituent elements of our theory for electronic institutions. Firstly, the Dialog-

ical Framework that allows us to express the syntactic aspects of EIs, and

the ontology of a particular EI. Then the two other elements that allow us

to express the prescriptive aspects of EIs and, in particular, what the social

effects of the speech acts are intended to be.

2.1 Dialogical Framework

A traditional institution, say an auction house, restricts and gives meaning

to interactions participants engage in, and sees to it that the consecuences

of any interaction that takes place within the institution actually happen.

In an auction house, for example, if a good is being offered, the only action

buyers can take is to rise their hand, indicating they take the bid; any other

action is meaningless or inadmissible (and interpreted as a silent “no” to the

bid). If a buyer wins a bid, the auctioneer will adjudicate the good to the

buyer, charge the buyer and pay the seller for it; thus making the interactions

involved relevant and meaningful to all participants. If we want to be able to

build an electronic auction house we should be able to express that kind of

conventions in a way that can be implemented, adscribed to by independent

agents, and –basic to our purpose– in such a way that actual transactions can

properly be carried out in the implemented institution.

We need to settle on a common illocutory language that serves to tag all

pertinent interactions, or more properly, the valid speech acts.

Formally, we take interactions to be illocutory formulas:

6

ι(speaker, hearer, φ, t)

Speech acts that we use start with an illocutory particle (declare, request,

promise) that a speaker addresses to a hearer, at a time t, and the content

φ of the illocution is expressed in some object language whose vocabulary is

the EI’s ontology. 3

To fill in these formulas we need vocabulary and grammar, but we also need

to refer to speakers and listeners, actions, time. We call all that the Dialogical

Framework because it includes all what is needed for agents to participate in

admissible dialogues in a given EI.

To make clear what are all the available illocutions for agent dialogues in a

given institution we define a dialogical framework as a tuple:

DF = 〈O, L, I, RI , RE, RS〉

where

(1) O stands for the EI domain ontology;

(2) L stands for a content language to express the information exchanged

between agents;

(3) I is the set of illocutionary particles;

(4) RI is the set of internal roles;

(5) RE is the set of external roles;

(6) RS is the set of relationships over roles.

Recall that, like in a real auction house, a given agent may act as a buyer at

3 We take a strong nominalistic view, the institutional ontology is made of every
entity referred to in any admissible speech act or in any of the norms (conventions)
that govern those acts and their consequences.

7

some point and as a seller at another, and many agents may act as buyers. This

consideration allows us to think of participants adopting roles. Roles allow us

to abstract from the individuals, the specific agents, that get involved in an

institution’s activities. Hence, each agent participating in an EI is required

to adopt some role. All agents adopting a given role should be guaranteed to

have the same rights, duties and opportunities. We differentiate between the

internal and the external roles. The internal roles define a set of roles that

will be played by staff agents which correspond to employees in traditional

institutions. Since an EI delegates their services and duties to the internal

roles, never an external agent is allowed to play any of them. Finally, we found

useful to define relationships among roles, for instance, roles that cannot be

played at the very same time, or roles that have some authority over others.

Through this DF we have all utterances that may ever be admissible in a given

EI, we now turn to the task of characterising admissible dialogues.

2.1.1 Performative Structure: Scenes and Transitions

We assumed repetitive interactions are typical of institutions. For instance,

in an auction house every new good is auctioned out in the same way that

the previous one was offered, and the previous,. . . Bidding rounds are repeated

dialogues very much like the scenes in a play: actors playing given roles (buyers,

auctioneer) repeat their lines every time they get into the same scene. But

in theater as in our auction house example, interactions are usually rather

involved. In our example of an auction house: goods are introduced, goods

are sold, goods are payed for, sellers get their money,... As in a play, some

scenes precede others, some scenes get repeated; the play has a performative

8

structure.

Likewise, activities in an electronic institution are organised in a performative

structure as the composition of multiple, distinct, and possibly concurrent, dia-

logical activities, each one involving different groups of agents playing different

roles. Interactions between agents are articulated through recurrent dialogues

which we call scenes, each scene following some type of conversation proto-

col. The protocol of each scene restricts the possible dialogical interactions

between roles. Scenes represent the context in which the uttered illocutions

must be interpreted. Consequently, the same message in different contexts may

certainly have different meanings. A distinguishing feature of scenes is that

their participants may change, as agents are allowed either to enter or to leave

a scene at some particular moments (states) depending on their role.

A scene protocol is specified by a directed graph whose nodes represent the

different states of a dialogical interaction between roles. Its arcs are labelled

with illocution schemata from the scene’s dialogical framework (whose sender,

receiver and content may contain variables) or timeouts.

More formally, a Scene is a tuple:

s = 〈R,DFS, W, w0, Wf , (WAr)r∈R, (WEr)r∈R, Θ, λ, min,Max〉, where

(1) R is the set of scene roles involved in that scene;

(2) DFS is the restriction to the scene s of the EI dialogical framework as

defined above;

(3) W is the set of scene states;

(4) w0 ∈ W is the initial state;

(5) Wf ⊆ W is the set of final states;

9

(6) (WAr)r∈R ⊆ W is a family of sets such that WAr stands for the set of

access states for role r ∈ R;

(7) (WEr)r∈R ⊆ W is a family of non-empty sets such that WEr stands for

the set of exit states for role r ∈ R;

(8) Θ ⊆ W ×W is a set of directed edges;

(9) λ : Θ −→ L is a labelling function, where L can be a timeout, or an

illocution schemata and a list of constraints;

(10) min, Max : R −→ IN min(r) and Max(r) return the minimum and

maximum number of agents that must and can play role r ∈ R.

At execution time agents interact by uttering grounded illocutions match-

ing the specified illocution schemata, and so binding their variables to values,

building up the scene context. Moreover, arcs labelled with illocution schemata

may have constraints attached, based on the scene context, to impose restric-

tions on the paths that the scene execution can follow. For instance, in a

scene auctioning goods following the English auction protocol, we can specify

by means of constraints that buyers can only submit bids greater than the

last one (where values are being bound in the scene context).

While a scene defines a particular dialogical environment, the causal, tem-

poral and other content relationships among scenes are expressed through a

special type of scene we call transitions. The interlacing of regular scenes and

transitions is captured through the Performative Structure of the EI.

A performative structure can be seen as a network of scenes, whose connec-

tions are mediated by transitions, and determines the role-flow policy among

the different scenes by showing how agents, depending on their roles, may

get into different scenes (other conversations), and showing when new scenes

10

(conversations) will be started.

In all EIs we assume that there is always an initial and a final scene, which

are the entry and exit points of the institution. We also allow, at run time, to

have multiple instances of the same scene.

Technically, we define a Performative Structure as follows:

PS = 〈S, T, s0, sΩ, E, fL, fT , fO
E , C,ML, µ〉, where

(1) S is a set of scenes;

(2) T is a set of transitions;

(3) s0 ∈ S is the initial scene;

(4) sΩ ∈ S is the final scene;

(5) E = EI ⋃
EO is a set of arc identifiers where EI ⊆ S × T is a set of

edges from scenes to transitions and EO ⊆ T × S is a set of edges from

transitions to scenes;

(6) fL : E −→ DNF2VA×R maps each arc to a disjunctive normal form of

pairs of agent variable and role identifier representing the arc label;

(7) fT : T −→ T maps each transition to its type;

(8) fO
E : EO −→ E maps each arc to its type (one, some, all or new);

(9) C : E −→ ML maps each arc to a meta-language expression of type

boolean, i.e. a formula representing the arc’s constraints that agents must

satisfy to traverse the arc;

(10) ML is a meta-language.

(11) µ : S −→ {0, 1} states whether a scene can be multiply instantiated at

run time or not.

Transitions can be thought of as gateways between scenes or as a change of

11

conversation. At run-time, transitions can be seen as a type of router in the

context of a performative structure. We represent them as a canonical type of

scene with arcs incoming from scenes and arcs outgoing to scenes (see the little

triangles and half-circles connecting scenes –pictured as boxes– in figure 7).

Labels on the directed arcs determine which agents, depending on their roles,

can progress from scenes to transitions, or from transitions to scenes.

There are different types of transitions and different types of outgoing arcs.

The transition type allows one to express choice points (Or transitions) for

agents to choose which target scenes to enter, or synchronisation/parallelisation

points (And transitions) that force agents to synchronise before progressing

to different scenes in parallel. On arcs from a transition to a target scene, type

determines whether agents following that arc will incorporate into one, some

or all of the current executions of the target scene, or if they will go to a newly

created execution of the target scene.

2.1.2 Norms and Commitments

So far we have dealt with the way interactions within an EI can be defined

and organized, we now need to say how they are going to have the intended

effect.

We start by noting that an institution (electronic or otherwise) is concerned

only by whatever is regulated to happen inside it. Agreements, misconducts, or

whatever else that happens outside is in principle disregarded or impertinent

to the institution. The main purpose of the institution is to make sure that

what happens inside has the effects participants have agreed to.

12

Actions within an institution, we said, are speech acts. Those speech acts

that are made as prescribed by the performative structure of an institution

(during an enactment) create obligations or socially binding commitments

whose fulfillment is warranted by the institution. We make such intended

effects of commitments explicit through what we have been calling normative

rules.

We define two predicates that will allow us to express the connection between

illocutions and norms:

• uttered(s, w, i) denoting that a grounded illocution unifying with the illo-

cution scheme i has been uttered at state w of scene s.

• uttered(s, i) denoting that a grounded illocution unifying with the illocution

scheme i has been uttered at some (unspecified) state of scene s.

Therefore, we can refer to the utterance of an illocution within a scene or

when a scene execution is at a specific state.

Normative rules are first-order formulae of the form(∧n
j=1 uttered(sj , [wkj

], ilj) ∧
∧m

k=0 ek

)
→

(∧n′

j=1 uttered(s′j , [w
′
kj

], i′lj) ∧
∧m′

k=0 e′k

)
where sj , s

′
j are scene identifiers, wkj

, w′
kj

are states of sj and s′j respectively; ilj , i
′
lj

are illocution schemata lj of scenes sj and s′j respectively, and ek, e
′
k are boolean

expressions over variables from the illocution schemata ilj and i′lj , respectively.

The intuitive meaning of normative rules is that if grounded illocutions match-

ing il1 , . . . , iln are uttered in the corresponding scene states and the expressions

e1, . . . , em are satisfied, then grounded illocutions matching i′l1 , . . . , i
′
l′n

satisfy-

ing the expressions e′1, . . . , e
′
m′ must be uttered in the corresponding scene

states.

13

Notice that i′l1 , . . . , i
′
l′n

can be regarded as obligations that agents acquire where

the antecedent of the normative rule is satisfied. Therefore, agents must ut-

ter grounded illocutions matching these illocutions schemata and satisfying

e′1, . . . , e
′
m′ , in the corresponding scenes in order to fulfil the normative rule.

Paraphrasing what we have done, the notions we introduce picture the regula-

tory structure of an EI as a “workflow” (performative structure) of multiagent

protocols (scenes) along with a collection of (normative) rules that can be trig-

gered off by agents’ actions (speech acts).

Notice that the formalisation of an EI focuses on macro-level (societal) aspects,

instead of on micro-level (internal) aspects of agents. Notice also that the

whole framework induces an interaction-centered perspective for the design

and testing methodologies. Finally notice that the tools we present below and

the methodology embedded in them draw substantially from the theoretical

framework we just described.

3 An Integrated Development Environment (IDE) for Electronic

Institutions

The Electronic Institutions Integrated Development Environment (EIDE) is

a set of tools to support the engineering of MAS as electronic institutions.

EIDE allows for engineering both electronic institutions and their participating

software agents. Notably, EIDE moves away from machine-oriented views of

programming toward organisational-inspired concepts that more closely reflect

the way in which we may understand distributed applications such as MAS. It

supports a top-down engineering approach: firstly the organisation, secondly

14

Fig. 1. Electronic Institution Development Cycle

the individuals.

EIDE is composed of:

ISLANDER A graphical tool that supports the specification and verification

of institutional conventions. That is, the specification and verification of the

EI components presented in section 2.

SIMDEI A simulation tool to animate and analyse ISLANDER specifications

prior to the deployment stage.

aBUILDER An agent development tool which given an ISLANDER speci-

fication of an institution supports the generation of agent skeletons for that

institution. The generated skeletons can be used on EI simulations sup-

ported by SIMDEI, or in the real execution of the institution supported by

AMELI.

AMELI A software platform to run EIs. The platform facilitates agents par-

ticipation in the institution while enforcing the institutional conventions.

Electronic institutions specified with ISLANDER are run by AMELI.

Monitoring tool A tool which permits the monitoring of EI executions run

by AMELI. It graphically depicts all the events occurring during an EI ex-

15

ecution.

Figure 1 depicts the role of the EIDE tools in an electronic institution’s de-

velopment cycle. Notice that such cycle is regarded as an iterative, refining

process fully supported by the EIDE tools. In what follows we detail the dif-

ferent steps of such development cycle along with the roles played by the

EIDE tools.

3.1 Design

We assume that the development of EIs must be preceded by a precise spec-

ification that fully characterise the institutional conventions. In other words,

a full specification of EI components as presented in section 2. The analysis

required for the complete specification of the system forces the designer to

gain a thorough understanding of the modelled institution before developing

it. Also, it permits to detect the critical points of the system at an early stage.

The specification of electronic institutions is supported by ISLANDER (Es-

teva et al., 2002). The tool facilitates the work of the institution designer

combining graphical and textual specifications of EI components, based on

the formalisation of EIs presented in (Esteva, 2003) and outlined in section 2.

Graphical specifications facilitate the work of the MAS designer, as well as the

understanding of the specification. Concretely, the parts specified graphically

are: the conversation protocol in scenes, the relationships among roles in the

dialogical framework, and the performative structure graph.

The rest of the elements within an institution are specified textually. The

tool tries to structure the way in which the textual information is entered

16

Fig. 2. Islander GUI

to make the work of the designer easier. Thus, for each element the required

information is divided into different fields that have to be filled and each field

is labelled by a name identifying which information it contains. For instance,

when the user has to specify an illocution scheme it is required to fill in a set

of fields corresponding to the illocutionary particle, the sender, the receiver,

the content expression and the time variable.

Figure 2 depicts the graphical user interface of ISLANDER. On the project

structure pane the user can see all the elements and sub-elements that belong

to the current specification, ordered by category. It permits the user to navi-

gate among them. When she changes the selection the other panes are mod-

ified appropriately in order to show the information of the selected element

or sub-element. The graph editor pane supports the edition of the graphical

17

components of EIs. That is to say, the edition of the graphical component of

performative structures, dialogical frameworks and scenes. The graph editor

pane is used for the creation and modification of the graph topology while the

textual information associated to the graph is introduced and modified using

the inspect pane.

The result of the design stage is a sound and unambiguous specification of the

institutional conventions.

3.2 Verification

Once specified an institution, it should be verified before opening it to external,

participating agents. This step is twofold. While the first verification stage

focuses on static, structural properties of a specification, the second stage is

concerned with the expected dynamic behaviour of the EI.

The static verification of EIs amounts to checking the structural correctness of

specifications. This process is fully supported by ISLANDER, that performs

the following verifications:

• Integrity. The tool checks that all cross-references among the different

elements of the specification are correct. In other words, it checks that each

element which is referenced is actually defined.

• Liveness It checks that agents will not be blocked at any point of the

performative structure, that each scene is reachable for each of its roles and

that from each scene agents can always reach the final scene.

• Protocol Correctness. It checks that scene protocols are properly spec-

ified. That is, that each state of the graph is accessible from the initial

18

state, that a final state is reachable from each state and that the labels of

the different arcs are properly specified according to the scene dialogical

framework.

• Normative rules’ correctness. It checks that normative rules are speci-

fied correctly and that agents can eventually fulfil them. That is, agents can

reach the scenes where they have to utter the illocutions for fulfilling each

obligation.

The user can activate the verification of the current specification at any time

during the design state, and the errors found are shown on the verification

message pane (see figure 2). Moreover, ISLANDER allows the user to move to

the context of the error by simply clicking on the error message. When a user

selects an error all the panes of the application are modified in order to focus

on the elements causing the error. Once an EI has been specified and verified,

the user can export the specified institution into XML to be subsequently

employed by AMELI (see Figure 5).

The dynamic verification of EIs, on the other hand, is carried out via simu-

lation. The purpose of the simulation is to study the dynamic behaviour of

the specified institution under different circumstances. Simulations of EIs can

be run using the SIMDEI simulation tool developed over REPAST (Collier,

2003). SIMDEI supports simulations of EIs with varying populations of agents

to conduct what-if analysis. For instance, it would permit the study of the

behaviour of an electronic market with different populations of buyers and

sellers.

The process starts out with the definition of populations of agents of varying

features capable of acting in the specified institution. This process is partially

19

supported by the aBUILDER, which is capable of generating, from a specifica-

tion, an agent skeleton depending on the agent roles and interactions in which

the agent may participate. At this point, we want to remark that an EI spec-

ification defines what agents can do depending on their roles but does not

contain information on how they have to take their decisions. Hence, agents

cannot be completely generated from the specification. In order to completely

define an agent, agent designers must fill up the generated skeleton with deci-

sion making procedures. Once agents have been implemented, simulations of

the EI can be run using the SIMDEI simulation tool. The institution designer

is in charge of analyzing the results of the simulations and return to the design

stage if they differ from the expected ones.

3.3 Development

Once the institution specification has been validated, it is time for agent pro-

grammers to implement their participating agents. Recall that among the

roles that can participate within an EI, we distinguish between the internal

and external roles. Since an EI delegates their services and duties to the agents

playing the internal roles (staff agents), their complete development is needed

before the EI can be deployed and opened to external agents playing external

roles. Notice that we do not impose restrictions on the type of agents that

can participate in an EI. Thus, agent designers can choose the language and

architecture that are better to fulfil their goals.

Nonetheless, we believe that it is important to support this intricate devel-

opment process via the aBUILDER tool (depicted in figure 3), that supports

the graphical specification of agent behaviours starting from an institution’s

20

Fig. 3. aBUILDER GUI

JADE

Agent
1

Communication

Layer

Autonomous

Agents Layer

. . .
 Agent
n

AMELI

JADE

Agent
1

Communication

Layer

Autonomous

Agents Layer

. . .
 Agent
n

TRADITIONAL APPROACH
 INSTITUTIONAL APPROACH

Electronic

Institution

(Islander Spec)

Fig. 4. Agent mediation via electronic institutions

specification created with ISLANDER. aBUILDER supports the automatic

generation of agent (code) skeletons based on graphical specifications of agent

behaviours.

The current version of the aBUILDER facilitates the development of agents

in JAVA in a pre-defined architecture. In the future it is planned to support

other languages and architectures.

21

3.4 Deployment

An electronic institution defines a normative environment that shapes agent

interactions. At run time, agents participating in an EI devote their time to

jointly start new scene executions, to enter active scenes where they may in-

teract by uttering speech acts, to leave active scenes to possibly enter other

scenes, and finally to abandon the institution. As pointed out before, one of

the main issues of institutions is the enforcement of its rules on the partic-

ipating agents. Since participants within an EI may be heterogeneous and

self-interested agents, we cannot expect that these agents will behave accord-

ing to the institutional rules. Therefore, unlike traditional approaches that

allow agents to openly interact with their peers via a communication layer,

our computational realisation of an EI must be regarded as a social middle-

ware that sits between the participating agents and the chosen communication

layer validating (filtering in) or rejecting (filtering out) their actions as shown

in figure 4 4 .

3.4.1 Institution Infrastructure

Our architecture is composed of the following layers:

• Autonomous agent layer. Autonomous agents taking part in the insti-

tution.

• Social layer (AMELI). An infrastructure that mediates and facilitates

agents’ interactions while enforcing the institutional rules.

• Communication layer. In charge of providing a reliable and orderly trans-

4 In figure 4, Jade(Bellifemine et al., 2001) is employed as the communication layer.

22

port service.

Notice that participating agents in an institution do not interact directly;

they have their interactions mediated by AMELI through a special type of

internal agent called governor that is attached to external agents. Through

governors, AMELI also provides external agents with the information they

need to successfully participate in the institution. For instance, information

about the participating agents within a scene execution. And more impor-

tantly, AMELI takes care of the enforcement of the institutional conventions:

guaranteeing the correct evolution of each scene execution (preventing errors

made by the participating agents by filtering erroneous or unacceptable illocu-

tions, thus protecting the institution); guaranteeing that agents’ movements

between scene executions comply with the specification; and controlling obli-

gations participating agents acquire and fulfil.

As depicted in figure 5 the current implementation of AMELI is a multiagent

system itself composed of four types of agents:

• Institution Manager (IM). It is in charge of starting an EI, authorising

agents to enter the institution, as well as managing the creation of new

scene executions. It keeps information about all participants and all scene

executions. There is one institution manager per institution execution.

• Transition Manager (TM). It is in charge of managing agent transitions

between scenes. There is one transition manager per transition.

• Scene manager (SM). Responsible for governing a scene execution. There

is one scene manager per scene execution.

• Governor (G). Each one is devoted to mediating the participation of an

external agent within the institution. There is one governor per participating

23

agent.

And what are the features of AMELI ?

Since external agents can only communicate with their governors, we can re-

gard AMELI as composed of two layers: a public layer, formed solely by gov-

ernors; and a private layer, formed by the rest of AMELI agents, not directly

accessible to external agents. In order for agents to communicate with their

governors, they are solely required to be capable of opening a communication

channel. Since no further architectural constraints are imposed on external

agents, we can regard AMELI as agent-architecture neutral.

Observe that AMELI is a general-purpose platform in the sense that the very

same infrastructure can be used to deploy different institutions. With this

purpose, agents composing AMELI load institution specifications as XML

documents generated by ISLANDER. Thus, the implementation impact of

introducing institutional changes amounts to the loading of a new (XML-

encoded) specification. Therefore, it must be regarded as domain independent,

and it can be used in the deployment of any specified institution without any

extra coding. During an EI execution, the agents composing AMELI keep the

execution state and they use it, along with the institutional rules encoded in

the specification, to validate agents actions and to asses their consequences.

As depicted in figure 4, the infrastructure is divided into two layers: AMELI and

a communication layer offering a reliable and orderly transport service. In this

manner, AMELI agents do not need to deal with low-level communication is-

sues, and therefore focus on handling the institution execution. The current

implementation of the infrastructure can either use JADE (Bellifemine et al.,

2001) or a publish-subscribe event model as communication layer. When em-

24

Communication Layer

S M

1

...

 ...

AMELI

Participating

Agents Layer

Institution

Specification

(XML format)

-

 ...

 ...

S M

m

I M
 T M

1

T M

k

G

1

G

n

 ...

G

i

A

i

A

1

A

n

-

P

u

b

l
i

c

P

r
i

v

a

t
e

 ...
 ...

Agent

Skeletons
aBUILDER

ISLANDER

Fig. 5. Electronic institution architecture

ploying JADE, the execution of AMELI can be readily distributed among

different machines, permitting the scalability of the infrastructure. Finally,

participating agents regard our architecture as communication neutral since

they are not affected by changes in the communication layer.

3.4.2 Electronic Institution Execution

The execution of an EI starts with the creation of an Institution Manager.

Once up, the institution manager activates the initial and final scenes launch-

ing a scene manager for them. Thereafter, external agents can begin submit-

ting to the institution manager their requests to join the institution. When an

agent is authorised to join the institution, it is connected to a governor and

admitted into the initial scene. From there on, agents can move around the

different scene executions or start new ones according to the EI specification

and the current execution state.

An EI execution can be monitored thanks to the monitoring tool that depicts

all the events occurring at run time. Fairness, trust and accountability are the

25

Fig. 6. Monitoring of an electronic institution execution

main motivations for the development of a monitoring tool that registers all

interactions admitted in a given enactment of an electronic institution (Nor-

iega, 1997; Rodŕıguez-Aguilar, 2001). Giving accountability information to the

participants increases their trust in the institution. This is specially important

for electronic institutions where people delegate their tasks to agents. Further-

more, the tool permits them to analyse their agent(s) behaviour within the

institution and improve it. From the point of view of the institution designers,

the tool could serve to test the system and the staff agents before making

the institution available to external agents. Furthermore, when the institu-

tion is running it can be used to detect unexpected situations and document

fraudulent behaviours of external agents.

The monitoring tool (see figure 6) displays all the interactions occurring in

the different scene and transition executions, along with agents’ movements

among scenes. The tool shows on its left side the list of scene and transition

26

executions. When the user selects one of them, the tool shows on its right

side all the events that took place during the execution. That is, the messages

exchanged, the entrance of new agents and the departure of any of the par-

ticipants. Moreover, the tool also allows monitoring the participation of an

agent in an EI execution. In this case, it shows the scenes in which the agent

has taken part, along with the messages that it has exchanged. Finally, the

tool also displays the inadmissible actions that agents attempt. Those that

do not comply with the institutional conventions encoded in the specification

and the current execution state. For instance, when an agent tries to utter an

illocution which is not correct with respect to a scene execution.

4 Case study

In the Mediterranean coast, fresh fish has been traditionally sold through

downward bidding auctions operating in auction houses in fishing towns. Fish

is presented in collections of boxes, called lots, and put up for auction following

a Dutch-like protocol: price is progressively and quickly lowered —4 quotes

per second— until a buyer submits a bid or the price descent reaches the

reservation price. The buyer submitting the bid can decide to buy the complete

lot or just some boxes. In the later case, the remaining boxes are put back up

for auction in the next round. When the last box of the last lot is sold, the

auction is over.

Some fishmarkets are adapting their selling methods to new technologies and

most auctions are nowadays somewhat automated, although the presence of

human buyers in the auction houses is still necessary. This has two significatn

drawbacks. First, it restricts potential buyers to those present in the auction

27

house. Second, it makes simultaneous participation in several auctions costly,

since companies have to send a representative to each one. The elimination

of such limitations would be profitable for both buyers and sellers. Increasing

the number of buyers makes the market more competitive, and thus increases

the buying price to the benefit of sellers. It also permits the participation of

buyers without intermediaries saving costs to the buyers.

Agent technologies may be used to eliminate these limitations. The Multia-

gent System for FIsh Trading (MASFIT)(Cuńı et al., 2004) 5 allows buyers

to remotely and simultaneously participate in several wholesale fish auctions

with the help of software agents, while maintaining the traditional auctions as

they are. The participation of buyer agents in auctions is mediated by an EI.

MASFIT interconnects multiple auction houses, hence structuring a federa-

tion of them. Significantly, MASFIT guarantees that buyer agents have access

to the same information, and have the same bidding opportunities as human

buyers physically present at the auction house. Furthermore, the system does

not alter the current operation of the auction houses.

In order to permit buyer agents to participate in the auctions, the auction

systems running in the (physical) auction houses have been extended to con-

nect with the electronic institution. Thus, the auction systems send to the

MASFIT electronic institution information about all the events occurring at

the corresponding auction house that are relevant for the buyers. These are:

the registration of new goods and the information about each auction round.

MASFIT receives this information and passes it to the buyer agents. More-

over, it controls buyer agents access to the auctions, and collects their bids

during the auctions. MASFIT sends to the auction systems information about

5 http://www.masfit.net.

28

Fig. 7. Specification of the MASFIT institution performative structure.

which buyer agents are taking part in their auctions and the bids that they

submit.

Since each auction house wants to continue having control over which buyers

are authorized to participate in their auctions, human buyers must register in

each auction house before this auction house authorizes buyer agents to par-

ticipate on their behalf. As a consequence, buyer agents may not have access

to all the federated auction houses. For this reason, we distinguish between

the agents’ admission to the institution, as the federation of auction houses,

and their admission to the different auction houses. Hence, the MASFIT’s

institution keeps track of which agents are taking part in each auction house.

Notice, that only the agents admitted in an auction house must receive the

information about their auctions.

As reported in (Cuńı et al., 2004), the EIDE tools played a key role in the

design and development of the MASFIT system. On the one hand, the MAS-

FIT electronic institution was specified using ISLANDER. On the other hand,

agents in the institution have their interactions mediated by AMELI.

Figure 7 depicts the specification of MASFIT’s performative structure cre-

29

ated with the aid of ISLANDER. It is composed of a large number of scenes

representing different activities in MASFIT, namely: buyer admission (BA),

where a buyer admitter controls buyer agents’ access to the federation; info-

seeking (IS), where buyer agents are informed about which auction houses

are federated and can access historical data about them; auction admission

(AA), where an auction admitter controls buyer agents’ access to an auction

house; good registration (GReg), where the good register agent informs the

buyers of the lots registered within an auction house; the auction room (AR),

where an auction broker mediates the participation of RCs (on behalf of buyer

agents) in an auction house; auction results (ARes), where buyer agents are

informed about the results of an auction; and the RCprogramming (RCP),

where a buyer agent programs —through dialogue— a RC 6 to participate in

an auction.

Since MASFIT is a federation of auction houses, there are some scenes de-

voted to common activities (federation level), while others are devoted to the

activities of a particular auction house (auction level). The scenes at the fed-

eration level are: root, output, buyer admission (BA) and info-seeking (IS)

scenes. There is one single execution of these scenes when the institution is

running. The rest of the scenes mediate buyer agents’ participation in par-

ticular auctions. There is one execution of each of these scenes per auction

house connected to the federation, except for the RCProgramming scene. In

this case, there is one execution of the RCProgramming scene per buyer agent

admitted within an auction house.

Buyer agents must go first to the buyer admission scene where the buyer

admitter controls their access to the federation. If they are admitted, they

6 An RC is a simple agent that actually performs the bidding.

30

can move to the info-seeking scene where they can request historical data.

Moreover, they are also informed about the auction houses connected to the

federation. From the info-seeking scene, buyer agents can try to enter the

different auction houses by moving to the corresponding auction admission

scenes.

Finally, notice that the participation in a market scenario as created by MAS-

FIT, a federation of auction houses, is a complex decision-making task, as

buyer agents are participating simultaneously in several auctions (A.Byde

et al., 2002). Buyer agents receive information from different auction houses

and they should decide the most suitable place to buy. Agents have to manage

huge amounts of information -even uncertain information- and their reasoning

and processing time must be short enough to react to changes. To support this

complex design, MASFIT makes available tools to create, customise, manage

and train software buying agents. Human buyers are provided with an agent

skeleton that they may customise to their buying preferences using available

tools. The customization is done by means of buying lists, strategies and lo-

gistics. The buying lists contain the products that the buyer wants to buy.

In the case of strategies, they are predefined but depend on some parame-

ters that must be set by the user. Finally, logistics include information about

transportation costs from the different auction houses to the user storehouse.

Thereafter, the buyer agent uses all this information to bid at the auctions.

When it receives information about the registration of a new lot, it checks if

the product is required in its buying list. If so, the agent determines a price

to bid and the quantity it wants to acquire.

31

5 Related Work

Recently, a number of MAS methodologies - e.g. GAIA (Zambonelli et al.,

2003), Tropos (Giunchiglia et al., 2001), or (Sturm et al., 2003) to name a few

- have been proposed. Most MAS methodologies are based on strong agent-

oriented foundations, however, while offering original contributions at the de-

sign level, they tend to be unsatisfactory on a development level because of the

lack of support to their design and implementation. Furthermore, most MAS

methodologies are agent-centered rather than community or socially-centered,

hence focus more on the internal aspects of agent functionality than on the

interaction aspects.

There are some agent infrastructures such as DARPA COABS coabs (2004)

and FIPA compliant platforms such as JADE (Bellifemine et al., 2001) that

deal with many issues that are essential for open agent interactions –communication,

identification, synchronization, matchmaking– that can be used as building

blocks for the development of open multi-agent systems. These building blocks

are arguably too distant from organisation-centered patterns or social struc-

tures.

A different –and interesting– approach to a unified MAS development frame-

work are the protocol-centered approaches. The proposal by Hanachi (Hanachi

and Sibertin-Blanc, 2004) allows for specifications of interaction protocols that

need to be subsequently compiled into a sort of executable protocol brokers

called moderators. In Tropos, the specifications are transformed into agent

skeletons that must be extended with code, similar to the aBUILDER tool

presented here. However, at execution time there is no mechanism to ensure

32

that agents follow the specification of the system.

Although some proposals agree on the need of adopting a social stance, as

far as we can tell the formal definition of organization-centered patterns and

social structures in general, along with their computational realization, remain

largely undeveloped (as noted in (Zambonelli et al., 2003)).

In addition to these infrastructures and methodologies just mentioned, some

agent research has focused on the introduction of social concepts such as or-

ganizations or institutions (e.g. (Parunak and Odell, 2002),(Dignum, 2004),

(Vazquez and Dignum, 2003)), however, there are yet no tools supporting their

computational realization, nor a proper engineering methodology directly as-

sociated with them.

A promising line of work is the one adopted by Omicini and Castelfranchi

(e.g. (Omicini et al., 2004)). It postulates some significant similarities with

our EI approach: focus on the social aspects of the interactions, a unified

metaphor that prevails along the development cycle, and the construction

of tools to implement methodological ideas. They discuss coordination arti-

facts and propose to develop them as devices to wrap agents so that their

interactions in a given MAS are subject to that MAS protocol and keep an

accurate picture of the interaction context 7 . While their proposal mentions

other conceptual design levels –and, consequently, other devices– the actual

development of the methodology and the associated tools appears to be still

rather tentative.

7 These coordination artifacts are essentially what we call governors.

33

6 Closing Remarks

The design and development of multiagent systems is a complex and difficult

task. This complexity arises from their distributed nature and from the need

of having high level and flexible interactions among autonomous entities (Jen-

nings et al., 1998). This is specially true in the case of open MAS populated

by heterogeneous and self-interested agents. We propose that this complexity

can be handled by introducing regulatory structures as EIs. Specifically, we

defend that open MAS can be effectively designed and developed as electronic

institutions (Noriega, 1997; Rodŕıguez-Aguilar, 2001; Esteva, 2003). Similarly

to human institutions, EIs define the rules of the game in agent societies, by

fixing what agents are permitted and forbidden to do.

Due to the complexity of EIs, we early identified the need of software tools

that support EIs design and development as one of the main issues in our

research (Noriega, 1997; Rodŕıguez-Aguilar, 2001; Esteva, 2003), and in this

paper we have introduced an integrated development environment for the en-

gineering of multiagent systems as electronic institutions as the result of our

group’s effort over these years. Notice that in the context of EIs, we differen-

tiate between the rules and the players (agents). However, we believe that is

is important to support the development of both. Therefore, EIDE groups a

set of tools which provide support to the specification, verification and execu-

tion of institutional rules, as well as the development of participating agents.

Specifically, ISLANDER supports the specification of EIs as formalised in (Es-

teva, 2003) and their static verification, SIMDEI supports their dynamic ver-

ification, while AMELI gives support to their execution by facilitating agent

participation on the institution, while enforcing the institutional rules encoded

34

in the specification. Moreover, the monitoring tool permits to monitor EIs exe-

cutions performed by means of AMELI. Complementary, the aBUILDER tool

partially supports the development of agents for a given EI.

Major benefits derive from employing the EIDE tools. Firstly, they help shorten

the development cycle. The engineering of an electronic institution entails

a low-cost implementation since only its participating agents must be pro-

grammed. The inherent flexibility of ISLANDER in the design of coordina-

tion mechanisms favours an easy, ready maintenance: when changes are ac-

commodated in a new specification, they are ready to be run by AMELI,

and agents are ready to plug and play. Secondly, the EIDE simulation tools

support what-if analysis of electronic institutions’ designs prior to their de-

ployment, facilitating the location of unexpected behaviours that may jeop-

ardise critical applications. Furthermore, agent developers are also supported

by aBUILDER.

EIDE has proven to be highly valuable in the development of e-commerce

applications such as the MASFIT system presented in section 4. However, a

wider range of application areas may be tackled with the aid of the EIDE tools.

In general terms, the electronic institutions approach is deemed as appropriate

in complex domains where multiple partners are involved, and a high degree

of coordination and collaboration is required. Thus, electronic institutions to

support workflow management, the monitoring and management of shop-floor

automation, or supply network management issues look promising in the near

future.

For more information and software downloads, the interested reader should

refer to http://e-institutions.iiia.csic.es.

35

7 Acknowledgements

Marc Esteva enjoys a Fulbright/MECD postdoctoral scholarship FU2003-

0569. The research reported in this paper is partially supported by the Spanish

CICYT project Web-i (2) (TIC-2003-08763-C02-01). The authors would like

to thank the IIIA Technological Development Unit’s programmers for their

valuable contribution to the development of EIDE.

References

A.Byde, Preist, C., Jennings, N., 2002. Decision procedures for multiple auc-

tions. In: Proceedings of the First International Joint Conference on Au-

tonomous Agents and Multi-Agent Systems. pp. 613–620.

Bellifemine, F., Poggi, A., Rimassa, G., 2001. Developing multi-agent systems

with jade. In: Castelfranchi, C., Lesperance, Y. (Eds.), Intelligent Agents

VII. No. 1571 in Lecture Notes in Artificial Intelligence. Springer-Verlag,

pp. 89–103.

coabs, 2004. Control of agent based systems. http://coabs.globalinfotek.com.

Collier, N., June 2003. Repast: An extensible framework for agent simulation.

http://repast.sourceforge.net.

Cuńı, G., Esteva, M., Garcia, P., Puertas, E., Sierra, C., Solchaga, T., August

2004. Masfit: Multi-agent systems for fish trading. In: 16th European Con-

ference on Artificial Intelligence (ECAI 2004). Valencia, Spain, pp. 710–714.

Dignum, V., 2004. A model for organizational interaction. Ph.D. thesis, Dutch

Research School for Information and Knowledge Systems, iSBN 90-393-

3568-0.

36

Esteva, M., 2003. Electronic Institutions: from specification to development.

IIIA PhD Monography. Vol. 19.

Esteva, M., de la Cruz, D., Sierra, C., July 15-19 2002. Islander: an electronic

institutions editor. In: Proceedings of the First International Joint Con-

ference on Autonomous Agents and Multi-agent Systems (AAMAS 2002).

Bologna, Italy, pp. 1045–1052.

Esteva, M., Rodŕıguez-Aguilar, J. A., Sierra, C., Arcos, J. L., Garcia, P., 2001.

On the formal specification of electronic institutions. In: Sierra, C., Dignum,

F. (Eds.), Agent-mediated Electronic Commerce: The European AgentLink

Perspective. No. 1991 in Lecture Notes in Artificial Intelligence. Springer-

Verlag, pp. 126–147.

Giunchiglia, F., Mylopoulos, J., Perini, A., November 2001. The tropos soft-

ware development methodology: Processes. Tech. Rep. 0111-20, ITC-IRST.

Hanachi, C., Sibertin-Blanc, C., March 2004. Protocol moderators as active

middle-agents in multi-agent systems. Journal of Autonomous Agents and

Multiagent Systems 8 (2).

Hewitt, C., 1986. Offices are open systems. ACM Transactions of Office Au-

tomation Systems 4 (3), 271–287.

Jennings, N. R., Sycara, K., Wooldridge, M., 1998. A roadmap of agent re-

search and development. Autonomous Agents and Multi-agent Systems 1,

275–306.

Noriega, P., 1997. Agent-Mediated Auctions: The Fishmarket Metaphor. IIIA

Phd Monography. Vol. 8.

North, D., 1990. Institutions, Institutional Change and Economics Perfo-

mance. Cambridge U. P.

Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L., July 19-23

2004. Coordination artifacts: Environment-based coordination for intelligent

37

agents. In: Third International Joint Conference on Autonomous Agents and

Multi-agent Systems (AAMAS’04). New York, USA, pp. 286–293.

Parunak, H., Odell, J., 2002. Representing social structures in uml. In: Agent-

Oriented Software Engineering II. LNCS 2222, springer-verlag Edition. pp.

1–16.

Rodŕıguez-Aguilar, J. A., 2001. On the Design and Construction of Agent-

mediated Electronic Institutions. IIIA Phd Monography. Vol. 14.

Rodŕıguez-Aguilar, J. A., Noriega, P., Sierra, C., Padget, J., 1997. Fm96.5 a

java-based electronic auction house. In: Second International Conference on

The Practical Application of Intelligent Agents and Multi-Agent Technol-

ogy(PAAM’97). pp. 207–224.

Sturm, A., Dori, D., Shehory, O., 2003. Single-model method for specifying

multi-agent systems. In: Proceedings of AAMAS 03. Melbourne, Australia,

pp. 121–128.

Vazquez, J., Dignum, F., 2003. Modelling electronic organizations. In: Multi-

Agent Systems and Applications III, springer-verlag Edition. Vol. 2691 of

LNAI. pp. 584–593.

Zambonelli, F., Jennings, N., Wooldridge, M., 2003. Developing multiagent

systems: The gaia methodology. ACM Transactions on Software Engineering

and Methodology 12 (3), 317–370.

38

