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Abstract
In the present paper, we axiomatize a logic that al-

lows a general approach for reasoning about probability
functions, belief functions, lower probabilities and their
corresponding duals. The formal setting we consider
arises from combining a modal S5 necessity operator
� that applies to the formulas of the infinite-valued
Łukasiewicz logic with the unary modality P that de-
scribes the behaviour of probability functions. The
modality P together with an S5 modality � provides
a language rich enough to characterise probability,
belief and lower probability theories. For this logic,
we provide an axiomatization and we prove that, once
we restrict to suitable sublanguages, it turns out to be
sound and complete with respect to belief functions
and lower probability models.
Keywords: Fuzzy logic, Dempster-Shafer belief func-
tions, probability functions, imprecise probabilities,
modal logic.

1. Introduction

The relationship between modal logics, fuzzy logics and
uncertainty measures is not new. In [21, 17, 19], see also
[14] for a survey, probability functions are defined via a
fuzzy modal operator P applied on classical propositional
formulas. Thus, the probability of a boolean formula ϕ is
taken to be the truth degree of the fuzzy proposition Pϕ =
“ϕ is probable”. Remarkably, this modal fuzzy approach
to probability has been proved in [2] to be equivalent to
the possibly better known setting proposed and studied by
Fagin, Halpern and Megiddo in [11]. The same approach has
been then generalized to represent Dempster-Shafer belief
functions and in [18] the belief degree of classical boolean ϕ
is the truth degree of the modal formula Bϕ= P�ϕ, where�
is an S5 modality. In [24, 25], lower and upper probabilities
have been formalized in a similar way. Furthermore, these

setting have been also generalized to deal with nonclassical
events in [13, 15, 12].

In the recent short paper [9], the authors propose an
approach to deal with several uncertainty theories within a
unique and general logical language that, in addition to the
previously recalled modality P, also contains an additional
S5 modal operator �. In the same paper [9], the problem of
determining an axiomatization for that general logic was
left as open. In the present paper we approach that issue
showing an axiomatization for our logic. More precisely,
the language proposed in the aforementioned paper, in
addition to the probability formulas of the form P(ϕ),
was claimed to allow expressing “belief function formulas”
by combining P and � as P(�ϕ) and “lower probability
formulas” as �P(ϕ). Although belief function formulas as
the above were already considered in the literature (see [18]
for instance), the models presented in [9] are slightly more
general as they also allow to interpret lower probability
formulas.

In the present paper we show that if we restrict to belief
function formulas, our logic is sound and complete with
respect to belief function models, while if we restrict to
lower probability formulas, the same logic is complete with
respect to lower probability evaluations. As the former will
be a direct consequence of the completeness theorem shown
in [18], the latter is entirely new. Having a unique logic to
deal with uncertainty theories, and with belief functions
and lower probability in particular, is interesting also in
light of the result presented in [8] showing that in some non
trivial situations, these two uncertainty measures cannot
be distinguished. Therefore, having a common ground on
where we can have a comparative analysis of these two
theories, can pave the way to future interesting results.
A first step towards such comparative analysis will be
presented in the last part of the present document.

The rest of this paper is organized as follows: In the next
Section 2 we will briefly recall our logical and measure-
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theoretical settings. Section 3 is dedicated recall the setting
of [9]. There, we will hence define the measure-based and
relational-based models that allow to represent uncertainty
measures as a whole. In Section 4 we will axiomatize
the logic S5(FP(Ł)) and show the promised completeness
theorems. In Section 5 we will show a first comparative
analysis and we will end with Section 6 in which we briefly
present the next step we intend to go through.

2. Modal logics and uncertainty measures

2.1. Logical preliminaries

The propositional logic on which our approach is grounded
is the [0, 1]-valued Łukasiewicz calculus. Let us briefly
recall that Łukasiewicz infinite-valued logic Ł is a fuzzy
logic, in the sense of [19], whose algebraic semantics is the
variety of MV-algebras. Those are structures of the form
A = (A, ⊕,¬, 1) where A is a nonempty set, ⊕ is a binary
and ¬ a unary operation on A, while 1 is a constant. Thus,
an algebra in that signature is an MV-algebra iff (A, ⊕, 1)
is a commutative monoid, and the following equations are
satisfied: ¬¬x = x; ¬(¬x ⊕ y) ⊕ y = ¬(¬y ⊕ x) ⊕ x. These
algebras form a variety, denoted byMV , that is the equivalent
algebraic semantics for Ł. This implies, among other things,
that formulas of Łukasiewicz logic can be regarded as terms
in the language of MV-algebras and we will henceforth
use this convention without danger of confusion. MV is
generated, both as a variety and a quasivariety by the so
called standard MV-algebra, [0, 1]MV = ([0, 1], ⊕,¬, 1)
where [0, 1] denotes the real unit interval, and for all a, b ∈
[0, 1], a ⊕ b = min{1, a + b} and ¬a = 1 − a.

As shown by Chang in [7], Łukasiewicz logic, whose
axiomatization can be found in [19] (see also [26]) turns
out to be sound and complete with respect to evaluations
to [0, 1]MV , i.e., with respect to maps e from the variables
to [0, 1] that interpret connectives by the operations of
[0, 1]MV recalled above. The notion of theorem (` ϕ) and
deduction from a theory (T ` ϕ) are defined as usual in
algebraic logic.

Theorem 1 For every finite set of formulas T ∪ {ϕ} in the
Łukasiewicz logic language, T ` ϕ iff for every evaluation
e into [0, 1]MV that maps all ψ ∈ T to 1, e(ϕ) = 1 as well.

The logic Ł features not only the strong disjunction ⊕ and
negation¬, but also a weak conjunction∧, a non-idempotent
strong conjunction denoted by &, a weak disjunction ∨
and an implication→. The standard semantics of the above-
mentioned connectives is given by extending the evaluations

e on [0, 1] as follows:

e(ϕ ⊕ ψ) = min{1, e(ϕ) + e(ψ)};
e(¬ϕ) = 1 − e(ϕ);
e(ϕ ∧ ψ) = min{e(ϕ), e(ψ)};
e(ϕ&ψ) = max{0, e(ϕ) + e(ψ) − 1};
e(ϕ ∨ ψ) = max{e(ϕ), e(ψ)};
e(ϕ→ ψ) = min{1 − e(ϕ) + e(ψ), 1}.

Łukasiewicz infinite-valued logic, together with modus
ponens as inference rule, is axiomatized by the following
set of axioms:

(L1) ϕ→ (ψ → ϕ);
(L2) (ϕ→ ψ) → ((ψ → χ) → (ϕ→ χ));
(L3) (¬ϕ→ ¬ψ) → (ψ → ϕ);
(L4) ((ϕ→ ψ) → ψ) → ((ψ → ϕ) → ϕ).

Let us now recall some basic concepts of standard (classical)
modal logic. The language of classical propositional logic,
built up from a countable set of propositional variables
V ar, is enriched by a modal operator � and its dual ^ =
¬�¬. A Kripke model for the logic S5 is a structure K =
(W, R, {ew }w∈W ), where W is a non-empty set of worlds
(or states), R ⊆ W × W is the accessibility relation that
is assumed to be an equivalence relation, and for every
w ∈ W ew is a classical evaluation ew : V ar −→ {0, 1} that
assigns a truth value to each propositional variable in each
state. The evaluations extend to classical formulas as usual.
For a formula φ and world w we denote by ‖φ‖K ,w the
truth-value of φ in K at w. In particular for propositional
formulas ϕ we have:

‖ϕ‖K ,w = ew (ϕ).

For atomic modal formulas �ϕ we have:

‖�ϕ‖K ,w = 1 iff for each w′ ∈ W, wRw′ implies ew′ (ϕ) = 1.

Truth-values of compound modal formulas are computed
by truth-functionality.

The axioms of S5 are the following:

(CPL) Axioms of classical propositional logic;
(K ) �(ϕ→ ψ) → (�ϕ→ �ψ);
(T ) �ϕ→ ϕ;
(4) �ϕ→ ��ϕ;
(B) ϕ→ �^ϕ.

and the inference rules are modus ponens and necessitation
for � (from ϕ derive �ϕ).

In recent years the community of fuzzy logicians has
put forward several attempts to extend modal logic from
the classical to the many-valued setting, and the approach
followed by that community is mainly semantic-based. For
instance, in [20] Hájek proposed a generalization of the
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modal logic S5 to the Łukasiewicz many-valued setting
by defining its relational semantics as Kripke-like models
of the form K = (W, R, {ew }w∈W ) where W is nonempty,
R = W ×W is the total relation on W , and for every w ∈ W ,
ew evaluates Łukasiewicz (non-modal) formulas into the
standard MV-algebra [0, 1]MV with their corresponding
truth-functions, while the truth value of a modal formula
�ϕ at w ∈ W is computed as follows:

‖�ϕ‖K ,w = inf{ew′ (ϕ) | wRw′} = inf{ew′ (ϕ) | w′ ∈ W }.

We will henceforth denote the class of these models byM t ,
t for total. He shows (see also [5]) that the following Hilbert-
style calculus, denoted by S5Ł and based on a language
that expands that of Ł by a unary modality � and its dual
^ = ¬�¬, is sound and complete w.r.t. the above-defined
class of relational modelsM t :

(�1) �ϕ→ ϕ;
(�2) �(ψ → ϕ) → (ψ → �ϕ);
(�3) �(ψ ∨ ϕ) → (ψ ∨ �ϕ);
(^1) ^(ϕ&ϕ) ≡ ^ϕ&^ϕ;
(MP) the modus ponens rule;
(N�) the necessitation rule: from ϕ infer �ϕ.

Since extending Ł by the law of excluded middle,

(LEM) ϕ ∨ ¬ϕ,

yields classical logic, if we add the axiom ϕ ∨ ¬ϕ to S5Ł
then we obtain the classical modal logic S5 [4]. Moreover,
analogously to the classical case, S5Ł turns out to be not
only sound and complete w.r.t. the class M t of Kripke
models (W, R, {ew }w∈W ) where R = W ×W , but also w.r.t.
the classMe of Kripke models (W, R, {ew }w∈W ) in which
R ⊆ W ×W is an equivalence relation, i.e., it is reflexive,
symmetric and transitive.

Definition 2 Me is the class of models (W, R, {ew }w∈W )
where W is nonempty, R is an equivalence relation on W and
for all w ∈ W , ew is a [0, 1]MV -evaluation of Łukasiewicz
formulas.

If φ is any formula in the language of S5Ł, K =

(W, R, {ew }w∈W ) ∈ Me and w ∈ W , the truth value of
φ in K at w, denoted ‖φ‖K ,w , is defined as usual.

Lemma 3 The classesM t andMe have the same tautolo-
gies.

Proof Since every total relation on any W is in particular
en equivalence relation, if φ is a tautology ofMe , φ also is
a tautology ofM t , i.e.Me ⊆ M t . Conversely, assume that
φ is not a tautology ofMe , i.e., assume there exists K =
(W, R, {ew }w∈W ) ∈ Me and w ∈ W such that ‖φ‖K ,w < 1.

Since R is an equivalence relation, the restriction of R to
R[w] = {w′ ∈ W | wRw′} is total. Thus, take W ′ = R[w]
(where w is the same as above), R′ = W ′ ×W ′ and for all
w∗ ∈ W ′, ew∗ is as in K . Call K ′ = (W ′, R′, {ew∗ }w∗∈W ′ ).
Since w ∈ W ′, ‖φ‖K ′,w = ‖φ‖K ,w < 1 (easy to see by
induction). It then follows that φ is not a tautology ofM t

andM t ⊆ Me .

Thus, the following immediately follows.

Theorem 4 ([6]) The logic S5(Ł) is sound and finitely
strong complete with respect to the class Me . In other
words, for every finite set of formulas T ∪ {ϕ}, T `S5(Ł) φ
iff ‖φ‖K ,w = 1 for all K ∈ Me such that ‖τ‖K ,w = 1 for
all τ ∈ T .

2.2. Uncertainty Measures

As we assume the reader to be familiar with finitely additive
probability measures (for otherwise, see for instance [22]),
this section is meant to recall more general measures for
uncertainty, namely belief functions [27] and lower proba-
bilities [28]. Along the whole paper we will always work
on finite boolean algebras. Here below we just recall the
definitions of belief functions, possibility and necessity
measures and lower probabilities.

Definition 5 (Belief functions [27]) A belief function on
a boolean algebra A is a [0, 1]-valued map B : A→ [0, 1]
satisfying:

(B1) B(>) = 1, B(⊥) = 0;

(B2) B *
,

n∨
i=1

ψi
+
-
≥

n∑
i=1

∑
{J ⊆{1, ...,n }: |J |=i }

(−1)i+1B *.
,

∧
j ∈J

ψ j
+/
-
,

for n ∈ N.

An element ϕ of a boolean algebra A is said to be covered
m times by a multiset {{ψ1, . . . , ψn }} of elements of A if
every homomorphism of A to {0, 1} that maps ϕ to 1, also
maps to 1 at least m propositions from ψ1, . . . , ψn as well.
An (m, k)-cover of (ϕ,>) is a multiset {{ψ1, . . . , ψn }} that
covers > k times and covers ϕ n + k times.

Definition 6 (Possibility and necessity measures [10])
A possibility measure on a Boolean algebra A is a map
Π : A→ [0, 1] such that

(Π 1) Π (>) = 1, Π (⊥) = 0;

(Π 2) Π (ψ1 ∨ ψ2) = max{Π (ψ1), Π (ψ2)} for all ψ1, ψ2 ∈
A.

A necessity measure is the dual notion of a possibility
measure, and it is a map N : A→ [0, 1] such that
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(N1) N (>) = 1, N (⊥) = 0;

(N2) N (ψ1 ∧ ψ2) = min{N (ψ1), N (ψ2)} for all ψ1, ψ2 ∈ A.

Definition 7 (Lower Probability functions [28]) A
lower probability on a boolean algebra A is a monotone
[0, 1]-valued map P : A→ [0, 1] satisfying:

(L1) P(>) = 1, P(⊥) = 0;

(L2) For all natural numbers n,m, k and all ψ1, . . . , ψn ,
if {{ψ1, . . . , ψn }} is an (m, k)-cover of (ϕ,>), then

k + mP(ϕ) ≥
n∑
i=1

P(ψi ).

Although this definition does not make the name lower prob-
abilities particularly obvious, [1, Theorem 1] puts forward
the following enlightening characterisation, anticipated by
[28]. Let P : A → [0, 1] be a lower probability, let P be
the set of all probability measures on A, and denote with
M (P) the set of probability functions which bound P from
above, i.e.

M (P) = {P ∈ P | P(ψ) ≤ P(ψ), ∀ψ ∈ A}. (1)

Then, for all ψ ∈ A,

P(ψ) = inf
P∈M(P)

P(ψ).

In addition, whenever the algebra A is finite, by [23, Lemma
A3], for every ψ ∈ A, there exists a probability function
Pψ : A → [0, 1] such that P(ψ) = Pψ (ψ). Therefore, and
recalling that A is finite, P can be actually defined as a
local minimum. In other words, one can find a set P ′ of
probability functions P′ : A→ [0, 1] such that, for all

P(ψ) = min
P′∈P′

P′(ψ).

This fact just recalled, will be used in Lemma 16 below.
Interestingly, belief functions and necessity measures

can be seen as lower probabilities. Indeed, if B is a belief
function then, considering the set

M (B) = {P ∈ P | B(ψ) ≤ P(ψ), ∀ψ ∈ A},

it holds that the map η : A→ [0, 1] such that, for all ψ ∈ A,

η(ψ) = min
P∈M (B)

P(ψ)

is a belief function that coincides with B, see e.g. [29].
Analogously, as it has been proved in [16], if N is a necessity
measure on A and we consider (1) above applied to N as
follows,

M (N ) = {P ∈ P | N (ψ) ≤ P(ψ), ∀ψ ∈ A},

then the map η : A→ [0, 1] such that, for all ψ ∈ A,

η(ψ) = min
N ∈M (N )

P(ψ)

is a necessity measure coinciding with N .

Remark 8 From an axiomatic point of view, lower prob-
abilities are more general measures than belief functions
and necessity measures. In fact, a lower probability P on
an algebra A is a belief function iff P satisfies (B2), namely

P *
,

n∨
i=1

ψi
+
-
≥

n∑
i=1

∑
{J ⊆{1, ...,n }: |J |=i }

(−1)i+1P *.
,

∧
j ∈J

ψ j
+/
-

(2)

for all n = 1, 2, . . .. And P is necessity measure iff P satisfies

P(ϕ ∧ ψ) = min(P(ϕ), P(ψ)) (3)

and in that case, (2) is also satisfied, in accordance with
the fact that necessity measures are a particular subclass
of belief functions.

3. A Unified Logic for Uncertainty
Let us start from L , the language of Łukasiewicz logic over
finitely many (say n) propositional variables, and let the
language L�,P be the expansion of L by two additional
unary modalities: � and P. We will mainly focus in the
following subclasses of formulas of L�,P :
CF: The set of classical formulas. Those are definable in
L from variables, constants > and ⊥, and the connectives
∧, ∨, ¬.
CMF: The set of classical modal formulas is defined by
closing CF by the unary modality � as usual in a modal
language. Notice that in CMF, for every ϕ ∈ CMF, ^ϕ
stands for ¬�¬ϕ.
PMF: The set of probabilistic modal formulas is obtained
by the following two steps:

1. Atomic probabilistic formulas are all those in the form
P(ϕ) for ϕ ∈ CMF;

2. Compound probabilistic formulas are defined by com-
posing atomic ones with connectives of the Łukasiew-
icz language.

UMF: Finally, the set of uncertainty modal formulas is the
smallest set of formulas that contains PMF and is closed
under � and connectives of Łukasiewicz logic.

Remark 9 In order to clarify with what formulas we are
dealing with, in the following table, for each class of for-
mulas, we show some example.

CF ϕ, ψ, ϕ ∧ ψ
CMF �ϕ, ϕ→ �ψ,�ϕ∧^ψ,�(�ϕ∧^ψ)
PMF P(ϕ→ �ψ), P(ϕ) → P(�ψ)
UMF �P(ϕ), �P(ϕ) → P(^ψ),

�(P(ϕ) → P(^ψ)),
�(�P(ϕ) → P(^ψ))

Table 1: Example of formulas of the corresponding class.
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Neither �ϕ → P(ψ), nor P(P(ϕ) → P(�ψ)) are ex-
amples of probabilistic modal formulas. In fact, we ask
no interaction between classical modal and probabilistic
modal formulas and P cannot occur nested.

Note that, by definition, CF ⊆ CMF and PMF ⊆ UMF. In
what follows we will be mainly interested in the following
subclasses of formulas from UMF:
BF: the set of belief function formulas is the smallest subset
of UMF that contains all basic formulas of the form P(�ϕ)
for every classical formula ϕ and that is closed under Łu-
kasiewicz connectives. Examples of formulas in BF are
P�ϕ→ P�ψ or ¬P�ϕ.
LF: the set of lower probability formulas is the smallest
subset of UMF that contains all basic formulas of the form
�P(ϕ) for every classical formula ϕ and that is closed under
Łukasiewicz connectives. Examples of formulas in LF are
�Pϕ→ �Pψ or ¬�Pϕ.

Now, let us define a semantics for the language LUM =
CMF ∪ UMF containing all the sets of formulas defined
above.

Definition 10 An S5 probability model is a tuple

U = (W, R, {ew }w∈W , {pw }w∈W )

where:

1. W is a non-empty countable set;

2. (W, R, {ew }w∈W ) is a classical S5-Kripke model;

3. For all w ∈ W , pw is a probability distribution on W .

Given an S5 probability model (W, R, {ew }w∈W , {pw }w∈W ),
for every w ∈ W , we will sometimes denote by µw the
probability function on the measurable subsets of W induced
by the distribution pw .

IfU = (W, R, {ew }w∈W , {pw }w∈W ) is an S5 probability
model, w ∈ W is any world and ϕ is a UMF formula, we
define the truth-value of ϕ inU at w (denoted ‖ϕ‖U,w) in
the following way:
(1) If ϕ ∈ CF, then ‖ϕ‖U,w = ew (ϕ);
(2) If ϕ ∈ CMF, then whenever ϕ = �ψ we have

‖ϕ‖U,w = ‖�ψ‖U,w = inf{‖ψ‖U,w′ | wRw′}.

If ϕ is compound, then ‖ϕ‖U,w is computed by truth-
functionality using classical connectives. Note that for any
ϕ ∈ CMF, ‖ϕ‖U,w ∈ {0, 1}.
(3) If ϕ ∈ PMF and ϕ is atomic, i.e., ϕ = P(ψ) with ψ ∈
CMF, then

‖ϕ‖U,w = ‖P(ψ)‖U,w =
∑
{pw (w′) | ‖ψ‖U,w′ = 1}.

If ϕ ∈ PMF and is compound, then its truth-value is com-
puted by truth-functionality using Łukasiewicz connectives.

(4) If ϕ ∈ UMF and ϕ = �ψ, and thus with ψ ∈ PMF, then

‖ϕ‖U,w = ‖�ψ‖U,w = inf{‖ψ‖U,w′ | wRw′}.

Again, if ϕ is compound then we will compute ‖ϕ‖U,w by
truth-functionality using Łukasiewicz connectives.

Let T ∪ {φ} be a set of UMF formulas. We will write
T |=S5P φ if for every S5 probability modelU and world
w, ‖τ‖U,w = 1 for every τ ∈ T implies that ‖φ‖U,w = 1.

The cases (1) and (2) above are indeed as usual. Let us
hence provide some examples for the possibly less clear
cases (3) and (4) and precisely to clarify the interpretation
of belief function and lower probability formulas.

Let us start with the case (3) and let ϕ = P(ψ) be an
atomic PMF formula, with ψ ∈ CF. Then,

‖P(ψ)‖U,w =
∑
{pw (w′) | ‖ψ‖U,w′ = 1}

=
∑
{pw (w′) | ew′ (ψ) = 1}.

In other words ‖P(ψ)‖U,w is the probability of ψ computed
in w.

If ϕ = P(�ψ) is a belief function formula from BF, so that
ψ ∈ CF, then ‖P(�ψ)‖U,w is, by definition,

∑
{pw (w′) |

‖�ψ‖U,w′ = 1}. In this case, notice that ‖�ψ‖U,w′ = 1 iff
‖ψ‖U,w′′ = 1 for all w′′ such that w′Rw′′. Therefore, if we
denote by µw the probability function on 2W induced by
the distribution pw ,

‖P(�ψ)‖U,w =

= µw ({w∗ ∈ W | ∀w′ ∈ W (w∗Rw′ ⇒ ‖ψ‖U,w′ = 1)}).

If ϕ = �P(ψ) is a lower probability formula from LF
with ψ ∈ CF, then ‖�P(ψ)‖U,w is defined as follows.

‖�P(ψ)‖U,w = inf{‖P(ψ)‖U,w′ | wRw′}

= inf{µw′ ({w∗ ∈ W | ‖ψ‖U,w∗ = 1}) | wRw′}.

Clearly, more complex formulas in UMF could be consid-
ered but we will not go into details.

Remark 11 (On compound modal formulas) While we
can regard basic modal formulas of the form P(ϕ), P(�ϕ),
or �P(ϕ) as logical representations of the uncertainty on
the event ϕ specified under different theories, compound
modal formulas can be thought as dealing with meta-logical
properties about the uncertain quantification of (a class of)
events. For instance, in the setting of our extended language,
the compound formula �P(ϕ) → P(�ϕ) might be used to
express the fact that the lower probability value of the event
ϕ is less or equal than the belief function value of the same
event.
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Figure 1: An S5 Kripke frame (W, R) on 5 possible worlds.

The following example is taken from [9].

Example 1 Let us consider a language with three propo-
sitional variables p, q, r and the S5 Kripke model as in
Figure 1. Let the evaluations ew be as follows:

w1 |= p, q, r;
w2 |= p,¬q, r;
w3 |= ¬p, q,¬r;
w4 |= p,¬q,¬r and
w5 |= ¬p,¬q,¬r .

Let us consider the following probability distributions.

w1 w2 w3 w4 w5
p1 1/5 1/5 1/5 1/5 1/5
p2 1/3 1/3 1/3 0 0
p3 0 1/4 1/4 1/2 0
p4 0 1/3 0 1/3 1/3
p5 1/4 1/4 0 1/4 1/4

Thus, let U = (W, R, {e1, . . . , e5}, {p1, . . . , p5}) and ϕ =
r → (p ∧ q). Its models are w1,w3,w4,w5. Then, for every
i = 1, . . . , 5, it is easy to compute ‖P(ϕ)‖U,wi as pi (w1) +
pi (w3)+pi (w4)+pi (w5). For instance, ‖P(ϕ)‖U,w1 = 4/5
and ‖P(ϕ)‖U,w2 = 2/3.

Now, consider the belief function formula P(�ϕ). In
order to compute ‖P(�ϕ)‖U,wi , we first need to notice that
the models of �ϕ, are w4 and w5. Indeed, for all i = 1, 2, 3,
wiRw2 and w2 6 |= ϕ. Thus, for all i = 1, . . . , 5,

‖P(�ϕ)‖U,wi = pi (w4) + pi (w5).

Thus, ‖P(�ϕ)‖U,w1 = 2/5, ‖P(�ϕ)‖U,w2 = 0 and
‖P(�ϕ)‖U,w5 = 1/2. Note that, for all i = 1, . . . , 5,
‖P(�ϕ)‖U,wi ≤ ‖P(ϕ)‖U,wi , i.e. the PMF formula
P(�ϕ) → P(ϕ) is valid inU .

Finally, let us consider the lower probability formula
�P(ϕ). In this case the � is external to P, thus the above is
an uncertain modal formula. For all i = 1, . . . , 5,

‖�P(ϕ)‖U,wi = min{‖P(ϕ)‖U,w j | wiRw j }.

For instance,

‖�P(ϕ)‖U,w1 = min{‖P(ϕ)‖U,w1, ‖P(ϕ)‖U,w2, ‖P(ϕ)‖U,w3 }

= min{4/5, 2/3, 3/4} = 2/3.

Again, since R is reflexive in all S5 Kripke frames, one has
that �P(ϕ) → P(ϕ) is valid inU . From this observation,
together with the fact that x → y and z → y imply, in
Łukasiewicz logic, that (x ∧ z) → y,

(P(�ϕ) ∧ �P(ϕ)) → P(ϕ)

holds in U . In the following table, we summarize the
evaluations of ‖P(ϕ)‖U,wi , ‖�ϕ‖U,wi , ‖P(�ϕ)‖U,wi ,
‖�P(ϕ)‖U,wi computed on all worlds in the given model
U .

w1 w2 w3 w4 w5
‖P(ϕ)‖U,wi 4/5 2/3 3/4 2/3 3/4
‖�ϕ‖U,wi 0 0 0 1 1
‖P(�ϕ)‖U,wi 2/5 0 1/2 2/3 1/2
‖�P(ϕ)‖U,wi 2/3 2/3 2/3 2/3 2/3

In this example, ‖�P(ϕ)‖U,wi , the modal formula repre-
senting the “lower probability degree of ϕ” is always greater
or equal to ‖P(�ϕ)‖U,wi , the modal formula standing for
the “belief of ϕ”. However, this is not always the case and
by changing the probability distributions on W there are
cases in which ‖�P(ϕ)‖U,wi ≤ ‖P(�ϕ)‖U,wi .

4. The general logic S5(FP(Ł)): completeness
results

In this section we introduce the logic S5(FP(Ł)) over the
language LUM and prove some completeness results.

Definition 12 The axioms of the logic S5(FP(Ł)) are the
following:

(CPL) The axioms and rules of classical propositional logic
for formulas in CF.

(S5) The axioms of S5 applied to CMF.

(FP(Ł)) Axioms and rules of FP(Ł) for PMF formulas, i.e. the
axioms of Ł recalled in Section 2.1 and the axioms for
the modality P and Łukasiewicz implication:

(P1) P(ϕ→ ψ) → (P(ϕ) → P(ψ));
(P2) ¬P(ϕ) ≡ P(¬ϕ);
(P3) P(ϕ ∨ ψ) ≡ [(P(ϕ) → P(ϕ ∧ ψ)) → P(ψ)];
(N P) necessitation: from ϕ infer P(ϕ).

(S5(Ł)) Axioms and rules of S5(Ł) recalled in Section 2.1 for
UMF formulas (the modal language of S5(Ł) built
over FP(Ł)-formulas closed by Ł-connectives.)
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The axiom (P1), which can be read as “whenever both
ϕ→ ψ and ϕ are probable, also ψ is probable”, is the axiom
(K) for the modality P and Łukasiewicz implication. Axiom
(P2) says that if ϕ is not probable, then ¬ϕ is probable, and
vice versa. Axiom (P3) expresses finite additivity.

The above axiom schema for FP(Ł), has already been
shown to define a complete calculus for (finitely additive)
probability functions [19, 14]. The interaction between P
and an S5 � in formulas like P(�ϕ) gives a way to represent
belief functions [18].

Definition 13 A belief function model is a triple
(W, {ew }w∈W , B) where W is a nonempty set of worlds,
ew are classical evaluations for each w ∈ W and B is a
belief function on 2W . A belief function model evaluates
a basic belief function formula P(�ϕ) as ‖P(�ϕ)‖B =
B({w | ew (ϕ) = 1}), and extends to compound formulas in
BF by truth-functionality using Łukasiewicz connectives.

The models considered in [18] differ from ours as
they include only one probability function. These are in-
deed systems (W, {ew }w∈W , R, µ) in which the truth value
of a belief function formula like P(�ϕ) is evaluated as
‖P(�ϕ)‖ = µ({w∗ | ∀w′ ∈ W (w∗Rw′ ⇒ ‖ϕ‖w′ = 1})
and hence it is independent of the specific world we are in.
However, it is clear that each such model determines an S5
probability model by letting, for all w,w′ ∈ W , ew = ew′
and µw = µw′ . Therefore the following adaptation of the
completeness theorem from [18] applies to our case. In the
next statement, for a set T ∪ {φ} of formulas, we will write
T |=BF φ if for all pair (W, B) where W is a nonempty set
and B is a belief function on 2W ,

Theorem 14 For every finite subset of formulas T ∪
φ ⊆ (BF), T `S5(FP(Ł)) φ iff for all belief model
(W, {ew }w∈W , B), ‖τ‖B = 1 implies ‖φ‖B = 1.

In the following theorem we show that the axioms of
S5(FP(Ł)) also capture lower probabilities once we restrict
to modal formulas from (LF).

Definition 15 A lower probability model is a triple
(W, {ew }w∈W , P) where W is a nonempty set of worlds,
ew are classical evaluations for each w ∈ W and P is a
lower probability on 2W . A lower probability model eval-
uates a lower probability formula �P(ϕ) as ‖�P(ϕ)‖P =
P({w | ew (ϕ) = 1}), and extends to compound formulas in
LF by truth-functionality using Łukasiewicz connectives.

In the proof of the next result we will employ a usual
translation of modal formulas for uncertainty to proposi-
tional Łukasiewicz language (see [14] for instance) and a
recent result contained in [6] and precisely, the variant of
finite strong standard completeness of S5(Ł) we showed in
Theorem 4 above. Also, we will employ the next lemma

showing that finite lower probability models and finite S5
probability model satisfy the same formulas in LF. In the
lemma we assume we will work with lower probability mod-
elsM = (W, {ew }w∈W , P) such that ew , ew′ whenever
w , w′.

Lemma 16 For every Φ ∈ LF and for every fi-
nite lower probability model M = (W, {ew }w∈W , P)
there exists a finite S5 probability model M0 =

(W0, R0, {ew0 }w0∈W 0, {pw0 }w0∈W 0 ) such that ‖Φ‖M =

‖Φ‖M0 .

Proof Assume W = {w1, . . . ,wn }. We prove the claim
for the case of Φ = �P(ϕ). Let us start recalling that
‖�P(ϕ)‖M = P([ϕ]W ) = P({w ∈ W | ew (ϕ) = 1}).
Denoting by A the finite algebra of subsets of W , by [23,
Lemma A3] there exists a family of probability functions
{µa }a∈A on A such that, for each a ∈ A, P(a) = µa (a).
Therefore, for each ϕ ∈ CF,

P([ϕ]W ) = µ[ϕ]W ([ϕ]W ). (4)

Now, let us define W0 = A = 2W , the set of subsets
of W so that, for every classical formula ψ, [ψ]W ∈ W0.
Moreover, the assumptions made right above this lemma
ensures that for every w0 ∈ W0 there exists a classical
formula ψ s.t. [ψ]W = w0. In what follows we list the
elements of W0 as w1

1,w
1
2, . . . ,w

1
n, . . . ,w

2n−1
1 , . . . ,w2n−1

n ,
where the first n elements of this list correspond to the
elements of W , i.e. for k = 1, . . . , n, we take w1

k
= {wk }.

Moreover, for each k = 1, . . . , n, we also take ew1
k
= ewk

.
Finally, for every [ψ]W ,wi

k
∈ W0, we define

µ[ψ]W (wi
k ) =

{
µ[ψ]W (wk ) if i = 1
0 otherwise.

Now, we have the following set of equalities:

‖�P(ϕ)‖M0 = inf
w

j
l
∈W 0

µ
w

j
l
({wi

k ∈ W0 | ew i
k

(ϕ) = 1})

= inf
[ψ]W ∈W 0

µ[ψ]W ({wi
k ∈ W0 | ew i

k
(ϕ) = 1})

= inf
[ψ]W ∈W 0

∑
{µ[ψ]W (wi

k ) | ew i
k

(ϕ) = 1}

= inf
[ψ]W ∈W 0

∑
{µ[ψ]W (w1

k ) | ew1
k

(ϕ) = 1}

= inf
[ψ]W ∈W 0

∑
{µ[ψ]W (wk ) | ewk

(ϕ) = 1}

= inf
[ψ]W

µ[ψ]W ([ϕ]W )

= µ[ϕ]W ([ϕ]W )
= P([ϕ]W )
= ‖�P(ϕ)‖M

where the three-last equality follows from (4).

Now we can hence prove the desired completeness theorem.
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Theorem 17 For every finite subset of formulas T ∪ φ ⊆
(LF), the following conditions are equivalent:

(i) T `S5(FP(Ł)) φ

(ii) for all finite (universal) S5 probability model U =
(W, R, {ew }w∈W , {µw }w∈W ) with R = W × W ,
‖τ‖U = 1 for each τ ∈ T implies ‖φ‖U = 1.

(iii) for all finite lower probability model (W, {ew }w∈W , P),
‖τ‖P = 1 for each τ ∈ T implies ‖φ‖P = 1.

Proof (i) ⇒ (ii) is soundness and it holds because all
axioms and rules of S5(FP(Ł)) holds in every (universal)
S5 probability model; (ii) ⇔ (iii) is Lemma 16. It is hence
left to prove that (ii) ⇒ (i).

To this end, let ◦ be a translation from S5(FP(Ł))-formulas
to S5(Ł)-formulas defined in the usual way, i.e. introducing
a new propositional variable sA for each FP(Ł)-formula
A. Let V ar◦ denote the new set of propositional variables
in sA’s and AxFP◦ instances of FP(Ł). Thus, we have to
prove that

T `S5(FP(Ł)) φ iff T◦ ∪ AxFP◦ `S5(Ł) φ
◦.

Since there are only finitely-many non-equivalent formulas
in AxFP◦, by Theorem 4, we have that

T `S5(FP(Ł)) φ iff T◦ ∪ AxFP◦ |=S5(Ł) φ
◦.

Suppose that T is finite and that T 0 φ in S5(FP(Ł)). Thus,
T◦ ∪ AxFP◦ 6 |=S5(Ł) φ

◦. Therefore, there exists an S5(Ł)
universal model Mc = (W c, Rc, ec ), where Rc = W ×W
and ec : W c × V ar◦ → [0, 1], that extends to compound
S5(Ł)-formulas as usual, such that ‖T◦ ∪ AxFP◦‖M,w = 1
and ‖φ◦‖M,w < 1.

Let V0 be the (finite) set of propositional variables appear-
ing in T ∪ φ, and let Ω be the set of {0, 1}-valued Boolean
interpretations of the set of propositional formulas L0 built
from V0, i.e. Ω = {ω | ω : V0 → {0, 1}}, which is finite,
that are extended to L0 using Boolean truth-functions.

Now, for every w ∈ W , define µcw : L0 → [0, 1] by
putting µcw (ϕ) = ‖sPϕ ‖M,w . Since ‖AxFP◦‖M,w = 1,
µcw is a probability on L0-formulas. Therefore, for each
w ∈ W , there is a probability distribution pw on Ω such
that µw (ϕ) :=

∑
{pw (ω) | ω ∈ Ω, ω(ϕ) = 1} = µcw (ϕ),

for all ϕ ∈ L0.
Now, let us define the finite S5 probability model U as

follows:

U = (Ω, R, {eω }ω∈Ω, {pω }ω∈Ω )

where:

R = Ω × Ω,

eω : CF −→ {0, 1} is such that

eω (v) =



ω(v) if v ∈ V0,

1 otherwise.

Then, one can check that, for every ϕ ∈ L0, we have, for
every ω ∈ Ω,w ∈ W c ,

‖�Pϕ‖U,ω = min{pω (ϕ) | ω ∈ Ω} =
= min{µcw (ϕ) | w ∈ W c } =

= ‖�Pϕ‖Mc,w .

Therefore, for everyΨ ∈ T ∪ {φ}, ‖Ψ ‖U,ω = ‖Ψ ‖Mc,w .
Thus, in particular, U is a model for T , while U does not
satisfy φ.

By direct inspection on the above proof it is immediate to
see that, at least for the formulas in LF, the logic S5(FP(Ł))
has the finite model property and hence it is decidable.

5. Recovering belief function and probability
logics

As is well-known, belief functions (and probability and
necessity) measures are particular examples of lower prob-
abilities. For exemplifying purposes, we can show how one
defines an axiomatic theory over the general logic S5(FP(Ł))
to capture reasoning about belief functions, probability and
possibilistic necessity.

Let us consider the following recursive definition of the
formulas Ad(�P(ϕ1∨ . . .∨ϕk )), for every k ∈ N:

k = 2 Ad(�P(ϕ1∨ϕ2)) := �Pϕ1 ⊕ (�Pϕ2 	 �P(ϕ1 ∧ ϕ2))

k = 3 Ad(�P(ϕ1∨ϕ2∨ϕ3)) := Ad(�P(ϕ1∨ϕ2))⊕ (�Pϕ3	
Ad(�P((ϕ1∧ϕ3)∨(ϕ2∧ϕ3)))

. . .

k = n Ad(�P(ϕ1∨ . . .∨ϕn )) := Ad(�P(ϕ1∨ . . .∨ϕn−1))⊕
[�Pϕn 	 Ad(�P((ϕ1∧ϕn )∨ . . .∨(ϕn−1∧ϕn ))]

Now, we define the logic S5(FB) as the axiomatic ex-
tension of S5(FP(Ł)) with the following countable set of
axioms:

AxBel = {Ad(�P(ϕ1∨ . . .∨ϕk )) → �P(ϕ1∨ . . .∨ϕk )}k ∈N

Lemma 18 A S5 probability model U =

(W, R, {ew }w∈W , {pw }w∈W ) satisfies the set of
axioms AxBel iff there is a belief function
bel on 2W such that, for every proposition ϕ,
bel ({w ∈ W | ‖ϕ‖U,w = 1}) = ‖�Pϕ‖U .
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Proof As we recalled in Remark 8, a lower probability is a
belief function iff it satisfies the axiom (B2) and the schema
AxBel indeed encode (B2) in our logical language. Thus
the claim follows.

By the above lemma it is hence immediate to show that the
logic S5(FB) is complete with respect to belief function
models as in Definition 13.

Theorem 19 S5(FB) is strong finite complete wrt to belief
function models.

Furthermore, we can consider the logic S5(P) defined
as the axiomatic extension of the logic S5(FP(Ł)) with the
following axiom

Ad(�P(ϕ1∨ϕ2)) ≡ �P(ϕ1∨ϕ2)

Then, one can show that S5(P) is in fact a probabilistic
logic whose S5 probability models are of the form U =
(W, R, {ew }w∈W , {pw }w∈W ) where all the probabilities pw
are the same.

Similarly, one could consider the logic S5(N) which is
the axiomatic extension of S5(FP(Ł)) with the following
axiom

�P(ϕ1∧ϕ2) ≡ (�Pϕ1) ∧ (�Pϕ2)

It is clear that the S5 probability models for this logic are
those whose corresponding lower probabilities are in fact
necessity measures.

Finally, let us comment on some specific S5 probability
models that is worth to consider.

• Let U = (W, R, {ew }w∈W , {pw }w∈W ) be an S5
probability model in which, for all w,w′ ∈ W ,
µw = µw′ = µ. In this case we have that
‖P(ϕ)‖U,w = ‖P(ϕ)‖U,w′ = µ({w ∈ W | ‖ϕ‖w =
1}); ‖P(�ϕ)‖U,w = µ({w ∈ W | ‖�ϕ‖w = 1}) =
B(ϕ); ‖�P(ϕ)‖U,w = min{µw (ϕ) | w ∈ W } = µ(ϕ).
Thus, for all ϕ this type of models validate the formulas

P(�ϕ) → P(ϕ) and �P(ϕ) ≡ P(ϕ).

Moreover, the values of the formulas P(�ϕ), P(ϕ) and
�P(ϕ) inU do not depend on the world w.

• Let U = (W, R, {ew }w∈W , {pw }w∈W ) be an S5 prob-
ability model in which the accessibility relation is
trivial in the sense that wRw′ iff w = w′. In this case,
‖�ϕ‖U,w = ‖ϕ‖U,w ; ‖P(�ϕ)‖U,w = ‖Pϕ‖U,w =
‖�Pϕ‖U,w . Thus this type of models validate that in
every world,

P(ϕ) ≡ P(�ϕ) ≡ �P(ϕ).

• LetU = (W, R, {ew }w∈W , {pw }w∈W ) be an S5 proba-
bility model in which the accessibility relation is trivial
and µw = µw′ = µ for all w,w′ ∈ W . Then in these
models P(ϕ) ≡ P(�ϕ) ≡ �P(ϕ) and their value inU
does not depend on the world w we are in.

6. Conclusion and future work
The present paper builds upon the recent [8] and [9], where
we initiated the present line of research that aims at in-
vestigating uniform ways to deal with general uncertainty
measures. In particular, here we prove a first completeness
theorem that was conjectured in [9]. Although a general
completeness theorem with respect to universal S5 probabil-
ity models is still laking, the logical framework of S5(FP(Ł))
is adequate to handle probability, belief functions and lower
probability within the same formal setting. This common
ground where to represent different uncertainty theories
is interesting for us because in [8] we observed the exis-
tence of partial assignments on finite sets of events that
are extendable to lower probabilities and that cannot be
distinguished from those which are extendable to belief
functions. Therefore, as future work it would be interesting
to characterize these assignments in logical terms within
S5(FP(Ł)).

Since n-monotone capacities are uncertainty measures
more general than belief functions and less general than
lower probabilities, it is an open question investigate how
they can be defined in S5 probability models. On the
other hand, instead of the full-fledged S5Ł, one could also
consider a non-nested fragment that could be endowed
with a simpler semantics, without the need of accessibility
relations, similar to what was done in the classical setting
in [3] and in the fuzzy setting in [15]. This will be part of
our future work.

Interestingly, the class of models presented here might
result in the definition of possibly new ways for the uncertain
quantification that can be identified first on a syntactic level,
e.g. a formula of the form �(P(�ϕ)) might represent a
lower belief function. This line of research deserves to be
explored as well.

Acknowledgments
We are very grateful to the four ISIPTA reviewers whose
careful reading and thorough comments helped us clarifying
a number of important points. All authors acknowledge the
support by the MOSAIC project (EU H2020-MSCA-RISE-
2020 Project 101007627). Corsi and Hosni acknowledge
the support of by the Department of Philosophy “Piero
Martinetti” of the University of Milan under the Project
“Departments of Excellence 2023–2027” awarded by the
Ministry of Education, University and Research (MIUR).
Flaminio and Godo acknowledge the support by the Spanish
project PID2019-111544GB-C21.

Author Contributions
Authors contributed equally.

9



Corsi Flaminio Godo Hosni

References
[1] B. Anger and J. Lembcke. Infinitely subadditive

capacities as upper envelopes of measures. Zeitschrift
für Wahrscheinlichkeitstheorie und verwandte Gebiete,
68(3):403–414, 1985.

[2] Paolo Baldi, Petr Cintula, and Carles Noguera. Classi-
cal and fuzzy two-layered modal logics for uncertainty:
Translations and proof-theory. International Journal
of Computational Intelligence Systems, 13(1):988–
1001, 2020.

[3] Mohua Banerjee and Didier Dubois. A simple logic
for reasoning about incomplete knowledge. Int. J.
Approx. Reason., 55(2):639–653, 2014.

[4] Patrick Blackburn, Maarten De Rijke, and Yde Ven-
ema. Modal logic. Cambridge University Press, 2002.

[5] Diego Castaño, Cecilia Cimadamore, José Patri-
cio Díaz Varela, and Laura Rueda. Completeness for
monadic fuzzy logics via functional algebras. Fuzzy
Sets and Systems, 407:161–174, 2021.

[6] Diego Castaño, Gabriel Savoy, and Patricio Dıaz
Varela. Strong standard completeness for S5-modal
Łukasiewicz. Submitted, 2021.

[7] Chen Chung Chang. A new proof of the complete-
ness of the łukasiewicz axioms. Transactions of the
American Mathematical Society, 93(1):74–80, 1959.

[8] Esther Anna Corsi, Tommaso Flaminio, and Hykel
Hosni. When belief functions and lower probabilities
are indistinguishable. In ISIPTA 2021 - Proceedings
of Machine Learning Research (147), pages 83–89,
2021.

[9] Esther Anna Corsi, Tommaso Flaminio, and Hykel
Hosni. Towards a unified view on logics for uncer-
tainty. In Florence Dupin de Saint-Cyr, Meltem Öztürk-
Escoffier, and Nico Potyka, editors, Scalable Uncer-
tainty Management, pages 329–337, Cham, 2022.
Springer International Publishing. ISBN 978-3-031-
18843-5.

[10] Didier Dubois and Henri Prade. Possibility theory:
Approach to computerized processing of uncertainty,
plennm n. 4. Plenum Press, New York, 1988.

[11] Ronald Fagin, Joseph Y Halpern, and Nimrod
Megiddo. A logic for reasoning about probabilities.
Information and computation, 87(1-2):78–128, 1990.

[12] Martina Fedel, Hykel Hosni, and Franco Montagna.
A logical characterization of coherence for imprecise
probabilities. International Journal of Approximate
Reasoning, 52(8):1147–1170, 2011.

[13] Tommaso Flaminio and Lluís Godo. A logic for
reasoning about the probability of fuzzy events. Fuzzy
Sets and Systems, 158(6):625–638, 2007.

[14] Tommaso Flaminio, Lluıs Godo, and Enrico Mar-
chioni. Reasoning about uncertainty of fuzzy events:
an overview. Understanding Vagueness-Logical,
Philosophical, and Linguistic Perspectives, P. Cintula
et al.(Eds.), College Publications, pages 367–400,
2011.

[15] Tommaso Flaminio, Lluís Godo, and Enrico Mar-
chioni. Logics for belief functions on mv-algebras.
International Journal of Approximate Reasoning, 54
(4):491–512, 2013.

[16] Robin Giles. Foudations for a theory of possibility.
In M.M. Gupta and E. Sanchez, editors, Fuzzy In-
formation and Decision Processes, pages 183–195.
North-Holland, 1982.

[17] Lluis Godo, Francesc Esteva, and Petr Hájek. Rea-
soning about probability using fuzzy logic. Neural
Network World, 10:811–824, 2000.

[18] Lluís Godo, Petr Hájek, and Francesc Esteva. A
fuzzy modal logic for belief functions. Fundamenta
Informaticae, 57(2-4):127–146, 2003.

[19] Petr Hájek. Metamathematics of fuzzy logic. Springer
Science & Business Media, 1998.

[20] Petr Hájek. On fuzzy modal logics S5(C). Fuzzy Sets
and Systems, 161(18):2389–2396, 2010.

[21] Petr Hájek, Lluís Godo, and Francesc Esteva. Fuzzy
logic and probability. In Philippe Besnard and Steve
Hanks, editors, UAI ’95: Proceedings of the Eleventh
Annual Conference on Uncertainty in Artificial Intel-
ligence, Montreal, Quebec, Canada, August 18-20,
1995, pages 237–244. Morgan Kaufmann, 1995.

[22] Joseph Y Halpern. Reasoning about uncertainty. MIT
press, 2003.

[23] Joseph Y. Halpern and Riccardo Pucella. A logic for
reasoning about upper probabilities. J. Artif. Intell.
Res., 17:57–81, 2002.

[24] Enrico Marchioni. Uncertainty as a modality over
t-norm based logics. In EUSFLAT Conf. (1), pages
169–176, 2007.

[25] Enrico Marchioni. Representing upper probability
measures over rational Łukasiewicz logic. Mathware
& Soft Computing, 15(2):159–173, 2008.

10



A modal logic for uncertainty: a completeness theorem

[26] Daniele Mundici. Advanced Łukasiewicz calculus
and MV-algebras, volume 35. Springer Science &
Business Media, 2011.

[27] Glenn Shafer. A mathematical theory of evidence,
volume 42. Princeton university press, 1976.

[28] C.A.B. Smith. Consistency in statistical inference
and decision. Journal of the Royal Statistical Society.
Series B (Methodological), 23(1):1–37, 1961.

[29] P. Walley. Statistical Reasoning with Imprecise Prob-
abilities. Wiley, 1991.

11


	Introduction
	Modal logics and uncertainty measures
	Logical preliminaries
	Uncertainty Measures

	A Unified Logic for Uncertainty 
	The general logic S5(FP(Ł)): completeness results
	Recovering belief function and probability logics
	Conclusion and future work

