
Implementing Norms in Electronic Institutions

(Extended Abstract)

A. Garćıa-Camino1 P. Noriega1 J. A. Rodŕıguez-Aguilar1

1 IIIA-CSIC, Campus UAB 08193 Bellaterra Spain

{andres,pablo,jar}@iiia.csic.es

Ideally, open multi-agent systems (MAS) involve heterogeneous and autonomous agents whose
interactions ought to conform to some shared conventions. The challenge is how to express and
enforce such conditions so that truly autonomous agents can adscribe to them. One way of address-
ing this issue is to look at MAS as environments regulated by some sort of normative framework.
There have been significant contributions to the formal aspects of such normative frameworks, but
there are few proposals that have made them operational. In this paper a possible step towards
closing that gap is suggested. A normative language is introduced which is expressive enough to
represent the familiar types of MAS-inspired normative frameworks; its implementation in JESS
is also shown. This proposal is aimed at adding flexibility and generality to electronic institutions
by extending their deontic components through richer types of norms that can still be enforced
on-line.

The objective of this paper is to try to fill this gap by adapting a formal approach [5] to enrich
an existing framework [1] . More precisely, we have extended the normative language of an EI to
increase its expressiveness and flexibility.

It is worth remarking that we consider norm compliance from an institutional point of view.
That is, we do not care how an agent decides which norms to comply with, but instead we define
the norms and sanctions to be applied when the violation of norms occurs as part of the institu-
tion. With this approach we allow agents to reason about norm compliance while the choice and
implementation of agents’ architectures is left to agent developers.

We define a normative language to specify obligations, permissions, prohibitions, violations and
sanctions to restrict agents’ dialogical actions. This normative language can be used as an extension
of the normative rules of the current version of electronic institutions obtaining a higher degree of
expressiveness and flexibility. We also implement a norm engine which maintains the normative
state of an institution, i.e. the permissions, prohibitions and pending obligations that hold in the
current state of execution.

We extend the normative language recently proposed in [5]. That proposal is enriched with new
types of norms, namely norms that we keep active during a time interval, and conditional norms over
the institutional state, (e.g. the observable attributes of agents and objects of the environment).
Moreover, our extension of that language includes the possibility to sanction agents by modifying
their institutional state, i.e. their observable attributes1. Nonetheless, since in EIs alls actions are
speech acts, actions expressed by the language are limited to the utterance of illocutions.

Once we define the normative language, we need to handle the normative state of an institution.
A rule-based system is chosen to implement norms because the normative language is of the form
preconditions postconditions, which is easily expressable with rules. In order to facilitate the
integration with AMELI [1] we decided to implement this tool with Jess since both are written in
Java.

We propose the use of Jess [4] for the implementation of the norm engine which maintains the
normative state of an institution, i.e. the permissions, prohibitions and obligations that hold in
the current state of execution. Our implementation has been carried out by translating the norms
specified in our normative language into Jess rules. At run-time our norm engine can be updated
with new utterances and queried about permissions, prohibitions or pending obligations.

To introduce utterances, permissions, prohibitions and obligations in the norm engine, a trans-
lation from our language into Jess rules is needed. Now we introduce part of the criteria presented

1For a entire formalization of the normative language we address the reader to the full paper [3].

in [3] to be followed to carry out this translation:
We define four types of Jess unordered facts: O, P, F and V that stand, respectively, for obliga-

tions, permissions, prohibitions and violations.

• Conditional norms are those norms that include an IF section. The translation of IF sections
is directly realised by placing the conditions in the LHS of a Jess rule.

• Action-dependent norms are those norms that include a BEFORE, AFTER or BETWEEN
section followed by an action. For example, to translate an obligation to be fulfilled before
the utterance of an illocution i1, we add a rule that asserts a violation fact if illocution i1 has
been uttered but the obliged illocution has not.

• Time-dependent norms are those norms that include a BEFORE, AFTER or BETWEEN section
followed by a date. To translate rules with temporal constraints (i.e. the BEFORE, AFTER
and BETWEEN constructs with time objects) into Jess rules we use the user-defined function
(set-deadline ?deadline ?rule) where ?deadline is an absolute date object indicating
when the rule fires and ?rule is a string-based representation of a rule. In this way the
set-deadline function adds the given rule to the Jess engine only when the specified absolute
date arrives.

There are some differences between our normative proposal and other recent ones, the more
salient are that we do not make the strong assumption (as in, for example, [5]) that there is a
prohibition before an action iff there is a permission after that action, and we do have a working
proof of concept implementation of a computationally feasible framework. With respect to other
implementation proposals for normative frameworks, ours is more expressive in the sense that
other implementations do not include temporal aspects in the definition of norms and, in the test
of conditional norms or in the application of sanctions, fail to consider observable agent attributes
or attributes of objects in the environment.

As to future work, we intend to produce an upward compatible extension of the EIDE environ-
ment through the addition of an automatic translation module to map our normative language into
Jess rules and integrates our norm engine with AMELI. Furthermore, we are extending the notions
above in the formalization and development of a norm-based programming language [2].

Acknowledgments

The present paper was funded by the Spanish Science and Technology Ministry as part of the
Web-i-2 project (TIC-2003-08763-C02-00). A. Garcia-Camino enjoys an I3P grant of the Spanish
Council for Scientific Research (CSIC).

References

[1] M. Esteva, B. Rosell, J. A. Rodŕıguez-Aguilar, and J. L. Arcos. AMELI: An Agent-Based Middleware
for Electronic Institutions. In Procs. AAMAS 2004, 2004.

[2] A. Garćıa-Camino, J.A.Rodriguez-Aguilar, C. Sierra, and W. Vasconcelos. A distributed architecture
for norm-aware agent societies. In Proceedings of the Declarative Agent Languages and Technologies
(DALT) workshop, Utrecht, July 2005.

[3] A. Garćıa-Camino, P. Noriega, and J. A. Rodŕıguez-Aguilar. Implementing Norms in Electronic Insti-
tutions. In 4th Int’l Joint Conf on Autonomous Agents and Multiagent Systems (AAMAS), 2005.

[4] Jess. The Rule Engine for Java. Sandia Nat’l Labs. http://herzberg.ca.sandia.gov/jess, Oct. 2005.

[5] J. Vázquez-Salceda, H. Aldewereld, and F. Dignum. Norms in Multiagent Systems: Some Implementa-
tion Guidelines. In 2nd European Workshop on Multi-Agent Systems, Barcelona, 2004.

