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Abstract— An autonomous mobile robot must face the cor-
respondence or data association problem in order to carry out
tasks like place recognition or unknown environment mapping. In
order to put into correspondence two maps, most correspondence
methods first extract early features from robot sensor data,
then matches between features are searched and finally the
transformation that relates the maps is estimated from such
matches. However, finding explicit matches between features is a
challenging and computationally expensive task. In this paper, we
propose a new method to align obstacle maps without searching
explicit matches between features. The maps are obtained from a
stereo pair. Then, we use a vocabulary tree approach to identify
putative corresponding maps followed by a Newton minimization
algorithm to find the transformation that relates both maps. The
proposed method is evaluated on a typical office dataset showing
good performance.

I. INTRODUCTION

An autonomous mobile robot that navigates through an
unknown environment often has to carry out tasks such as
closing-loop detection, estimate motion from robot sensors
or build a map using some SLAM algorithm. To solve such
problems we must face the correspondence (or data asso-
ciation) problem, i.e. the problem of determining if sensor
measurements taken at different locations or at different time
correspond to the same physical object in the world.

This problem is usually approached extracting primitives
from sensor measurements and searching correspondences
between them. From such correspondences an estimation of
the robot motion and its uncertainty is obtained. In [1], Cox
extracts points from laser scans and uses them as primitives.
Then point primitives are matched to lines from a map given
a priori. In [4], Lu and Milios propose the IDC (Iterative
Dual Correspondence) which is a more general approach
that matches points to points. As Cox’s algorithm performs
better in structured environments and IDC in unstructured
environments, Gutmann combines both methods in [3]. The
IDC is a variant of the ICP (Iterative Closest Point) algorithm
[5] applied to laser range scans. The ICP is also used to align
robot measurements, specially when using 3D range data [6,
7].

Computationally, the search of explicit correspondences is
the most expensive step. The performace is poor because
for each primitive of a set a test against all the primitives

from the other set must be done. Therefore, other methods
attempted to avoid this step aligning sensor measurements
without finding direct correspondences between primitives. In
[2], Weiss and Puttkamer build histograms of sensor mea-
surements and search the parameters that best align both
scans using a correlation measure. This method is designed
to work in very structured environments, so, when applied
in unstructured environments the results tend to be poor. In
[9], Biber and Straßer presented the Normal Distributions
Transform, which is a more general approach to align scans
obtained from a laser range scanner. This method divides the
space into cells forming a grid. Then, to each cell, they assign
a normal distribution, which locally models the probability of
measuring an obstacle. Finally, the Newton’s algorithm is used
to align a laser scan input to the probability distribution.

The methods commented above use range information
which is not discriminative enough to directly find correct
correspondences between primitives, so that, such methods
iteratively search the matching primitive. Using image data,
robust local invariant features can provide primitives that are
distinctive enough to search matches directly without using
an iterative approach [12, 13]. However, there are situations
where image local invariant features cannot be used to describe
the world. For example, in poorly textured environments, the
number of putative matches usually is not enough to ensure
that the estimated robot motion is correct. In environments
with repetitive textures, the amount of false correspondences
rises rapidly and the transformation that relates both scans
cannot be estimated reliably. These two problems are common
in indoor or urban environments.

In this paper, we present a method to align local maps
using stereo image data. The maps are obtained from different
locations and the alignment is done without establishing direct
correspondences between map primitives. First, local obstacle
maps are obtained by scanning the environment with a stereo
head. Then, using a bag of features [25, 24] inspired approach,
signatures of obstacle maps are built with robust invariant
features extracted from stereo images. Such map signatures
are used as a fast method to determine if two maps are
likely to be related or not. Finally, a Newton minimization
algorithm is used to iteratively determine robot motion. Our
minimization algorithm searches explicit correspondences be-



tween primitives, which is a computationally expensive step.
However, as our obstacle space is discrete and obstacles are
restricted into the ground plane, the matching step can be
greatly speed up. Moreover, color image information is added
to the probabilistic map in order to increase the convergence
ratio and the robustness of the alignment estimation.

The paper is structured as follows: In section II methods
used to build local obstacle maps and to obtain map signatures
are presented. In section III the method used to align different
obstacle maps is described. The experiments set-up and results
are shown in section IV. Finally in section V there is a
discussion of the results and an overview of future work.

II. LOCAL STEREO MAPS

The payload of our robot cannot currently afford an extra
laser range finder sensor, anyway, a stereo head mounted on a
pan-tilt unit is used to obtain depth information. Since the
field of view of the cameras is small, the robot pans the
stereo head to obtain several views and create a obstacle map
covering a wider area. Unlike range sensors, stereo camera
pairs cannot directly obtain depth information and a dense
stereo algorithm [14] is required. However, stereo images also
provide illumination, color and texture information, which can
be directly added to the obstacles. Besides, image information
is used to obtain a signature that identifies the obstacle map
by extracting robust invariant features from the images with a
bag of features inspired approach.

A. Obstacle maps

Obstacle maps are represented by a 2D occupancy grid in
the X-Z world plane where each cell represents the probability
that an obstacle is present. Obstacles are detected using a
correlation based algorithm that uses the SAD (Sum of Ab-
solute Differences) function as similarity measure which, for
a relatively small resolution can obtain a dense stereo map in
real time [8]. In our approach, several expensive refinements of
the method described in [8], such as the left-right consistency
check, are removed in order to reduce the computational cost
of the algorithm. To remove possible inconsistencies due to
occlusions, the resulting disparity map is segmented using
the watershed algorithm [15] and small disparity regions are
further removed from it.

Once the dense stereo map is obtained, image points are
transformed from pixel coordinates to image plane coordinates
so that points can be reprojected to 3D space by simply using
a noise free triangulation operation. Let ml = [xl, yl] and
mr = [xr, yr] be a corresponding pair of points in image
plane coordinates. The 3D coordinates can be computed as
follows:

X =
bxl

xl − xr
Y =

byl

xl − xr
Z =

bf

xl − xr
. (1)

where b is the baseline and f is the focal length of the camera
[23]. The resulting 3D world points that are within a height
range, say [Y1, Y2], are reprojected to a 2D occupancy grid
in the X-Z world plane. Cells without the minimum support

a) b)

c) d)
Fig. 1. a) Original right stereo pair image. b) Dense disparity map filtered
with watershed segmentation. c) Occupancy grid obtained without filtering
small regions. d) Occupancy grid obtained after filtering small disparity
regions.

to be considered an obstacle, and isolated cells are removed
from the 2D occupancy grid.

The occupancy grid and the subsequent filtering reduce the
effects of the inconsistencies in the dense stereo algorithm.
Therefore a perfect stereo reconstruction is not required and
we can gain speed avoiding refinements like the left-right
consistency check. Figure 1 shows how a local map is built:
First, a dense disparity map (Fig. 1.b) is obtained from
stereo image pairs (Fig. 1.a). Although the disparity maps
have gaps in poorly textured regions, obstacles are found in
the occupancy grid (Fig. 1.c). Filtering small disparity map
regions, a more accurate occupancy grid can be obtained (Fig.
1.d).

The local map is built by making a scan from −60◦ degrees
to 60◦ degrees and taking stereo head measurement at steps
of 10◦ degrees. The rotation error from the pan & tilt unit
servo motors is quite small (about 0.5◦ degrees) compared to
the obstacle map resolution and to the stereo depth estimation
error, therefore, the location of the stereo head cameras at
each scan step can be estimated a priori. Once stereo cameras
location at each step is known, cells of the local map that are
seen from each location are also known. As the measurements
are taken at steps of 10◦ degrees and the stereo cameras field
of view is about 42◦ degrees, several cells can be seen from
several stereo head locations. Therefore, as the uncertainty
of depth estimation decreases for points that are near to the
horizontal central image point, each cell is assigned to the
stereo pair that minimizes this uncertainty [23].

B. Maps signature

Easily, a robot mapping a fairly large environment can store
up to thousands of scans. Therefore, finding correspondences
for a new scan in the database using only the alignment method
can be computationally expensive. In order to filter most of
the unrelated scans, a visual appearance based signature is
extracted for each newly acquired scan and used to select the



most similar instances of the database.
The signature used is based on the bag of words document

retrieval methods, that represent the subject of a document
by the frequency in which certain words appear in the text.
Recently these approach has been adapted to visual object
recognition by different authors [24][25] using local descrip-
tors computed on image features as visual words. First a clus-
tering algorithm e.g. k-means is used to sample the descriptor
space, that usually is extremely big, to a more tractable size of
thousands of codewords that can be represented in a signature
histogram. Finally a classifier is trained with signatures from
different classes. In this work we have used a technique
inspired by the approach of Nistér and Stewénius [20] because
it has very efficient temporal and spatial complexity.

Instead of a normal k-means, Nistér and Stewénius use its
hierarchical version to build a codebook tree with branch factor
k from a database of local descriptors extracted from training
images. This representation allows to classify new descriptors
in logarithmic time instead of linear. Another advantage of this
approach is the inverted files mechanism, which accelerates
the comparison of a test scan with the database stored in the
memory of the robot.

In the work of Nistér and Stewénius the MSER [22] covari-
ant region detector and the SIFT [26] descriptor are used. In
our experiments we have evaluated the performance of three
types of descriptors: Shape Context, Steerable Filters and SIFT
[11], computed on regions detected by five state-of-the-art
region detectors: Harris Affine, Hessian Affine, Harris Laplace,
Hessian Laplace [10], MSER and SURF [21]. However, indoor
environment are usually poorly textured and few regions are
detected. Since, the number of features is the most influential
parameter governing the performance [27], combinations of
different detectors with complementary properties have been
also evaluated. For instance, Harris-Laplace detects corner-like
regions and Hessian-Laplace detects blobs like regions are
combined, but Hessian-Laplace and SURF detectors are not
tested together as both detects blob like regions. The evaluation
results are explained in section IV.

C. Color obstacle maps

a) b)
Fig. 2. Original image (a) is segmented obtaining (b).

Instead of using only depth information to build local
environment maps, color information is added to each 2D
occupancy grid cell in order to improve alignment results.
Essentially, the 2D occupancy grid is divided into 4 layers,
three layers for colors red, green and blue and one for grayish
obstacles. In order to achieve a certain degree of invariance

to illumination changes, we have trained a Support Vector
Machine (SVM) [28] for color image segmentation.

The input vector of the SVM is built as follows: the image
is transformed to the Hue-Saturation-Lightness (HSL) color
space and a color descriptor is built from a region around
each pixel. The descriptor is a histogram of six bins. Each
pixel of the region votes in a bin determined by its hue and
weighted by its saturation. The output of the SVM determines
to which layers the obstacle pixels contribute. To train the
SVM, a dataset of 100 images acquired with the robot cameras
has been manually annotated.

In Fig. 2, a segmentation example is shown. Black pixels
correspond to regions assigned to the grayish layer and red
and green pixels corresponds to the objects assigned to the
layer red and green respectively.

Once the occupancy grids are built, if a color layer cell has
not enough support (the value of the bin is lower than the 1%
of the sum of all the map bins), the cell value is set to zero
and its contribution is added to the grayish layer.

III. MAP ALIGNMENT

In this section we present the method used to align different
local maps. The first step uses the signature of the map to filter
maps into the database and obtain candidates to be aligned.
Then, for the selected maps a Newton based iterative algorithm
is used to find the registration parameters.

A. Signature comparison

When a new scan is acquired by the robot, its appearance
signature described in section II-B is computed and compared
to the ones stored in the memory of the robot. Next the k
most similar scans of the database are selected and registered
using the alignment method described in the next subsection.
In our experiments we have used the Euclidean distance as
a similarity measure between the signature histograms given
that it is widely used in the literature [27, 25, 24, 20].

B. Iterative map alignment

In order to align a new map with a map in the database, we
need to find the transformation that relates both maps. As the
robot moves in an indoor environment, we can assume a planar
ground, then, to align a query map against a the database map
we need to estimate a 2D rigid transformation:

M =
[
cosβ −sinβ tx
sinβ cosβ tz

]
. (2)

where β is the rotation between the to maps in the Y axis and
tx and tz are the translation between the to maps in the X and
Z axis respectively. To find the parameters p = [β, tx, tz]> of
equation 2, an iterative method which at each step reduces the
distance between the obstacles of the maps query map and
the database map is used. This algorithm tries to find the best
parameters p that minimizes the following function:

sc(p) =
4∑

c=1

M∑
j=1

N∑
i=1

e−xc
i
>Cc

i
−1yc

j . (3)



where M and N are respectively the number of obstacles in
the query and database map, yc

j is a vector with the location
coordinates of the j-th obstacle with color c of the query map,
xc

i is a vector with the location coordinates of the i-th obstacle
with color c of the database map and Cc

i is the covariance
matrix modelling location uncertainty of xc

i :

Ci = RJ

[
σlx 0
0 σrx

]
J>R> . (4)

where σlx and σrx
are the pixel localisation error, which is

determined by camera calibration error statistics and J is the
Jacobian matrix that maps error from image coordinates to
space coordinates:

J =
[ −bxr

d2
bxl

d2
−bf
d2

bf
d2

]
. (5)

where d = xl−xr is the disparity between xl and xr expressed
in image plane coordinates, b is the baseline and f is the focal
length of the camera. The rotation matrix R is expressed as
follows:

R =
[
cosβ −sinβ
sinβ cosβ

]
. (6)

where β is the pan unit rotation angle.
Then, to align two obstacle maps, the following method is

proposed:
1) Initialise the motion parameters to zero or by an esti-

mation obtained from the robot odometry.
2) Apply the parameters of the transformation to the set of

points S corresponding to the location of the obstacles
in the query map.

3) From eq. 3 a score value is obtained.
4) Estimate new parameters values by optimizing the score

using a Newton minimization algorithm.
5) While the convergence criterion is not meet, go to 2.

Given that eq. 3 is non-linear, to find the parameters p that
maximize eq. 3 the Newton’s algorithm is used. This method is
similar to other computer vision methods used for registration
of image information obtained from different sensors [17] or
aligning images related by an affine or projective transfor-
mation [18, 16]. The Newton’s algorithm iteratively finds the
parameters p that maximize eq. 3. At each iteration it solves
the following eq.:

4p = −H−1g (7)

where g is the gradient of eq. 3 with elements:

gi =
∂sc(p)
∂pi

(8)

and H is the Hessian of eq. 3 with elements:

Hij =
∂sc(p)
∂pi∂pj

(9)

Then, the parameters are updated using the following eq.:

p = p+4p . (10)

a) b)

c) d)
Fig. 3. Alignment of two local maps after: a) first iteration, b) 10 iterations,
c) 20 iterations and d) final solution after 42 iterations.

Equations 7 and 10 are iterated until the estimate of p
converges. For each obstacle y of the query obstacle map,
the elements of the gradient are, by the chain rule:

gi =
∂sc(p)
∂pi

=
∂sc(p)
∂y

∂y
∂pi

(11)

where the partial derivate of sc(p) respect y is the gradient of
the eq. 3 and the partial derivate of y respect pi are given by
the Jacobian of the alignment transformation. As robot motion
in a indoor or urban environments can be modelled as a 2D
rigid transformation, i.e. translation in the x and z axis and
rotation in the y axis, the Jacobian is:

∂W

∂p
=
[
−xisinα− yicosα 1 0
xicosα− yisinα 0 1

]
. (12)

The Hessian matrix H is given by:

H =
∑

j

[
∂sc(p)
∂y

∂W

∂p

]> [
∂sc(p)
∂y

∂W

∂p

]
(13)

Finally, the algorithm is iterated until a max number of
iterations is reached or the update of the parameters fulfill
the condition ‖ 4p < ε ‖. Robot motion estimation is
obtained from parameters vector p and the uncertainty of such
estimation, i.e. the covariance matrix, is obtained from the
inverse of the Hessian matrix. The value of Eq. 3 is used
together with the number of iterations spent by the alignment
process to determine the feasibility of the obtained parameters.
Figure 3 depicts an example where obstacles of the query map
gradually converges to the obstacles of one of the database
map.

C. Optimizing the minimization process

As seen in section II, obstacles are detected using a 2D
occupancy grid, so that, the location of the detected obstacles
is discrete over the X −Z plane. Therefore, for each location
y = (i, j) of a 2D occupancy grid, we can calculate a priori
its score:

SM(y, c) =
∑

i

e−xc
i Cc

i
−1y . (14)



a) b)
Fig. 4. a) Obstacles 2D occupancy grid. b) Probability distribution built from
the 2D occupancy grid.

Where y is the coordinates vector of the j obstacle in channel
c of the query map. Then, eq. 3 can be reduced to:

sc(p) =
4∑

c=1

M∑
j=1

SM(yj , c) (15)

Therefore, at each step of the minimization process we have
to look up the value of eq. 14 avoiding to calculate the
exponentials of eq. 3. Although this calculation of eq. 14 is
computationally expensive, it only has to be done once and
it greatly speeds up the matching algorithm. Figure 4 shows
how the values of the matrix SM(yj , c) (Fig. 4.b) is formed
from a 2D occupancy grid (Fig. 4.a).

IV. EXPERIMENTAL RESULTS

In this section, we analyze the results obtained with our
alignment algorithm. To perform the experiments, a database
of 50 panoramas has been acquired in a typical indoor environ-
ment. A testing environment with poor salient visual features
was chosen in order to test the reliability of our method.
The, we manually annotated the relations and the alignment
parameters between the panoramas to create the ground truth.
The ground truth has 236 correct relations out of the 2450
possible local map relationships.

Fig. 5. Robot used in the experiments.

Data has been acquired using a mobile robot platform built
at our department (see Figure 5). It is based on a Lynxmotion
4WD3 robot kit and it has been designed to be as cheap as
possible. All the experiments are executed on the robot’s on-
board computer, which is a VIA Mini-ITX EPIX PE computer
with a VIA C3 1 GHz CPU, and stereo images are obtained
from two Philips SPC900NC webcams with a resolution of
320 × 240 pixels. Stereo measurements are stored in a 2D

occupancy grid that has 160 cell width per 120 cell height.
Each cell represents a square with a side length of 0.05 meters,
so that, the local map has a width of 8 meters and a depth of
6 meters.

A. Map identification

As explained in Section II-B, for a query map, the k
most similar database maps are selected using a fast visual
appearance method. This way the more computationally ex-
pensive alignment step does not have to be applied to every
database map. To find the best parameters for our vocabulary
tree, we have trained several trees using different depths and
branch factors. Taking into account both, performance and
computational cost, we have selected a branch factor of 5 and
a depth of 6, so that the resulting tree has 15.625 leaves.

As has been mentioned in Section II-B, the performance of
a bag of features inspired approach is typically improved with
more detected features. Therefore it is interesting to combine
complementary feature detectors. However, the computational
cost of combining all possible feature detectors is prohibitive
in our approach. Instead we have evaluated all the possible
combination in order to find the one that maximizes per-
formance while minimizing the number of applied detectors.
With a similar idea in mind, we have compared three region
descriptors with significantly different dimensionality. With a
similar performance it is favorable to chose the descriptor with
lowest dimensionality. Figure 6.a shows the average ratio of
correct map relations (vertical axis) that are included between
the k most similar appearance signatures (abscissa axis) using
the shape context descriptor. Figure 6.b shows the same results
but using the SIFT descriptor. Results of the tests using
steerable filters are omitted for space reasons because they
performed worse than the other two descriptors.

We require that 90% of k local maps selected by the
vocabulary tree are truly related to the query local map. This
ratio is achieved by the combination of detectors Hessian-
Affine and Harris-Affine using the SIFT descriptor at k equal
to 14. Another interesting option would be the combination
of Harris-Laplace and Hessian-Laplace detectors with Shape
Context descriptor, that achieves 90% with k equal to 15.
Even though an extra map alignment has to be done, the
computational cost of the Laplace version of the detectors
is much lower than its Affine counterpart. Besides the Shape
Context has a markedly lower dimensionality than SIFT, there-
fore it needs less computational effort and is more scalable,
so that it might be an interesting option for mapping larger
environments.

B. Map alignment

To evaluate the performance of the alignment algorithm, we
have selected a set of 10 significant samples of indoor scenes,
e.g. corridor, dinning room, office, etc. . . and for each scene
a set of local maps with different amounts of overlapping are
built.

Figures 7 and 8 show the mean ratio of correctly aligned
maps. From Figures 7 it is shown that the method can deal



a)

b)
Fig. 6. Average ratio of correct relations according to ground truth among the
k most similar appearance signatures using a) the Shape Context descriptor
and b) the SIFT descriptor.

with rotations up to 45 degrees quite well. This is because our
testing environment is highly structured, so that, for rotations
greater than 45 degrees the method usually falls into a local
minima. From Figure 8 it is shown that for translations
up to 1.5 meters the behavior of the method is acceptable
taking into account that the size of our testing environment
is relatively small (e.g. rooms are no longer than 3 meters).
Results could be improved applying common techniques to
avoid local minima such as random restart, but this increases
the computational complexity of the alignment algorithm.

C. Performance Evaluation

Finally, we evaluate the performance of the whole system
and we compare it against direct matching. Direct matching
computes the alignment between the panoramas estimating
correspondences between robust features. In this experiment,
the Harris-Affine and Hessian-Affine covariant features detec-
tors and the SIFT descriptor have been used. First, putative
matches between features of the query map and a database map
are searched using the same technique as [26]. Then, features
are projected to the X-Z plane using stereo information and
the RANSAC algorithm [23] is used to reject possible false
matches and find the 2D rigid transformation between the two
maps. The ratio between correct matches and total putative
matches is used to reject false map relations.

Fig. 7. Ratio of correctly aligned scans for different starting rotation values
and different amount of overlapping between the aligned maps.

Fig. 8. Ratio of correctly aligned scans for different starting translation
values and different amount of overlapping between the aligned maps.

Figure 9 compares the performance of the proposed method
and the direct matching method. We have evaluated four
different variants of the proposed method: using both color
and vocabulary tree (CIter + VT), vocabulary tree without
color (Iter + VT), only color information (CIter) and the
iterative alignment algorithm alone (Iter). As can be seen,
direct matching performs significantly worse than all the
variations of the proposed method. Using the vocabulary tree
increases the recall until reaching the limit imposed by the
number of selected neighbors (90.0%), as explained in section
IV-A, while using color slightly increases the performance of
the method. The most noticeable effects of the vocabulary tree
is the raise of the precision thanks to the filtering of most false
relations between maps.

Finally, regarding time complexity, the alignment method
requires about 5 ms per iteration and 14.7 iterations are
required in average to align two maps. Therefore, the mean
time elapsed in the alignment step is about 73 ms. Classifying
a map on the vocabulary tree takes about 40 ms, and given
that 15 database maps are selected by the vocabulary tree, 1.1
seconds are required to find the possible relations between a
query map and the database maps.

V. CONCLUSION

The first contribution of this paper is a method to build
local maps from information acquired by a stereo head. The



Fig. 9. Precision vs. Recall for each evaluated method.

local map provides information about the distribution of the
obstacles in the X-Z plane and also stores color information.
Next, we proposed a method that uses a Newton minimization
algorithm to align these local maps. To avoid aligning unre-
lated maps with similar geometrical layout but different visual
appearance, we use a vocabulary tree approach. Both methods
avoid the expensive step of searching implicit feature corre-
spondences. The obtained results shows that the vocabulary
tree effectively filters unrelated maps and, combined with the
alignment method, up to 87.3% of the relations of our data set
are correctly detected keeping a good precision. This method
performs well in environments with few visual salient features,
where methods based on feature matching tend to fail.

Future work includes the testing of our method using larger
data sets including different types of environments. Finally,
we want to implement a faster version of this schema trying
to reach a real time mapping performance.
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