
Fourth International Conference on
Autonomous Agents and Multi-Agent Systems

(AAMAS)

7th International Workshop on
Agent-Oriented Information Systems

(AOIS)

Utrecht, The Netherlands

26th July 2005

Brian Henderson-Sellers and Michael Winikoff (editors)

http://www.aois.org

i

Preface
Information systems have become the backbone of all kinds of organizations today. In almost every sector
– manufacturing, education, health care, government, and businesses large and small– information systems
are relied upon for everyday work, communication, information gathering, and decision-making. Yet the
inflexibilities in current technologies and methods have also resulted in poor performance, incompatibili-
ties, and obstacles to change. As many organizations are reinventing themselves to meet the challenges of
global competition and e-commerce, there is increasing pressure to develop and deploy new technologies
that are flexible, robust, and responsive to rapid and unexpected change.

Agent concepts hold great promise for responding to the new realities of information systems. They
offer higher level abstractions and mechanisms which address issues such as knowledge representation
and reasoning, communication, coordination, cooperation among heterogeneous and autonomous parties,
perception, commitments, goals, beliefs, intentions, etc. On the one hand, the concrete implementation of
these concepts can lead to advanced functionalities, e.g., in inference-based query answering, transaction
control, adaptive workflows, brokering and integration of disparate information sources, and automated
communication processes. On the other hand, their rich representational capabilities allow more faithful
and flexible treatments of complex organizational processes, leading to more effective requirements anal-
ysis, and architectural/detailed design. The workshop focusses on how agent concepts and techniques will
contribute to meeting information systems needs today and tomorrow.

Workshop Format
To foster greater communication and interaction between the Information Systems and Agents communi-
ties, we are organizing the workshop as a bi-conference event. It is intended to be a single “logical” event
with two “physical” venues. It is hoped that this arrangement will encourage greater participation from,
and more exchange between, both communities.

These proceedings are for the first part of the workshop, in Utrecht on the 26th of July, as part of the
fourth international conference on Autonomous Agents and Multi-Agent Systems (AAMAS-2005); the
second component being scheduled for the ER2005 conference in Klagenfurt, Austria in October 2005.

For the AOIS-2005 workshop at AAMAS, 17 paper submissions were received. These were peer-
reviewed, primarily by members of the programme and steering committees, and 12 papers were accepted
(for an acceptance rate of 71%).

We would like to gratefully acknowledge all the contributions to the workshop: those by the authors,
the participants, and the reviewers. We believe that these accepted papers reflect the field’s state of the art
very well. Furthermore, we anticipate that they constitute an excellent basis for an in-depth and fruitful
exchange of thoughts and ideas on the various issues of agent-oriented information systems. We would in
particular like to thank Paolo Giorgini who has co-chaired the AOIS@AAMAS workshop from 2002 to
2004.

Brian Henderson-Sellers and Michael Winikoff
(Workshop co-chairs)

ii

Workshop Chairs
Brian Henderson-Sellers Michael Winikoff
Faculty of Information Technology School of Computer Science & IT
University of Technology, Sydney RMIT University
Email: brian@it.uts.edu.au Email: winikoff@cs.rmit.edu.au

Steering Committee
Yves Lespérance Gerd Wagner Eric Yu
Dept. of Computer Science Dept. of Technology Faculty of Information Studies
York University, Canada Management University of Toronto, Canada
Email: lesperan@cs.yorku.ca Eindhoven University of Email: eric.yu@utoronto.ca

Technology, The Netherlands
Email: G.Wagner@tm.tue.nl

Paolo Giorgini
Department of Information and Communication Technology
University of Trento, Italy
Email: paolo.giorgini@dit.unitn.it

Programme Committee
C. Bernon (University Paul Sabatier, Toulouse, France)
M. B. Blake (Georgetown University, Washington DC, USA)
P. Bresciani (ITC-irst, Italy)
J. Castro (Federal University of Pernambuco, Brazil)
L. Cernuzzi (University Católica, Paraguay)
M. Cossentino (ICAR-CNR, Palermo, Italy)
L. Cysneiros (York University, Canada)
J. Debenham (University of Technology, Sydney)
S. DeLoach (Kansas State University, USA)
F. Dignum (Utrecht University, The Netherlands)
P. Donzelli (University of Maryland, USA)
B. Espinasse (LSIS UMR CNRS, Marseilles, France)
B. H. Far (University of Calgary, Canada)
I. A. Ferguson (B2B Machines, USA)
S. Faulkner (University of Namur, Belgium)
A. Garcia (University of Lancaster, UK)
C. Ghidini (ITC-irst, Italy)
A. K. Ghose (University of Wollongong, Australia)
M.-P. Gleizes (University Paul Sabatier, Toulouse, France)
C. Gonzalez-Perez (University of Technology, Sydney, Australia)
G. Guizzardi (University of Twente, Netherlands)
I. Hawryszkiewycz (University of Technology, Sydney, Australia)
C. Iglesias (Technical University of Madrid, Spain)
M. Kolp (University catholique de Louvain, Belgium)
C. Li (University of Technology, Sydney, Australia)
C. Lucena (PUC Rio, Brazil)
Ph. Massonet (CETIC, Belgium)
H. Mouratidis (University of East London, UK)
J. Müller (Siemens, Germany)
D. E. O’Leary (University of South California, USA)
A. Omicini (Università degli Studi di Bologna, Italy)

iii

J. Pavón (Universidad Complutense Madrid, Spain)
O. F. Rana (Cardiff University, UK)
O. Shehory (IBM Haifa Labs, Israel)
N. Szirbik (Technische Universiteit Eindhoven, The Netherlands)
V. Torres da Silva (PUC Rio, Brazil)
N. Tran (UNSW, Australia)
C. Woo (University British Columbia, Canada)
B. Yu (CMU, USA)
A. Zeid (American University of Cairo, Egypt)
Z. Zhang (Deakin University, Australia)

Additional reviewers: Renata S.S. Guizzardi, Ambra Molesini, Arnon Sturm.

iv

v

Table of Contents
Distributed Storage Systems Management: An Agent Application Domain? (Invited Talk)
O. Shehory . 1

Adapted Information Retrieval in Web Information Systems using PUMAS
A. Carrillo Ramos, J. Gensel, M. Villanova-Oliver and H. Martin . 3

INCA (Investor Network Collaborative Architecture) — A Method in the Madness of Wall Street
S. C. Sundararajan, S. Sankarlal and A. Kumar . 11

An Agent-Based Meta-Level Architecture for Strategic Reasoning in Naval Planning
M. Hoogendoorn, C. M. Jonker, P.-P. van Maanen and J. Treur . 18

Design Options for Subscription Managers
A. Mbala, L. Padgham and M. Winikoff . 26

Supporting Program Indexing and Querying in Source Code Digital Libraries
Y. Yusof and O. F. Rana . 34

Architecture for Distributed Agent-Based Workflows
C. Reese, J. Ortmann, S. Offermann, D. Moldt, K. Lehmann and T. Carl . 42

OWL-P: A Methodology for Business Process Development
N. Desai, A. U. Mallya, A. K. Chopra and M. P. Singh . 50

An Ontology Support for Semantic Aware Agents
M. Tomaiuolo, P. Turci, F. Bergenti and A. Poggi . 58

On the Cost of Agent-awareness for Negotiation Services
A. Giovannucci and J. A. Rodrı́guez-Aguilar . 66

Automated Interpretation of Agent Behavior
D. N. Lam and K. S. Barber . 74

Requirements Analysis of an Agent’s Reasoning Capability
T. Bosse, C. M. Jonker and J. Treur . 82

Identification of Reusable Method Fragments from the PASSI Agent-Oriented Methodology
B. Henderson-Sellers, J. Debenham, N. Tran, M. Cossentino and G. Low . 90

vi

vii

Distributed storage systems management: an agent
application domain?
(Invited Talk)
Onn Shehory

IBM Haifa Labs, Israel

May 16, 2005

Abstract

In recent years, the amount of data produced and stored by enterprises increases rapidly. A variety
of storage technologies, systems and subsystems have been developed to address the increasing storage
needs. As a result, enterprise storage systems have increased in size, complexity, and distribution. Conse-
quently, the management of storage systems has become a complex task. Commonly, although the actual
storage capacity purchased may be adequate for the storage needs of the organization, the performance
of the storage system is poor. Such poor performance manifests itself in a poor quality of service, and
may negatively affect business functions of the organization.

One remedy to poor system management is to increase the staffing of the system administration
team. Yet, well-trained system administrators are scarce, and their cost is very high. The alternative is
the use of automated management tools. However, existing storage management software tools offer a
rather limited management function. Comprehensive storage resource management, including intelligent
problem detection and prediction, as well as optimized re-allocation, is far from being achieved. This
invites further research into the problem of storage resource management.

In this talk we will introduce the underlying concepts of enterprise distributed storage systems, the
typical performance problems they introduce, and the existing solutions. We will discuss open problems
and examine the relevance of agent technology to solving these problems.

1

2

 3

Adapted Information Retrieval in Web Information Systems using PUMAS

Angela Carrillo Ramos, Jérôme Gensel, Marlène Villanova-Oliver, Hervé Martin
Laboratoire LSR - IMAG

B.P. 72 - 38402 Saint Martin d’Hères, CEDEX, France
 33 4 76 82 72 80

{carrillo, gensel, villanov, martin}@imag.fr

Abstract
In this paper, we describe how PUMAS, a framework

based on Ubiquitous Agents for accessing Web
Information Systems (WIS) through Mobile Devices
(MDs) can help to provide nomadic users with relevant
and adapted information. Using PUMAS, the
information delivered to a nomadic user is adapted
according to, on the one hand, her/his preferences,
intentions and history in the system and, on the other
hand, the limited capacities of her/his MD. The
adaptation performed by PUMAS relies on pieces of
knowledge (we call "facts") which are stored in
knowledge bases managed by PUMAS agents. We focus
here on the facts exploited for adaptation purpose by
two of the four Multi-Agent Systems (MAS) which
constitutes the architecture of PUMAS (the Information
and the Adaptation MAS). We also present an example
which illustrates the way PUMAS works and takes these
facts into account when processing a query.

1. Introduction

Web-based Information Systems (WIS) are systems
which allow to collect, structure, store, manage and
diffuse information, like traditional Information Systems
(IS) do, but over a Web infrastructure. WIS provide their
users with complex functionalities which are activated
through a Web browser in a hypermedia interface.
Nowadays, Mobile Devices (MDs) can be used as
devices for accessing distant WIS but also as storage
devices for (simple) WIS or applications. Thus, a WIS
which executes on MDs allows to access, search and
store resources (files) located on these MDs.

However, having to cope with the limited capacities
of MDs (e.g., size of screen, memory, hard disk…), WIS
designers must use mechanisms and architectures in
order to efficiently store, retrieve and deliver data using
these devices. The underlying challenge is to provide
WIS users with useful information based on an
intelligent search and a suitable display of the delivered
information. In order to reach this goal, Multi-Agent
Systems (MAS) constitute an interesting approach. The
W3C [13] defines an agent as “a concrete piece of
software or hardware that sends and receives

messages”. These messages can be used for accessing a
WIS and for exchanging information. A MAS can be a
useful tool for modelling a WIS due to the inherent
properties of agents like the knowledge (defined, own
and acquired) they manage, their ability to communicate
with users or other agents, etc. Carabelea et al [2] have
defined a MAS as “a federation of software agents
interacting in a shared environment that cooperate and
coordinate their actions given their own goals and
plans”. Moreover, agents can be executed on the MD
and/or migrate through the net, searching for
information on different servers (or MDs) in order to
satisfy the user’s queries. This is the underlying idea of
the Mobile Agent concept [8].

Rahwan et al. [9] recommend the use of the agent
technology in MD applications because agents which
execute on the user’s MD can inform the systems
accessed by the user about her/his contextual
information. However, in case of a mobile user, the
agent must take into account the fact that the changing
location could produce changes in the user’s tasks and
information needs. Then, the agent also has to be
proactive, and has to reason about the user’s goals and
the way they can be achieved.

Applications running on the MD (and their agents)
must allow users to consult data at any time from any
place. This is the underlying idea of the Ubiquitous
Computing (UC) [13]. Shizuka et al. [10] have stressed
the fact that Peer to Peer (P2P) computing is one of the
potential communicative architectures and technologies
for supporting ubiquitous/pervasive computing. Since
an agent is an inherent peer - because it can perform its
tasks independently from the server and other agents -,
we can consider a MAS as a P2P System. P2P systems
[10] are characterized by i) a direct communication
between the peers with no communication needed
through a specific server, and ii) the autonomy a peer
gets for accomplishing some assigned tasks.

Concerning adaptation, a special attention is paid to
the user’s location in her/his profile. In order to provide
the nomadic user only with the more relevant
information (i.e. “the right information in the right
place at the right time"), Thilliez et al. [11] have
proposed “location dependent” queries which are
evaluated according to the user’s current physical
location (e.g. “which are the restaurants located in the

 4

street where the user is?”). Our work focuses also on
this kind of queries.

Regarding adaptation to the reduced capacities of
the MD, one objective is to anticipate the fact that some
retrieved information can not eventually be properly
displayed (e.g. MD may not support a cumbersome
format file…). It is necessary to anticipate such
situations at design time in order to decide which
solution to adopt. For instance, considering a query
whose result contains video data, the corresponding
result may not be delivered if the user accesses the WIS
through a mobile phone which can not display videos.
In that case, the Negotiation vocabulary proposed by
Lemlouma [7] can be used for adaptation purposes. It
allows describing the user’s MD, considering the
constraints in terms of network and, software and
hardware environments.

Many technical and functional aspects have to be
considered when designing a WIS accessed through
MDs, especially when addressing the issue of the
adaptation of the delivered information to the nomadic
user [10] [11]. The goal of our work is to provide
nomadic users who access a WIS through a MD with the
more relevant information according to their
preferences, but also according to their contextual
characteristics and to the features of their MDs. In [3],
we have defined PUMAS, a framework for retrieving
information distributed among several WIS and/or
accessed through different types of MDs. The
architecture of PUMAS is composed of four MAS (a
connection MAS, a communication MAS, an
information MAS and an adaptation MAS), each one
encompassing several ubiquitous agents which
cooperate in order to achieve the different tasks handled
by PUMAS (MD connection/disconnection, information
storage and retrieval, etc.). In PUMAS, data
representation, agent roles, and data exchange are
ultimately based on XML files. Through PUMAS, our
final objective is to build and propose a framework
which is, beyond the management of accesses to WIS
through MDs, also in charge of performing some
adaptation processing over information. Users equipped
with MDs can use the PUMAS central platform in order
to communicate together by means of agents executed
on their MDs, or in order to exchange information
(user’s contextual information). In our case, users
communicate through a Hybrid P2P system.

This paper is structured as follows. We first describe
in section 2 the architecture of PUMAS. We focus on
the pieces of knowledge (facts) used for adaptation
purposes by PUMAS agents, especially, those belonging
to the Information and to the Adaptation MAS. In
section 3, we present a scenario which shows how
PUMAS processes a query submitted to the system. An
example which illustrates our proposition is given in
section 4. We discuss the related work to PUMAS in
section 5 before we conclude in section 6.

2. The PUMAS Framework

In this section, we present the architecture of
PUMAS, its four MAS, their relations and, the data
exchange and the communications they perform in order
to achieve the adaptation of the information for the user.

2.1. An overview of the PUMAS architecture

The architecture of PUMAS is composed of four
MAS (see in Figure 1 the logical structure of PUMAS):
− The Connection MAS provides the mechanisms for

facilitating the connection from different types of
MDs to the system.

− The Communication MAS ensures a transparent
communication between the MDs and the system,
and applies a Display Filter for displaying the
information in an adapted way according to the
technical constraints of the user’s MD. For this, it is
helped by agents of the Adaptation MAS.

− The Information MAS receives the user’s query,
redirects them to the “right” IS (the nearest IS, or
the one which can answer the user’s queries, or the
more consulted one…), applies a Content Filter
(with the help of the Adaptation MAS agents)
according to the user’s profile in the system and
returns the results to the Communication MAS.

− The Adaptation MAS communicates with the agents
of the three other MAS in order to provide them
with information about the user, the connection and
communication features, the MD characteristics,
etc. The services and tasks of its agents essentially
consist in managing specific XML files which
contain information about the user and the device.
These agents also have some knowledge which
allows them to select and to filter information for
users. This knowledge comes from the analysis of
the user’s history in the system (last connections,
queries, preferences, etc.).

Figure 1. The PUMAS Architecture.

The inherent mobility of the nomadic users is
supported by ubiquitous agents (e.g., the MDAs
executed on the user’s MDs and the ISAs executed on
the same device than the WIS) which retrieve some
needed information and which can communicate with

 5

other agents for performing tasks. The Hybrid P2P
Architecture of PUMAS copes with the following issues:
security in the applications (security problems inherent
to the agent mobility), communication between agents
in a point to point or in a broadcast way, management of
the agent’s status (connected, disconnected, killed…)
and its services.

In the following subsections, we describe the tasks
achieved by each MAS of PUMAS.

2.2. The Connection MAS

This MAS includes several Mobile Device Agents
(MDAs) and one Connection Controller Agent (CCA).
The MDA is executed on the user’s MD. Its knowledge
is composed of general rules of behavior and
characteristics related to the type of MD used (e.g.,
PDA) and some specific roles defined according to the
application (e.g., this agent is used for transmitting a
file). The MDA manages a XML file (Device Profile
XML file, located on the user’s MD) which describes the
MD characteristics (using OWL1) and, shares this
information with the DisplayFilterAgent (which belongs
to the Adaptation MAS) through the CCA (the MDA
sends this file to the CCA – executing on the central
platform of PUMAS- and the latter exchanges this
information with the DisplayFilterAgent). This file
contains some information about requirements of the
application, network status, hypermedia files supported
by the MD, conditions for disconnecting: inactive
session for more than X minutes, disconnection type
(willingly, automatic, etc.), etc.

One MDA also manages another XML file which
describes the characteristics of the user’s session (using
OWL, see Figure 2): who is the connected user (user
ID…), when the session begun and what is the
connected MD (beginning time, CurrentMD…). This
file will be sent to the UserAgent (which belongs to the
Adaptation MAS):
<?xml version="1.0"?><rdf:RDF… …
 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="SessionProfile"/>
 <owl:Class rdf:ID="CurrentUser">
 <rdfs:subClassOf rdf:resource="#SessionProfile"/></owl:Class>
 <owl:Class rdf:ID="BeginningTime">
 <rdfs:subClassOf rdf:resource="#SessionProfile"/></owl:Class>
 <owl:Class rdf:ID="CurrentDevice">
 <rdfs:subClassOf rdf:resource="#SessionProfile"/></owl:Class>
</rdf:RDF>

Figure 2. User’s Session XML file.
The CCA gets the user’s location and the MD type

(e.g., PDA) from the User Location XML file (which
contains the physical and logical user’s location
features) and from the Device Profile XML file (which

1 OWL: Ontology Web Language builds on RDF and RDF Schema

and adds more vocabulary for describing properties and classes
(relations between classes, cardinality, equality, richer typing of
properties, characteristics of properties, and enumerated classes).
http://www.w3.org/2004/OWL/

contains the MD’s features). Both files are provided to
the CCA by the MDA.

The CCA executes on the central platform of
PUMAS and gets the user’s location and the MD type
(e.g., PDA) from the User Location XML file and from
the Device Profile XML file, respectively. Both files are
provided by the MDA and locally managed by the CCA.
The CCA serves as an intermediary between the
Connection MAS and the Communication MAS. It also
checks the connections established by the users and the
agents’ status (connected, disconnected, killed, etc.),
and links each MDA to its corresponding Proxy Agent
(PA) in the Communication MAS (see next section).

The XML files (User Location, Session and Device
Profile XML files) managed by the MDA and the CCA
have been defined using the extensions introduced by
Indulska et al [5] to CC/PP [13]. These extensions
include some user’s characteristics like her/his location,
application requirements, session features (user, device,
application …) and the MD’s profile in order to provide
a complete description of the user and her/his MD.

2.3. The Communication MAS

This MAS has an interface which makes the
communication between users transparent and activates
the mechanism for displaying the information according
to the MD features. It is composed by several Proxy
Agents (PAs), one MDProfile Agent (MDPA) and one
Coordinator Agent (CA). These agents execute on the
central platform of PUMAS.

There is one PA for the connection of each MDA.
Two different users can connect themselves to the
system through the same MD which leads to two
different PAs and two different sessions. The main task
of a PA is to represent a MDA within the system. In this
case, there are two agents, one MDA on the MD and one
PA in the central platform of PUMAS.

The MDPA has to check the user’s profile
(according to her/his MD) and her/his information
needs. In addition, this agent together with the CA
defines and checks the mechanism for sending, for
example, hypermedia data to the user. If the user’s
request has as results several images, these agents define
the order and the number of images to be shown by
screen according to the capabilities of the user’s MD.
The MDPA also shares information about the specific
MD features for the user’s session with the
DisplayFilterAgent (of the Adaptation MAS).

The CA is in permanent communication with the
CCA in order to verify the connection status of the agent
which searches for information. The CA knows all the
agents connected in the system thanks to XML files
managed by the MDA (through its PA). If there are some
problems with the CCA (e.g. if the CCA fails, or if there
is a lot of connections…), the CA can play the role of
the CCA up until the problems are fixed. At that
moment, the CCA and the CA must synchronize the

 6

information about the connected agents and check the
current connections.

A more detailed description of the Connection and
the Communication MAS is exposed in [3]. The main
contribution of this paper, described in the next section,
deals with the description of the knowledge managed by
the Information and the Adaptation MAS agents for
supporting the adaptation capabilities of PUMAS.

2.4 The Information MAS

The Information MAS is composed of one
Receptor/Provider Agent (R/PA), one Router Agent
(RA) and one or several ISAgents (ISAs).

The R/PA which is located in the central platform of
PUMAS owns a general view of the whole system. It
knows the agents of both the Communication and the
Information MAS. The R/PA receives all the requests
that are transmitted from the Communication MAS and
redirects them to the RA which is in charge of finding
the “right” IS in order to execute the query. Once the
query has been processed by the ISAs, the R/PA checks
whether the query results take into account the user’s
profile (preferences, user’s history…) by means of the
ContentFilterAgent of the Adaptation MAS.

In order to redirect the query to the “right” IS(s), the
RA applies a strategy which depends on one or several
criteria: the user’s location, the peers similarity, the time
constraints, her/his preferences, etc. The strategy can
lead to the sending of the query to a specific WIS, to the
sending of the query in a broadcast way and/or to the
division of the query in sub-queries, each being sent to
one or several WIS. The RA is also in charge of
compiling the results returned by the WIS and of
analyzing them (according to the defined criteria) to
decide whether the whole set of results or only a part of
it has to be sent to the R/PA.

The RA which executes on the central platform of
PUMAS stores in its Knowledge Base (KB) pieces of
knowledge (we call fact and describe below using
JESS2) for each IS. One fact is made of the
characteristics of the IS like its name, its managed
information, the type of device on which it is executed
(e.g., server, MD…) and the agent (ISA) associated with
this IS and which can be asked for information. When
the RA has to redirect the user’s query, it exploits these
facts in order to select the IS, especially, the ISAs to
which the sub-queries has to be redirected. The
following fact defines an IS and is represented by a
JESS template3:

2 JESS is a rule engine and scripting environment which lets build

Java applications that have the capacity to "reason" using
knowledge supplied in the form of declarative rules.
http://herzberg.ca.sandia.gov/jess/

3 We define our pieces of knowledge using the syntax of the JESS
unordered facts. We declare each unordered fact by means of the
primitive “deftemplate”. For defining an instance of an unordered
fact in JESS and storing it into the JESS KB, we use the primitive
“assert”.

(deftemplate Information_System (slot name) (slot agentID)
(slot device) (multislot information_items))

For instance, the following fact defines the
Pharmacy IS of a hospital. The IS is called PharmacyIS
and it executes on a server. PharmacyISA is the ISA
which executes on this IS. The PharmacyIS contains
information about the medicines and the patient’s
prescriptions:
(assert (Information_System (name PharmacyIS)
(agentID PharmacyISA) (device server)
(information_items medicines patient’s_prescription)))

The location of the IS could change, especially if
this IS run on a MD. The RA can be informed about the
IS location changes by means of the ISAs which
executes on this IS.

In order to send the (sub-) queries and analyzing
their results, the RA must check the user’s preferences
(information provided by the ContentFilterAgent via the
R/PA). The user’s preferences are represented as facts
defined as follows:
(deftemplate User_Preference
(slot userID) (slot required_info)(multislot complementary_info)
(multislot actionD) ; actions for doing
(slot problem) (multislot actionR)) ; actions for recovering

An ISA associated with a WIS (and which executes
on the same device than the WIS) receives the user’s
(sub-) query from the RA and is in charge of searching
for information. Once a result for the query is obtained,
the ISA returns it to the RA. An ISA can execute the
query by itself or delegate this task to the adequate WIS
component. This depends notably on the nature of the
WIS. Our approach addresses complex and possibly
distributed WIS located on server(s) but also very
simple WIS which only rely on some files located on a
MD. In this last case, one ISA may be sufficient to
ensure the right functioning of the Information MAS. It
is worth noting that, in this case, what we call an “ISA”
is in fact the MDA of a MD which can play the role of
an ISA since it has the knowledge required for executing
a query on the files stored in the MD. In a complex WIS,
the ISA can collaborate with other ISAs (if the WIS has
been developed following the MAS paradigm) or with
any other WIS component to perform the query. In the
case of a non MAS based WIS, our approach only
requires that an ISA is developed in order to ensure the
communication between PUMAS and the WIS.

2.5. The PUMAS Adaptation MAS

The adaptation capabilities of PUMAS rely on a two
step filter process which aims at providing the user with
adapted information according to both the user and
her/his MD. First, the Content Filter allows selecting the
more relevant information according to the user’s
profile defined in the system. Second, the Display Filter
is applied on the results of the first filter and takes into
account the characteristics and technical constraints of
the user’s MD.

 7

The Adaptation MAS is composed of several
UserAgents (UAs), one DisplayFilterAgent (DFA) and
one ContentFilterAgent (CFA). These agents execute on
the central platform of PUMAS.

Each UA manages a XML file (User Profile XML
file, see Figure 3) which contains personal
characteristics of the user (user ID, location, etc.) and
her/his preferences (e.g., the user wants only video
files). This file is obtained by means of the MDA (this
file is managed by the UA and updated by the MDA).
There is only one UA which represents a user at the
same time (even though the user has two sessions at the
same time though the same or different MDs). Since a
user can access the system through several MDs, the UA
communicates with the MDAs and the PAs (which
respectively belong to the Connection and the
Communication MAS) for analyzing and centralizing all
the characteristics of the same user. The UA
communicates with the CFA for sending the User
Profile XML file. When the CFA receives this file, it
stores this information as facts in its KB (this agent
manages a register of user’s preferences). When the
R/PA (of the Information MAS) asks the CFA for the
user’s preferences, this latter sends it the latest XML file
received from the UA. If the UA does not send this file
(e.g., there is no user’s preferences for the current
session), the CFA takes into account for this user her/his
preferences from previous sessions.
<rdf:RDF … <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="UserProfile"/> <owl:Class rdf:ID="Beliefs">
 <rdfs:subClassOf rdf:resource="#UserProfile"/></owl:Class>
 <owl:Class rdf:ID="Intentions">
 <rdfs:subClassOf rdf:resource="#UserProfile"/></owl:Class>
 <owl:Class rdf:ID="User">
 <rdfs:subClassOf rdf:resource="#UserProfile"/></owl:Class>
 <owl:Class rdf:ID="Preferences">
 <rdfs:subClassOf rdf:resource="#UserProfile"/></owl:Class>
 </rdf:RDF>

 Figure 3. User Profile XML file
We can establish that the queries depend on one or

several criteria: user’s location, her/his history in the
system, activities developed during a time period,
movement orientation, privacy preferences, etc. A
dependency criterion could be defined as:
(deftemplate DependencyCriterion (slot userID) (multislot criteria)
(multislot attributes))

An example of Dependency Criterion which
expresses that all of Doctor Smith’s queries depend on
his location, especially when he is in the North Hospital
could be:
(assert (DependencyCriterion (userID Doctor_Smith)
(criteria location) (attributes North_Hospital)))

The DFA manages a knowledge base which contains
general information about features of different types of
MDs (e.g., format files supported) and acquired
knowledge from previous connections (e.g., problems
and capabilities of networks according to data
transmissions). Each MDFeature is defined as a fact and
represented as follows:

(deftemplate MDFeature (slot MDtype)(multislot feature))

Where each feature is represented as a fact as
follows:
(deftemplate feature (slot type) (multislot causes))

An example of a fact for a MDFeature which
corresponds to the file formats that are supported by a
Pocket PC hp IPAQ h5550 in different network types is
shown as follows. We assume that it can not support
videos sent on a Wi-Fi Network but it does support
several images using Bluetooth neither when it is
connected through a Classical Network:
(deffacts MDFeature (MDType “PocketPC hpIPAQ h5550”)
(feature (type video_not_supported) (causes “Wi-Fi Network”))
(feature (type several_images) (causes “Bluetooth” “Classical
Network”)))

The CFA manages a knowledge base which contains
the preferences, intentions and characteristics of the
users. The User_Preference fact is composed of the
userID (which identifies the owner of this preference),
the required information (required_info) and the
complementary information (complementary_info). The
last one is added to the User_Preference definition by
the CFA which analyzes the queries of the previous
sessions (e.g., information frequently asked). This fact is
also composed of information describing what and how
user would like the answers from the system (to be
presented to her/him) and in the case of problems, what
and how the system must answer (list of actions for
recovering). For that, each action is defined as a fact
and represented as follows:
(deftemplate action (slot name)(multislot attribute))

In this definition, name refers to an action chosen
between a defined list (show, save, transfer file,
cancel…) and each action has a list of attributes. For
instance, the fact which represents the action “show” has
for properties the order, the format and the type of the
file, is:
(assert (action (name show) (attributes order format file_type)))

Since an attribute can be complex, we define it as a
fact:
(deftemplate attribute (slot name)(multislot list))

An example of attribute which defines the order in
which information is displayed, could be:
(assert (attribute (name order) (list “patient’s_tests”
“patient’s_diet” “patient’s_prescribed_medicines”)))

We can define a problem as something which is
unexpected, or not wanted to happen when an action is
executed, or which is the cause of a failed action
execution (e.g., the MD can not show an image). Each
problem is defined as a fact and represented as follows:
(deftemplate problem (slot name)(slot type) (multislot causes))

Where name corresponds to a description of the
problem, the type can be chosen among a defined list
(incompatibility, unable IS, unable agent), and the
causes correspond to a list of causes of this problem
(e.g., MD can not support a specific format file, network
problems, etc.). A fact, which defines the problem

 8

related to a specific user’s location which is out of range
of a wireless network and prevents to her/him to access
to Internet, is:
(assert (problem (name out_range_connection)(type lackofaccess)
(causes userlocatedoutofrange networkoutofservice)))

3. PUMAS Scenario

In this section, we present a scenario in order to
show the interactions that take place between PUMAS
agents when a query is submitted to the system.

Figure 4. Scenario of sending a query

When a user sends an information query Q (see
Figure 4), the MDA sends it to the CCA. Whenever this
query is location and time dependent, the CCA
introduces the time of connection, the user’s location
and the user’s MD connection characteristics (these
latter characteristics are exchanged with the DFA) in
query Q which leads to the production of a new query
Q’ (in Figure 4, Q’=Q + user’s ST) which is then sent
to the PA. The query passes by the CA and then by the
MDPA. The latter adds up into Q’ query some features
related to the MD; these features are provided by the
DFA which have previously learnt them from the
previous queries or retrieved them from its knowledge
base. The new Q’’ query (in the Figure 4, Q”= Q’ +
MD features) is sent by the MDPA to the R/PA. The
R/PA adds up at its turn into the Q” the specific
characteristics of the user in the system by requesting
the CFA (In Figure 4, Q’’’=Q” + user’s preferences,
intentions, history…). The R/PA sends the Q’’’ query to
the RA which decides (according to the query, the
system rules and the fact in its knowledge base) which
are the ISAs able to answer. It can send the query to a
specific ISA or to several ISAs (e.g., waiting for the first
to answer) or, it can divide the query into sub-queries
which are sent to one or several ISAs. The scenario in
Figure 4, shows for instance that Q’’’ is divided into
Q’’’ – 1.1, Q’’’– 1.2, Q’’’– 1.3 and Q’’’– 1.4 which are sent to
ISAs executed on a server and different MDs.

When a user U1 has an information query for
another user U2, both equipped with MDs, the query is
propagated from the MDA executed on the U1’s MD
towards the RA which redirects it to the MDA executed
on the U2’s MD. This U2’s MDA changes of role to
become an ISA, i.e. the agent in charge of answering the

information query. This change of role is possible
because a MDA has the knowledge for managing the
information stored in the MD on which it executes and it
has the capability of answering the information queries.

4. Example

In this section, we illustrate the process performed
by PUMAS agents using the example of a hospital WIS.

Figure 5. Sending a query in the hospital WIS
Let us suppose that doctors equipped with MDs (e.g.

PDA) access to the information system of a hospital
which is distributed between several MDs and/or one or
several WIS (see Figure 5). Doctors can also receive
information according to their location, preferences,
technical characteristics of their MDs and considerations
about their connection time. For instance, when visiting
a patient, doctors with MDs can consult information
about her/his clinic history, medical tests, medicines,
etc. By indicating the location of the patient (room,
floor, bed, etc.) and the current date, the doctor can
identify the patient and get her/his personal information.
For this, the application on her/his MD must consult the
different IS of the hospital – pharmacy, patients,
doctors, etc. Doctors could also communicate with other
doctors (peers) through their MD, in order to get some
advice or help (e.g. questions which can only be answered
by the specialist doctor who has previously examined this
patient).

When a doctor comes into the patient’s room, she/he
enters the room and bed numbers (information about
patient’s location) while the application gets the date of
the system (information about the time). The MDA
which executes on the doctor’s MD sends the query
(who’s the patient?). The query is propagated through
PUMAS core: it is first transmitted through the CCA,
then to the Communication MAS agents (PA, CA and
MDPA). The MDPA can add up to the query, the
information according to the MD (e.g., this kind of MD
can not support graphical format but only text files. then
if the doctor asks for the results test, she/he only could
get them in a text format). For example, if the doctor has
been connected through a Palm Tungsten C, the MDPA
can ask the DFA for information about this MD and the
MDPA could receive from DFA facts defined as
follows:

 9

(deffacts MDFeature (MDType “Palm Tungsten C”)
(feature (type video_not_supported)
(conditions Wi-Fi_Network))
(feature (type several_images)
(conditions Wi-Fi_Network)
(feature (type text)
(conditions Wi-Fi_Network Classical_Network Bluetooth))) ;

Then, the MDPA sends the query to the R/PA which
can add up to the query the preferences previously
expressed by the doctor. Those preferences are
expressed in the User Profile XML file (see section 2.5)
and are translated as facts by the UA and the CFA. The
following example corresponds to a doctor’s preference:
when a doctor says “when asking for a blood test, the
system must also provide me with the patient diet and
prescribed medicines, I do prefer graphical results but
if my MD can not support this format, I shall receive the
results in text format”, this can be translated in the
following fact of the UA:
(deffacts User_Preference (userID “Doctor Smith”)
(required_info “blood tests”)
(complementary_info “patient’s_diet” “prescribed_medicines”)
(action show)
(attribute (name order) (list “patient’s_tests” “patient’s_diet”
“patient’s_prescribed_medicines”))
(attribute (name graphical_format) (list “JPEG”))
(problem (name HyperMediaNotSupportedByMD) (type
incompatibility) (causes OnlyTextFileSupported))
(attribute (name order) (list “patient’s_tests” “patient’s_diet”
“patient’s_prescribed_medicines”))
(attribute (name text_format) (list “XML” “txt”)))

 The UA transfers this information to the CFA which
stores this fact and sends it to the R/PA. The R/PA adds
this preference to the query and sends it to RA. The RA
receives the complete query and, with the information
about the ISs, RA can split the query in sub-queries and
redirects each one towards the appropriated IS. The
following facts are exploited in this example by the RA
in order redirect the (sub-) queries to the ISAs of the
hospital’s IS:

(assert (Information System (name LaboratoryIS) (agentID
LaboratoryISA) (device server) (information_items test patient’s_
test reactive)))

(assert (Information System (name PatientDietIS) (agentID
DietISA) (machine MD)(patient’s_diet nutritionist_appointments)))

The RA redirects the query to the ISA located in the
IS(s) which manage(s) information about the patients in
the hospital. All the queries follow the same path from
the MDA towards the RA. If the doctor wants to know
the last medicines prescribed to this patient, the RA
redirects the query to the ISA located in the
PharmacyIS. If the query concerns another doctor
(peer), the RA redirects the query to the ISA located in
the peer’s MD. A doctor can also ask for information
about a specific patient to several of her/his peers. In
this case, the RA could send the query in a broadcast
way or it could decompose the query according to the
receiver peer (e.g., queries relates to the heart for the
cardiologist…) or according to the defined criteria in
the User Profile XML file (e.g., if the criterion of query
dependency is the location, the queries must only be
redirected to the doctors at the same or closed location

of the sender…). Retrieved information is organized by
the RA (e.g., the last prescribed medicines, the peer’s
answers about this patient, etc.) and is returned to the
doctor who has sent the query following the inverse
path. The different agents have to check the results
because, for instance, the doctor may have disconnected
from the system (due to some network problems), and
recovered her/his session in a new connection whose
characteristics are different from the previous ones: it
could be that she/he can now consult the system using
another kind of MD which supports some graphical
format (which constitutes a doctor’s preference which
can now be satisfied).

Through this example, we can observe the behavior
of the Hybrid P2P Architecture of PUMAS. The core of
PUMAS centralizes the queries: i) it is in charge of the
process for obtaining the more relevant information and,
ii) it is in charge of applying the Content and Display
Filters for adapting the answers. The main peer
characteristics of PUMAS agents are illustrated by the
fact that first, the agents have the autonomy of
connecting to and disconnecting from the system.
Second, a MD can ask for a communication with a
specific IS (located on a server or on a MD) passing this
information as a parameter of the query; the RA
transmits the query to this specific IS which exemplifies
an agent to agent communication (e.g., when doctors
exchange information about a patient using their MDs).

Another advantage offered by PUMAS is that it
helps a user who does not know which specific IS to ask
for information to find the more appropriate one(s). The
RA redirects the query by means of an intelligent
analysis of the query and the help of the ISAs which
achieve an intelligent search inside the different IS
(pharmacy, laboratory, patients, etc. in our example).

5. Related Works

We present here some agent-based architectures or
frameworks for adapting information to the users:

CONSORTS Architecture [6] is based on ubiquitous
agents and designed for a massive support of MDs. It
detects the user’s location and defines the user’s profile
for adapting the information to her/him. The
CONSORTS architecture proposes a mechanism for
defining the relations that hold between agents
(communication, hierarchy, role definition…), with the
purpose of satisfying user’s requests. However, it
considers neither the distribution of information
between MDs (which could improve response time) nor
the user’s preferences.

The work of Gandon et al [4] proposes a Semantic
Web architecture for context-awareness and privacy.
This architecture supports the automated discovery and
access of a user’s personal resources subject to user-
specified privacy preferences. Service invocation rules
along with services ontologies and services profiles
allow to identify the most relevant resources available to
answer a query. However, it does not take into account

 10

that the information which can answer a query can be
distributed between different sources.

PIA-System [1] is an agent-based personal
information system for collecting, filtering and
integrating information at a common point, offering
access to the information by WWW, e-mail, SMS, MMS
and J2ME clients. It combines push and pull techniques
in order to allow the user on the one hand, to search
explicitly for specific information and on the other hand,
to be informed automatically about relevant information
divided in slots (user specifies her/his working time and
this divided the day in pre, work and recreation). A
personal agent manages the individual information
provisioning, tailored to the user’s needs according to
her/his profile, her/his current situation and learning
from feedback. However, PIA-System only searches
information in text format (e.g., documents). It takes
into account neither the adaptation of different kinds of
media to different MDs, nor the user’s location.

6. Conclusion

In this paper, we have presented PUMAS, a
framework based on agents and P2P approach. Peers
characteristics of PUMAS appear in the cooperation
developed by the agents in order to store and retrieve
the information and in the possibility that two users,
equipped with MDs, communicate through the central
platform offered by PUMAS. Its architecture relies on
four Multi-Agents Systems (MAS) for the Connection,
the Communication, the Information and the Adaptation
MAS. PUMAS also benefits from the P2P characteristics
of a Hybrid P2P architecture. PUMAS provides each
agent with a mechanism for identifying, authenticating
and knowing its peers. This paper has focused on the
representation of the pieces of knowledge (called facts)
stored in the knowledge bases and used by PUMAS
agents in order to perform their assigned tasks. We can
highlight the intelligent and adaptive information
search achieved by means of the PUMAS agents. The
search is intelligent because is based on the knowledge
of the agent and its capability of reasoning. It is also
adaptive because it takes into account the nomadic
user’s profile, her/his MDs’ characteristics and the
ubiquitous context features.

Our future work concerns the implementation of
each component (MAS) of PUMAS. We also need to
define an extension of the current ACL which considers
spatio-temporal (contextual) features and a strategy
description language, as well as Query Routing
mechanisms and algorithms [12] for the RA in order to
propagate the query towards the “right” IS and to
compile the answers.

Acknowledgments. The author Angela Carrillo
Ramos is partially supported by Universidad de los
Andes, (Bogotá, Colombia).

7. References

[1] Albayrak, S., Wollny, S., Varone, N., Lommatzsch, A.,
and, Milosevic D: Agent Technology for Personalized
Information Filtering: The PIA-System. In Proc. of the
20th Annual ACM Symposium on Applied (SAC 2005)
(Santafe, New Mexico, USA, March 13-17, 2005). ACM
Press, New York, NY (2005), pp. 54-59.

[2] Carabelea, C., and, Boissier, O: Multi-Agent Platform on
Smart Devices: Dream or Reality? In Proc. of the Smart
Objects Conference (sOc’2003) (Grenoble, France, May
15-17, 2003) (2003), pp. 126-129.

[3] Carrillo-Ramos, A., Gensel, J., Villanova-Oliver, M., and
Martin, H: PUMAS: a Framework based on Ubiquitous
Agents for Accessing Web Information Systems through
Mobile Devices. In proc of the 20th Annual ACM
Symposium on Applied Computing (SAC2005) (Santa Fe,
New Mexico, USA, March 13 -17, 2005) ACM Press,
New York, NY (2005), pp. 1003-1008.

[4] Gandon, F. and, Sadeh, N: Semantic Web Technologies
to Reconcile Privacy and Context Awareness. Journal of
Web Semantics. Volume 1, Issue 3. October 31, 2004.
http://www.websemanticsjournal.org/ps/pub/2004-17.

[5] Indulska, J., Robinson, R., Rakotonirainy, A., and K.
Henricksen: Experiences in Using CC/PP in Context-
Aware Systems. In Proc of Mobile Data Management:
4th Int. Conference (MDM 2003) (Melbourne, Australia,
January 21-24, 2003), LNCS, 2574 (2003), pp. 247-261.

[6] Kurumatani, K: Mass User Support by Social
Coordination among Citizen in a Real Environment. In
Proc. of Multi-Agent for Mass User Support.
International Workshop (MAMUS 2003) (Acapulco,
Mexico, August 10, 2003), LNAI, 3012,(2004), pp. 1-16.

[7] Lemlouma, T. Architecture de Négociation et
d’Adaptation de Services Multimédia dans des
Environnements Hétérogènes. Thesis, Institut National
Polytechnique de Grenoble, Grenoble, June 2004.

[8] Lin, F.C., and, Liu, H.H. MASPF: Searching the Shortest
Communication Path with the Guarantee of the Message
Delivery between Manager and Mobile Agent. In Proc of
Embedded and Ubiquitous Computing (EUC 2004)
(Aizu-Wakamatsu City, Japan, August 25-27, 2004),
LNCS, 3207 (2004), pp. 755-764.

[9] Rahwan, T., Rahwan, T., Rahwan, I., and Ashri, R.
Agent-Based Support for Mobile Users Using
AgentSpeak(L). In Proc of Agent-Oriented Information
Systems, 5th Int. Bi-Conference Workshop (AOIS 2003)
(Melbourne, Australia, July 14, 2003 - Chicago, USA,
October 13, 2003), LNAI, 3030 (2004), pp. 45-60.

[10] Shizuka, M., Ma, J., Lee, J., Miyoshi, Y., and, Takata, K.
A P2P Ubiquitous System for Testing Network
Programs. In Proc of Embedded and Ubiquitous
Computing (EUC 2004) (Aizu-Wakamatsu City, Japan,
Aug. 25-27, 2004), LNCS, 3207 (2004), pp. 1004-1013.

[11] Thilliez, M. and, Delot, T: Evaluating Location
Dependent Queries Using ISLANDS. In Proc of
Symposium on Advanced Distributed Systems (ISSADS
2004). (Guadalajara, Mexico, January 25-30, 2004),
LNCS, 3061 (2004), pp. 125-136.

[12] Xu, J., Lim, E., and Ng, W.K: Cluster-Based Database
Selection Techniques for Routing Bibliographic Queries.
In Proc of 10th Workshop on Database and Expert
Systems Applications (DEXA 99) (Florence, Italy, August
30 – Sept. 3, 1999), LNCS, 1677 (1999), pp. 100-109.

[13] http://www.w3.org/TR/webont-req/

 11

INCA (Investor Network Collaborative Architecture) - A Method in the
Madness of Wall Street

Sharad Chandra Sundararajan Sandeep Sankarlal Ashwani Kumar
 IBM Waters Informatics MIT
 Fishkill, NY, USA Milford, MA, USA Cambridge, MA
 sharads@us.ibm.com sandeep_s_v@yahoo.com ashwani@mit.edu

Abstract

 Folk theories which are based on common,
everyday experiences, but not subjected to rigorous
experimental techniques, underlie many of our actions
[1]. In this paper, we propose an architecture to build
an online network of individual investors threaded
together in a multi-agent system that exploits
aggregate opinion, scientific facts, emotions and
common sense to help individual investors speculate
with more confidence. The power of the system lies in
the interactive mode of operation between the agents
and the users, allowing users to post their views blog-
style onto a whiteboard and having agents parse these
stock logs to re-evaluate stock picks previously made
purely based on scientific facts. No system today has
such a focused network of investors or a system that
gauges the market emotion with continuous user-
feedback. A network of this nature has the potential to
influence the market considering more investors will
have access to the same piece of information.

1. Introduction

 The average individual investor makes
decisions on trading stocks based on various sources
such as the company financials, stock-pundit's analysis,
the media, word of mouth etc. And then, there are those
who employ brokers and hope for the best while a few
others assume the role of a 'contrarian investor'
working against popular belief. Irrespective of whether
one takes a random or a non-random walk down the
investment-lane[2, 3], history has shown that there is
no formula that works long enough for it to matter.
But, the 'Castle in the air' theory [2] has remained
popular for a reason in that, folk-psychology has a
tendency to influence the market merely by the strength
in its numbers. Yet, no system today exploits such
group behavior and no current system takes into
account the psychological and emotional factors that in

reality play a significant role in influencing the market.
Mob psychology attempts to explain collaborative
behavior based on people's psychology and many
theorize about this being the root cause of the 1987
crash. So, does the concept of mob-psychology always
carry a negative connotation? We don't believe so.
There is always strength in numbers, but with incorrect
or inaccurate information, the same group can make
dangerously incorrect decisions.
 In this paper, we propose a strategy and a
functional system that will exploit the combination of
aggregate opinion, scientific facts, emotions, shared
beliefs, common sense investing and analysts'
expertise, to help the individual speculate with more
confidence. The idea is to grow an online network of
individual investors allowing them freedom to post
their views on the market to whiteboards, which in this
context would be a Stock web LOG (SLOG) and have
agents parse these slogs to make sense of them and re-
evaluate stock picks previously made purely based on
scientific facts.
 A network of this nature threaded together by
a common vested interest in the market offers some key
advantages like: a) Shared knowledge and more
awareness; b) Saving time and money; c) Diverse
investors offering multiple perspectives on diverse
markets (like the international market); d) Developing
trust among a group of individuals and boosting
morale; e) Most importantly increasing the chances of
influencing the market.
 For example, the United States used to impose
taxes for importing textiles from India and recently the
taxes were waived, so the textile market is anticipated
to perform well in India. With a network of individuals
exchanging stock web logs in a focused domain, such
pieces of information can be picked up and used to
make more educated decisions on the International
market.
 This paper discusses a system of versatile
agents capable of doing the following:

 12

• Extract the latest company financials and all
stock numbers,

• Mine text and filter news articles and forums
to gather relevant facts and to sense the
overall emotion of the market,

• Read each individual's input comments, do
sanity-checking based on some common sense
facts and elicit the individual's emotion and
tendency towards a stock,

• Group all individual's input along with
available expert knowledge and rank the
stocks based on time-tested criteria. Provide

advice with corresponding 'reasoning' for the
choice

 Some of the modules of the architecture like the

TextMiner[4] and Common Sense Investing [5] have
been studied intensively by other researchers and we
hope to use their research as a foundation for some our
work.

P/E ratio

P/S

EPS

NPM 52 week
high

news media

forums

gauge emotion of the market

selected picks

Well-Formed Network of Investors

Whiteboard for
Slogs : Stock Logs

Whiteboard to
broadcast stock picks

Post views

Agent1 Agent2

Agent3 Agent4

reasons and selects

Mine the
Stock blogs

Figure 1: INCA - The overall architecture

StockA X
StockB X
StockC X

Figure 2: The affect of stocks

 13

2. Overall Architecture

The overall design is depicted in Figure 1 and
some of the images were taken from [6, 7, 8]. The first
and very important part of this system is forming a
network [9] of interested individual investors threaded
together in a fashion similar to LinkedIn [10] and
Friendster [11, 12]. The idea is to have a group of
people with a focused and shared interest in making
educated decisions on investments. The LinkedIn
model is useful to the extent that there is a thread based
on trust and experience connecting individuals, but
with increasing degrees of separation, the thread can be
too thin to be of any use. INCA eliminates any degree
of separation by the use of the white board, but uses the
concept of a thread to form the network through
referrals or recommendations.

 There will be four agents collaborating to
make the most relevant information available to the
users. Agent 1, InformationExtractor crawls the web
for raw facts like the company financials, price-
earnings ratio etc. Agent 2, AffectSensor filters forums
and news articles [13] to get an idea of what stocks are
being talked about and also about the general emotion
[14] in the market about specific stocks. Agent 3,
StockAnalyst which compiles the output data from
InformationExtractor and AffectSensor does some
reasoning using expert knowledge as well as common
sense analysis [5] and ranks allowed to post their views
with their own reasoning to a whiteboard and also tag
their emotion on the picks as shown in Figure 2, a very
visual feedback. The emoticons were taken from [7].

 These opinions are posted on a whiteboard
which is then parsed and analyzed by Agent 4, the
Slogger whose output is fed back to the StockAnalyst.
The cycle repeats itself giving the users enough
information to make an educated choice. The following
section discusses each agent in more detail.

2.1. InformationExtractor

 The main objective of this agent is to crawl
the web for financial information or company financials
in particular in the context of stocks. Several online
resources provide valuable data on the different
industries, sectors and companies (like nasdaq.com,
vanguard.com, fool.com). The history of companies,
guru-analysis, pre-market summary and all stock-
pertinent information is readily available.
InformationExtractor will extract some selected

valuation ratios [15] that dictate the analysts' ratings on
the stocks and some of these numbers include:

• P/E (Price to earnings) ratio – Lower P/E ratio
represents a better value.

• P/S (Price to Sales) ration – Lower P/S ratio
represents a better value

• Price to Free Cash Flow – Lower Price to Free
Cash flow represents a better value [16]

• % Owned Institutions – Ideal scenario would
be 40% - 75%.

• Earning Per Share – The greater the ratio the
better.

• Current ratio – The greater the ratio the better.
• Total Debt to Equity –This ratio should be as

low as possible.
• Net Profit Margin – The greater the ratio the

better.
 In addition, facts that indicate how the stock is
trading during the day like the share volume, the day's
high and low, and best bid and ask prices etc. are also
collected. All this information is used to classify and
sort the stocks under different industries and sectors.

2.2. AffectSensor

 Although, the output of InformationExtractor
may seem sufficient to speculate on the stocks, it is
never clear if any one ratio or even a combination of
parameters determines how well or bad a company is
doing. One of the premises of this paper is that
individual investors will benefit from getting an idea of
the general feeling in the market about how companies
are doing or are predicted to do in the future. This may
be folk psychology, but it definitely raises the
awareness levels among the users, and in conjunction
with the real stock numbers and company statistics, it
will allow for a well informed speculation.
 This agent is more versatile and powerful than
the other agents of the system because of its role to
gauge the emotion of the market towards various
stocks. AffectSensor filters news articles and forums
hunting for opinions and predictions on companies and
industries. Warren [13] from CMU, is a multi-agent
system for intelligent portfolio management, and offers
text classification to elicit the company's financial
outlook and their TextMiner [4] does so by classifying
articles into the following buckets:

GOOD News articles which explicitly show evidence
of the company’s healthy financialstatus. e.g.) ... Shares
of ABC Company rose 1=2 or 2 percent on the
NASDAQ to $24- 15/16.

 14

GOOD, UNCERTAIN News articles which refer to
predictions of future profitability, and forecasts. e.g.) ...
ABC Company predicts fourth-quarter earnings will be
high.
NEUTRAL News articles which mention financial
facts but do not provide good or bad aspects. e.g.) ...
ABC contributes $ 700 million in stock to its pension
plan.
BAD, UNCERTAIN News articles which refer to
predictions of future losses, or no profitability. e.g.) ...
ABC (NASDAQ: ABC) warned on Tuesday that
Fourth-quarter results could fall short of expectations.
BAD News articles which explicitly show evidence of
the company’s bad financial status. e.g.) ... Shares of
ABC (ABC: down $0.54 to $49.37) fell in early New
York trading.

 Some common sense reasoning [5, 16] will go
into sensing the affect of the text as well. The MIT
Media Lab, developed a model to sense textual affect
using real world knowledge [14] and this can exploited
to also get the emotion expressed in the articles. Their
work also talks about a visual representation of the
emotion, the EmpathyBuddy for example [17].
AffectSensor would tag each stock with the market
sense using a similar idea.
 Input to this agent can either be the output of
the InformationExtractor or simply a command to
identify important articles or even tabloid news (no
smoke without fire).
 Another critical component will be to record
all the steps in the process of text-mining and
reasoning, so that the process of arriving at decisions
can be unraveled at any time in the future as a means to
troubleshoot flaws or failures. A very good attempt at
troubleshooting for the end-user in the domain of E-
commerce is the WoodStein[18] project which is an
agent that monitors and visualizes user's processes on
the web.

2.3. StockAnalyst

 There might be young companies with no
earnings, which lead to unfavorable ratios and may be
tagged as a not-so-good stock to invest in by
InformationExtractor and AffectSensor. The valuation
ratios may not be applicable to a relatively young
company unless viewed in the proper context. On the
other hand favorable valuation ratios also do not
necessarily guarantee that a company is going to
perform as expected. The company’s performance
might depend on the general state of the economy, the
emotional state of the people, and unexpected

occurrences. A classic example is the 1987 stock
market crash. There were no indicators of any sort that
suggested this crash was coming. In relation to the
crash Lope-Markets [19] say "It was the fear among the
market investors that a crash was imminent, because
the conditions were starting to resemble 1929, the year
of the well known crash that ushered in the Great
Depression. But the reality was that the economy was
still kicking on all cylinders."
 StockAnalyst is hence the most critical part of
the stock selection. The job of StockAnalyst is to do a
detailed analysis of the output of InformationFilter and
AffectSensor and use a combination of financial
expertise and common sense knowledge [5] to arrive at
smart stocks to trade. It is very useful to have tips and
negative expertise collected in the past as pointers to
avoid pitfalls while making stock selections, especially
to assure the users that the economy is not necessarily
doing badly because of a few bad eggs or a scenario
too similar to an earlier crash. A typical common-sense
fact like "high risk => high reward" can be quite useful
for the agent to make some calculated risks even to
advice stock picks. [20] mentions some very common
mistakes (listed below) that investors make.
StockAnalyst will either use these pointers internally or
prompt to the user to consider:

• Investing in a stock that has been spotlighted
in the news recently.

• Buying a stock because it recently had a
substantial drop in price.

• Hanging on to a sagging stock waiting for the
price to bounce back so you can "get even and
get out."

• Falling in love with your stocks.
• Letting your natural disdain for paying taxes

overcome your evaluation of the merits of
continuing to hold a stock.

• Buying a stock solely because you like the
product the firm makes.

• Buying the stock of a great company without
considering its price.

• Chasing after initial public offerings.
• Paying too much for growth.
• Buying the stock of a company when you are

unable to directly form a judgment on the
prospects of the firm.

• Investing in anything you don't fully
understand.

• Seeking out high dividend yielding stocks in
the belief that the higher the dividend yield,
the better.

 15

• Buying a low price-earnings ratio or low
price-to-book-value ratio stock without
knowing why the ratio is low.

 The output of StockAnalyst will be a
thoroughly studied set of stocks and will be presented
to the users.

2.4. Users

 The Users form the heart of the entire system.
On seeing the list of stocks on the white board, they
follow up with their own views on the agent’s stock
picks and proceed to create stock web logs.

2.5. Slogger

 Blogs are web logs containing periodic time-
stamped posts on a common webpage. These have
become a craze today, primarily due to the publishing
freedom and the power of expression that they offer.
Our system attempts to exploit this feature by allowing
the participants to create their own blog on stocks and
have it be visible to everyone on the network. As per
[21] "The major disadvantage is that maintaining a
successful blog requires skillful research, professional
writing skills and a huge commitment of time and
effort. There simply is no such thing as a perfect
marketing tool, or an effortless way to build traffic to
any site, including blogs." Some of the caveats of
blogging are actually addressed by the software agents,
as these agents provide the necessary research and skill
and also parse the web-logs to make more sense out of
them. In addition, the user will be able to mark how
they feel about the stocks picked by the agent.
 The slogger is an agent that will parse these
stock weblogs and elicit the inclination towards
particular stocks and this will be passed on to the
StockAnalyst which in turn will re-evaluate its previous
stock picks. After the stock picks are reevaluated, the
slogger posts the picks on the white board. The Slogger
also tries to give feedback to the individual users in the
network on their posts and how it might have affected
the overall selection of stocks. Research has shown that
the ability to learn aggregate behavior using network-
based recommendation systems is critical to decision-
making[22]

3. Sample Scenario: A sample walk
through INCA

 Note: This analysis is based on real
companies and real data but the names of the

companies have been changed. The statistics were
taken from [23, 24]
 InformationExtractor gets the following
information about the stocks A and B from the web. A
is an energy company while B deals with public
utilities. The two companies have been chosen from
different industries just for the sake of diversification.
The analysis will be similar even if the industries and
sectors are the same.

Table 1: Financial statistics of A and B

Valuation Ratios\
Company name A B

P/E 14.7 NA
Price to Sales ratio 2.53 6.38
Price to Free Cash Flow ratio 6.54 NA
% Ownership 67.1 18.9
EPS 1.53 -1.19
Current ratio 0.59 2.92
Total Debt/Equity 0.97 0
Profit Margin 91.60% -41.08

 AffectSensor retrieves the following articles
(only snippets shown here) for companies A and B.

 News articles about A:

• “Company A reports record results for the
fourth quarter and the full year 2004” – [at
http://www.okcbusiness.com/news/news_view
.asp?newsid=*]

• “Wise Insiders Buy shares of A Again” - [at
RealMoney by TheStreet.com]

 News articles about B:
• “X’s Friends Implicated in B’s Trading

Scandal” - [at TheStreet.com]
• “Finding Support for B’s Stock” - [at

RealMoney by TheStreet.com]

 AffectSensor using the model from[4] would tag A
to be a 'GOOD' stock and B to be 'BAD,
UNCERTAIN' one.

StockA X
StockB X

Figure 3: Visual sense of Stock Performance

 16

 StockAnalyst on receiving the input from
InformationExtractor and AffectSensor determines that
stock A is a better one, and posts the ranking of the
stocks favoring A over B onto the whiteboard. On
seeing the new rankings, users post their views. Figure
4 shows a snippet of a real weblog discussing the
company A [25]

Is there any fundamental reason to stay with A? Is there
more drilling planned in that basin in the near future?

- Joe [5 minutes ago]

A showed great promise back in January and the Big
Picture Speculator was all over the breakout.
Fundamentally nothing has changed. A Corp. still has a
great inventory of Athabasca Basin uranium projects
with results pending. There is no recent news that
explains the recent high volume sell off. A "promising"
Basin project is typically valued in the $10-$100
million range. I have a high opinion of A's projects as
they didn't have much competition until a year ago.

-Bill [25 minutes ago]

Any comment on the mining/metal meltdown today?
Think it is profit taking, opportunities perhaps to buy
more.

-Karl [2 hours ago]

I haven’t heard about this company. I am not sure of
the prospects.

-Jim [5 hours ago]

Here are the highlights from A Resources’ recent
earnings report. Earnings per share of 92 cents and
cash earnings per share of $1.53; Rough oil sales
revenue increased by $157-million over the prior
year;Credit facility refinanced from project loan to a
combined secured term loan and revolving credit
facility; Acquired a 51-per-cent controlling interest in
XYZ Inc.; and Dividend policy implemented and share
repurchase plan approved.

-Tracy [1 day ago]

Figure 4: A real stock Log by users (discussing
company A)

Slogger goes through the above web logs and

finds out the general consensus and tags the stock (A)

as a ‘STRONG BUY’ and passes this information to
StockAnalyzer. StockAnalyzer in turn posts this
message back on the white board.

 We believe the design will evolve with time to
address any noise in the system such as lying and
mistrust due to conflicting interests within the network
[26]. We do not mean to trivialize the impact of
manipulation in the network, but would rather not shy
away from the system due to such issues. It is possible
that users may join the network with an ulterior motive
of trying to mislead the group based on their own bias.
But this is where technology intervenes to reduce if not
eliminate such noise. In our architecture, the agent
'StockAnalyst' makes decisions on top quality stock
picks based on real company financials. Now, if the
Stock Logs indicate otherwise by stating that some
relatively low-performing stocks are actually the best to
invest in, StockAnalyst will point out the discrepancy
providing an explanation based on the blogger's
comments. The individual investor always has the final
say, the main advantage now being that he makes an
educated pick.

4. Conclusion

 We are currently in the process of building
this system in order to evaluate its effectiveness in the
real world and plan to take more case studies through
INCA to validate our hypothesis. There is a lot of
potential in building such a network that is sensitive to
the market emotion and users' feedback in addition to
using both expert financial knowledge as well as
common sense reasoning. We hope to conduct more
research in this area. The current design is targeted to
the average novice investor and we hope to extend it to
be useful for a wider expert audience.

5. References

[1] Description of Folk-Psychology,Wikipedia. Retrieved
March 5, 2005 from
http://en.wikipedia.org/wiki/Folk_psychology

[2] Malkiel, B. G. A Random Walk Down Wall Street, W.W.
Norton & Company Inc., New York, 2003.

[3] Ritter R.Jay, Behavioral Finance Pacific-Basin Finance
Journal Vol. 11, No. 4, (September 2003) pp. 429-437.

[4] TextMiner:Text Classification for Intelligent Agent
Portfolio Management, Retrieved February 20 from
http://www-2.cs.cmu.edu/~softagents/text_miner.html

 17

[5] Kumar, A., Sundararajan, S. and Lieberman, H. Common
Sense Investing: Bridging the Gap Between Expert and
Novice. Proceedings of Conference on Human Factors in
Computing Systems (CHI ‘04). Vienna, Austria.

[6] Computer icons, Retrieved March 6, 2005 from
http://www.iconbazaar.com/computer/pg05.html

[7] Icons Retrieved March 4, 2005 from
http://www.animationfactory.com/animations

[8] Clipart Retrieved March 4, 2005 from
http://classroomclipart.com/cgi-
bin/kids/imageFolio.cgi?direct=Clipart/Computer

[9]Buskens, Vincent and Jeroen Weesie (2000) Cooperation
via social networks. Reprinted from Analyse & Kritik 22
(2000): 44-74.

[10] Building Professional networks Retrieved March 2,
2005 from https://www.linkedin.com/

[11] Building Social networks, Retrieved March 2, 2005
from http://www.friendster.com

[12] Boyd, danah. "Friendster and Publicly Articulated
Social Networks." Conference on Human Factors and
Computing Systems (CHI 2004). Vienna: ACM, April 24-29,
2004.

[13] Seo, Y. W. Giampapa, J. and Sycara, K. Financial news
analysis for intelligent portfolio management. Technical
Report CMU-RI-TR-04-04, Robotics Institute, Carnegie
Mellon University, 2004.

[14] Liu, H., Lieberman, H. and Selker, E. A Model of
Textual Affect Sensing using Real-World Knowledge.
Proceedings of the ACM International conference on
Intelligent User Interfaces (IUI ‘03) (January 12-15, 2003,
Miami, FL, USA). ACM 2003, ISBN 1-58113-586-6, pp.
125-132.

[15] Coval, Chris, Fundamental Analysis of the Stock
Market, Retrieved March, 8 2005 from
http://www.incometrader.com/Fundamental_Analysis.htm

[16] Bogle, J. C. Common Sense on Mutual Funds, John
Wiley & Sons Inc., New York, 1999.

[17] Liu, H., Lieberman, H., and Selker, T. Automatic
Affective Feedback in an Email Browser. MIT Media Lab
Software Agents Group Technical Report. November, 2002.

[18] Lieberman, H. and Wagner, E. End-User Debugging for
Electronic Commerce. ACM Conference on Intelligent User
Interfaces, Miami Beach, January 2003.

[19] The 1987 Stock Market Crash, Retrieved March 1, 2005
from http://www.lope.ca/markets/1987.html

[20] Common Mistakes Investors Make, Retrieved March
10, 2005 from http://www.aaii.com/

[21] Ochman, BL, Straight Talk About Blogs, Retrieved
April 15, 2005 from
http://www.frugalmarketing.com/dtb/blogs.shtml

[22] Dan Ariely, John G. Lynch and Manny Aparicio (2004),
"Learning by Collaborative and Individual-Based
Recommendation Agents," Journal of Consumer Psychology,
14 (1&2), 81- 94.

[23]Advisor FYI Definitions and Company Financials,
Retrieved March 10, 2005 from
http://moneycentral.msn.com/

[24] Companies performance, Retrieved March 10, 2005
from http://www.forbes.com

[25] Sample blog, Retrieved March 11, 2005 from
http://www.globeofblogs.com

[26] Evans, D., Heuvelink, A., and Nettle, D., The evolution
of optimism: a multi-agent based model of adaptive bias in
human judgement. In Proceedings of the AISB’03
Symposium on Scientific Methods for the Analysis of Agent-
Environment Interaction, University of Wales, pp 20-25,
2003

 18

An Agent-Based Meta-Level Architecture for
Strategic Reasoning in Naval Planning

Mark Hoogendoorn1, Catholijn M. Jonker3,
Peter-Paul van Maanen1,2, and Jan Treur1

1Vrije Universiteit Amsterdam,
Dept. of Artificial Intelligence

De Boelelaan 1081a,
1081 HV Amsterdam,

The Netherlands
{mhoogen, pp, treur}@cs.vu.nl

2TNO Human Factors,
Dept. of Information

Processing,
P.O. Box 23,

3769 ZG Soesterberg,
The Netherlands

3Radboud University Nijmegen,
Nijmegen Institute for

Cognition and Information,
Montessorilaan 3,

6525 HR Nijmegen,
The Netherlands

C.Jonker@nici.ru.nl

Abstract

The management of naval organizations aims at the
maximization of mission success by means of monitoring,
planning, and strategic reasoning. This paper presents an
agent-based meta-level architecture for strategic
reasoning in naval planning. The architecture is
instantiated with decision knowledge acquired from naval
domain experts and is formed into an executable agent-
based model which is used to perform a number of
simulation runs. To evaluate the simulation results,
relevant properties for the planning decision are
identified and formalized. These important properties are
validated for the simulation traces.

1. Introduction

The management of naval organizations aims at the
maximization of mission success by means of monitoring,
planning, and strategic reasoning. In this domain, strategic
reasoning more in particular helps in determining in
resource-bounded situations if a go or no go should be
given to, or to shift attention to, a certain evaluation of
possible plans after an incident. An incident is an
unexpected event, which results in an unmeant chain of
events if left alone. Strategic reasoning in a planning
context can occur both in plan generation strategies (cf.
[15]) and plan selection strategies.

The above context gives rise to two important
questions. Firstly, what possible plans are first to be
considered? And secondly, what criteria are important for
selecting a certain plan for execution? In resource-
bounded situations first generated plans should have a

high probability to result in a mission success, and the
criteria to determine this should be as sound as possible.

In this paper a generic agent-based meta-level
architecture (cf. [10]) is presented for planning, extended
with a strategic reasoning level. Besides the introduction
of an agent-based meta-level architecture, expert
knowledge is used in this paper to formally specify
executable properties for each of the components of the
agent architecture. In contrast to other approaches, this
can be done on a conceptual level. These properties can be
used for simulation and facilitate formal validation by
means of verification of the simulation results.

The agent architecture and its components are described
in Section 2. Section 3 presents the method used to
formalize the architecture. Section 4 presents each of the
individual components on a more detailed level and
instantiates them with knowledge from the naval domain.
Section 5 describes a case study and discusses simulation
results. In Section 6 a number of properties of the model’s
behavior are identified and formalized. A formal tool TTL
Checker is used to check the validity of these properties in
the simulated traces. Section 7 is a discussion.

2. An Agent-Based Meta-level Architecture
for Naval Planning

The agent-based architecture has been specified using
the DESIRE framework [2]. For a comparison of DESIRE
with other agent-based modeling techniques, such as
GAIA, ADEPT, and MetateM, see [13, 11]. The top-level
of the system is shown in Figure 1 and consists of the
ExternalWorld and the Agent. The ExternalWorld generates
observations which are forwarded to the Agent, and
executes the actions that have been determined by the

 19

Agent. The composition of the Agent is based on the
generic agent model described in [3] of which two
components are used: WorldInteractionManagement and
OwnProcessControl, as shown in Figure 2.
WorldInteractionManagement takes care of monitoring the
observations that are received from the ExternalWorld. In
case these observations are consistent with the current
plan, the actions which are specified in the plan are
executed by means of forwarding them to the top-level.
Otherwise, evaluation information is generated and

forwarded to the OwnProcessControl component. Once
OwnProcessControl receives such an evaluation it
determines whether the current plan needs to be changed,
and in case it does, forwards this new plan to
WorldInteractionManagement.

WorldInteractionManagement can be decomposed into two
components, namely Monitoring and PlanExecution which
take care of the tasks as previously presented (i.e.
monitoring the observations and executing the plan). For
the sake of brevity the Figure regarding these components
has been omitted.

OwnProcessControl can also be decomposed, which is
shown in Figure 3. Three components are present within
OwnProcessControl: StrategyDetermination, PlanGeneration,
and PlanSelection. The PlanGeneration component
determines which plans are suitable, given the evaluation
information received in the form of beliefs from
WorldInteractionManagement, and the conditional rules given
by StrategyDetermination. The candidate plans are
forwarded to PlanSelection where the most appropriate plan
is selected. In case no plan can be selected in PlanSelection
this information is forwarded to the StrategyDetermination
component. StrategyDetermination reasons on a meta-level
(the input is located on a higher level as well as the output
as shown in Figure 3), getting input by translating beliefs
into reflected beliefs and by means of receiving the status

of the plan selection process from PlanSelection. The
component has the possibility to generate more
conditional rules and pass them to PlanGeneration, or can
change the evaluation criteria in PlanSelection by
forwarding these criteria.

The model has some similarities with the model
presented in [7]. A major difference is that an additional
meta-level is present in the architecture presented here for
the StrategyDetermination component. The advantage of
having such an additional level is that the reasoning
process will be more efficient, as the initial number of
options are limited but are required to be the most
straightforward ones.

3. Formalization Method

In this section the method used for the formalization of
the model presented in section 2 is explained in more
detail. To formally specify dynamic properties that are
essential in naval strategic planning processes and
therefore essential for the components within the agent, an
expressive language is needed. To this end the Temporal
Trace Language (TTL) is used as a tool; cf. [8]. In this
section of the paper both an informal and formal
representation of the properties are given.

A state ontology is a specification (in order-sorted
logic) of a vocabulary. A state for ontology Ont is an
assignment of truth-values {true, false} to the set At(Ont) of
ground atoms expressed in terms of Ont. The set of all
possible states for state ontology Ont is denoted by
STATES(Ont). The set of state properties STATPROP(Ont)
for state ontology Ont is the set of all propositions over
ground atoms from At(Ont). A fixed time frame T is
assumed which is linearly ordered. A trace or trajectory γ
over a state ontology Ont and time frame T is a mapping
γ : T → STATES(Ont), i.e., a sequence of states γt (t ∈ T) in
STATES(Ont). The set of all traces over state ontology Ont
is denoted by TRACES(Ont). Depending on the application,
the time frame T may be dense (e.g., the real numbers), or
discrete (e.g., the set of integers or natural numbers or a
finite initial segment of the natural numbers), or any other
form, as long as it has a linear ordering. The set of
dynamic properties DYNPROP() is the set of temporal
statements that can be formulated with respect to traces
based on the state ontology Ont in the following manner.

Agent

ExternalWorld

observation_results

actions_to_be_performed

Fig. 1. Top-level architecture

Fig. 2. Agent architecture

Agent
1
in

Agent
2
in

Agent
1

out

Agent
2

out

OwnProcessControl

WorldInteractionManagement

observation_results_to_WIM

beliefs_to_OPC

actions_and_plan_to_WIM

actions_from_WIM

OwnProcessControl
1
in

OwnProcessControl
2
in

OwnProcessControl
1

out

OwnProcessControl
2

out

StrategyDetermination

PlanGeneration PlanSelection

reflected_beliefs_to_SD

belief_info_to_PG

plans_to_be_considered_to_PG

possible_plans_to_PS

evaluation_info_to_SD

selected_plan_from_PS

evaluation_criteria_to_PS

Fig. 3. Components within OwnProcessControl

 20

Given a trace γ over state ontology Ont, the input state
of a component c within the agent (e.g., PlanGeneration, or
PlanSelection) at time point t is denoted by state(γ, t, input(c)).

Analogously state(γ, t, output(c)) and state(γ, t, internal(c))
denote the output state, internal state and external world
state.

These states can be related to state properties via the
formally defined satisfaction relation |=, comparable to the
Holds-predicate in the Situation Calculus: state(γ, t,
output(c)) |= p denotes that state property p holds in trace γ
at time t in the output state of agent-component c. Based
on these statements, dynamic properties can be formulated
in a formal manner in a sorted first-order predicate logic
with sorts T for time points, Traces for traces and F for
state formulae, using quantifiers over time and the usual
first-order logical connectives such as ¬, ∧, ∨, !, ∀, ∃. In
trace descriptions, notations such as state(γ, t, output(c))|= p

are shortened to output(c)|p.

To model direct temporal dependencies between two
state properties, the simpler leads to format is used. This
is an executable format defined as follows. Let α and β be
state properties of the form ‘conjunction of literals’
(where a literal is an atom or the negation of an atom), and
e, f, g, h non-negative real numbers. In the leads to
language α →→e, f, g, h β, means:

if state property α holds for a certain time interval with duration g, then
after some delay (between e and f) state property β will hold
 for a certain time interval of length h.

For a precise definition of the leads to format in terms
of the language TTL, see [9]. A specification of dynamic
properties in leads to format has as advantages that it is
executable and that it can easily be depicted graphically.

4. Component Specification for Naval
Planning

This Section introduces each of the components within
the strategic planning process in more detail. The
components presented in this section are only those part of
OwnProcessControl within the agent as they are most
relevant for the planning process. A partial specification
of executable properties in semi-formal format is also
presented for each of these components. The properties
introduced in this Section are generic for naval
(re)planning and can easily be instantiated with mission
specific knowledge. All of these properties are the result
of interviews with officers of the Royal Netherlands
Navy.

4.1 Plan Generation

The rules for generation of a plan can be stated very
generally as the knowledge about plans. Conditions for
those plans are stored in the StrategyDetermination

component, which is treated later. Basically, in this
domain the component contains one rule:

if belief(S:SITUATION, pos)

 and conditionally_allowed(S:SITUATION, P:PLAN)

then candidate_plan(P:PLAN)

Stating that in case Monitoring evaluated the current
situation as being situation S and the PlanGeneration has
received an input that situation S allows for plan P then it
is a candidate plan. This information is passed to the
PlanSelection component.

4.2 Plan Selection

Plan selection is the next step in the process and for this
domain there are three important criteria that determine
whether a plan is appropriate or not: (1) Mission success;
(2) safety, and (3) fleet morale criterion. In this scenario it
is assumed that a weighed sum can be calculated and used
in order to make a decision between candidate plans. The
exact weight of each criterion is determined by the
StrategyDetermination component. The value for the criteria
can be derived from observations in the world and for
example a weighed sum can be taken over time. To obtain
the observations, for each candidate plan the consequence
events of the plan are determined and formed into an
observation. Thereafter the consequences of these
observations for the criteria can be determined. In the
examples shown below the bridge between changes of the
criteria after an observation and the overall value of the
criteria are not shown in a formal form for the sake of
brevity.

Mission Success
An important criterion is of course the mission success.
Within this criterion the objective of the mission plays a
central role. In case a certain decision needs to be made,
the influence this decision has for the mission success
needs to be determined. The criterion involves taking into
account several factors. First of all, the probability that the
deadline is reachable. Besides that, the probability that the
mission succeeds with a specific fleet configuration. The
value of the mission success probability is a real number
between 0 and 1. A naval domain expert has labeled
certain events with an impact value on mission success.
This can entail a positive effect or a negative effect. The
mission starts with an initial value for success, taking into
consideration the assignment and the enemy. In case the
situation changes this can lead to a change of the success
value. An example of an observation with a negative
influence is shown below.

if current_success_value(S:REAL)
 and belief(ship_left_behind, pos)
then new_succes_value(S:REAL * 0.8)

 21

Safety
Safety is an important criterion as well. When a ship loses
propulsion the probability of survival decreases
dramatically if left alone. Basically, the probability of
survival depends on three factors: (1) the speed with
which the task group is sailing; (2) the configuration of
own ships, which includes the amount and type of ships,
and their relative positions; (3) the threat caused by the
enemy, the kind of ships the enemy has, the probability of
them attacking the task group, etc.

The safety value influences the evaluation value of
possible plans. The duration of a certain safety value
determines its weight in the average risk value, so a
weighed sum based on time duration is taken. The value
during a certain period in time is again derived by means
of an initial safety value and events in the external world
causing the safety value to increase or decrease. An
example rule:

if current_safety_value(S:REAL)
 and belief(speed_change_from_to(full, slow), pos)
then new_safety_value(0.5 * S:REAL)

Fleet morale
The morale of the men on board of the ships is also
important as criterion. Morale is important in the
considerations as troops with a good morale are much
more likely to win compared to those who do not have a
good morale. Troop morale is represented by a real
number with a value between 0 and 1 and is determined
by events in the world observed by the men. Basically, the
men start with a certain morale value and observations of
events in the world can cause the level to go up or down,
similar to the mission success criterion. One of the
negative experiences for morale is the observation of
being left behind without protection or seeing others
solely left behind:

if current_morale_value(M:REAL)
 and belief(ship_left_behind, pos)
then new_morale_value(M:REAL * 0.2)

An observation increasing the morale is that of sinking an
enemy ship:

if current_morale_value(M:REAL)
and belief(enemy_ship_eliminated, pos)
and min(1, M:REAL * 1.6, MIN:REAL)
then new_morale_value(MIN:REAL)

4.3 Strategy Determination

The StrategyDetermination component within the model has
two functions: First of all, it determines the conditional
plans that are to be used given the current state. Secondly,
it provides a strategy for the selection of these plans.

In general, naval plans are generated according to a
preferred plan library or in exceptional cases outside of
this preferred plan library. The StrategyDetermination
component within the model determines which plans are
to be used and thereafter forwards these plans to the
PlanGeneration component. The StrategyDetermination
component determines one of three modes of operation on
which conditional rules are to be used in this situation:
1. Limited action demand. This mode is used as an

initial setting and is a subset of the preferred plan
library. It includes the more common actions within the
preferred plan library;

2. Full preferred plan library. Generate all conditional
rules that are allowed according to the preferred plan
library. This mode is taken when the limited action
mode did not provide a satisfactory solution;

3. Exceptional action demand. This strategy is used in
exceptional cases, and only in case the two other modes
did not result in an appropriate candidate plan.

Next to determining which plans should be evaluated, the
StrategyDetermination component also determines how these
plans should be evaluated. In Section 4.3 it was stated that
the plan selection depends on mission success, safety, and
fleet morale. All three factors determine the overall
evaluation of a plan to a certain degree. Plans can be
evaluated by means of an evaluation formula, which is
described by a weighted sum. Differences in weights
determine differences in plan evaluation strategy. The
plan evaluation formula is as follows (in short):

evaluation_value(P:PLAN) = α * mission_success_value(P:PLAN) + β *
safety_value(P:PLAN) + γ * fleet_morale_value(P:PLAN)

where all values and degrees are in the interval [0,1], and
 + + = 1. The degrees depend on the type of mission
and the current state of the process. For instance, if a
mission is supposed to be executed safely at all cost or the
situation shows that already many ships have been lost,
the degree should be relatively high.

In this case the following rules hold:

if problem_type(mission_success_important)
 and problem_type(safety_important)
 and problem_type(fleet_morale_important)
 and candidate_plan(P:PLAN)
 and mission_success_value(P:PLAN, R1:REAL)
 and safety_value(P:PLAN, R2:REAL)
 and fleet_morale_value(P:PLAN, R3:REAL)
then evaluation_value(no_propulsion(ship),

0.33 * R1:REAL + 0.33 * R2:REAL + 0.33 *R3:REAL)

In case two criteria are most important the following rule
holds:

if problem_type(mission_success_important)
 and problem_type(safety_important)
 and not problem_type(fleet_morale_important)
 and candidate_plan(P:PLAN)
 and mission_success_value(P:PLAN, R1:REAL)
 and safety_value(P:PLAN, R2:REAL)
 and fleet_morale_value(P:PLAN, R3:REAL)

 22

then evaluation_value(no_propulsion(ship),
0.45 * R1:REAL + 0.45 * R2:REAL + 0.1 *R3:REAL)

This holds for each of the problem type combinations
where two criteria are important: A weight of 0.45 in case
the criterion is important for the problem type and 0.1
otherwise. Finally, only one criterion can be important:

if problem_type(mission_success_important)
 and not problem_type(safety_important)
 and not problem_type(fleet_morale_important)
 and candidate_plan(P:PLAN)
 and mission_success_value(P:PLAN, R1:REAL)
 and safety_value(P:PLAN, R2:REAL)
 and fleet_morale_value(P:PLAN, R3:REAL)
then evaluation_value(no_propulsion(ship),

0.6 * R1:REAL + 0.2 * R2:REAL + 0.2 *R3:REAL)

The plan generation modes and plan selection degrees
presented above can be specified by formal rules which
have been omitted for the sake of brevity.

5. Case-study: Total Steam Failure

This Section presents a case study which has been
formalized using the agent-based model presented in
Section 2 and 4. This case study is again based upon
interviews with expert navy officers of the Royal
Netherlands Navy. The formalization of this process
follows the methodology presented in Section 3.

5.1 Scenario Description

The scenario used as an example is the first phase
within a total steam failure scenario. A fleet consisting of
6 frigates (denoted by F1 – F6) and 6 helicopters (denoted
by H1 – H6) are protecting a specific area called Zulu
Zulu (denoted by ZZ). For optimal protection of valuable
assets that need to be transported to a certain location, and
need to arrive before a certain deadline, the ships carrying
these assets are located in ZZ. These ships should always
maintain their position in ZZ to guarantee optimal
protection. The formation at time T0 is shown in Figure 4.
On that same time-point the following incident occurs: An
amphibious transport ship, that is part of ZZ, loses its
propulsion and cannot start the engines within a few
minutes. When a mission is assigned to a commander of
the task group (CTG), he receives a preferred plan library
from the higher echelon. This library gives an exhaustive
list of situations and plans that are allowed to be executed
within that situation. Therefore the CTG has to make a
decision: What to do with the ship and the rest of the
fleet. In the situation occurring in the example scenario
the preferred plan library consists of four plans:

1. Continue sailing. Leave the ship behind. The safety of
the main fleet will therefore be maximal, however the
risk for the ship is high. The morale of all the men
within the fleet will drop.

2. Stop the entire fleet. Stopping the fleet ensures that
the ship is not left behind and lost, however the risks
for the other ships increase rapidly as an attack is more
likely to be successful when not moving.

3. Return home without the ship. Rescue the majority
of the men from the ship, return home, but leave a
minimal crew on the ship that will still be able to fix
the ship. The ship will remain in danger until it is
repaired and the mission is surely not going to
succeed. The morale of the men will drop to a minimal
level. This option is purely hypothetical according to
the experts.

4. Form a screen around the ship. This option means
that part of the screen of the main fleet is allocated to
form a screen around the ship. Therefore the ship is
protected and the risks for the rest of the fleet stay
acceptable.

Option 4 involves a lot more organizational change
compared to the other options and is therefore considered
after the first three options. The CTG decides to form a
screen around the ship.

5.2 Simulation Results

The most interesting results of the simulation using the
architecture and properties described in Section 2 and 4,
and instantiated with the case-study specific knowledge
from Section 5.1 are shown in Figure 5. The trace, a
temporal description of chains of events, describes the
decision making process of the agent which pays the role
of Commander Task Group (CTG). The atoms on the left
side denote the information between and within the
components of the agents. To keep the Figure clear only

Fig. 4. Scenario for meta-reasoning

 23

the atoms of the components on the lowest level of the
agent architecture are shown. The right side of the figure
shows when these atoms are true. In case of a black box
the atom is true during that period, in the other cases the
atom is false (closed world assumption). The atoms used
are according to the model presented in Section 2. For
example, internal(PlanGeneration) denotes that the atom is
internal within the PlanGeneration component. More
specifically, the trace shows that at time-point 1 the
Monitoring component receives an input that the ship has
no propulsion
 input(Monitoring)|observation_result(no_propulsion(ship), pos)
The current plan is to continue without the ship, as the
fleet continues to sail without any further instructions:

output(PlanSelection)|current_plan(continue_without_ship)

As the StrategyDetermination component always outputs the
options currently available for all sorts of situations (in
this case only a problem with the propulsion of a ship) it
continuously outputs the conditionally allowed
information in the limited action mode, for example:

output(StrategyDetermination)|to_be_assumed(
conditionally_allowed(has_problem(no_propulsion,

ship),continue_without_ship))
The information becomes an input through downward
reflection, a translation from a meta-level to a lower meta-
level: input(PlanGeneration)|conditionally_allowed(

has_problem(no_propulsion, ship), continue_without_ship)
The Monitoring component forwards the information about
the observation to the components on the same level as
beliefs. The StrategyDetermination component also receives
this information but instead of a belief it arrives as a

internal(StrategyDetermination)|operation_mode(limited_action_demand)
output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), continue_without_ship))

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), return_home_without_ship))
output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), stop_fleet))

input(Monitoring)|observation_result(no_propulsion(ship), pos)
input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), stop_fleet)

input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), continue_without_ship)
input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), return_home_without_ship)

output(Monitoring)|evaluation_is_current(has_problem(no_propulsion, ship), pos)
output(Monitoring)|belief(no_propulsion(ship), pos)

output(PlanSelection)|current_plan(continue_without_ship)
input(PlanGeneration)|evaluation_is_current(has_problem(no_propulsion, ship), pos)

input(PlanSelection)|belief(no_propulsion(ship), pos)
input(PlanExecution)|belief(no_propulsion(ship), pos)

input(StrategyDetermination)|true(belief(no_propulsion(ship), pos))
output(PlanGeneration)|candidate_plan(stop_fleet)

output(PlanGeneration)|candidate_plan(continue_without_ship)
output(PlanGeneration)|candidate_plan(return_home_without_ship)

input(PlanSelection)|candidate_plan(stop_fleet)
input(PlanSelection)|candidate_plan(continue_without_ship)

input(PlanSelection)|candidate_plan(return_home_without_ship)
internal(PlanSelection)|plan_evaluation(stop_fleet, 0.3)

internal(PlanSelection)|plan_evaluated(stop_fleet)
internal(PlanSelection)|plan_evaluation(continue_without_ship, 0.2)

internal(PlanSelection)|plan_evaluated(continue_without_ship)
internal(PlanSelection)|plan_evaluation(return_home_without_ship, 0.1)

internal(PlanSelection)|plan_evaluated(return_home_without_ship)
internal(PlanSelection)|best_plan(stop_fleet, 0.3)

output(PlanSelection)|selection_info(selection_failed)
input(StrategyDetermination)|true(selection_info(selection_failed))
internal(StrategyDetermination)|operation_mode(full_plan_library)

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), form_screen_around_ship))
input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), form_screen_around_ship)

output(PlanGeneration)|candidate_plan(form_screen_around_ship)
input(PlanSelection)|candidate_plan(form_screen_around_ship)

internal(PlanSelection)|plan_evaluation(form_screen_around_ship, 0.6)
internal(PlanSelection)|plan_evaluated(form_screen_around_ship)
internal(PlanSelection)|best_plan(form_screen_around_ship, 0.6)

internal(PlanSelection)|plan_change
output(PlanSelection)|current_plan(form_screen_around_ship)

time 0 5 10 15 20

Fig. 5. Trace of the total steam failure simulation

 24

reflected belief through upward reflection which is a
translation of information at a meta-level to a higher meta-
level:
 input(StrategyDetermination)|

true(belief(no_propulsion(ship), pos))
Besides deriving the beliefs on the observations the
Monitoring component also evaluates the situation and
passes this as evaluation info to the PlanGenerator.
 input(PlanGenerator)|evaluation(has_problem(no_propulsion,

ship), pos)
This information acts as a basis for the PlanGenerator to
generate candidate plans, which are sent to the
PlanSelection, for example.

input(PlanSelection)|candidate_plan(continue_without_ship)
Internally the PlanSelection component determines the
evaluation value of the different plans, compares them and
derives the best plan out of the candidate plans:

internal(PlanSelection)|best_plan(stop_fleet, 0.3)
This value is below the threshold evaluation value and
therefore the PlanSelection component informs the
StrategyDetermination component that no plan has been
selected:

output(PlanSelection)|selection_info(selection_failed)
Thereafter the StrategyDetermination component switches to
the full preferred plan library and informs PlanGeneration
of the new options. PlanGeneration again generates all
possible plans and forwards them to PlanSelection.
PlanSelection now finds a plan that is evaluated above the
threshold and makes that the new current plan.

output(PlanSelection)|current_plan(form_screen_around_ship)
This plan is forwarded to the PlanExecution and Monitoring
components (not shown in the trace) and is executed and
monitored.

6. Validation by Verification

After that a formalized trace has been obtained in the
previous section, either by formalization of an empirical
trace or by means of simulation, in this section it is
validated whether the application of the model complies to
certain desired properties of this trace. Below the
verification of these properties in the trace are shown. The
properties are independent from the specific scenario and
should hold for every scenario for which the agent-based
meta-level architecture presented in Section 2 and 4 is
applied. The properties are formalized using Temporal
Trace Language as described in Section 3.

P1: Upward reflection
This property states that information generated at the level
of the Monitoring and PlanSelection components should
always be reflected upwards to the level of the
StrategyDetermination component. In semi-formal notation:

At any point in time t,
if Monitoring outputs a belief about the world at time t

then at a later point in time t2 StrategyDetermination receives this
information through upward reflection

At any point in time t,
if PlanSelection outputs selection info at time t
then at a later point in time t2 StrategyDetermination receives this

information though upward reflection.

In formal form the property is as follows:

∀t [[∀O:OBS, S:SIGN
[state(γ, t, output(Monitoring)) |= belief(O, S)
! ∃t2 ≥ t state(γ, t2, input(StrategyDetermination)) |= true(belief(O,S))]]
& [∀SI:SEL_INFO [state(γ, t, output(PlanSelection)) |= selection_info(SI)
 ! ∃t2 ≥ t state(γ, t2, input(StrategyDetermination)) |=

true(selection_info(SI))]]]

This property has been automatically checked and thus
shown to be satisfied within the trace.

P2: Downward reflection
Property P2 verifies that all information generated by the
StrategyDetermination component for a lower meta-level is
made available at that level through downward reflection.
In formal form:

∀t, S:SITUATION, P:PLAN [state(γ, t, output(StrategyDetermination)) |=
to_be_assumed(conditionally_allowed(S, P))

! ∃t2 ≥ t state(γ, t2, input(PlanGeneration)) |= conditionally_allowed(S, P)]

This property is also satisfied for the given trace.

P3: Extreme measures
This property states that measures that are not part of the
preferred plan library (extreme measures) are only taken
in case some other options failed. In formal form:

∀t, t2 > t, S:SITUATION, P1:PLAN, P2:PLAN
 [[state(γ, t, output(Monitoring)) |= evaluation(exception(S), pos) &
state(γ, t, output(PlanSelection)) |= current_plan(P1) &
 state(γ, t2, output(PlanSelection)) |= current_plan(P2) & P1 ≠ P2
 & ¬state(γ, t2, internal(StrategyDetermination)) |=

to_be_assumed(preferred_plan(S, P2)]
! ∃t’ [t’ ≥ t & t’ ≤ t2 & state(γ, t’, output(PlanSelection)) |=

selection_info(selection_failed)]]

The property is satisfied for the given trace.

P4: Plans are changed only if an exception was
encountered
Property P4 formally describes that a plan is only changed
in case there has been an exception that triggered this
change. Formal:

∀t, t2 ≥ t, P:PLAN [[state(γ, t, output(PlanSelection)) |= current_plan(P) &
¬state(γ, t2, output(PlanSelection)) |= current_plan(P)]

! ∃t’, S:SITUATION [t’ ≥ t & t’ ≤ t2 & state(γ, t’,
output(Monitoring)) |= evaluation(exception(S), pos)]]

This property is again satisfied for the given trace.

7. Discussion

This paper presents an agent-based architecture for
strategic planning (cf. [15]) for naval domains. The
architecture was designed as a meta-level architecture (cf.
[10]) with three levels. The interaction between the levels
in this paper is modeled by reflection principles (e.g., [1]).
The dynamics of the architecture is based on a multi-level

 25

trace approach as an extension of what is described in [6].
The architecture has been instantiated with naval strategic
planning knowledge. The resulting executable model has
been used to perform a number of simulation runs. To
evaluate the simulation results desired properties for the
planning decision process have been identified,
formalized, and then validated for the simulation traces.

A meta-level architecture for strategic reasoning in
another area, namely that of design processes is described
in [4]. This architecture has been used as a source of
inspiration for the current architecture for strategic
planning. In other architectures, such as in PRS [5], meta-
level knowledge is also part of the system, however this
knowledge is not explicitly part of the architecture (it is
part of the Knowledge Areas) as is the case in the
architecture presented in this paper.

Agent models of military decision making have been
investigated before. In [14] for example an agent based
model is presented that mimics the decision process of an
experienced military decision maker. Potential decisions
are evaluated by checking if they are good for the current
goals. A case study of decisions to be made at an
amphibian landing mission is used. The outcome of the
evaluations of the decisions that can be made in the case-
study are compared to the decisions made by real military
commanders. The approach presented is different from the
approach taken in this paper as a more formal approach is
taken here to evaluate the model created. Also the focus in
this paper is more on the model of the decision maker
itself and not on the correctness of the decisions, which is
the case in [14]. The main advantage of the approach
taken is that the system is specified and can be simulated
on a conceptual level contrary to other approaches.
Finally, this paper addressed resource-bounded situations.
In [12] an overview is presented of models for human
behavior that can be used for simulations. Similar to
research done in other agent-based systems using the
DESIRE framework [2], future research in simulation and
the validation of relevant properties for the resulting
simulation traces is expected to give key insight for the
implementation of future complex resource-bounded
agent-based planning support systems used by
commanders on naval platforms.

Acknowledgements

CAMS-Force Vision, a software development company
associated with the Royal Netherlands Navy, funded this
research and provided domain knowledge. The authors
especially want to thank Jaap de Boer (CAMS-Force
Vision) for his expert knowledge.

References

1. Bowen, K. and Kowalski, R., Amalgamating language and
meta-language in logic programming. In: K. Clark, S.
Tarnlund (eds.), Logic programming. Academic Press,
1982.

2. Brazier, F.M.T., Dunin Keplicz, B., Jennings, N., and
Treur, J., DESIRE: Modelling Multi-Agent Systems in a
Compositional Formal Framework. International Journal of
Cooperative Information Systems, vol. 6, 1997, pp. 67-94.

3. Brazier, F.M.T., Jonker, C.M., and Treur, J., Compositional
Design and Reuse of a Generic Agent Model. Applied
Artificial Intelligence Journal, vol. 14, 2000, pp. 491-538.

4. Brazier, F.M.T., Langen, P.H.G. van, and Treur, J.,
Strategic Knowledge in Design: a Compositional Approach.
Knowledge-based Systems, vol. 11, 1998 (Special Issue on
Strategic Knowledge and Concept Formation, K. Hori, ed.),
pp. 405-416.

5. Georgeff, M. P., and Ingrand, F. F., Decision-making in an
embedded reasoning system. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence
(IJCAI-89), pages 972-978, Detroit, MI, 1989.

6. Hoek, W. van der, Meyer, J.-J.Ch., and Treur, J., Formal
Semantics of Meta-Level Architectures: Temporal
Epistemic Reflection. International Journal of Intelligent
Systems, vol. 18, 2003, pp. 1293-1318.

7. Jonker, C.M., and Treur, J., A Compositional Process
Control Model and its Application to Biochemical
Processes. Applied Artificial Intelligence Journal, vol. 16,
2002, pp. 51-71.

8. Jonker, C.M., and Treur, J. Compositional verification of
multi-agent systems: a formal analysis of pro-activeness
and reactiveness. International. Journal of Cooperative
Information Systems, vol. 11, 2002, pp. 51-92.

9. Jonker, C.M., Treur, J., and Wijngaards, W.C.A., A
Temporal Modelling Environment for Internally Grounded
Beliefs, Desires and Intentions. Cognitive Systems
Research Journal, vol. 4, 2003, pp. 191-210.

10. Maes, P, Nardi, D. (eds), Meta-level architectures and
reflection, Elsevier Science Publishers, 1988.

11. Mulder, M, Treur, J., and Fisher, M., Agent Modelling in
MetateM and DESIRE. In: M.P. Singh, A.S. Rao, M.J.
Wooldridge (eds.), Intelligent Agents IV, Proc. Fourth
International Workshop on Agent Theories, Architectures
and Languages, ATAL'97. Lecture Notes in AI, vol. 1365,
Springer Verlag, 1998, pp. 193-207.

12. Pew, R.W. and Mavor, A.S.. Modeling Human and
Organizational Behavior, National Academy Press,
Washington, D.C. 1999.

13. Shehory, O., and Sturm, A., Evaluation of modeling
techniques for agent-based systems, In: Proceedings of the
fifth international conference on Autonomous agents,
Montreal, Canada, May 2001, pp. 624-631.

14. Sokolowski, J., Enhanced Military Decision Modeling
Using a MultiAgent System Approach, In Proceedings of
the Twelfth Conference on Behavior Representation in
Modeling and Simulation, Scottsdale, AZ., May 12-15,
2003, pp. 179-186.

15. Wilkins, D.E., Domain-independent planning
Representation and plan generation. Artificial Intelligence
22 (1984), pp. 269-301.

Design Options for Subscription Managers

Aloys Mbala
RMIT University

Melbourne, Australia
aloys@cs.rmit.edu.au

Lin Padgham
RMIT University

Melbourne, Australia
linpa@cs.rmit.edu.au

Michael Winikoff
RMIT University

Melbourne, Australia
winikoff@cs.rmit.edu.au

Abstract

An important issue in open agent systems such as the In-
ternet is the discovery of service providers by potential con-
sumers (requesters). This paper is concerned with services
that involve the ongoing provision of up-to-date information
to requesters. We explore three separate issues: subscrip-
tion to an information provider for ongoing provision of in-
formation; monitoring for new information providers; and
maintaining awareness of when providers disappear from
the system. We explore several models for how this func-
tionality may best be provided, with emphasis on the ways
in which certain choices affect the overall system; and pro-
vide an analysis of preferred design options for environ-
ments with different characteristics.

1. Introduction

An important issue in open agent systems such as the In-
ternet is the discovery of service providers by potential con-
sumers (requesters). There is a broad range of work in this
area, including work on web service description languages,
such as WSDL1 and OWL-S [10], as well as work on dis-
tributed search algorithms and architectures such as peer-
to-peer systems [11]. A common approach, even in peer-
to-peer systems, is to have some specialised agents (or ser-
vices) which assist providers and requesters to find one an-
other. These are variously called yellow page agents [1],
directory facilitators2, brokers [4], and match-makers [12]
with the term middle-agent being used to characterise these
kinds of agents. UDDI (Universal Description, Discovery
and Integration) directories3 are one standard instantiation
of such a facility while FIPA (Foundation for Intelligent
Physical Agents) Directory Facilitators are another.

1 http://www.w3.org/TR/wsdl
2 http://www.fipa.org/specs/fipa00023/SC00023K.html
3 http://www.uddi.org

In many application areas a large number of the ser-
vices that are required from other entities in the system
are services that provide information. In many cases what
is required is not just information at a given point in time,
but rather ongoing updates of information as the situation
changes. For example, in an intelligent alerting system that
we are working on with the Australian Bureau of Meteo-
rology [9], if the fire monitoring agent within the system
discovers a new fire, it will then want to be informed of
any weather events that may affect the fire, such as nearby
storms. It is clearly preferable for the relevant agent to set
up subscriptions and to be notified immediately when rel-
evant new information becomes available, rather than to
make regular requests to determine whether new informa-
tion is available. This notion of subscription is well known
and it is supported by standard protocols4.

However, an additional facility is needed. If the subscrip-
tions are long-lived then it is quite likely that there will be
changes in the available information providers. The sub-
scribing agent may well need to be made aware of new
information providers that join the system, and of any in-
formation providers that it has subscribed to that leave the
system. Again, rather than have the subscribing agent make
periodic requests, it is preferable for it to subscribe to this
information. This subscription is to changes in the avail-
able (relevant) information providers rather than to infor-
mation, and is made with the middle agent. This requires
the middle-agent to provide a monitoring capability, in ad-
dition to the more commonly discussed matchmaking (or
brokering) functionality [5].

By providing information on changes in available infor-
mation providers, we allow additional flexibility and intelli-
gence in the requesters. For example, in the meteorology ap-
plication two kinds of weather information sources are used
in reasoning about whether there is an alertable situation
with respect to a particular fire. If the storm observations
from radar become unavailable, then storm likelihood fore-
casts from the atmospheric model are accessed instead. The

4 e.g. http://www.fipa.org/specs/fipa00035/

26

provision of information on available relevant providers to
requesters is a key difference between our work and event
notification systems such as Siena [2] or NaradaBrokering
[7], which do not provide requesters with information on
changes to available providers5.

In this paper we explore design options for “subscrip-
tion manager” middle agents which support subscriptions to
changes in available relevant information providers. There
are three issues that we concentrate on. Firstly, the mech-
anism that allows an information requester to be continu-
ally updated regarding new information sources. Secondly,
the details of how subscriptions are created and cancelled.
Thirdly, how the departure of agents from the system is de-
tected and what is done in response to detecting a “dead”
agent. With each of these issues we will explore what func-
tionality can potentially reside with the middle-agent, and
the costs and benefits of the alternative approaches.

The issues discussed in this paper are only a part of
a complete solution. In order to implement a system one
must also define a language for describing services and re-
quests and a matching mechanism between these. However,
these issues have been explored in previous work and a
wide range of options exist for service/request description
and matching including standards around web service, FIPA
standards, KQML [6], and others such as LARKS [13] and
Infosleuth [3].

The need for subscription and monitoring services vary
from application to application, but we would suggest that
they are quite broadly applicable. For example in a travel
and tourism services network it would be likely that there
was a need to subscribe to information on schedule updates
for planes, buses and trains. Similarly, a tourism operator in
a particular region is likely to want to monitor for any new
providers of services such as accommodation, tours and car
rentals, in the region of interest. Similarly in an e-business
domain, subscription to catalogues of items available from
known providers may well make sense, and monitoring of
providers of certain kinds of items is also motivated. Conse-
quently we argue that subscription support, and monitoring
for providers of certain kinds of services joining and leav-
ing the system, are infrastructure facilities that are required
in a dynamic and open domain of services. These capabili-
ties should be provided by middle-agents. In the rest of this
paper we explore several models for how this functionality
may best be provided, with emphasis on the ways in which
certain choices affect the overall system.

5 What they provide corresponds to the design option where decision
making is delegated to the middle agent, i.e. what we call subscribe-
all in section 4.

2. The Interaction Models

Service Discovery frameworks can be categorised in two
groups. The first group includes peer-to-peer dissemination
models where a peer propagates its requests through the net-
work it belongs to and expects a list of relevant providers
from its peers. A peer can act as a provider, a requester
or simply be a kind of proxy that just redirects a given
message to others. An alternative framework uses middle-
agents where requesters and providers register to a middle-
agent which provides some kind of connection service to as-
sist the agents to find other relevant agents. Some systems
propose a peer-to-peer structure amongst the middle-agents
[8] in order to distribute the functionality of registering and
servicing the client agents.

In this work we do not consider the structure of the
middle-agents. Although we assume that in a large sys-
tem this functionality would be distributed in some man-
ner, this is left as future work, building on a range of exist-
ing work (e.g. [7, 2, 11, 8]). What we consider here is the re-
lationship between the middle-agent (or network of middle-
agents) and what we call the end-agents, namely the service
requesters or service providers.6

Previous work [4, 5, 12, 14] has compared different
styles of middle-agents and concluded that Matchmakers
which provide a list of providers matching a request, are the
most appropriate type of middle-agent for large open sys-
tems. Middle-agents such as broadcasters and blackboards
which simply pass on all connections, un-filtered, result in
unnecessarily large lists of agents being provided, and also
require end-agents to have individual matchmaking capabil-
ities. Brokers, which manage all interactions with a provider
on behalf of a requester have the disadvantage that they are
a bottleneck in large systems. In this work we assume a ba-
sic matchmaking capability, and then add to this a Subscrip-
tion Management function, which we explore in further de-
tail.

There are three different processes that we explore as
part of this work. The first is the mechanism to allow an in-
formation requester to be continually updated regarding the
existence of new information sources of a particular kind.
The second is the basic subscription mechanism to support
an information requester being able to subscribe to provider
agents, and cancel subscriptions. The third is an ability to
be aware of agents that disappear from the system. With
each of these aspects we will explore what functionality can
potentially reside with the middle-agent, and the costs and
benefits of the alternative approaches.

6 A single agent can be both a provider and a requester, but for the pur-
pose of this work we consider them separately.

27

2.1. Monitoring for new arrivals

As indicated previously, a common need in dynamic sys-
tems is for agents to be aware of new services arising in the
system that may be of interest to them. One way to achieve
this is to have middle-agents maintain information about re-
quester needs, and update the requesters as new providers
register. However this ability does not appear to be com-
mon in the various kinds of middle-agents that exist, or are
discussed in detail in the literature. Retsina [12] mentions a
monitoring capability, although very little detail is given7.
The notion of facilitator defined by Finin et. al. [6] is broad
and encompasses monitoring of both information and infor-
mation providers, but little detail is given (for example, the
issue of detecting “dead” agents is not discussed), and there
is no exploration of the design options and associated trade-
offs.

Figure 1 indicates the type of mechanism we are sug-
gesting. Providers and requesters send their profiles to
the middle-agent which maintains information about
both. When requesters request monitoring for a particu-
lar type of information, they are first sent an initial list of
matches (message 3), and subsequently, if any new match-
ing providers advertise with the middle-agent (message 4),
the requester is sent an update (message 5).

Requester Middle Provider 1

1. Advertise

2. Request Monitor

3. List of Matches
Provider 2

4. Advertise

5. Update

Figure 1. The discovery mechanism

However, this figure is incomplete as it focuses only on
the monitoring capability. It does not consider aspects of
the subscription life-cycle such as who sets up a subscrip-
tion? Who cancels a subscription? Or, once a subscription
has been established, who ensures that the agents involved
in the subscription are still alive? These aspects are consid-
ered below. Of course, the monitoring capability must also
include a mechanism for cancelling monitoring when it is
no longer required, or cancelling an advertised profile.

7 The notion of “monitor” vs. “single shot” match-making is mentioned
on page 42 of [12].

2.2. Subscription Management

In order to handle subscriptions information providers
need to be able to provide a subscription facility, sending in-
formation to their subscribers either at regular intervals, or
when relevant changes occur. Hence there must be a mech-
anism to set up and cancel such subscriptions.

From the point of view of the information requester
wishing to subscribe to a certain kind of information, they
may wish to subscribe to all sources of information of a cer-
tain type, or a single source. The initial action would be a
request to the middle-agent with a query describing the in-
formation need (attached to either a monitoring request, or
a one-off request). At that point it would be possible either
for the middle-agent to return a list of matching providers,
as in figure 1, or for the middle-agent to simply set up the
subscription(s). If the latter was done, presumably it would
be necessary to have two forms of the request: one for sub-
scribe to all, and one for subscribe to one8.

The possible value in having the middle-agent set up the
subscription would be that fewer messages are needed in
the system as a whole. On receiving the request, the middle-
agent could simply send the subscription message to the rel-
evant information provider(s), and the requester would be-
gin to receive information. Subscription cancellations could
be sent either to the middle-agent, or directly to the in-
formation provider, if we assume that the identity of the
provider(s) is known to the requester once information be-
gins to arrive.

2.3. Monitoring for disappearances

If an agent has a subscription to an information source
it is expecting that information will be sent whenever rele-
vant. However, it is possible that the information provider
disappears from the system, in which case it may be im-
portant for the information subscriber to know of this. This
fact may affect reasoning done, or it may result in subscrib-
ing to other information sources.

For example in the meteorology application we are
working with, two kinds of weather information sources are
used in reasoning about whether there is an alertable situ-
ation with respect to a particular fire. If the storm observa-
tions from radar become unavailable, then storm likelihood
forecasts from the atmospheric model are accessed in-
stead.

The only reliable way to be sure of knowing when an
agent disappears is for some process to check liveness reg-
ularly. It is possible for this to be done by all interested sub-
scribers. However, assuming there are likely to be multiple
subscribers to any given information source, this is creating

8 An additional form would be subscribe to N .

28

more message traffic than necessary. Another option would
be for this to be done by the middle agent, and for the infor-
mation about a provider’s disappearance to be passed on to
the relevant agents.

3. Analysis

In this section we analyse the alternative design choices
for a Subscription Manager middle-agent. The analysis fo-
cuses primarily on the message traffic, and looks specifi-
cally at the number of messages, the total size of the mes-
sages, and at bottlenecks in the system. The number of mes-
sages circulating in the system is a natural and important pa-
rameter for the evaluation of service discovery frameworks
since it is a reasonable approximate measure of the work-
load of the system, and an analysis of the message traffic
received and sent by a given agent can be used to detect po-
tential bottlenecks. However, using only the number of mes-
sages isn’t sufficient, because it ignores the size of the mes-
sages, and therefore we also use the size of the messages to
estimate the amount of network traffic.

The analysis in this section uses the following terms:

• R: the number of requester agents in the system
• P : the number of provider agents in the system
• α: the probability of a random capability and a random

interest matching (0 ≤ α ≤ 1). This is a measure of
the matching precision, and can be expected to be well
below 0.5.

• RF : the (average) number of requesters whose inter-
ests match a given provider’s capabilities RF = α×R.

• PF : the (average) number of providers whose capabil-
ities match a given requester’s interests PF = α × P .

• S: the number of subscriptions in the system. If each
requester agent subscribes to all relevant providers
(PF) then the number of subscriptions is S = R×PF .
If each requester agent subscribes to PS providers then
S = R × PS .

• PS : the (average) number of providers that a requester
agent subscribes to. This can be all relevant providers
(PF), a single provider, or an arbitrary number (1 ≤
PS ≤ PF).

• RS : the (average) number of requesters that are sub-
scribed to a given provider (0 ≤ RS ≤ RF). The value
of RS depends on whether requesters subscribe to one
provider, all providers, or PS providers, and can be
calculated by dividing the number of subscriptions in
the system (S) by the number of providers. If each re-
quester agent subscribes to all relevant providers (PF)
then S = R × PF and RS = (R × PF) ÷ P =
(R × α × P) ÷ P = R × α = RF . If each requester
agent subscribes to PS providers then S = R×PS and

RS = R×PS ÷P , which is just PS if there are equal
numbers of providers and requesters.

• PD: the number of provider agents that have left the
system since the last liveness monitoring check (0 ≤
PD ≤ P)

• k: the size of a description of an agent’s capabilities or
interests relative to the size of its name (k > 1). This
is used in computing the size of messages.

Our presentation of the analysis is structured according
to the life-cycle of the system: we consider the metrics as-
sociated with adding an agent (requester or provider), with
cancelling subscriptions, and with monitoring the liveness
of provider agents.

3.1. Adding an Agent

3.1.1. Adding a Requester Agent The sequence of mes-
sages associated with adding a requester agent depends on
whether subscription is done by the middle-agent or the re-
quester.

If subscription is done by the middle-agent then the se-
quence of messages is: (1) the requester registers with the
middle-agent its interests, (2) the middle-agent sends mes-
sages to all relevant providers asking them to subscribe the
requester, (3) the middle-agent optionally sends a message
informing the requester of its subscriptions. The number of
messages involved is 1 + PF if the third (optional) notifica-
tion message isn’t sent and 2 + PF if it is.

If we assume that each requester wants to subscribe
to PS relevant providers, and that the decision of which
providers can be made on its behalf by the middle-agent,
then the number of messages is 1 + PS .

If subscription is done by the requester then the sequence
of messages is: (1) the requester registers with the middle-
agent its interests, (2) the middle-agent responds with a list
of relevant providers, (3) the requester selects some (PS) or
all (PF) of the providers in the list and sends each of the
selected providers a subscription request. If the requester
selects a subset of the available relevant providers and the
middle-agent needs to track subscriptions then it must be
notified by the requester of its choice of providers, unless it
is assumed that requesters always subscribe to all relevant
available providers or to some easily predicted subset such
as only the first provider in the list. The number of mes-
sages involved is 2 + PS (if the middle-agent needs to be
informed then the number of messages goes up by one).

We now consider the message size and begin with the
first case where subscription is done by the middle-agent. If
we assume for the moment that requesters subscribe to all
relevant providers (PF), then the size of the three messages
is respectively k for the first step, 1 for each of the mes-
sages involved in the second step , and (optionally) PF for

29

the third step giving a total size of k+PF (or k+2PF if re-
questers are informed of their subscriptions). If we assume
that each requester subscribes to PS providers, then the to-
tal size if k + PS (or k + 2PS if requesters are informed of
their subscriptions).

Consider now the second case, where subscription is
done by the requester. If we assume for the moment that re-
questers subscribe to all relevant providers, then the size of
the three messages is respectively k, PF , and 1 for each of
the PF messages from requester to providers, giving a to-
tal of k + 2PF (and k + 3PF if the middle-agent needs to
be informed). If we assume that requesters will only sub-
scribe to PS providers, then the message to the requester
containing the list of relevant providers will need to con-
tain the provider’s capabilities, as well as their names (so
that the requester can decide which providers to subscribe
to). Therefore, the size of the messages is k+kPF +PS (or
k + kPF + 2PS if the middle-agent needs to be informed).

These cases are summarised in figure 2. In all cases in-
forming the other agent takes a single additional message of
size equal to the number of desired providers.

Middle Subscribes Requester Subscribes
All 1 + PF 2 + PF

providers (k + PF) (k + 2PF)
PS 1 + PS 2 + PS

providers (k + PS) (k + kPF + PS)

Figure 2. Adding a requester (message size
analysis is in brackets)

In summary, having the middle-agent subscribe saves a
single (potentially large) message, and if the middle-agent
needs to track subscriptions, then a second message is also
saved (assuming that requesters don’t need to be notified of
their subscriptions). However, having the middle-agent sub-
scribe prevents a requester from being able to directly select
its provider(s), and if requesters need to subscribe to some-
thing other than all providers then there is additional com-
plexity in specifying how many providers are desired (e.g.
one, all, or some constant number PS).

3.1.2. Adding a Provider Agent The sequence of mes-
sages associated with adding a provider agent depends on
whether subscription is done by the middle-agent or the re-
quester.

For the moment let us assume that requesters subscribe
to all relevant providers. If subscription is done by the
middle-agent then the sequence of messages is: (1) the
provider registers with the middle-agent its capabilities, (2)
the middle agent sends a message back to the provider

Middle Subscribes Requester Subscribes
All 2 1 + 2RF

providers (k + RF) (k + 2RF)
typical PS 1 1
providers (k) (k)
max. PS 2 1 + RF + RS

providers (k + RS) (k + RF + RS)

Figure 3. Adding a provider (message size
analysis is in brackets)

with all relevant requesters that it should subscribe (possible
none), and (3) the requesters are (optionally) informed of
their new subscriptions. The number of messages involved
is 2 if the third (optional) notification message isn’t sent and
2+RF if it is. The messages informing the requesters (step
3) could be sent by either the middle-agent or the provider.
In the interests of trying to avoid overloading the middle-
agent it is preferable to have the provider inform the re-
questers.

If subscription is done by requesters then the sequence
is: (1) the provider registers with the middle agent, (2) the
middle-agent sends a message to each relevant requester
with the identity of the provider, (3) each requester sends a
subscription request message to the new provider. The num-
ber of messages involved is 1 + 2RF . Note that there is a
bottleneck issue here: the provider will, during a short time
period, be sent messages from a number of requesters, po-
tentially overloading it.

Considering the size of the messages, in the first case,
where subscription is done by the middle agent, the size of
the three messages is respectively k, RF and (optionally) 1
for each of the RF messages giving a total size of k + RF

(or k + 2RF if requesters are informed of their subscrip-
tions). Considering the second case, where subscription is
done by the requester, the size of the three messages is re-
spectively k for the first message, 1 for each of the RF mes-
sages, and 1 for each of the RF messages from requesters
to the provider, giving a total of k + 2RF .

These cases are summarised in the top row of figure 3.
Informing the requester (if the Subscription Manager sub-
scribes) takes an additional RF messages of size 1.

The bottom two rows of figure 3 assume that requesters
only want to be subscribed to a fixed number of providers.
In this case when a provider joins an existing multi-agent
system most or all requesters will already have the desired
number of subscriptions. This is because requesters sub-
scribe when they join the system and departing providers
are detected and replaced, therefore the only situation where
a requester will not have its desired number of subscrip-
tions is where there are not enough relevant providers in the

30

system. In this case the typical number of messages gener-
ated by a new provider joining an existing system is one (of
size k), but it is possible for this to be higher: up to the (un-
likely) maximum shown in the third row of figure 3. Inform-
ing the other agent takes an additional RS messages of size
1.

In summary, if requesters subscribe to all rele-
vant providers then having the middle-agent subscribe
saves a significant number of messages and also has a sav-
ing in terms of the size of messages. Additionally, if the
requesters subscribe then there are potential bottleneck is-
sues. If requesters subscribe to a fixed number of providers
then the saving is much smaller.

3.2. Cancelling Subscriptions

Cancelling a subscription can be done directly, by hav-
ing the requester send a message to the provider (or vice
versa if the provider is the one cancelling the subscription).
Alternatively, cancelling a subscription can be done via the
middle-agent. In the first case, cancelling a subscription in-
volves a single message, with an optional second message
informing the middle-agent. Both messages have size 1. In
the second case, cancelling a subscription involves two mes-
sages each with size 1. Thus the difference in terms of mes-
sages involved between direct and indirect cancellation of
subscriptions is minor, and is non-existent if the middle-
agent needs to be informed of the cancellation.

If a provider wishes to cancel all of its subscriptions
then there are a number of cases: (1) If requesters don’t
need to be kept informed of their subscriptions then a sin-
gle message (of size 1) to the middle-agent is all that is re-
quired. (2) If requesters need to be told, but the middle-
agent doesn’t need to be told then there are RS messages
from the provider to the requesters that are subscribed to it.
(3) If both middle-agent and requester agents need to be in-
formed then there is one message from the provider to the
middle-agent, and RS messages from the provider to the re-
questers. Although it is possible to have the middle-agent
inform the requesters, this increases the load on the middle-
agent, requires that the provider specify explicitly the list of
subscribed requesters (unless the middle agent has a record
of subscriptions), and doesn’t give any benefit.

Thus if a provider wishes to cancel all of its subscriptions
then it is most efficient to not inform the requesters, but only
inform the middle-agent. However, if the requesters do need
to be informed then the cost of also informing the middle-
agent is low.

The analysis for a requester cancelling all of its subscrip-
tions is similar. If the requester agent does not know who it
is subscribed to then it needs to first obtain the list from
the middle-agent (which also has the side effect of inform-
ing the middle agent of the cancelled subscriptions). In this

case cancelling all subscriptions requires 2 + PS messages
with total size 1 + 2PS . If the requester agent does know
who it is subscribed to then informing the providers takes
PS messages of size 1, and informing the middle-agent is a
single additional (size 1) message.

3.3. Monitoring Liveness

Providers need to be monitored, so that a provider dis-
appearing is detected and appropriate action taken. Moni-
toring liveness of requesters by providers doesn’t seem to
make sense: if the providers have information to send, then
that transmission acts as a ping9. If they don’t have informa-
tion to send, then they don’t really care about the requester
being alive! If monitoring of requesters is desired, then it
makes sense to have the middle-agent do this.

Monitoring of providers can be done either by the
middle-agent or by the requesters. Consider the first possi-
bility, in this case the cost for checking each provider for
liveness can be worked out as follows10. Firstly, there are
P messages to the providers. Secondly, there are PD re-
sponses, one for each departed agent11, where PD is the
number of departed agents found in this check (we as-
sume that live agents do not respond). If subscriptions are
done by the requester agents then the middle-agent will
need to inform the requesters (PD×RF messages12.), oth-
erwise informing the requester agents is optional.

Consider now the second possibility, where monitoring
the providers is done by the requester agents. This is con-
siderably less efficient because each provider will be mon-
itored (redundantly!) by each requester agent that is sub-
scribed to it. More precisely, each provider will be moni-
tored by RS agents. Thus P×RS messages are sent, and
PD×RS responses received. If the middle-agent needs to
be informed, then it will (eventually) receive messages from
each of the RS requester agents that are monitoring the de-
parted provider (an additional RS × PD messages).

An alternative is for the first requester agent that detects a
departed provider to inform the other requester agents that
are subscribed to that provider, rather than allowing them
to independently realise that the provider is departed. This
involves the following sequence of messages: (1) a mes-
sage from a requester to the departed provider, (2) a mes-
sage from the departed provider’s platform to the requester,
(3) a message from the requester to the middle-agent, and

9 That is, we assume that the provider will detect a departed requester
when it attempts to send the requester information.

10 Note that a reasonable design decision is to spread this monitoring
over a time period by gradually traversing a list of providers.

11 The responses are sent by either the relevant agent platform (saying
that the agent is unknown), or from the middle-ware (saying that the
agent platform is unknown).

12 If the middle-agent has an up-to-date record of the subscriptions then
this can be tightened to PD × RS

31

Who pings? Number of + Implicit
messages pings

Middle P + PD N/A
agent (P + PD + PDRS)

Requester PRS + PDRS 2PDRS

agents (PRS + 2PDRS) (3PDRS)
Improved PRS + 2PD 2PD + PDRS

Figure 4. Monitoring provider liveness
(bracketed formulae include informing)

(4) RS − 1 messages from the middle-agent to the other re-
questers. The total number of messages for pinging a single
departed provider then is 3 + (RS − 1) = 2 + RS and the
message size is also 2 + RS . The total number of messages
for pinging all providers is this multiplied by the number of
departed providers, plus RS messages to each live provider,
i.e. (P − PD) × RS + PD × (2 + RS) = P × RS + 2PD.

Note that this more efficient, but more complex, ap-
proach requires that the middle-agent have a record of sub-
scriptions (otherwise it is more expensive: replace RS by
RF). This approach also avoids a bottleneck issue: the
middle-agent is only informed of a departed provider agent
once, rather than RS times.

One potential further saving in having liveness monitor-
ing be done by requesters is that it becomes possible to use
“implicit” pings: if a provider sends data to a requester then
this is evidence that the provider is alive and it can be as-
sumed to have been pinged. If a provider agent is sending
data frequently enough, then it will never need to be explic-
itly pinged as long as it is alive. If this is the case, and as-
suming that the optimisation described above is not used,
then the number of ping messages that are sent goes down
from P × RS to PD × RS , giving 2 × PD × RS messages
overall and 3×PD ×RS if the middle-agent needs to be in-
formed. If the optimisation described above is included then
the effect of implicit pings is, in the best case, to eliminate
the pinging of live agents, i.e. the term (P−PD)×RS, leav-
ing PD × (2 + RS) = 2PD + PDRS messages.

This analysis is summarised in figure 4. The bracketed
formulae include informing the requesters (if the middle
agent pings) or middle-agent (if requesters ping). The third
row (“Improved”) is when requesters ping, but includes
informing both the middle-agent and other (relevant) re-
quester agents of a departed provider.

The analysis above only considers monitoring and de-
tecting departed agents. What is done in response to de-
tecting a departed agent depends on the subscription pol-
icy of the requester agents that were subscribed to the de-
parted agent. If a requester is subscribed to all relevant
providers then there is nothing further to be done – there are

no other relevant providers that could be added, because the
requester is already subscribed to them. On the other hand,
if a requester is subscribed to one provider (or, more gen-
erally, PS providers), then a replacement provider needs to
be found. How this is done, and the number of messages in-
volved, depends on whether subscriptions are done by the
requester or by the middle-agent. The analysis is similar to
that presented in section 3.1.1.

4. Subscription Manager Specification

Based on the analysis in the previous section we now
specify a Subscription Manager middle-agent. The most
difficult issue is regarding whether or not the Subscription
manager should actually set up subscriptions on behalf of
a requester. On the one hand there is a reasonable sav-
ings in doing this and it assists with bottleneck issues at
the provider. On the other hand it removes flexibility from
the requester, which may need or prefer to make its own
choices. If requesters subscribe to all providers, then there
is no issue with flexibility, and the savings are significant,
so in this case it makes sense to have the Subscription Man-
ager subscribe. On the other hand, if requesters subscribe
to a fixed number of providers (and especially if this fixed
number is low) then the savings are lower, and allowing
the requester to select its providers becomes more impor-
tant. In this case it may make more sense to have requesters
subscribe themselves. Consequently we recommend that the
Subscription Manager allow both options.

In addition to supporting subscription being done by ei-
ther requesters or the Subscription Manager, there is also
a need to allow for both one-off and ongoing match-
ing, as well as subscription to one or subscription to all13.
This requires that the interface allows four14 kind of re-
quests: single-match (requester subscribes), ongoing-match
(requester subscribes), subscribe-one (Subscription Man-
ager subscribes requester, and replaces if provider disap-
pears), and subscribe-all (Subscription Manager subscribes
requester, and subscribes to new providers as they ar-
rive). Additionally, the Subscription Manager’s interface
needs to allow for a requester to cancel the ongoing-match,
subscribe-one or subscribe-all, and for a provider to can-
cel its registration.

It is slightly more efficient for end-agents to manage can-
cellations directly, if the Subscription Manager does not
need to be updated. If the Subscription Manager is updated
the overhead is little. Consequently we recommend that
cancellations be done directly between end-agents, since it

13 We assume that subscription to some other number must be handled
by the requester.

14 If the requester subscribes then it doesn’t make sense to distinguish be-
tween subscribe-to-one and subscribe-to-all. If the middle-agent sub-
scribes then an ongoing match is assumed.

32

relieves the Subscription Manager of a centralised responsi-
bility that carries no real benefit. Requesters with an ongo-
ing subscribe-one request, will need to notify the Subscrip-
tion Manager of the cancellation so that they can be sub-
scribed to a new provider.

Monitoring of provider liveness can be done by ei-
ther requesters or by the Subscription Manager. If we use
the improved version of requester monitoring, and assume
that “implicit” pings completely eliminate pinging of live
agents, then requester-based liveness monitoring actually
requires fewer messages (2PD + PDRS compared with
P + PD + PDRS). However, this requires a more com-
plex mechanism, shifts the responsibility for a crucial in-
frastructure task onto the requesters (which is not practical
in an open system), and assumes that implicit pings com-
pletely eliminate pinging of live agents and that requester
agents need to be informed of departed providers15. Fur-
ther, even in the best case, the savings by having requester
agents monitor provider liveness are not significant. There-
fore, we recommend that monitoring of provider liveness be
done by the Subscription Manager.

Due to space limitations we are unable to provide a full
interface specification of the Subscription manager, but it
should be evident from the above discussion.

5. Conclusion

We presented a new type of middle-agent, the Subscrip-
tion Manager, and motivated its use in systems that involve
ongoing information provision to requesters. An analysis of
different design options for the Subscription Manager was
presented, leading to recommendations for the design of
Subscription Managers.

Areas for future work include investigating ways of
structuring a network of middle-agents, carrying out exper-
imental work, and looking at how often agents should be
‘pinged’ given a particular rate of agent departure.

Acknowledgements

We would like to acknowledge the support of the Aus-
tralian Research Council, the Australian Bureau of Meteo-
rology and Agent Oriented Software Pty. Ltd. under grant
LP0347925.

15 If requesters are not required to be informed of departed providers,
then having middle-agents monitor providers requires fewer messages
(P + PD) and in this case having requesters monitor is more effi-
cient if PD(1 + RS) < P .

References

[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Ser-
vices: Concepts, Architectures and Applications. Springer-
Verlag, Berlin, Germany, 2004.

[2] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design of
a scalable event notification service: Interface and architec-
ture. Technical Report CU-CS-863-98, University of Col-
orado, Department of Computer Science, 1998.

[3] A. Cassandra, D. Chandrasekara, and M. Nodine.
Capability-based agent matchmaking. In AGENTS ’00: Pro-
ceedings of the fourth international conference on Au-
tonomous agents, pages 201–202. ACM Press, 2000.

[4] K. Decker, K. Sycara, and M. Williamson. Middle-agents for
the internet. In Fifteenth International Joint Conference on
Artificial Intelligence, pages 578–583. Morgan Kaufmann,
August 1997.

[5] K. Decker, M. Williamson, and K. Sycara. Matchmaking and
brokering. In 2nd International Conference on Multi-Agent
Systems (ICMAS 1996). MIT Press, 1996.

[6] T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as
an agent communication language. In CIKM ’94: Proceed-
ings of the third international conference on Information and
knowledge management, pages 456–463. ACM Press, 1994.

[7] G. Fox and S. Pallickara. The Narada event brokering sys-
tem: Overview and extensions. In Proceedings of the 2002
International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications (PDPTA’02)., pages
353–359, 2002.

[8] N. Gibbins and W. Hall. Scalability issues for query routing
service discovery. In Proceedings of the 2nd International
Workshop on Infrastructure for Agents, MAS, and Scalable
MAS, pages 209–217, 2001.

[9] I. Mathieson, S. Dance, L. Padgham, M. Gorman, and
M. Winikoff. An open meteorological alerting system: Is-
sues and solutions. In V. Estivill-Castro, editor, Proceed-
ings of the 27th Australasian Computer Science Conference,
pages 351–358, Dunedin, New Zealand, 2004.

[10] M. Paolucci, J. Soudry, N. Srinivasan, and K. Sycara. A bro-
ker for OWL-S web services. In First International Seman-
tic Web Services Symposium, 2004.

[11] C. Schmidt and M. Parashar. A peer-to-peer approach to web
service discovery. World Wide Web Journal, 7(2):211–229,
2004.

[12] K. Sycara. Multi-agent infrastructure, agent discovery, mid-
dle agents for web services and interoperation. In Multi-
Agent Systems and Applications, LNAI 2086, pages 17–49.
Springer-Verlag, 2001.

[13] K. Sycara, S. Widoff, M. Klusch, and J. Lu. Larks: Dy-
namic matchmaking among heterogeneous software agents
in cyberspace. Autonomous Agents and Multi-Agent Systems,
5(2):173–203, 2002.

[14] H. C. Wong and K. Sycara. A taxonomy of middle-agents
for the internet. In 4th International Conference on Multi-
Agent Systems (ICMAS 2000), pages 465–466. IEEE Press,
2000.

33

Supporting Program Indexing and Querying in Source Code Digital Libraries

Yuhanis Yusof and Omer F. Rana
Cardiff School of Computer Science,
Cardiff University, Wales, UK

{y.yusof, o.f.rana}@cs.cardiff.ac.uk

Abstract

As a greater number of software developers make their
source code available, there is a need to store such open-
source applications into a library and facilitate search over
this digital library. To facilitate users, we propose the usage
of agents in indexing and querying program source code.
This paper describes agent roles in building index file for
Java programs and users query based on program struc-
ture and design patterns. Precision and recall analysis is
then undertaken to evaluate the retrieval performance. We
believe that such a digital library will enable better shar-
ing of experience amongst developers, and facilitate reuse
of code segments.

1. Introduction

Software repositories contain a wealth of valuable infor-
mation for empirical studies in software engineering: source
control systems store changes to the source code as de-
velopment progresses, defect tracking systems follow the
resolution of software bugs, and archived communications
between project personnel record rationale for decisions
throughout the life of a project. Until recently, data from
these repositories was used primarily for historical record
– supporting activities such as retrieving old versions of
the source code or examining the status of a defect. Sev-
eral studies have emerged that use this data to study vari-
ous aspects of software development such as software de-
sign/architecture, development process, software reuse, and
developer motivation.
A key motivation for our work is to facilitate software

reuse through information extraction, whereby a software
engineer or software developer could make use of existing
software packages to create new programs. Software reuse
has been shown through empirical studies to improve both
the quality and productivity of software development. Our
thesis is that software reuse should not just be restricted to
reusing software libraries in their entirety, but also enable

software developers to understand the process associated
with solving a problem encoded in the software library. A
software developer may be interested in understanding how
a particular feature has been coded in a particular language
– rather than perhaps make full use of code that has been
implemented by someone else. Despite much work in re-
trieving text or image documents from the Internet, less ef-
fort has been put into generating information from program
source code made available from open source projects. As
the number of source code archives available on the Inter-
net has been growing rapidly, we propose multi-agent sys-
tem in supporting program indexing and querying in source
code digital libraries.

2. Overview

Software reuse is an approach to developing systems
where artifacts that already exists are used again. Software
artifacts vary from software components to analysis mod-
els. A major problem in software development today occurs
when different artifacts of a software system evolve at dif-
ferent rates. For example, program source code is updated to
include all the necessary changes, but the software models
or formal documentations are often not modified to reflect
these changes. Therefore, being the most updated informa-
tion source of a software, program source code is used by
software developers in program understanding. In this pa-
per, we concentrate exclusively on reusing program source
code. Source code can be defined as any series of state-
ments written in some human-readable computer program-
ming language. An important purpose of source code is for
the description of software where it describes how certain
function is being undertaken. Also, source code can be used
as a learning tool; beginning programmers often find it help-
ful to review existing source code to learn about program-
ming techniques and methodology. It is also used as a com-
munication tool between experienced programmers, due to
its (ideally) concise and unambiguous nature. The sharing
of source code between developers is frequently cited as a
contributing factor to the maturation of their programming

34

skills.

2.1. Related Work

Despite the importance of generating information from
program source code, most of the research done in the area
of understanding source code is mainly focused on cate-
gorizing the programming language used or source code
achieve [14]. Ugurel et al. [19] classified source code into
appropriate application domains and also programming lan-
guages using three components, namely the feature ex-
tractor, vectorizer and Support Vector Machine classifier.
Paul and Prakash [15] have produced a framework which
uses pattern languages to specify interesting code features.
Therefore, a user needs to identify either the desired pro-
gramming language or application domain in order to look
for the desired parts of source code.
Most of the software reuse research, however, focus on

the retrieval of software component. Ostertag et al. [10]
classified components retrieval approaches by three types:
1) free-text keywords, 2) faceted index, and 3) semantic net
based. Free-text keyword based approaches basically use
information retrieval and indexing technology to automat-
ically extract keywords from software documentation and
index items with the keywords. Dongarra and Grosse [5]
demonstrate the retrieval of particular numerical algorithms
via email with reference to their Netlib digital library. Many
such approaches are restricted to particular types of applica-
tions (numerical algorithms in this case), and therefore are
restricted in their scope. The free-text keyword approach is
simple, and it is an automatic process. But this approach
is limited by lack of semantic information associated with
keywords, thus it is not a precise approach. For faceted in-
dex approaches, experts extract keywords from program de-
scriptions and documentation, and arrange the keywords by
facets into a classification scheme, which is used as a stan-
dard descriptor for software components. To solve ambi-
guities, a thesaurus is derived for each facet to make sure
the keyword matched can only be within the facet context.
Faceted classification and retrieval has proven to be very ef-
fective in retrieving suitable component from repositories,
but the approach is labor intensive. The faceted classifica-
tion scheme for software reuse proposed by Prieto-Daz [12]
relies on facets which are extracted by experts to describe
features about components. Features serve as component
descriptors, such as: the components functionality, how to
run the component, and implementation details. To deter-
mine similarity between query and software components, a
weighted conceptual graph is used to measure closeness by
the conceptual distance among terms in a facet. Semantic-
net based approaches usually need a large knowledge base,
a natural language processor, and a semantic retrieval algo-
rithm to semantically classify and retrieve software reuse

components. The semantic-net based approach is also labor
intensive, and often intended for use in a specific applica-
tion domain. Sugumaran [17] present a semantic-based so-
lution to component retrieval. The approach employs a do-
main ontology to provide semantics in refining user queries
expressed in natural language and in matching between a
user query and components in a reusable repository. The
approach includes a natural language interface, a domain
model, and a reusable repository.
In motivating software reuse, researchers have also

been investigating component retrieval based on for-
mal specifications[11, 16, 9, 8]. Mili et al. [8] designed
a software library in which software components are de-
scribed in a formal specification: a specification is rep-
resented by a pair (S, R), where S is a set of specifica-
tion, and R is a relation on S. The approach is classified
as a keyword-based retrieval system, while matching re-
call is enhanced with sufficient precision: a match is con-
sidered as long as a specification key can refine a search
argument. Two retrieval operations: exact and approxi-
mate retrieval. If there is no exact retrieval, approximate
retrieval can give programs that need minimal modifica-
tion to satisfy the specification. In measuring similarities
among components, both work done by Mili [8] and Schu-
mann [16] use automated theorem provers. Despite var-
ious techniques used in retrieving software components,
there is generally no tool provided to take an existing pro-
gram (i.e. written in Java) and convert it into formal specifi-
cation. Existing approaches therefore require a programmer
to write his/her software in a particular representation for-
mat (based on a formal specification). We see this as a
severe restriction of such approaches in the context of ex-
isting source code archives.
There have been several initiatives that use agents in dig-

ital libraries, the most relevant are The University of Michi-
gan Digital Library(UMDL) [3], The Multimedia Elec-
tronic Documents (MeDoc) system [2] and the ZUNO Dig-
ital Library (ZUNODL) [4] – a commercial framework to
build digital libraries. However, the architecture of such dig-
ital libraries is different from our approach, as virtually all
of them operate on text documents. To support code re-
trieval, it is first necessary to remove Java language key-
words, such as println, bufferedreader. Collab-
orative filtering may then be used to provide integration of
code segments. We assume that a given source code digital
library contains components written in a single program-
ming language. Communication between agents operating
on this digital library would be based on the grammar of this
particular programming language. An agent may be used to
inform users who have retrieved software components from
the digital library. To manage the dynamic changes in such
a digital library, we propose the use of a multi-agent sys-
tem, such as reported in previous work dealing with the In-

35

ternet [18, 7, 6, 3].

2.2. Our Approach

Our approach differs from existing work in that we are
interested in search and retrieval techniques for program
source code. We see the limited use of existing search en-
gines for this particular problem, as search engines such
as Google.com or Altavista.com only provide sup-
port for formulating a query based on keywords and phrase.
The search process utilised in SourgeForge makes use
of keywords, and is based on general descriptions given to
each of the stored packages. Our intention is to extend the
search process supported by such public domain software
repositories and in this work, we try to retrieve suitable pro-
grams based on its program structure and design pattern.
Similar to indexing journal articles(author, title and year
representing important features of an article), Java program
structure is used to represent each of our stored programs.
We include classes, comments, identifiers, packages and im-
port statements as components of the program structure.
Each of these components plays significant role in defin-
ing functionality of a program. For example, a term registry
identified as class name indicates that the instance of
the program is a registry object. As it is a good practice to
name programs or function modules according to its func-
tionalities [13], identifiers are used to represent function-
ality of the program. Using Java program structure as the
basis to define our design pattern rules, we try to identify
general design implemented in the programs which benefit
users in identifying the participating classes and instances,
their roles and responsibilities in collaborating with each
other. With a design pattern, both the problem and solu-
tion are generic enough to be independent of implementa-
tion language. Therefore, given a pertinent problem, rather
than making full use of the code(cut and paste), developers
using our digital libraries are provided with relevant knowl-
edge relating to the problem.
In this research, each program and user query submit-

ted to the digital library is represented by an index file con-
taining selected terms based on Java program structure. We
then classify the programs according to the implemented
design patterns, and in this early work, three patterns are to
be identified: Singleton, Composite and Observer. In order
to search and retrieve source code from this digital library,
similarity measurement is undertaken between users query
and the index files. As the construction of an index file for
both program submission and user query needs various ac-
tions, decomposing the process into smaller and more man-
ageable chunks would be very helpful. Each of these sub-
systems can then be dealt with in relative isolation. How-
ever, to present users with the optimum result, relation be-
tween these sub-systems has to be identified. For example,

different result sets are generated if retrieval is undertaken
based only on program template [20] or design pattern ap-
proach. The system is capable of achieving a better retrieval
by cooperating these sub-systems using certain strategies.
Therefore, to facilitate both processes (task decomposition
and identification of cooperation strategies), we propose the
use of agents in indexing and retrieving program source
code.

3. Agent-based Architecture

Similar to the work done in RETSINA [18], we classify
our agents into three types: Interface agent, Task agent and
Information agent. Agents classification depicted in table
1 is undertaken based on the notion that interface agents
are tied closely to an individual human’s goals(i.e. assisting
users in representing the queries), task agents are involved
in the processes associated with various problem-solving
tasks(i.e. decomposing the plan (if necessary) and coordi-
nating with other task agent or information agents for plan
execution and result composition), and information agents
are closely tied to data sources(i.e. retrieve required files
from data source).

User Interface Agent Information Agent Task Agent
PRA RA IBA
IRA PA ICA
QRA PMA
RRA STEMA

Table 1. Classification of Agents

The software digital library is based on the cooperation
of the interface, task and information agents. In figure 1,
we illustrate the general multi-agent system architecture for
program indexing and querying in program repository. As
the main focus of our system is to retrieve and index Java
programs, currently, we are using three task agents in sup-
porting the process of creating suitable metadata for Java
programs. Upon combining all indices generated by these
agents, the index file will be created and stored in the reg-
istry by the information agents. We then use this file as the
main source of our comparison mechanism.
Each of the agents classified in table 1 is defined in de-

tail below.
User Interface Agent (UIA) has two different roles in

this architecture. From the programmers view, it is re-
sponsible for accepting programs or a project folder to be
submitted to the program repository. The project folder con-
tains a number of Java programs organised as a Java pack-
age. On the other hand, if a user wants to use it as a

36

Figure 1. The Proposed Multiagent Sys-
tem Architecture for Program Indexing and
Querying

search mechanism, the UIA will accept search queries.
Each of the input messages will be given an ID to dif-
ferentiate whether it is a program submission or only a
search query. This ID is important to determine if the in-
dex to be generated should be stored in the registry. Users
are allowed to submit two kinds of queries: phrase and pro-
gram. Examples of these are provided below:

Query 1: “registry class implementing Singleton”
Query 2:
public class Registry {
private static Registry registry = null;
private static final Object classlock =
Registry.class;
private int connectionCount;
private Registry (){ }
public void addToCount() {
connectionCount++; }
public static Registry getRegistry() {
synchronized(classlock){
if (registry == null) {
registry = new Registry(); }
return registry;
} } }

The Program Representation Agent (PRA) represent any
document posted by the programmer – for instance a folder
containing several Java program files or a single Java pro-
gram.
The Registry Agent (RA) is an information agent respon-

sible to manage the index registry. All program index files
(including programs full path name) are stored in this reg-
istry and these files are used in the matching process.
The Program Agent (PA) is another information agent

used in this multiagent system. It manages the program
repository by storing and retrieving the required Java files,
for example retrieving the selected program source code to
be presented to the users.
The Index Creation Agent (ICA) consist of three agents:

Keyword agent (KEMA), Design Pattern agent (DEPA) and
Java Template agent (TEMA).
• Similar to text mining, in KEMA, each word of the

Java program will be analyzed separately as an indi-
vidual token. A complete lexicon of terms excluding
those terms defined in the stop list will be undertaken.
The stop list contains all words that do not provide any
meaningful information in the retrieval process - the, a,
an, void, and etc.. Upon removing these words, the se-
lected words (after word stemming by STEMA) then
be used as the metadata for the particular Java file. An
index built based on the processed Java file will then
consists of: (1) term, (2) type of the term, and (3) file
name together with its full path.
Based on Query 2, three terms are extracted from the
source code: registry, addtocount and getregistry. We
classify these terms using Java program structure: class
name, method name, package name or words that are
in the comment section of a program. For example,
statement public class Registry will produce term reg-
istrywith class as the type of term. Therefore the index
file for the program example query will contain the fol-
lowing:

project1registry.java
registry, class
addtocount, method
getregistry, method

• As for TEMA, it is responsible for extracting in-
formation based on program structure [20]: (1)
class name(s), (2) file name together with its full
path, (3) method name and signatures, (4) super-
class, (5) abstract class, (6) interface class. Example
of indices generated by this agent are as follow-
ing:

project1registry.java
method addtocount - parameters: null; return: null
getregistry - parameters:null; return: registry

• DEPA is responsible for identifying three design pat-
tern that are implemented in a Java program. It deter-
mines the existence of design patterns based on sev-
eral rules. The outcome of this identification is the per-
centage of rules obeyed in determining the design pat-
terns(percentage of design patterns existence). Gener-
ally, in our approach, a program is identified to be im-
plementing Singleton if: (1) it only allows the creation
of a single instance of a class; (2) the access to the pri-
vate class variables is implemented in a public method.
To identify the existence of Composite design pattern,
DEPA: (1) identifies classes implementing at least one
interface; (2) determines whether the identified classes
provide method that receives interface class as its ar-
guments.
In detecting Observer pattern, we have to identify

the observers, the object to be observed and method(s)
used to update any changes that to be made. For a class

37

to be identified implementing Observer pattern, it must
have the following: (1)private variable(s) which allows
the value that it holds to be updated, (2)inheritance of
any abstract classes – where an abstract class defines
the identity of its descendants, (3)method overriding
between a class and its superclass (abstract class) and
(4)class’s constructor that receives at least one element
from (1) as its method argument.

These three agents cooperate between each other in order
to fulfill each others goals. For example, given a Java pro-
gram as the search query, QRA will invoke TEMA to anal-
yse the Java program. For TEMA to produce its template in-
dices, it request KEMA to identify lexical terms. With these
terms, TEMA will than generate further indices for the Java
template. DEPA is then invoked to determine the existence
of any defined design patterns.
STEMA is an agent created with the purpose of stem-

ming a word to its root form. In most cases, morphological
variants of words have similar semantic interpretations and
can be considered as equivalent for the purpose of IR ap-
plications. Thus, the key terms of a query or document are
represented by stems rather than by the original words. For
example, in Query 1, the root word of implementing is im-
plement.
The Index Builder Agent (IBA) combines indices gener-

ated by ICA. Based on the data received from ICA, it gener-
ates a general index to represent each of the processed Java
file. The data structure of the index consist of: (1) file name
with its full path; (2) vector of terms object containing terms
and type of the terms. Types of terms are determined based
on program structure - class name, method name, package
name and comments; (3) vector of class objects contain-
ing the class name, superclass name, method signatures, ab-
stract class and a vector of interface class; (4) percentage of
design patterns existence
The Index Representation Agent (IRA) is responsible for

indices generated by the IBA to be presented to the user.
It creates a report containing all of the generated indices
from the particular Java file. This report is then presented to
the person who submitted the program. Based on the above
query example, the generated report contains the following:

File name :project1registry.java
Class name= registry
No.of selected terms=3
Design Pattern= Singleton(100%)

The Query Representation Agent (QRA) is responsible
for formatting users query into an appropriate form. For ex-
ample, if a user submits a folder of Java programs, QRA al-
lows users to specify their query using two different meth-
ods: a description of what they are searching for in natural
language and Java template of the query.
The Program Matcher Agent (PMA) is responsible for

finding all suitable Java programs. The similarity compari-
son is undertaken between two index files: query index file
which is generated by the IBA, and index file for all pro-
grams stored in a registry. Indices in the query index file
are mapped against all indices in the registry using 2 simi-
larities measurement; string and design patterns. String and
substring matching is undertaken based on the Levenshtein
distance function [1]. This function is defined as the min-
imum number of characters, insertions, deletions and sub-
stitutions that need to be perform in any of the strings to
make them equal. A threshold value is to be requested from
the user in order for PMA to find similar Java programs that
contain terms which produce the minimum value of the dis-
tance function. Design patterns similarities between users
query and index file is obtained by evaluating the percent-
age value between these files. The selected Java files are
then ranked according to their sum of distance function val-
ues and percentage of design patterns existence, where the
program with the lowest and highest value, respectively, are
presented as the most suitable program.
Upon having similarity between users index and the reg-

istry (undertaken by the PMA), related Java files references
are passed to the Result Representation Agent (RRA). This
agent plays the role of presenting the results to the users by
generating a report containing all suitable Java programs.
It is also responsible to retrieve any selected programs(from
the result report) required by the users. This is achieved with
the cooperation of the program agent(PA).
The majority of interactions of interface agents are

with the human user, the most frequent interactions of in-
formation agents are with information sources, whereas
task agents interact with other task and information
agents. When a task agent receives a task from an inter-
face agent, or from another task agent, it decomposes the
task based on the domain knowledge it has and then del-
egates the sub-tasks to other task agents or directly to
information agents. The task agent will take responsibil-
ity for collecting data, coordinating among the related
agents (i.e. agents which accept the sub-task) and re-
port back to whoever initiated the task. The agent who is
responsible for the assigned sub-tasks will either decom-
pose these sub-tasks further, or perform data retrieval. Upon
receiving a task, agent starts planning using its own op-
erator and behaviour. If it requires other operator which
does not exist in its domain knowledge, it must find and re-
quest other agent which has the capabilities to complete
the remainder of the task. This process will continue un-
til an agent can achieve the goal of the received request
by itself. In figure 2, we illustrate a portion of the plan li-
brary containing general descriptions of action decom-
positions methods written in an expression of the form
Decompose(a,b). This says that an action a can be de-
composed into the plan b, which is represented as a

38

partial-order plan.

Action(BuildTerm, PRECOND:Program,
EFFECT:TermList)
Action(BuildDP, PRECOND: Singleton ∧
Composite ∧ Observer, EFFECT:DPList)
Action(Construction, PRECOND:TermList ∧
DPList, EFFECT:Index)

Decompose(BuildIndex,
Plan(Steps:{S1:BuildTerm, S2: BuildDP,
S3:Construction}
Orderings:{Start ≺ S1 ≺ S3 ≺ Finish, Start ≺
S2 ≺ S3 }
Links:{Start −→ S1, Start −→ S2, S1 −→ S3,
S2 −→ S3, S3 −→ Finish})

Figure 2. Action Descriptions for the Index
Building of a Program

4. Agent Interaction for Program Submission
and Program Retrieval

A user can either be a programmer/developer who wants
to submit their Java application into the repository, or a user
who wants to search and retrieve Java programs.

4.1. Program Submission

Based on the users program shown in Section 3, figure
4 illustrates the sequence diagram of agent communication
during the process of program submission.
UIA sends a request to IBA to build an index file for

Registry.java. Upon receiving this request IBA notifies the
message sender using one of the four ACL performatives:
agree, refuse, not understood or failure.
If IBA agrees to build an index file for Registry.java, it re-
quests PA (responsible for managing program repository) of
type information agent, to check whether Registry.java ex-
ists in the repository. If Registry.java has been submitted to
the system, IA then informs IBA the current address of the
project, or else it stores Registry.java in the repository and
inform the reference address to IBA. Upon receiving this
reference, IBA sends a request performative to all Index
Creation Agents (ICA) asking each of them to build indices
for the given reference (Registry.java). If these ICA agents
agree to perform the task, each of the ICAs request STEMA
to perform stemming within the Java file. They will then in-
form IBA about the indices that they have created based
on the evaluated Registry.java file. Upon receiving these in-
dices, IBA builts an index file to represent Registry.java – all
of the indices are combined into a single data structure and
passed to RA (responsible for managing registry) of type in-
formation agent. This agent then creates an index file con-

Figure 3. Sequence diagram for program sub-
mission

taining the data structure and stores it in the index registry.
IBA then returns back to UIA, providing a Web reference
for the generated index file.

4.2. Program Retrieval

Two different queries are currently supported: (i) key-
word or phrase (natural language) describing users require-
ments and (ii) Java program or template, In 4, we describe
how agents perform their task of retrieving relevant Java
programs based on text phrase.
If a user submits a description of their requirements,

registry class implementing Singleton, to the system, the
UIA requests the IBA to build an index to represent this
query. To perform this task, agent IBA requests the ICA
to build indices for the query. In order to do this, ICA re-
quests STEMA to perform stemming towards the query. If
STEMA understood the message and agrees to perform the
task, it sends a message back to ICA containing the result.
ICA, then requests the IBA to build an index for the users’
query (query index). Upon receiving this index from IBA,
UIA then requests PMA to deliver Java programs that are
relevant to the users query. To fulfill this task, PMA re-
quests the information agent(RA) to sequentially retrieve
index files stored in the program registry. It is then PMA’s
task to compare between these files (user query and pro-
gram index files) and store the reference(s) for the matched

39

Figure 4. Sequence diagram for program re-
trieval

Java file(s). Upon completing the search, PMA informs UIA
the list of relevant files.
On the other hand, if a user submits a Java program as

his query to the system, all of the ICA(KEMA, DEPA and
TEMA) are invoked to evaluate the program. Before this
happens, UIA requests IBA to build an index file for the
query. To fulfill this task, IBA then request all of ICA to
generate indices for the submitted program. Upon sending
an agreement performative to IBA, each of the ICA re-
quests STEMA to stem the content of the Java file. As IBA
receives results from the requested agents, it combines the
generated indices into one query index file. The UIA, then
request PMA to search for Java programs that are relevant
to the search query, and this process continues as described
in the above paragraph.

5. Case Study and Result Discussion

To determine the ground truth of detecting design pat-
terns in source code digital libraries, we downloaded(from
the Internet) 21 Java applications which are notified by the
developers to have implement design patterns, namely, Sin-
gleton, Composite and Observer. These applications consti-
tute of 67 Java files and in each design pattern group, 7 files
are notified to implement the design patterns. Even though
not all Java files implement design patterns, nevertheless,
we may identify a file which implements more than one de-
sign pattern. We run the design pattern detector individually
on each of the relevant design patterns group(i.e. Single-
ton query is posted on Singleton examples). Upon retriev-
ing the result, recall analysis has been undertaken. A higher
percentage of recall is obtained in retrieving Singleton files
while both Composite and Observer produced 57.14% re-
spectively. Based on the promising result, depicted in ta-
ble 2, we then perform experiment using 7 applications(477

Design Patterns No. of No. of Recall
Relevant Files Retrieved Files

Singleton 7 5 71.43%
Composite 7 4 57.14%
Observer 7 4 57.14%

Table 2. Design Patterns in Java Applications

Design Patterns Precision Recall
Singleton 4% 100%
Composite 56% 37.84%
Observer 88% 81.48%

Table 3. Precision and Recall Analysis

files) representing mathematical domain, obtained from the
SourceForge.net repository.
We summarize the traditional measures of retrieval per-
formance, Recall (completeness of retrieval) and Precision
(purity of retrieval) based on the first 50 ranked documents
for all three design patterns in table 3. In general, the re-
trieval system has been able to retrieve 74 out of 130 rele-
vant files which results 56.92% of success rate. Both detec-
tion of Composite and Observer design patterns produced
more than 50% of precision while only 4% has been ob-
tained for Singleton design patterns. We illustrate precision
and recall graph for all three design patterns in figure 5.
Since there are only 2 relevant Java files which have

been identified to implement Singleton design patterns, our
system has managed to retrieved both of these files. The
first relevant file is ranked first during the retrieval process
while the second Singleton file was the last file to be re-
trieved(50th out of 50).

Figure 5. Precision vs. Recall

For Composite design pattern, the retrieval performance
analysis started by obtaining value 1 and 0.014 for preci-
sion and recall. Precision is then slowly decreased before
we retrieved the 10th document where it increased to the
value of 0.67. However, by the end of the retrieval, recall
value has raised to 0.378 which result a decrease in preci-

40

sion. Figure 5 also illustrates a balance trade-off between
precision and recall as both analysis reached more than 80%
of value at the end of the retrieval. Using 50 as the cut-point
of retrieval, our multiagent system was capable of retriev-
ing 81.48% of the identified relevant Java files.
Based on the capability of retrieving 74 out of 130 rele-

vant files, we believed out retrieval system is capable to mo-
tivate developers in software reuse. As precision compen-
sate recall, adjusting the threshold value would produced
different sets of retrieved files and therefore generates dif-
ferent precision/recall measures.

6. Conclusion

With the emerging interest in making source code avail-
able, and the significant emphasis being placed on this by
many software architects, DLs that support the searching
of source code have become necessary. We show that pro-
gram indexing can improve scientific communication by re-
vealing hidden knowledge such as design patterns in pro-
grams. By utilising a multi-agent system where all agents
undertake specific roles within the system, we facilitate the
process of indexing and searching Java source code in a
source code digital library. As demonstrated, using agent
technology we not only can increase the percentage of re-
trieving relevant documents in source code digital library
but also assist developers in identifying general design that
addresses a recurring design problem in object-oriented sys-
tems. As most of the programmers and developers learn by
studying available codes, being presented by various pro-
grams(which are relevant to the queries) is believed to mo-
tivate code and concept reuse.

References

[1] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information
Retrieval. Addison Wesley, January 1999.

[2] A. Barth, M. Breu, A. Endres, and A. de Kemp, editors. Dig-
ital Libraries in Computer Science: The MeDoc Approach.
Springer-Verlag Heidelberg, 1998.

[3] W. P. Birmingham, E. H. Durfee, T. Mullen, and M. P. Well-
man. The distributed agent architecture of the university
of michigan digital library (extended abstract). In (AAAI)
Spring Symposium on Information Gathering, 1995.

[4] D. Derbyshire, I. A. Ferguson, J. P. Muller, M. Pischel, and
M.Wooldridge. Agent-based digital libraries: Driving the in-
formation economy. In Proceedings of the Sixth IEEE Work-
shops on Enabling Technologies: Infrastructure for Collab-
orative Enterprises, pages 82–86, 1997.

[5] J. J. Dongarra and E. Grosse. Distribution of mathematical
software via electronic mail. Communications of the ACM,
30(5):403–407, 1987.

[6] Y. Kusumura, Y. Hijikata, and S. Nishida. Text mining agent
for net auction. In ACM Symposium on Applied Computing,
pages 1095–1102, Nicosia, Cyprus, March 2004.

[7] C. N. Linn. A multi-agent system for cooperative document
indexing and query in distributed networked environments.
In Proceedings of the International Workshop on Parallel
Processing, pages 400–405, Japan, September 1999.

[8] A. Mili, R. Mili, and R. T. Mittermeir. Storing and retriev-
ing software components: A refinement based system. IEEE
Transactions on Software Engineering, 23(7):445–460, July
1994.

[9] S. Nakkrasae and P. Sophatsathit. A formal approach for
specification and classification of software components. In
Proceedings of the 14th international conference on Soft-
ware engineering and knowledge engineering, pages 773–
780. ACM Press, New York, 2002.

[10] E. Ostertag, J. Hendler, R. P. Daz, and C. Braun. Com-
puting similarity in a reuse system: An al-based approach.
ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM), 1(3):205–228, 1992.

[11] J. Penix and P. Alexander. Using formal specifications for
component retrieval and reuse. In Proceedings of the 31st
Hawaii International Conference on System Sciences, pages
356–365, 1998.

[12] R. Prieto-Diaz. A Software Classification Scheme. Phd the-
sis, Department of Information and Computer Science, Uni-
versity of California, 1985.

[13] H. Rodriguez. Good programming practice. http://www.
start-linux.com/articles/article_75.php.

[14] P. Ruben and F. Peter. Classifying software reuse. IEEE Soft-
ware, 4(1):616, 1987.

[15] P. Santanul and P. Atul. A framework for source code search
using program patterns. IEEE Transaction on Software En-
gineering, 20(6):463–475, 1994.

[16] J. Schumann and B. Fischer. Nora/hammr: Making
deduction-based software component retrieval practical. In
Proceedings of the 1997 International Conference on Auto-
mated Software Engineering(ASE’97), pages 246–254, Lake
Tahoe, CA, 1997.

[17] V. Sugumaran and V. C. Storey. A semantic-based approach
to component retrieval. The DATA BASE for Advances in In-
formation Systems, 34(3):8–24, Summer 2003 2003.

[18] K. Sycara, K. Decker, A. Pannu, M. Williamson, and
D. Zeng. Distributed intelligent agents. IEEE Expert,
11(6):36–46, December 1996.

[19] S. Ugurel, R. Krovetz, and C. L. Giles. What’s the code?:
automatic classification of source code archives. In Proceed-
ings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 632–638.
ACM Press, 2002.

[20] Y. Yusof and O. F. Rana. Template mining in source code
digital libraries. In Proceedings of the International Work-
shop on Mining Software Repositories, 26th International
Conference on Software Engineering, pages 122–126, Ed-
inburgh, UK, 2004.

41

Architecture for Distributed Agent-Based Workflows

C. Reese, J.Ortmann, S. Offermann, D. Moldt, K. Lehmann, T. Carl
Computer Science Department

University of Hamburg
{reese,ortmann,4offerma,moldt,8lehmann,6carl}@informatik.uni-hamburg.de

Abstract

Within the distributed systems area specific software so-
lutions are required due to the distribution of systems and
their users in time and space. A key role can be seen in the
coordination of processes in this context. Applications that
support the work of people and enterprises within such set-
tings need to support requirements such as flexibility, au-
tonomy, coordination and synchronization.

A further application area of workflow management sys-
tems is the coordination of distributed interorganizational
workflows. The dynamic adaptation of workflows is of par-
ticular importance in this area, since enterprises need to dy-
namically adapt to changes in market and demand. A typi-
cal example for such a setting, where a workflow needs to
be constantly adopted are virtual enterprises, where chang-
ing partnerships lead to changing requirements.

Based on the formal modeling technique of high-level
Petri nets we use workflow nets and an agent framework,
both tool supported. This leads directly to an innovative ar-
chitecture in this field combining several former approaches
with respect to their advantages.

Keywords: Distributed workflows, agents, distributed
workflow enactment service, high-level Petri nets, CAPA,
RENEW

1. Introduction

To build distributed applications different concepts and
technological means are used. New areas like interorganiza-
tional cooperations and virtual enterprises require new solu-
tions due to the high dynamics in their interrelations. Since
the process perspective has been within the center of inter-
est, workflow management systems (WFMS) have had a re-
vival in the context of the development of distributed ap-
plications. From a conceptual perspective workflows can be
enhanced through the agent concept. Agents offer a natu-
ral way to deal with open environments and are therefore of
particular benefit for distributed systems. (see [13]).

The main contribution of this work is our approach of
fragmenting workflows for distributed execution with sup-
porting protocols and architecture. This architecture is of
particular strength due to its agent orientation, its formal ba-
sis provided by Petri nets and its partial tool support.

An implementation by Carl [7] allows the splitting of
workflows into arbitrary fragments. These fragments, en-
capsulated by agents, are treated again as workflows and
they can be executed at different locations using different
workflow enactment systems, which are the conceptual plat-
forms of the agents. Therefore, we provide a concept for a
distributed and concurrent workflow management system,
based on the FIPA compliant agent framework CAPA.

The paper is organized as follows. Each section covers
both conceptual and technical issues. Section 2 introduces
the underlying concepts, techniques and tools. Fragmenta-
tion of workflows is detailed in Section 3. The overall agent
based architecture and distribution issues are explained in
Section 4. The paper ends with a summary of the achieved
results and a discussion about possibilities for further exten-
sion.

2. Conceptual and Technical Background

To obtain an overview, Figure 1 shows the basic archi-
tecture of the system described here. It consists of a run-
time environment established by Java and reference nets, a
workflow (WF) engine and an agent environment. On top
of this we develop workflow agents based on the specifica-
tions of the WfMC (Workflow Management Coalition, see
[24]). These agents provide the functionality of distributed
agent based workflows to any application. In the following,
the layers are described in more detail.

2.1. Reference Nets and RENEW

For an introduction to reference nets, see [16]. Refer-
ence nets (published first in [17]) are an extension of the
Coloured Petri net (CPN) formalism (for extensive intro-
duction, see [14]) adding both the concept of nets-within-

42

Reference Nets

WF

WF-Agents

Application

Java

Agents

Figure 1. Simple Architecture Overview

nets introduced by Valk in [23] and the concept of syn-
chronous channels (as first introduced in [8]). Additionally
reference nets allow to have multiple dynamically created
net instances. Through an inscription language, reference
nets allow for the execution of Java code from within a net
when executed in the simulator.

Reference nets can be drawn, simulated and executed in
the RENEW tool (available at [22]), which is entirely imple-
mented in Java. Offering true concurrency, different tran-
sitions of a Petri net can fire at the same time. While one
task is executed, other parts of the application can continue.
Along with the expressive power of Petri nets, this makes
reference nets a good choice to model and execute work-
flows.

2.2. Workflow Nets

The use of Petri nets in the workflow area has been thor-
oughly investigated (see [1]). Workflow patterns can be ex-
pressed by Petri nets (see [2]). Reference nets are especially
suitable for defining a workflow due to their high expres-
sional power. Through the inscriptions on a transition e.g.
a legacy application can be called or a client can be asked
to do something. Based on reference nets, an existing work-
flow plug-in for RENEW (see [11]) is used to implement
the concepts discussed here. This plug-in provides roles and
several security features besides the general features of a
workflow enactment service. It is based on a proposal for a
concurrent, Petri net based workflow execution engine [3]
and on the persistent Petri net execution engine presented
in [12].

2.3. Agents

The technical agent framework CAPA (Concurrent Agent
Platform Architecture, see [9]) is based on the conceptual
framework MULAN (Multi-agent nets). CAPA is a special
agent platform: The platform itself is implemented as an
agent containing all agents residing on the platform, e.g. the
FIPA compliant AMS and DF agents (for FIPA, see [10]).

This concept will be used to design WF agents in Sec-
tion 4.2.

CAPA introduces the concept of net agents as an extensi-
ble architecture for agents. Such an abstract Petri net agent
provides basic functionality like sending and receiving mes-
sages. The behavior is defined using protocol nets. Protocol
nets are workflow-like nets. The interface to the containing
agent enables explicit start and end points, incoming and
outgoing information and access to the agent’s knowledge
base. The knowledge base provides adding, deleting, modi-
fying and searching for entries in a key-value manner.

To describe agent interactions, we use AUML interac-
tion protocol diagrams. The RENEW diagram plug-in pro-
vides tools for drawing of AUML interaction protocol dia-
grams. Skeletons of protocol nets for CAPA agents can be
generated from those interaction diagrams. Interaction dia-
grams and the generation of protocol nets are discussed in
detail in [6].

2.4. The Components of a WFMS

The structure model for workflow systems of the Work-
flow Management Coalition (WfMC, [25]) defines six ba-
sic components of a WFMS, not repeated here (see [24]).
We describe how we realize these in our system:

A Process Definition Tool is part of the existing RENEW
workflow plug-in mentioned above. This is now extended
to provide the possibility to define cut-off points for distri-
bution within a workflow definition (this is detailed in Sec-
tion 3).

A Workflow Client Application is also included into the
existing plug-in and wrapped by an agent.

Invoked Applications are wrapped by agents. Together
with the concept of a task agent (defined in Section 4.2),
this makes the distinction between client interactions, in-
voked applications and automatic tasks transparent to the
workflow system.

The Workflow Enactment Service is provided in our ar-
chitecture by the existing workflow plug-in (see Section
2.2). This is wrapped by an agent as an agent platform
(analogously to the CAPA architecture mentioned above)
that communicates with the other components as contained
agents. This makes the whole workflow enactment service
encapsulated, gaining security, autonomy and mobility con-
cepts.

The workflow engines are also wrapped by agents resid-
ing on the platform provided by the workflow enactment
service. These coordinate the execution of workflow frag-
ments on their platform.

Administration and monitoring is done by agents that
gather information from the other components concerning
running and finished tasks or problems. This provides a

43

view to the system state as far as possible within distributed
systems.

2.5. Relation between Workflows and Agents

In our architecture, workflows are encapsulated by
agents. Agents may migrate to other platforms. This
solves the distribution of workflows and workflow frag-
ments. The agent framework used here provides agent
mobility (see [15]). Agents are encapsulated compo-
nents that can be accessed only via their communication
interface. Access to the agent-internal workflow there-
fore must be explicitly allowed by the agent (this does
not take into account the general problems and chal-
lenges in the agent security area, which are not discussed
here).

Beside technical advantages, the conceptual advantages
of Petri nets and agents are combined as well. Looking at
an application as a workflow system, emphasizes some as-
pects like verifiability and structure control. Looking at the
same application as a multi agent system, emphasizes char-
acteristics like autonomy, encapsulation and flexibility.

Since the protocol nets we use to specify the behavior of
agents already have a workflow-like structure, we use Petri
nets both for agents and for workflows. This restricts the ar-
chitecture of the WFMS. Reference net models for a spe-
cific application are restricted to be workflow conform and
agent conform at the same time.

2.6. Further Procedure

The overall way to our solution is now: First, we en-
able the definition of cut-off points within a workflow spec-
ification and with that we enable the distribution of work-
flow fragments. Second, we map agent types to the WFMS
components identified by WfMC and enrich these. Finally
a workflow gets executed using the combined services of a
workflow enactment service and a specific workflow agent.

3. Fragmentation of Workflow Nets

Within Petri nets, dependencies between net elements
are locally defined by arcs. Only the neighbored elements
need to be examined and synchronized. The requirements
for a workflow fragmentation are:
(1) Workflow fragments shall be independent except for
synchronization at the borders.
(2) The fragmentation shall be arbitrary, in particular a
XOR-split shall be possible and consequentially all major
workflow patterns as described in [2].
(3) Each fragment shall have an arbitrary complex border,
i.e. an arbitrary number of input and output arcs. Loops shall
be possible.

(4) The semantics of the distributed workflow shall be the
same as the semantics of the whole workflow, i.e. no addi-
tional elements shall be required to be drawn. This can be
avoided by adding automatically some hidden refinements
at fragment borders to implement synchronization function-
ality.

3.1. Border of Fragments

Basically three different types of border definitions are
possible: split arcs, border places or border transitions. Split
arcs do not limit the design and distribution of workflows,
but the coordination costs are quite high, because synchro-
nization and data transfer must be carried out with each
search for bindings. The fragmentation at border places can
be realized through a refinement of such a place where the
synchronizing code is put. The border place can be seen as a
distributed place with copies in each fragment. The change
of the marking needs to be indivisible to prevent inconsis-
tency. To define the border at transitions is the most intu-
itive definition of a border, because the transition is the ac-
tive element within a net where data transfer happens any-
way. In this case there is no conflict possible and thus no
distributed transaction is necessary. Once the firing is ini-
tiated, the action is completely isolated and may run con-
currently to other actions. The border transition would be a
coarsion like the border place. Some workflow patterns, es-
pecially XOR, are not realizable with a transition split. Also
the same drawback as the split arcs holds here: the search
for bindings would require costly remote communication.
This is why we decide to use place bordered fragments.

3.2. Dividing a Workflow into Fragments

The designer needs to mark the intended border places
in the workflow net. These operate as cutting points, where
the transfers between fragments happen. Each workflow
has one unambiguous starting point and one or more ex-
plicit endings. Using these fix-points, a fragmentation for
the workflow can be searched.

Each border place must satisfy the condition that at least
a connection to two different fragments exists: If a border
place connects only one fragment with itself, this should
produce a warning because the intention of the programmer
to generate fragments can not be satisfied.

The following algorithm can be used for fragmentation
and for a consistency check. It is implemented within the
WF Agents plug-in. The algorithm is illustrated in Figure
2: An example net and the resultant nets are shown. Transi-
tions with bold borders are task transitions (task1, 2, and
3), places with arrows are distributed places (dp 1, 2, and
3).

44

Figure 2. Example workflow fragmentation

Input: A workflow net with predefined border places.
(1) Transitions with start or end inscription may not
have incoming or outgoing arcs, respectively. Otherwise the
net is inconsistent.
(2) Transitions with start or endmust be connected each
to exactly one border place. Otherwise, the net is inconsis-
tent.
(3) Regard all directed arcs as undirected and all transitions
and places as unnamed nodes. Individually name all bor-
der nodes (no name conflicts in the example). Multiply bor-
der nodes according to the number of connected arcs and
connect exactly one copy to each arc (In Fig. 2, this results
in two instances of dp 1 and three instances of dp 2 and
dp 3).
(4) For each unvisited border node search all connected bor-
der nodes. Gather the names of connected nodes for each
fragment (This results in five fragments, one of them con-
taining node start and node dp 1).

(5) When no unvisited nodes exist anymore, search for dou-
ble border node entries in the list of each fragment. If a
name occurs in one list and not at all in the other lists, this
border node is inconsistent.
(6) Join the two fragments containing the start and end
nodes of the workflow and add a synchronized copy of each
border node to obtain the control net.
(7) Regard nodes as places and transitions again. Put the
fragments into individual nets and merge border places with
common names across these nets: Mark the initial border
place in the control net and give each concerned fragment a
synchronized copy (a fragment is concerned if it contains a
border place with the same name).

Result: An error message if the net is inconsistent, other-
wise disjunct fragments (apart from border places), which
taken together build the original net, plus a control net. The
control net holds start and end points of the workflow
and all border places and their coordination. As soon as a
token is put in one border place, all concerned workflow-
fragments are activated, if they have a connected input or
test arc. When the end-transition within the control net is
activated, the workflow is considered finished.

3.3. Activation of Fragments and Termination of
Workflows

Generally a workflow terminates once it has reached an
explicitly defined end node.

For Petri nets basically holds, that a transition is acti-
vated if all preconditions (markings, colors, guards...) are
satisfied and a Petri net is activated if at least one transi-
tion is activated. Within RENEW, a net instance is passive
if there is no reference to it anymore, no transition is firing
and no transition is activated. A garbage collector removes
the net instance from the memory as soon as the space is
needed otherwise. In the distributed case it is conceptually
not easy to keep track of references. Other than in the lo-
cal case, an instantiated net can only be stopped explicitly
by activating a special end transition. So a workflow frag-
ment is activated the first time one of its border places gets
a token and it is deactivated only when the end transition
in the control net is activated.

Workflow nets should therefore be designed in such a
way that nothing happens once the end transition was ac-
tivated. Beside others, this is part of the soundness-
characteristic of a workflow net. Probably it is possible
to prove this characteristic on generated workflow frag-
ments.

4. Architecture for Agent Based Workflows

Our main motivation for a distributed workflow engine
lies in the idea of cooperative work coordinated by dis-

45

tributed workflows [18]. Other approaches were motivated
by load-balancing issues as in [4], such that workflows can
be redistributed to other servers according to their load. The
coordination of Web services is addressed in [5].

Furthermore, we focussed on the development of a FIPA-
compliant framework, that is closely related to the standards
proposed by the WfMC, on the one hand, and the use of ref-
erence nets as a formal executable basis for the modeling of
the system on the other hand. reference nets are used for the
modeling of the system as well as for the modeling of the
workflows. One major advantage of reference nets is their
ability to directly execute Java code, which makes it pos-
sible to easily interact with a GUI or a program written in
Java. Although other Petri net based architectures exist [20],
to our knowledge, our architecture is the only one entirely
based on reference nets with the benefits of easy Java inte-
gration, a uniform architecture based on MULAN and a for-
malisms based on Petri nets enabling us to investigate is-
sues such as fragmentation and distribution on an abstract
level.

The following sections describe our design of workflow
agents building upon agent and workflow technology as de-
picted in Figure 1, and its integration into existing compo-
nents.

4.1. Plug-in Dependencies

The dependencies of the different plug-ins are shown in
Figure 3. RENEW provides a runtime environment and a
GUI plug-in. CAPA and the workflow plug-in depend on
the RENEW simulator. CAPA provides optional GUI access
(i.e. it can be used in a non-graphical environment).

The WF agents plug-in described in this paper depends
on CAPA and on the WF plug-in. Optional GUI access is
provided. The direct dependency on the RENEW simulator
results from the fragmentation of workflow nets, which re-
quires extensions to basic net elements (i.e. the places, as
discussed in Section 3).

An Application using the system would depend on the
WF agents plug-in and probably also on the CAPA plug-in
and the GUI plug-in. These would form the runtime envi-
ronment for that application.

4.2. Infrastructure

Each component of a WFMS can be mapped to an agent
type (implementing this component) to form an agent based
WFMS. We add a deployment agent and workflow agents
that can hold a workflow as such.

Most of the defined agent types provide parts of the WF
platform services. The task agents are domain specific ser-
vice providers (compare Figure 4).

CAPA
Plug-in

Workflow
Plug-in

WF Agents
Plug-in

CAPA-Platform Workflow-Environment

WF Agents Platform

Renew
Simulator

Plug-in

GUI
Plug-in

(Soft dependencies)

Renew

Figure 3. Dependencies among RENEW plug-
ins

WFES agent The Workflow Enactment Service agent
forms the platform of the WFMS containing all work-
flow specific agents except the application specific
task agents. The WFES agent manages the sys-
tem and forms the interface to other WFMS.

WFE agent The execution of workflows is coordinated by
Workflow Engine agents residing on the platform pro-
vided by the WFES agent. When a workflow is to be
executed, this agent calls the service of a WF agent.
All necessary communication for the execution is han-
dled here.

WF-Cl agent Within the Workflow Client agent the users
of the system are managed and communicated with. A
participating user registers using this interface and is
assigned to services he offers or uses according to his
role. This is the workflow client application in the clas-
sical sense.

Monitoring agent This agent gathers information explic-
itly provided by the other agents concerning the exe-
cution state of the system. This agent can summarize
gathered data and can act autonomously on exceptional
situations.

Task agent Task agents correspond to the “invoked appli-
cation” in the WfMC model. They are arbitrary agents
which can be provided by an application. Their sup-
plied services are called by a task if this is required by
a workflow. This agent type is not contained in the plat-
form provided by the WFES agent.

46

WF and WFF agents The workflows themselves reside as
Workflow and Workflow Fragment agents on the plat-
form provided by the WFES agent. The WF agent co-
ordinates the WFF agents that are local or remote parts
of the executed workflow.

Deployment agent This agent realizes the configuration of
the system. New workflows and roles can be config-
ured here. It is not contained in the WFES agent plat-
form.

Server A

CAPA

WF-Agents

Application

HTTP

AMSDF

Platform

WF WFF

Task

WF-Cl
WFE

Monitoring
WFES

AMSDF

Platform

Server B

WFFTask

WF-ClWFE

WFESDeployment

Figure 4. Example infrastructure of WF plat-
forms

Figure 4 shows an exemplary infrastructure of the plat-
form. The layers from which the platform is built are: the
communication layer on HTTP basis at the bottom, which is
provided by CAPA. Above, the platform agents from CAPA
which provide basic services of a FIPA compliant platform
are shown. These are the agents Directory Facilitator (DF),
Agent Management System (AMS) and the platform itself
which is implemented as an agent in CAPA. Again above
are the agents of the WF agent platform. The Workflow En-
actment Service agent holds other agents analogous to the
platform agent of CAPA.

The agents are connected via the communication layer of
CAPA so that the platform components are loosely coupled.
This gets us the advantage that components can indepen-
dently be updated and started without affecting the whole
system.

4.3. The Running System

In the following, some aspects of the running system are
discussed.

4.3.1. Distribution and Execution After the fragmenta-
tion, each fragment is encapsulated within one WFF (Work-
flow Fragment) agent. These are transferred to their execu-

tion platform (WFES agent), either through external chan-
nels or migrating or, third possibility, by starting the agents
remotely. If a workflow is executed, the fragments must be
located through a directory service (see Section 4.3.3), but
the WFF agents should provide their service to the associ-
ated WF agent only. To reach this, the involved agents must
know each other. To make recognition possible, each frag-
ment is signed and this signature is registered. Additionally
the WFF agents hold the signature of the original workflow
to ensure authorization.

A workflow is started by calling the service of a WFES
(workflow enactment service) agent which provides the ser-
vices of contained WF agents. The WF agent searches for
service providers for all fragments of the workflow. More
than one provider for a certain fragment is possible in the
case that more than one WF agent was started for this work-
flow. The fragments are instantiated and activated according
to the control net contained in the WF agent. As long as a
fragment is not yet activated, it is possible to exchange the
service provider. Within the control net the workflow is ac-
tually started and the first fragment is activated.

Synchronization between fragments is needed only at
the border places, this is realized with a distributed lock
i.e. a mechanism that ensures a consistent state for shared
resources. Only the current owner of a lock may perform
changes.

ok

ok

ok

WFF-Agent 1 WF-Agent
lock
management

unlocked

representing
arbitrary number
of fragments

WFF-Agent

remove (id)
remove (id)
ok

fail

lock

locked

unlock

Figure 5. Synchronization protocol for a bor-
der place

The coordination and conflict solving is done by the WF
agent which also manages the lock. The resulting topology
has star shape, so the fragments do not need to know each
other. Figure 5 illustrates this. Further details are described
in [7].

47

Starting and ending workflows or parts of workflows
happens through message exchange: a workflow can not be
explicitly stopped, as explained in Section 3.3. The respon-
sibility for an unambiguous termination of a workflow re-
mains with the designer of the workflow itself. After the ac-
tivation of the end transition in the control net the request-
ing agent is informed about the result of the workflow.

4.3.2. Load Distribution and Redundancy An agent ar-
chitecture according to FIPA is useful to implement redun-
dancy by several agents that provide the same service. They
can reside on several agent platforms. The selection mech-
anism used to choose a service provider realizes the desired
effect like load distribution. The agents that use services of
other agents must realize their services in an adaptive way
to enable this scenario, i.e. they have to search for alterna-
tive services autonomously.

In the architecture proposed here, the WFES (workflow
enactment service) agent is the only agent that is central to
one WF agent platform. If this agent also should work more
than once on one platform, one needs to ensure that they
synchronize their state carefully.

4.3.3. Directory Service Because the components of the
WFMS are only loosely coupled, the system needs a direc-
tory service for discovery and coupling of components. En-
tries in a directory service should have a validity time and
describe services and their providers using globally unique
names, they should be searchable across platforms and they
should be reliable: only authorized registration and ma-
nipulation allowed, and unambiguous service descriptions
and a reliable relation to the service provider ensured. The
FIPA Directory Facilitator (DF) meets most of these re-
quirements. The missing security features are not addressed
in this paper. Probably some agreement will be made for the
security of the FIPA DF service. Another possibility is im-
plementing a proprietary secure workflow directory service,
e.g. provided by the WFES agent. In both cases, all partici-
pating agents need to use the provided security functions.

With the CAPA network connection plug-in ACE (see
[21]), agents can search and publish services worldwide,
e.g. within the open agent network openNet (see [19]).

5. Conclusion

The main result is to provide a powerful architecture for
flexible workflow systems along with an approach to dis-
tribute workflows on different locations through fragmenta-
tion. By using high-level Petri nets, i.e. reference nets, a pre-
cise modeling technique is applied to describe workflows
and to generate arbitrary fragments that can be distributed
within a set of workflow management systems. Thus differ-
ent organizations are allowed to cooperate, based on a pre-
cise process model. The concept of agents allows for a flex-

ible, dynamic and autonomous configuration of each work-
flow and platform. Since workflows are encapsulated by
agents, these advantages can be transfered. The disadvan-
tage is the higher complexity of the infrastructure. However,
this is inherent to the requirements on distributed workflow
organization. The more possibilities are provided in a work-
flow management, the more infrastructure has to be pro-
vided. Agents as the basis of workflows have the poten-
tial to fulfill all requirements for a certain implementation
and usage price. What should be noted here are the increas-
ing requirements with respect to distribution and the re-
sulting true concurrency (which is more complex than the
usual interleaving (round-robin) semantics of other model-
ing formalisms). Here the use of reference nets and a tool set
which really supports such concurrency is of high value. To
our knowledge there are no other available frameworks that
cover concurrency and practical usability at the same time
to the same extend on both levels, conceptually and techni-
cally.

Outlook There are several possibilities to extend our work
so far. The current implementation is still not as elaborated
as the conceptual parts are. Here the workload to really meet
the technological / practical requirements has to be consid-
ered. Which parts should be extended will be driven by the
development of a distributed software development environ-
ment. We will integrate RENEW, MULAN, CAPA, the agent
network connection plug-in ACE and the workflow manage-
ment system with our Web service tools to provide a Collab-
orative Integrated Development Environment (CIDE). Here
agent and multi-agent system concepts will play a central
role since the flexibility, openness, autonomy and mobility
will become more and more important.

References

[1] W. v. d. Aalst. Verification of workflow nets. In P. Azéma
and G. Balbo, editors, Application and Theory of Petri Nets
1997, number 1248 in LNCS, pages 407–426, Berlin, 1997.
Springer.

[2] W. v. d. Aalst, A. t. Hofstede, B. Kiepuszewski, and A. P.
Barros. Workflow patterns. Distributed and Parallel
Databases, 14(3):5–51, July 2003.

[3] W. v. d. Aalst, D. Moldt, R. Valk, and F. Wienberg. Enact-
ing Interorganizational Workflows Using Nets in Nets. In
Proceedings of the 1999 Workflow Management Conference,
volume 70, pages 117–136. University of Münster, 1999.

[4] T. Bauer, M. Reichert, and P. Dadam. Intra-subnet load bal-
ancing in distributed workflow management systems. Int. J.
Cooperative Inf. Syst., 12(3):295–324, 2003.

[5] M. B. Blake and H. Gomaa. Object-oriented modeling ap-
proaches to agent-based workflow services. In C. J. P. de Lu-
cena, A. F. Garcia, A. B. Romanovsky, J. Castro, and P. S. C.
Alencar, editors, SELMAS, volume 2940 of LNCS, pages
111–128. Springer, 2003.

48

[6] L. Cabac, D. Moldt, and H. Rölke. A Proposal for Struc-
turing Petri Net-Based Agent Interaction Protocols. In
W. van der Aalst and E. Best, editors, 24nd ICATPN 2003,
Eindhoven, NL, volume 2679, pages 102 – 120, Berlin, 2003.
Springer.

[7] T. Carl. Entwicklung eines agentenbasierten verteil-
ten Workflow-Management-Systems mit Referenznetzen.
Diploma thesis, University of Hamburg, 2004.

[8] S. Christensen and N. D. Hansen. Coloured Petri Nets
Extended with Channels for Synchronous communication.
Technical Report DAIMI PB–390, Computer Science De-
partment, Aarhus University, Apr. 1992.

[9] M. Duvigneau, D. Moldt, and H. Rölke. Concurrent archi-
tecture for a multi-agent platform. In F. Giunchiglia, J. Odell,
and G. Wei, editors, AOSE 2002, Revised Papers and In-
vited Contributions, volume 2585 of LNCS, Berlin, 2003.
Springer.

[10] Foundation for Intelligent Physical Agents. FIPA Agent
Management Specification, 2004. http://www.fipa.
org/specs/fipa00023/.

[11] T. Jacob. Implementierung einer sicheren und rol-
lenbasierten Workflowmanagement-Komponente fr ein
Petrinetzwerkzeug. Diploma thesis, University of Ham-
burg, 2002.

[12] T. Jacob, O. Kummer, and D. Moldt. Persistent Petri Net Ex-
ecution. Petri Net Newsletter, 61:18–26, Oct. 2001.

[13] N. R. Jennings. On agent-based software engineering. Arti-
ficial Intelligence, 117(2):277–296, 2000.

[14] K. Jensen. Coloured Petri Nets: Volume 1; Basic Concepts,
Analysis Methods and Practical Use. EATCS Monographs
on Theoretical Computer Science. Springer-Verlag, Berlin,
1992.

[15] M. Köhler, D. Moldt, and H. Rölke. Modelling mobility and
mobile agents using nets within nets. In W. van der Aalst and
E. Best, editors, 24th ICATPN, volume 2679 of LNCS, pages
121–139. Springer, 2003.

[16] O. Kummer. Introduction to Petri nets and reference nets.
Sozionik Aktuell, 1:1–9, 2001. ISSN 1617-2477.

[17] O. Kummer. Referenznetze. Logos, Berlin, 2002.
[18] K. Lehmann and V. Markwardt. Proposal of an Agent-based

System for Distributed Software Development. In D. Moldt,
editor, Proc of MOCA 2004, pages 65–70, Aarhus, Denmark,
Oct. 2004.

[19] OpenNet project. http://www.x-opennet.org/,
2004.

[20] M. Purvis, B. T. R. Savarimuthu, and M. K. Purvis. Eval-
uation of a multi-agent based workflow management sys-
tem modeled using coloured petri nets. In M. Barley and
N. K. Kasabov, editors, PRIMA, volume 3371 of LNCS,
pages 206–216. Springer, 2004.

[21] C. Reese, M. Duvigneau, M. Köhler, D. Moldt, and H. Rölke.
Agent–based settler game. In Agentcities Agent Technology
Competition, Barcelona, Spain, Feb. 2003.

[22] RENEW – the reference net workshop homepage. URL
http://www.renew.de/.

[23] R. Valk. Petri Nets as Token Objects: An Introduction to Ele-
mentary Object Nets. In J. Desel, editor, 19th ICATPN, num-
ber 1420 in LNCS, Berlin, 1998. Springer.

[24] Workflow Management Coalition. WfMC
workflow reference model. URL
http://www.wfmc.org/standards/model.htm,
2005.

[25] Workflow Management Coalition (WfMC). URL
http://www.wfmc.de/, 2005.

49

OWL-P: A Methodology for Business Process Development∗

Nirmit Desai Ashok U. Mallya Amit K. Chopra Munindar P. Singh
{nvdesai, aumallya, akchopra, singh}@ncsu.edu

Department of Computer Science
North Carolina State University

Abstract

Business process modeling and enactment are notori-
ously complex, especially in open settings where the busi-
ness partners are autonomous, requirements must be con-
tinually finessed, and exceptions frequently arise because
of real-world or organizational problems. Traditional ap-
proaches, which attempt to capture processes as monolithic
flows, have proved inadequate in addressing these chal-
lenges. We propose an agent-based approach for business
process modeling and enactment which is centered around
the concepts of commitment-based agent interaction proto-
cols and policies. A (business) protocol is a modular, public
specification of an interaction among different roles. such
protocols when integrated with the internal business poli-
cies of the participants, yield concrete business processes.
We show how this reusable, refinable, and evolvable ab-
straction simplifies business process design and develop-
ment.

1. Introduction
Unlike traditional business processes, processes in

open, Web-based settings typically involve complex in-
teractions among autonomous, heterogeneous business
partners. Conventionally, business processes are mod-
eled as monolithic workflows, specifying exact steps
for each participant. Because of the exceptions and op-
portunities that arise in open environments, business
relationships cannot be pre-configured to the full de-
tail. Thus, flow-based models are difficult to develop and
maintain in the face of evolving requirements. Further, con-
ventional models do not facilitate flexible actions by the
participants.

This paper proposes an approach for business process
modeling and enactment, which is based on a combination
of protocols and policies. The key idea is to capture mean-
ingful interactions as protocols. Protocols can involve mul-

∗ This research was sponsored by NSF grant DST-0139037 and a
DARPA project.

tiple roles and address specific purposes such as ordering,
payment, shipping, and so on. Protocols are given a seman-
tics in terms of commitments among roles that capture the
essence of the relationship among roles. In order to maxi-
mize participants’ autonomy and to be reusable, protocols
emphasize the essence of the interactions and omit local de-
tails. Such details are supplied by each participant’s poli-
cies. For example, when a protocol allows a participant to
choose from multiple actions, the participant’s policy de-
cides which one to perform. Typically, policies are business
logic to generate and process message contents.

This paper seeks to develop the main techniques needed
to make this promising approach practical. Our contri-
butions include a language and an ontology for proto-
cols called OWL-P, which is coded in the Web Ontology
Language (OWL) [11]. OWL-P describes concepts such
as roles, the messages exchanged between the roles, and
declarative protocol rules. OWL-P compiles into Jess rules
which then can be integrated with the local policies in a
principled manner. Protocols are not only reusable across
business processes but also amenable to abstractions such
as refinement and aggregation [9]. The key benefits of this
approach are (1) a separation of concerns between pro-
tocols and policies in contrast to traditional monolithic
approaches; and (2) reusability of protocol specifications
based on design abstractions such as specialization and ag-
gregation.

1.1. Shortcomings of Traditional Approaches

Consider a supply chain business process where a Cus-
tomer, a Merchant, a Shipper, and a Payment Gateway col-
laborate to fulfill their business goals. Such a process can
be captured via a traditional flow-based approach such as
BPEL [3]. Such a representation would be functionally cor-
rect, but inadequate from the perspectives of open environ-
ments. The following are its shortcomings:

Lack of Semantics. Traditional approaches expose
low-level interfaces, e.g., via WSDL [17], but asso-
ciate no semantics with the participants’ actions. This

50

lack precludes flexible enactment (as needed to han-
dle exceptions) as well as reliable compliance check-
ing. For this reason, we cannot determine if a de-
viation from a specific sequence of steps is signifi-
cant.

Lack of Reusable Components. The local processes of
the partners are not reusable even though the pat-
terns of interaction among the participants might
be. Local processes are monolithic in nature, and
formed by ad hoc intertwining of internal busi-
ness logic and external interactions. Since business
logic is proprietary, local processes of one part-
ner are not usable by another. For instance, if a new
customer were to participate in this SOC environ-
ment, its local process would have to be developed
from scratch.

Organization

Section 2 introduces some key concepts and terminol-
ogy. Section 3 describes our protocol specification language
and its semantics. Section 4 discusses composite protocols
and their construction. Section 5 shows how augmenting
policies with protocols can be used to develop processes.
Section 6 compares our work with relevant research efforts
in the area and Section 7 concludes the paper.

2. Concepts and Terminology

Figure 1 shows our conceptual model for a treatment of
business processes based on protocols and policies. Boxed
rectangles are abstract entities (interfaces), which must be
combined with business policies to yield concrete entities
that can be fielded in a running system (rounded rectangles).
Abstract entities should be published, shared, and reused
among the process developers. They correspond to service
specifications in SOC terminology. We specify a business
protocol using rules termed protocol logic that specify the
interactions of the participating roles. Roles are abstract,
and are adopted by agents to enable concrete computations.
Whereas the protocol logic specifies the protocol from the
global perspective, a role skeleton specifies the protocol
from the perspective of the corresponding participant role.
Thus, each role skeleton defines the behavior of the respec-
tive role in the given protocol.

When an agent needs to participate in multiple proto-
cols, a composite skeleton can be constructed by combin-
ing the protocols according to some composition constraints
and deriving the role skeleton. For example, in a supply
chain process, a supplier would be a merchant when inter-
acting with a retailer in a trading protocol and would be an
item-sender in a shipping protocol for sending goods to the
retailer. A composite skeleton for such a supplier could be

Protocol
Logic

1
2+

1
1

specified by

involves

1
2+

derives

1
1

defines

Agent

adopts
1+

1+

Local
Process

1

1
enacts

Business
Process

aggregation
of

1

2+

1

1+

com
position of

1

1 Implementation of

1

1+

Im
plem

entation of

Business
Protocol

Role

Role
Skeleton

Abstract entity

Concrete entity

Composite
Skeleton

co
up

le
s

1

2+

Business
Logic

1
1

consults

1
1

stipulates

Figure 1. Conceptual model

composed by combining trading and shipping protocols and
then deriving the role skeleton for item-sender/merchant
role. The resultant composite skeleton could also be pub-
lished and then reused for developing local processes of
other suppliers.

An agent’s private policies or business logic are de-
scribed via rules. The local process of an agent is an exe-
cutable realization of a composite skeleton obtained by in-
tegration of the protocol logic of the composite skeleton and
the business logic of the agent. A business process is the ag-
gregation of the local processes of all the agents participat-
ing in it. Conversely, a business process is an implementa-
tion of the constituent business protocols.

The concept of commitments has been proposed to cap-
ture a variety of contractual relationships, while allowing
manipulations such as delegation and assignment, which are
essential for open systems [14]. For example, a customer’s
agreement to pay the price for the item after it is delivered is
a commitment that the customer has towards the merchant.
Violations of commitments can be detected; in some impor-
tant circumstances, violators can be penalized.

Definition 1 A commitment C(x, y, p) denotes that the
agent x is responsible to the agent y for bringing about the
condition p.

Commitments can also be conditional, denoted by
CC(x, y, p, q), meaning that x is committed to y to

51

bring about q if p holds where, q is called the precondi-
tion of the commitment. The following are some of the
conventional operations defined on commitments [14] em-
ployed in this paper.

1. CREATE(x, c) establishes the commitment c in the sys-
tem. This can only be performed by c’s debtor x.

2. CANCEL(x, c) cancels the commitment c. This can
only be performed by c’s debtor x. Generally, cancella-
tion is compensated by making another commitment.

3. Protocol Specification

A business protocol is a specification of the allowed in-
teractions among two or more participant roles. The specifi-
cation focuses on the interactions and their semantics. What
does it mean to send a certain message to a business part-
ner? What is expected of the participants wishing to com-
ply to a business protocol? How are the protocols specified?
These are the questions we address in this section.

3.1. OWL-P: OWL for Protocols

OWL-P is an ontology based on OWL for specifying
protocols; it functions as a schema or language for proto-
cols. The main computational aspects of protocols are spec-
ified using rules. We employ the Semantic Web Rule Lan-
guage (SWRL) [8] for defining rules. SWRL allows us to
specify implication rules over entities defined as OWL-P
instances. The availability of tools such as Protégé [12] is a
motivation for grounding our approach in OWL.

Protocol Role

2..* 1

hasRole

Message

*

1

involvesMessage

1

1

hasSender
1

1

hasReceiver

Commitment

1

1

hasCreditor

1

1

hasDebtor

Rule

*

1

dictates Knowledge Base

Proposition

1
1 consults

1
* contains

1 1

represents

Slot * 1 modifies
1

*

hasParameter

*
1

hasSlot

ExternalSlot NativeSlot

Figure 2. Basic OWL-P ontology

The important OWL-P elements and their properties are
shown in Figure 2. An entity with a little rectangle repre-
sents the domain of the corresponding property. Many of
the properties are self-explanatory and reflect the concep-
tual model introduced in Section 2.

Slots are analogous to data variables. A slot is said to be
defined when it is assigned a value and it said to be used
when its value is assigned to another slot. A slot in a pro-
tocol may be assigned a value produced by another proto-
col and hence be represented as an External Slot. An ex-
ternal slot is untyped until it is given the type of the exter-
nal value to which it is bound. By contrast, a Native Slot is
typed and defined inside the protocol. A Protocol dictates
several rules and consults a Knowledge Base. A knowledge
base consists of a set of Propositions. A proposition in a
knowledge base may correspond to a message, active com-
mitments, or other domain specific propositions.

Figure 3 shows a protocol for ordering goods (along
with others, to which we refer later). For readabil-
ity, a leading and trailing * is placed around external slot
names, as in *amount* and *itemID*. The customer re-
quests a quote for an item, to which the merchant responds
by providing a quote. Here, a commitment is created pro-
viding semantics for the message. The commitment means
that the merchant guarantees receipt of the item if the cus-
tomer pays the quoted price. The customer can either ac-
cept the quote or reject it (not shown). Again, the semantics
of acceptance is given by the creation of another com-
mitment from the customer to pay the quoted price if it
receives the requested item. Below is the rule for send-
ing quote message in the Order protocol in Figure 3:

contains(KB, reqForQuoteProp(?itemID)) ⇒
send(M, quote(?itemID, ?itemPrice)) ∧
createCommitment(M,CC(M,C,pay(?itemPrice),goods(?itemID)))

Every message msg is represented in the knowl-
edge base as msgProp. These protocol rules are ab-
stract and they need to be augmented with the business
logic to assign values to the message contents. OWL-P dic-
tates that the rules having undefined native slots must be
augmented with the business logic that produces such val-
ues. Operational semantics of the predicates are given
in the next section. The OWL-P ontology and proto-
col instance examples in their RDF/XML serializa-
tion, and corresponding Protégé projects are available at
http://www4.ncsu.edu/∼nvdesai/owl/.

3.2. Operational Semantics

Protocols are specified from the global perspective with
an assumption of an abstract global knowledge base and
the rules are assumed to be forward-chained. OWL-P de-
fines several property predicates with operational seman-
tics. Table 1 lists the semantics for such property predicates
of OWL-P. A proposition cannot be retracted from a knowl-
edge base. In the forthcoming examples, we may omit the
OWL-P properties, e.g., contains, send, createCommitment

52

Payer Payee Gateway

paymentInfo(cardNO, expDate)

authReq(cardNO, expDate, amount)

authOK(cardNO, expDate, amount, tokenNO)

receipt(amount)

captured(amount)

captureReq(token)

CC(payer, payee, authNOKProp(cardNO,
expDate, *amount*), pay(fineAmount))

CC(gateway, payee, captureReqProp
(tokenNO), capturedProp(amount))

Customer Merchant

reqForQuote(itemID)

quote(itemID, itemPrice)

CC(m, c, pay(itemPrice),
goods(itemID))

acceptQuote(itemID, itemPrice)

CC(c, m, goods(itemID),
pay(itemPrice))

PAYMENT PROTOCOL ORDER PROTOCOL

Receiver Sender Shipper
shipInfo(shipAddress)

reqForShipOptions(shipAddress, *itemID*)

shipperOptionQuote(shipOption, shipperQuote)

senderOptionQuote(shipOption, senderQuote)

chooseOption(shipOption, senderQuote)

shipment(itemID)

CC(sh, se, payToShipperProp(shipperQuote),
shipmentProp(itemID))

CC(r, se, shipmentProp(itemID),
payToSenderProp(senderQuote))

CC(se, r, payToSenderProp
(senderQuote), shipmentProp(itemID))

shipOrder(itemID, shipOption, shipAddress, pickAddress)

CC(se, sh, shipmentProp(itemID),
payToShipperProp(shipperQuote))

SHIPPING PROTOCOL COMPOSITION AXIOMS
1: roleDefinition(define:Purchase.customer, unify:Order.customer,
 unify:Shipping.receiver, unify:Payment.payer)
2: roleDefinition(define:Purchase.merchant, unify:Order.merchant,
 unify:Shipping.sender, unify:Payment.payee)
3: dataFlow(definition:Order.itemID, usage:Shipping.itemID)
4: dataFlow(definition:Order.itemPrice, usage:Payment.amount)
5: implication(antecedent:Shipping.shipmentProp,
 consequent:Order.goods)
6: implication(antecedent:Payment.authOKProp,
 consequent:Order.pay)
7: eventOrder(earlier:Payment.authOKProp,
 later:Shipping.shipOrderProp)

Figure 3. Example: Order, Shipping, and Payment protocols and their composition

Predicate Domain Range Context Meaning
contains KnowledgeBase Proposition Body Proposition ∈ KnowledgeBase ?
assert Proposition KnowledgeBase Head KnowledgeBase ← KnowledgeBase ∪ Proposition
send Role Message Head Asynchronous send to the receiver

assert(KnowledgeBase, MessageProp)
receive Role Message Head Asynchronous receive from the sender

assert(KnowledgeBase, MessageProp)
createCommitment Role Commitment Head assert(Knowledgebase, CommitmentProp)

Table 1. Operational semantics of protocol rules

when the meaning is clear. Figure 4 shows an inside view
of an agent to demonstrate how the rules govern the inter-
actions.

4. Composite Protocols

The previous section described how to specify individ-
ual protocols. To meet the requirements of business pro-

cesses, it is necessary to compose them from simpler proto-
cols. Now we show how protocols can be composed.

Conceptually, each component protocol achieves a busi-
ness goal. Thus, several such protocols composed together
would achieve the goals of the larger business process.
Composition also enables refinements of protocols with ad-
ditional rules. The ability to compose protocols would al-
low significant reuse of published protocols. How can we

53

Rule Base

Protocol Rules

Policy
Rules

Local domain

Public domain Messages

To and from
other participants

Knowledge Base

Messaging Interface

Business Logic
(Human Inputs)

(2)(8)proposition /
commitment

(4)invoke

(3)activate

(7) m
 e s s a g e

(6)activate

(5)policy

(1) m
 e s s a g e

Figure 4. Agent architecture: protocol and
policy interplay

construct such composite protocols? How do they facilitate
reusability? How do they allow refinements of protocols?
This section answers these questions.

4.1. Construction of Composite Protocols

Protocol CompositeProtocol CompositionProfile

1 1
definedBy 2..* 1

combines

CompositionAxiom

RoleDefinition

DataFlow EventOrder

Implication

1

*
stipulates

Proposition

1

1

body

Role

1 1..*
unify 1

1

head

ExternalSlot Slot Message

1

1

usage

1

1

definition
1

1

earlier

1

1

later

1

1

define

1 2..*
composedOf

Figure 5. OWL-P composition classes and
properties

Figure 5 describes the OWL-P classes and properties that
deal with the problem of protocol composition. A Compos-
ite Protocol is an aggregation of component protocols and
is defined by a Composition Profile. A composition profile
describes the combination of two or more protocols by stip-
ulating several Composition Axioms. Composition axioms

define relationships among the protocols being combined.
The operational semantics of an axiom specifies the way in
which the relationships affect the composite protocol. Fig-
ure 3 depicts an Order protocol, a Shipping protocol, a Pay-
ment protocol, and a set of composition axiom instances
stating the relationships among them.

A Role Definition axiom states which of the roles in the
component protocols are played by the same agent, and de-
fines the name of the unified (coalesced) role in the compos-
ite protocol. In the example, the first axiom states that the
roles of a customer in Order, a payer in Payment, and a re-
ceiver in Shipping protocol are played by an agent who will
play the role of a customer in the Purchase protocol.

A Data Flow axiom states a data-flow dependency
among the protocols. A component protocol might be us-
ing a slot defined by another component protocol, possi-
bly with a different name. Since a slot can be defined only
once, and native slots must be defined inside the proto-
col, they cannot use a value defined by another protocol.
Hence, the range of the usage property must be an ex-
ternal slot. In the example, the fourth axiom states that
the slot amount in the Payment protocol gets its value
from the slot itemPrice in the Order protocol. Such a de-
pendency exerts an ordering among the rule defining the
slot and all the rules using it: none of the the rules us-
ing the slot can fire before the slot is assigned a value by
the defining rule.

An Implication axiom states that an assertion of propo-
sition X in a component protocol implies an assertion of
proposition Y in another component protocol. For example,
the sixth axiom states that an assertion of authOKProp in
the Payment protocol means an assertion of pay in the Or-
der protocol. This can be easily achieved by adding an im-
plication rule to the composite rulebase.

Unlike the DataFlow axiom, an EventOrder axiom ex-
plicitly specifies an ordering among the messages of the
component protocols. For example, the seventh axiom states
that an authOK message from the payment gateway must
be received before a shipOrder message is sent to the ship-
per. This can be achieved by making the rule for the later
event depend on the rule for the earlier event.

Operational semantics of these axioms are given in [7].
Composition axioms have to be specified by a designer.
There might be several ways of composing the component
protocols yielding different composite protocols. As a spe-
cial case, if the component protocols are completely in-
dependent of each other, no axioms need be specified and
their OWL-P specifications can be simply aggregated yield-
ing the OWL-P specification of the composite protocol. If
deemed necessary, more subclasses of composition axiom
can be defined along with their properties and operational
semantics. A composite protocol exposes its composition-
Profile and possesses all the properties of the component

54

protocols. Hence, a composite protocol itself can be a com-
ponent protocol in some other composition profile instance.
How can we determine whether additional component pro-
tocols are needed? To answer this question, we define closed
and open protocols.

Definition 2 A protocol is closed if it has no external slots,
and all the commitments created in the protocol can be dis-
charged by the protocol.

A protocol is open if it is not closed. A designer’s goal is to
obtain a closed protocol by repeated applications of compo-
sition. Observe that in Figure 3, the Order protocol is open
as its rules do not assert propositions pay and goods nec-
essary for discharging the commitments created. The Pay-
ment, Shipping, and Purchase protocols are also open ac-
cording to the definition. A designer would choose pro-
tocols that assert these missing propositions and combine
them with the Purchase protocol to obtain a closed compos-
ite protocol.

4.2. Refinement by Composition

Business protocols evolve continually as new require-
ments and new features routinely arise. Therefore, the abil-
ity to systematically refine protocols is valuable. In the
composite Purchase protocol, consider a situation in which
the customer has already paid the merchant for the goods
and hence the commitment C(m,c,goods(itemID) is active.
However, while trying to order the shipment, if a fire de-
stroys the merchant’s warehouse, the merchant will not be
able to honor its commitment to ship the item. How can such
exceptions be handled? The protocol could detect the vio-
lation due to an unfulfilled commitment, and the merchant
could be held legally responsible. A more flexible solution
would be to allow the merchant to refund money and re-
lease it from the commitment, provided the customer agrees
to it. We can achieve this flexibility by combining the pur-
chase protocol with an adjustment protocol as discussed in
[7].

Similar protocols for assigning, delegating, and releas-
ing commitments can be defined. Adding new functionali-
ties would involve composition of a set of rules for the new
requirements with the original protocol.

5. Processes

As described in Section 2, a process is an aggregation
of the local processes of participating agents. However, an
OWL-P specification of a protocol is a model of the in-
teraction from a global perspective. To construct the local
process of a participant, we need to derive the participant’s
view of the protocol, called its role skeleton. Section 5.1
describes the generation of role skeletons from an OWL-P
specification.

5.1. Role Skeletons

A role skeleton is one role’s view of the protocol. Here,
we provide the intuition behind generating role skeletons
from an OWL-P protocol specification. The complete algo-
rithm is given in [7]. OWL-P describes a protocol from the
global perspective where the propositions are added to the
global state and there are no distributed sites. As in all dis-
tributed systems, the state of a protocol as seen by a role
is changed only when a message is sent or received by
that role. This observation forms the basis for deriving role
skeletons.

As an example, we show a rule in the Shipping proto-
col in Figure 3, and the same rule in the generated skele-
ton of the receiver. As the receiver would not be aware of
the previous exchanges between the sender and the ship-
per, the antecedent of the rule for receiving senderOption-
Quote should be adjusted as shown below.

Protocol Rule
shipperOptionQuoteProp(.,.) ⇒ senderOptionQuote(.,.) ∧
CC(Se,Re,payToSenderProp(.),shipmentProp(.))

Receiver Skeleton Rule
shipInfoProp(?shipAddress) ⇒ receive(senderOptionQuote(.,.))
∧ CC(Se,Re,payToSenderProp(.),shipmentProp(.))

5.2. Policies

Generation of a role skeleton is not enough to ob-
tain a local process of a participant. As we mentioned
earlier, some of the rules of the protocols may be ab-
stract, meaning that values of some of the native slots in
the rule must be produced by the role’s business logic.
Hence, a role skeleton must be augmented with the busi-
ness logic to obtain a local process. How can we de-
termine whether an augmented role skeleton is a local
process? To answer this question, we first define con-
crete and abstract role skeletons, and a local process. A
role skeleton is concrete if all of its native slots are de-
fined. A role skeleton is abstract if it is not concrete. A
local process is a role skeleton that is concrete and de-
rived from a closed protocol.

startProp ⇒ receive(C, reqForQuote(?itemID))

reqForQuoteProp(?itemID) ∧ quotePolicy(?itemPrice) ⇒
quote(?itemID, ?itemPrice) ∧
CC(M, C, pay(?itemPrice), goods(?itemID))

quoteProp(?itemID, ?itemPrice) ⇒
receive(C, acceptQuote(?itemID, ?itemPrice)) ∧

55

CC(C, M, goods(?itemID), pay(?itemPrice))

reqForQuoteProp(?itemID) ⇒
call(policyDecider, quotePolicy(?itemID))

We propose that the business logic be specified in terms
of the local policy rules of the agents. The skeleton of the
merchant role in the Order protocol augmented with the pol-
icy rules of the merchant agent is shown above. The last rule
is the policy rule which calls a business logic operation to
decide how much to quote. The operation would assert the
quotePolicy proposition and that would activate the second
protocol rule. Observe that this pattern of augmenting pol-
icy rules is general and will be applied to the rules where the
agent has to make a decision and respond. It would also as-
sign a value to native slots that are not defined.

5.3. Usage

Figure 6 summarizes our methodology with a scenario
involving a customer interested in purchasing goods on-
line. Software designers design protocols and register them
with protocol repositories. They may also construct com-
posite protocols and reuse the existing component proto-
cols from the repository. A merchant wishing to sell goods
online looks up the repository for a suitable Purchase pro-
tocol. It generates the skeleton for the merchant role, aug-
ments it with its local policies, and deploys the result as a
service. The service profile for this service would contain
an OWL-P description of the Purchase protocol. The ser-
vice can be registered with a UDDI registry. If a customer
wishes to buy goods online, it searches the UDDI registry,
finds the merchant, and acquires the OWL-P skeleton for
the customer role from the merchant. The customer enacts
its local process by augmenting the skeletons with its local
policies and starts interacting with the merchant. We have
developed tools to support these development scenarios and
a prototype implementation based on the agent architecture
of Figure 4 whose details are given in [7]. Note that we pro-
pose only a methodology for development and there might
be other issues to be resolved for realizing an e-commerce
enterprise.

6. Related Work

Several areas of research are relevant to our work. We
discuss each of them briefly and highlight the differences.

Composition BPEL [3] is a language designed to specify
the static composition of Web services. However, it mixes
the interaction activities with the business logic making it
unsuitable for reuse. OWL-S [6], which includes a process
model for Web services uses semantic annotations to fa-
cilitate dynamic composition. A composed service is pro-

Order
OWL-P

Shipping
OWL-P

Payment
OWL-P

Axioms

Software Designer

Composer

Purchase
OWL-P

Local
Policy

Protocol
Repository

specify

register

MERCHANT

Merchant
Skeleton
OWL-P

Merchant
Local

Process

+

UDDI
Repository

C
U
S
T
O
M
E
R Search Merchant

Merchant Port

1

2

3

4

5

lookup

6

7

Purchase.Customer Skeleton

10

8

9

Customer
Skeleton
OWL-P

Local
Policy +

Customer Local
Process

register

11

Figure 6. Usage scenario

duced at runtime based on constraints. While dynamic ser-
vice composition has some advantages, it assumes a perfect
markup of the services being composed. Dynamic compo-
sition in OWL-S involves ontological matching between in-
puts and outputs. Such a matching might be difficult to ob-
tain automatically given the heterogeneity of the web. For
this reason, we do not emphasize dynamic service compo-
sition. Our goal is to provide a human designer with tools to
facilitate service composition. Unlike BPEL, which speci-
fies the internal orchestration of services, WSCI [16] spec-
ifies the conversational behavior of a service using control
flow constructs. However, these specifications lack a seman-
tics, which makes them difficult to compose and reuse.

Several other approaches aim to solve the service com-
position problem by emphasizing formal specifications to
achieve verifiability. Solanki et al.[15] employ interval tem-
poral logic to specify and verify ongoing behavior of a
composed service. Their use of “assumption” and “commit-
ment” (different meaning than here) assertions allows better
compositionality. Gerede et al.[5] treat services as activity-
based finite automata to study the decidability of compos-
ability and existence of a lookahead delegator given a set of
existing services. However, these approaches consider nei-
ther the autonomy of the partners, nor the flexibility of com-
position.

Software Engineering Our methodology advocates and
enables reuse of protocols as building blocks of business
processes. Protocols can not only be composed, they can
also be systematically refined to yield more robust proto-
cols. Mallya and Singh [9] treat these concepts formally.
The MIT Process Handbook [10], in a similar vein, cat-
alogues different kinds of business processes in a hierar-
chy. For example, sell is a generic business process. It can
be qualified by sell what, sell to who, and so on. Our no-
tion of a protocol hierarchy bears similarity with the Hand-

56

book. RosettaNet [13] is similar to our approach in that it
centers around publishing protocols and designing the busi-
ness processes around them. However, it is currently limited
to two-party request-response interactions called Partner In-
terface Processes (PIPs) and more importantly, PIPs lacks a
formal semantics.

Agent-Oriented software methodologies aim to apply
software engineering principles in the agent context e.g.
Gaia, KAOS, MaSE, and SADDE [2]. Tropos [4] differs
from these in that it includes an early requirements stage in
the process. Gaia [18] differs from others in that it describes
roles in the software system being developed and identifies
processes that they are involved in as well as safety and live-
ness conditions for the processes. It incorporates protocols
under the interaction model and can be used with commit-
ment protocols. Baı̈na et al. [1] advocate a model-driven
Web service development approach to ensure compliance
between a service’s implementation and its external pro-
tocol specifications. Our work differs from these in that it
is aimed at achieving protocol re-usability by separation of
protocols and policies and it addresses the problem of pro-
tocol compositions.

7. Conclusions

We presented an approach for designing processes that
recognizes the fundamental interactive nature of open envi-
ronments where the autonomy of the participants must be
preserved. Commitments provide the basis for a semantics
of the actions of the participants, thereby enabling the de-
tection of violations. The significance of this work derives
from the importance of processes in modern business prac-
tice. With over 100 limited business protocols have been
defined [13], this approach will enable the development and
usage of an ever-increasing set of protocols for critical busi-
ness functions. We demonstrated the practicality of our ap-
proach by embedding it in an ontology and language for
specifying protocols. Not only is this approach conducive to
reuse, refinement, and aggregation but it has also been im-
plemented in a prototype tool. It would be ineteresting to
see theoretical foundations of this work in the process alge-
bra. It would allow one to establish properties of the proto-
cols and relationships among them.

References

[1] K. Baı̈na, B. Benatallah, F. Casati, and F. Toumani. Model-
driven web service development. In Proceedings of Ad-
vanced Information Systems Engineering: 16th International
Conference, CAiSE, June 2004.

[2] F. Bergenti, M.-P. Gleizes, and F. Zambonelli, editors.
Methodologies and Software Engineering for Agent Systems.
Kluwer, 2004.

[3] BPEL. Business process execution language for
web services, version 1.1, May 2003. www-
106.ibm.com/developerworks/webservices/library/ws-bpel.

[4] P. Bresciani, A. Perini, P. Giorgini, F. Guinchiglia, and J. My-
lopolous. Tropos: An agent-oriented software development
methodology. Journal of Autonomous Agents and Multi-
Agent Systems, 8(3):203–236, May 2004.

[5] Çaǧdaş Evren Gerede, R. Hull, O. Ibarra, and J. Su. Auto-
mated composition of e-services: Lookaheads. In Proceed-
ings of the International Conference on Service Oriented
Computing, 2004.

[6] DAML-S. DAML-S: Web service description for the seman-
tic Web. In Proceedings of the 1st International Seman-
tic Web Conference (ISWC), July 2002. Authored by the
DAML Services Coalition, which consists of (alphabetically)
Anupriya Ankolekar, Mark Burstein, Jerry R. Hobbs, Ora
Lassila, David L. Martin, Drew McDermott, Sheila A. McIl-
raith, Srini Narayanan, Massimo Paolucci, Terry R. Payne
and Katia Sycara.

[7] N. Desai, A. U. Mallya, A. K. Chopra, and M. P. Singh.
Processes = protocols + policies, a methodology for busi-
ness process development. Technical report, Department of
Computer Science. North Carolina State University, 2004.
TR2004-34.

[8] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, and M. Dean. SWRL: A semantic web rule
language combining OWL and RuleML, May, 2004 (W3C
Submission). http://www.w3.org/Submission/2004/SUBM-
SWRL-20040521/.

[9] A. U. Mallya and M. P. Singh. A semantic approach for
designing commitment protocols. In Proceedings of the
AAMAS-04 Workshop on Agent Communication, July 2004.
To appear.

[10] T. W. Malone, K. Crowston, and G. A. Herman, editors. Or-
ganizing Business Knowledge: The MIT Process Handbook.
MIT Press, Cambridge, MA, 2003.

[11] OWL. Web ontology language, Feb 2004.
http://www.w3.org/TR/2004/REC-owl-features-20040210/.

[12] Protégé. The protégé ontology editor and knowledge acqui-
sition system, 2004. http://protege.stanford.edu/.

[13] RosettaNet. Home page, 1998. www.rosettanet.org.
[14] M. P. Singh. An ontology for commitments in multiagent

systems: Toward a unification of normative concepts. Artifi-
cial Intelligence and Law, 7:97–113, 1999.

[15] M. Solanki, A. Cau, and H. Zedan. Augmenting semantic
web service descriptions with compositional specification.
In Proceedings of the International World Wide Web Con-
ference, pages 544–552, 2004.

[16] WSCI. Web service choreography interface 1.0, July 2002.
wwws.sun.com/ software/ xml/ developers/ wsci/ wsci-spec-
10.pdf.

[17] WSDL. Web Services Description Language, 2002.
http://www.w3.org/TR/wsdl.

[18] F. Zambonelli, N. R. Jennings, and M. Wooldridge. Develop-
ing multiagent systems: The gaia methodology. ACM Trans-
actions on Software Engineering Methodology, 12(3):317–
370, 2003.

57

 58

An Ontology Support for Semantic Aware Agents

Michele Tomaiuolo, Paola Turci, Federico Bergenti, Agostino Poggi
Università degli Studi di Parma

Dipartimento di Ingegneria dell’Informazione
Viale delle Scienze, 181A – 43100 – Parma

{tomamic, turci, bergenti, poggi}@ce.unipr.it

Abstract

One of the most important challenges in agent
research is the realization of truly semantic aware
agents, i.e., agents that are able to interoperate in a
semantic way as well as to produce and consume
semantically annotated information and services. In
order to autonomously achieve these strategic and
ambitious objectives, agents should be enhanced with
suitable tools and mechanisms.

In this paper we concentrate on what we consider the
central issue when moving towards the vision of
semantic multi-agent systems: the management and
exploitation of OWL ontologies. In particular, we
present a two-level approach, which copes with both the
issues of managing complex ontologies and of providing
ontology management support to lightweight agents.
The key feature that distinguishes our approach from
others is the fact that a light ontology support is
embedded in each agent whereas one or more dedicated
agents, acting as ontology servers, provide a more
expressive and powerful ontology support to the agents
that need it.

1 Introduction

The work presented in this paper is an attempt to
bridge two co-existing realties: Semantic Web and
Multi-Agent Systems. Semantic aware agents will be
able to interoperate in a semantic way as well as to
produce and consume semantically annotated
information and services, enabling automated business
transactions. To achieve this goal, researchers can take
advantage of semantic Web technologies and, in
particular, of OWL and its related software tools.

In this paper we focus on what we consider the
central theme when moving towards the vision of
semantic multi-agent systems: an ontology management
support. Due to the heterogeneity of resources available
and roles played by different agents of a system, a
one-level approach with the aim of being omni
comprehensive seems not to be feasible. In our opinion,
a good compromise is represented by a two-level
approach: a light ontology support embedded in each
agent and one or more dedicated agents, called ontology
servers, providing a more expressive and powerful

ontology support to the agents of the systems
In the next section we examine the rationale of our

choice of embedding a light ontology support in each
agent of a multi-agent system. Agents refer to this
ontology support when expressing the content of ACL
messages, e.g., when expressing the concepts of the
domain and the relationships that hold among them.
Section 3 describes the library that we have realized to
provide agents with the aforementioned two-level
ontology management support. Finally, section 4 gives
some concluding remarks and presents our future
research directions on ontology management in
multi-agent systems.

2 A Perspective on Object-Oriented vs.
OWL DL Model

The scenario in which we situate our research is
characterized by different domain knowledge modelling
techniques and by different needs. On one hand there is
the semantic Web and OWL [13], the most recent
development in standard ontology languages. On the
other hand, the popularity of the Java language for the
development of multi-agent systems pushes the need of
having an ontology representation more in line with the
object-oriented data model.

The idea behind our two-level approach originates
from the awareness that agents seldom need to deal with
the whole complexity of a semantically annotated Web.
Our objective is hence to cut off this complexity and
provide each agent with simple artefacts to access
structured information. These simple artefacts are based
on the Java technology.

At this point a crucial question arises: is the
semantics implied by the object-oriented paradigm
powerful enough? A comparison between the two
models (object oriented data model, i.e., the Java data
model, and OWL DL) is compelling in order to
understand similarities and differences, and furthermore
to evaluate the feasibility of using an object-oriented
representation of the ontology in some specific cases.
As a matter of fact, the language used to build an
ontology influences the kind of details that one can
express or takes into consideration.

Restricting only to the semantics of the object
oriented data model, i.e., without considering the

 59

possibility of defining a meta-model, what we are able
to express is a taxonomy among classes1.

Briefly, we can rephrase the object-oriented data
model as follows. An instance of a class refers to an
object of the corresponding class. Attributes are part of
a class declaration. Objects are associated with attribute
values describing properties of the object. An attribute
has a name and a type specifying the domain of attribute
values. All attributes of a class have distinct names.
Attributes with the same name may, however, appear in
different classes that are not related by generalization.
Methods are part of a class definition and they are used
to specify the behaviour and evolution of objects2. A
generalization is a taxonomic relationship between two
classes. This relationship specializes a general class into
a more specific class. Generalization relationships form
a hierarchy over the set of classes.

As far as OWL is concerned, it provides three
increasingly expressive sublanguages designed for use
by specific communities of implementers and users.
Here we focus mainly on OWL DL (called simply OWL
in the following), based on SHIQ Description Logics.
OWL benefits from years of DL research and it can rely
on a well defined semantics, known reasoning
algorithms and highly optimised implemented
reasoners.

OWL, as the majority of conceptual models, relies
on an object centred view of the world. It allows three
types of entities: concepts, which describe general
concepts of things in the domain and they are usually
represented as sets; individuals, which are objects in the
domain, and properties, which are relations between
individuals.

At first glance OWL looks like an object-oriented
data model. Indeed, they are both based on the notion of
class: in the object oriented data model, a class provides
a common description for a set of objects sharing the
same properties; in OWL, the extent of a class is a set of
individuals.

Behind this resemblance, there is however a
fundamental and significant difference between the two
approaches, centred on the notion of property.

Individual attributes and relationships among
individuals in OWL are called properties. The property
notion appears superficially to be the same as the
attribute/component in the object-oriented model. But,
looking deeply to the DL semantics, on which OWL DL
is based, we can notice that the two notions are fairly
different. Formally [5], considering an interpretation Ι
that consist of a set ∆I (the domain of the interpretation)
not empty and an interpretation function .I, to every
atomic concept A is assigned a set A I⊆∆I and to every
atomic role R a binary relation R⊆∆I×∆I. By means of
the semantics of terminological axioms, we can make

1 We focus on the semantics of the so called “class-based” data

model.
2 The dynamic properties of the model are not dealt with in this paper,

focused on the structural aspects, even if they constitute an
important part of the model.

statements about how concepts and even roles are
related to each other (e.g. RI⊆SI inclusion relationship
between two roles). What is clear is that roles in DL,
and therefore OWL DL properties, are first-class
modelling elements. Most of the information about the
state of the world is captured in OWL by the
interrelations between individuals. In other words, data
are grouped around properties. For instance, all data
regarding a given individual would usually be spread
among different relations, each describing different
properties of the same individual.

Differently, the object-oriented representation relies
on the intentional notion of class, as an abstract data
type (partially or fully) implemented [11], and on the
extensional notion of object identifier. An object is
strictly related and characterized by its own features
including attributes and methods. In other words, data
are grouped around objects, thought as a collection of
attributes/components.

As a consequence, in OWL it is possible to state
assertions on properties that have no equivalent in the
object oriented semantics. Properties represent without
any doubt one of the most problematic differences
between OWL and object-oriented data models.

To conclude, we can say that grounding the
conceptual space of the ontological domain to a
programming language such as Java has several obvious
advantages but also some limitations. What we intend to
do in next sub-section is an analysis of the weaknesses
of the object-oriented representation compared to OWL,
and to verify if its expressive power is powerful enough
to capture the semantics of the knowledge base of
agents. In this study, we take into consideration that
agents do not often need to face the computational
complexity of performing inferences on large,
distributed information sources, rather they often simply
need to produce and validate messages that refer to
concepts of a given ontology.

2.1 Mapping OWL to Java

During the past years several research work was
devoted to deal with the comparison between OWL and
UML [1,6]. Among these, some considered the mapping
related to a particular object-oriented programming
language: Java. Focusing on these, we can essentially
identify two major directions followed by the research
community in order to express the OWL semantics
using the Java language.
1. The definition of a meta-model that closely reflect

the OWL syntax and semantics. Examples are the
modelling APIs of Jena [4,9] and OWL API [3,12].
The latter consists of a high-level programmatic
interface for accessing and manipulating OWL
ontologies. Its aim is implementing a highly
reusable component suitable for applications like
editors, annotation tools and query agents.

2. The use of the Java Beans API [10] to realize a
complete mapping between the two meta-models.
In particular, to cope with the central issue, i.e., the

 60

property-preserving transformation, [10] defines
suitable PropertyChecker classes in order to
support the semantics of the property axioms and
restrictions. However, in our opinion, this approach
lacks an explicit meta-model and it lacks the
corresponding explicit information. Moreover, it
cannot be supported by a reasoner because of the
impracticality of implementing one.

Our approach differs from those listed above since it
aims at offering a two-level support: the most powerful
one is based on Jena, the other is based on the object-
oriented semantics.

When establishing a correspondence between two
models it is important to understand what is the purpose
of the mapping. For example, the aim of having a full
mapping and preserving the semantics is too strong in
our case. We can relax this constraint and we can be
satisfied with a partial mapping. This partial mapping is
required only to be consistent in the sense that it does
not preserve semantics but only semantic equivalence
[2]. This means that there is a one-to-one
correspondence between instances of one model and the
instances of the other model that preserves relationships
between instances. This let us use, e.g., renaming and
redundancy in order to achieve this goal, like in the use
of interfaces in Java in order to express the multiple
inheritance.

For the sake of clarity and in order to avoid a
lengthy dissertation, in the following we consider only
the more salient aspects of the mapping, analysing
commonalities as well as dissimilarities, and ending, in
the successive sub-section, by delineating the
application sphere of our approach.

Every OWL class is mapped into a Java interface
containing the accessor method declarations (getters and
setters) for properties of that class (properties whose
domain is specified as this class). Then, for each
interface, a Java class is generated, implementing the
interface. Creating an interface and then separately
implementing Java class for each ontology class is
necessary to overcome the single-inheritance limitation
that applies to Java classes3. Each interface, instead, can
extend an arbitrary number of parent interfaces. The
corresponding class is eventually obliged to provide an
implementation of all accessor methods defined by each
of the directly and indirectly implemented interfaces.

In OWL there is a distinction between named classes
(i.e., primitive concepts), for which instances can only
be declared explicitly, and defined classes (i.e., defined
concepts), which specify necessary and sufficient
conditions for membership. Java does not support this
semantics and so only primitive concepts can be
defined. In the following we refer only to named
classes.

Individuals in OWL may be an instance of multiple
classes, without one being necessarily a subclass of
another. This is in contrast with object-oriented model:

3 The Java generalization involves also the behavioural aspects and so

it is semantically different from the OWL subClassOf property. This
mapping nevertheless preserves semantic equivalence.

an object could get the properties of two classes only by
means of a third one which has both of them in its
ancestors. A workaround is thus to create a special
subclass for this notion.

Considering the terminological axioms used to
express how classes are related to each other, the only
one that has an equivalent semantics in Java is the OWL
synopsis intersectionOf (mapped as an interface which
implements two interfaces). The unionOf OWL
synopsis can be mapped in Java defining an interface as
a super-interface of two interfaces, but in order to
ensure the semantic equivalence it is compulsory to
prevent the implementation of the super-interface.

The constructs asserting completeness or
disjointness of classes are those which characterized
more OWL from the point of view of the “open-world”
assumption, i.e., modelling the state of the world with
partial information. In OWL classes are overlapping
until disjointness axioms are entered. Moreover,
generalization can be mutually exclusive, meaning that
all the specific classes are mutually disjoint, and/or
complete, meaning that the union of the more specific
classes completely covers the more general class. In
Java there is no way of expressing this and other similar
properties (e.g. equivalentClass), that is the
representation of the world that we can state using this
model can only refer to a “closed-world” assumption.
This constitutes a limit when the knowledge
representation is applied in situations where one cannot
assume that the knowledge in the knowledge base is
complete.

As far as properties are concerned, since they are not
first-class modelling elements in Java, it is not possible
to create property hierarchies, to state that a property is
symmetric, transitive, equivalent or the inverse of
another property. Properties can be used to state
relationships between individuals (ObjectProperty) or
from individuals to data values (DatatypeProperty).
DatatypeProperties can be directly mapped into Java
attributes of the corresponding data type and
ObjectProperties to Java variables whose type is the
class specified in the property’s range. There are a
number of special constraints that it is possible to
enforce on properties:
1. Cardinality constraints state the minimum and

maximum number of objects that can be related;
2. Domain limits the individuals to which the

properties can be applied;
3. Range limits the individuals that the property may

have as its value.
Accessor methods could ensure that cardinality

constraints be satisfied, but this information is implicit
and embedded in the source code of the class and it
would not become known to a possible reasoner and
therefore it would be most likely of no use.

Concerning the domain restriction, if the domain of
a property is specified as a single class, the
corresponding Java interface contains declarations of
accessor methods for the property. In the case of a

 61

multiple domain property there are two possible
alternatives:
1. The domain is an intersection-of all the classes

specified as the domain; to cope with this we create
an intersection interface (see above).

2. Multiple alternate domains are defined using the
unionOf operator; we can cope with this creating a
union interface but with the limitations expressed
above.

In relation to the range restriction our approach fails
to account for multi-range properties, since variables in
Java can be only of one type.

From the previous analysis it emerges clearly that
the expressiveness of the Java language is lower even to
OWL Lite, but despite this in our view it is still valuable
with respect to the agent needs.

2.2 Reasoning about Knowledge

Although DLs (and hence OWL DL) and object-
oriented data models have a common root, class-based
data models, they were developed by different
communities and for different purposes. The different
target applications significantly affect the
expressiveness of the languages and consequently the
reasoning services that can be performed on the
corresponding knowledge base.

The object model only permits the specification of
necessary conditions for the class (i.e. the definition of
the properties that must be owned by objects belonging
to a specific class) that are not sufficient to identify a
member of the class. The only way to associate an
instance to a class is therefore to explicit assert its
membership. As a consequence some basic reasoning
services lose their importance and significance (e.g.
knowledge base consistency, subsumption and instance
checking). A quite common complex reasoning service,
i.e. classification, also plays a marginal role in an object
oriented data model. In fact in DL the terminological
classification consists in making explicit the taxonomy
entailed by the knowledge base. Whereas the
classification of individuals has its role in DL since
individuals can be defined giving a set of their
properties and therefore objects’ classes membership
can be dynamically inherited.

The previous remarks lead us to consider the aspect
which differentiates more the two models, that is the
divergent assumption on the knowledge about the
domain being represented - open vs. closed world
assumption. Indeed while a DL based system contains
implicit knowledge that can be made explicit through
inference, a system based on an object oriented data
model exhibits a limited use of entailment. Inheritance
may represent a simple way of express implicit
knowledge (class inherits all the properties of its parents
without explicit specifying it). Another way is to
represent part of the information within methods (e.g.
initialization methods), but this implicit information is
not (or hard) available to a potential reasoner.

If we consider the knowledge base as a means to

store information about individuals, an interesting
complex reasoning task is represented by retrieval.
Retrieval (or query answering) consists in finding all the
individuals in the knowledge base being in a concept
expression. The information retrieval task plays a
leading role in a knowledge base centered on an object
oriented representation.

3 System Architecture

The concrete implementation of the proposed system
is a direct result of the evaluations set out in the
previous sections. In particular, the proposed two-level
approach to ontology management in multi-agent
systems is implemented as a toolkit providing the
following functionality:
1. Import OWL ontologies as an object-oriented

hierarchy of classes;
2. Implement an Ontology Server to provide the

centralized management of shared ontologies.

3.1 OWLBeans

The OWLBeans toolkit, which is going to be
presented in this section, does not deal with the whole
complexity of a semantically annotated Web. Instead,
its purpose is precisely to cut off this complexity, and to
provide simple artefacts to access structured
information.

In general, interfacing agents with the Semantic
Web implies the deployment of an inference engine or
of a theorem prover. In fact, this is the approach we are
currently following to implement an agent-based server
to manage OWL ontologies. Instead, in many cases,
autonomous agents cannot (or do not need to) face the
computational complexity of performing inferences on
large, distributed information sources. The OWLBeans
toolkit is mainly thought for these agents, for which an
object-oriented view of the application domain is
enough to complete their tasks.

The software artefacts produced by the toolkit, i.e.,
mainly JavaBeans and simple metadata representations
used by JADE [7], are not able to express all the
relationships that are present in the source. But in some
context this is not required. Conversely, especially if
software and hardware resources are very limited, it is
often preferable to deal only with common Java
interfaces, classes, attributes and objects.

The main functionality of the presented toolkit is to
extract a subset of the relations expressed in an OWL
document for generating a hierarchy of JavaBeans
reflecting them, and possibly for creating a
corresponding JADE ontology to represent metadata.
Anyway, given its modular architecture, it also allows
provides other functionality, e.g., to save a JADE
ontology into an OWL file, or to generate a package of
JavaBeans from the description provided by a JADE
ontology.

 62

3.1.1 Intermediate ontology model. The main
objective of the OWLBeans toolkit is to extract
JavaBeans from an OWL ontology. In order to keep the
code maintainable and modular, we decided to create
first an internal, intermediate representation of the
ontology. This intermediate model can be alternatively
used to generate the sources of some Java classes, a
JADE ontology, or an OWL file. The intermediate
model itself can be filled with data obtained, e.g., by
reading an OWL file or by inspecting a JADE ontology.

The main goals we fixed to design of the internal
ontology representation were:
1. Simplicity: it had to include only few simple classes

to allow a fast and easy introspection of the
ontology. The model had to be simple enough to be
managed in scripts and templates; in fact, one of the
main design goals was to have a model to be
directly used by a template engine to generate the
code.

2. Expressiveness: it had to include the information
needed to generate JavaBeans and all other desired
artefacts. The main guideline in the whole design
was to avoid limiting the translation process. The
intermediate model had to be as simple as possible,
though not creating a metadata bottleneck in the
translation of an OWL ontology to JavaBeans.

3. Primitive data-types: it had to handle not only
classes, but even primitive data-types, as both Java
and OWL classes can have properties using
primitive data-types as their range.

4. External references: ontologies are often built
extending more general classifications and
taxonomies. For example, an ontology can detail
the description of some products in the context of a
more general trade ontology. We wanted our model
not to be limited to single ontologies, but to allow
the representation of external entities, too: classes
may to extend other classes, defined locally or in
other ontologies, and property ranges may allow
not only primitive data-types and internal classes,
but even classes defined in external ontologies.

One of the main issues regarded properties, as they
are handled in different ways in description logics and
in object oriented systems, as described in details in the
previous sections. While they are first level entities in
Semantic Web languages, they are more strictly related
to their “owner” class in the latter model. For the
particular aims and scope of OWLBeans, property
names must be unique only in the scope of their own
class in object-oriented systems, while the have global
scope in description logics. Our choice was to have
properties “owned” by classes. This allows an easier
manipulation of the meta-objects while generating the
code for the JavaBeans, and a more immediate mapping
of internal description of classes to the desired output
artefacts.

The intermediate model designed for the OWLBeans
toolkit is made of just few, very simple classes. The
simple UML class diagram shown in Figure 1 describes
the whole intermediate model package.

The root class is OwlResource, which is extended by
all the others. It has just two fields: a local name, and a
namespace, which are intended to store the same data as
resources defined in OWL files. All the resources of the
intermediate model – refernces, ontologies, classes and
properties – are implicitly OwlResource objects.

OwlReference is used as a simple reference, to point
to super-classes and range types, and do not add
anything to the OwlResource class definition. It is
defined to underline the fact that classes cannot be used
directly as ranges or parents.

OWLResource
namespace : String
name : String

OWLOntology

OWLReference

OWLProperty
minCardinality : int
maxCardinality : int

+domain
+range

OWLClass

1..*1..*
1..*

+parent

1..*

1..*1..*

Figure 1 – Class diagram of the intermediate

model
OwlOntology is nothing more than a container for

classes. It owns a list of OwlClass objects. It inherits
from OwlResource the name and namespace fields. In
this case the namespace is mandatory and is supposed to
be the namespace of all local resources, for which it is
optional.

OwlClass represents OWL classes. It points to a list
of parents, or super-classes, and owns a list of
properties. Each parent in the list is an OwlReference
object, i.e., a name and a namespace, and not an
OwlClass object. Its name must be searched in the
owner ontology to get the real OwlClass object.
Properties instead are owned by the OwlClass object,
and are stored in the properties list as instances of the
OwlProperty class.

OwlProperty is the class representing OWL
properties. As in UML, their name is supposed to be
unique only in the scope of their “owner” class. Each
property points to a domain class and to a range class or
data-type. Both these fields are simple OwlReference
objects: while the first contains the name of the owner
class, the latter can indicate an OwlClass, or an XML
data-type, according to the namespace. Two more fields
are present in this class: minCardinality and
maxCardinality. They are used to store respectively the
minimum and maximum allowed cardinality for the
property values. Moreover, a minCardinality = 0 has the
implicit meaning of an optional property, while
maxCardinality = 1 has the implicit meaning of a
functional property.

It is worth pointing the unusual treatment of indirect

 63

references to OwlClass objects in some places. i.e., to
point to super-classes and to allowed ranges. This
decision has two main advantages over direct Java
references to final objects: parsing an OWL file is a bit
simpler, as references can point to classes that are not
yet defined, and above all in this way super-classes and
ranges are not forced to be local classes, but can be
references to resources defined somewhere else.

In our toolkit, the intermediate model is used as the
glue to put together the various components needed to
perform the desired, customizable task. These
components are classes implementing the OwlReader or
the OwlWriter interface, representing ontology readers
and writers, respectively. While readers can read an
intermediate representation of the ontology, acquiring
metadata from different kinds of sources, writers,
instead, can use this model to produce the desired
artefacts.

The current version the toolkit provides readers to
inspect OWL files and JADE ontologies, and writers to
generate OWL files, source files of JavaBeans and
JADE ontologies.

3.1.2 Reading OWL Ontologies. Two classes are
provided to manage OWL files. OwlFileReader allows
reading an intermediate model from an OWL file, while
OwlFileWriter allows saving an intermediate model to
an OWL file. These two classes respectively implement
the OwlReader and OwlWriter interfaces and are
defined in the package confining all the dependencies
from the Jena toolkit.

The direct process, i.e., converting an OWL
ontology into the intermediate representation, is
possible only under very restrictive limitations, mainly
caused by the rather strong differences between the
OWL data model and the object-oriented data model. In
fact, only few, basic features of the OWL language are
currently supported.

Basically, the OWL ontology is first read into a Jena
OntModel object and then all classes are analyzed. In
this step all anonymous classes are just discarded. For
each one of the remaining classes, a corresponding
OwlClass object is created in the internal representation.
Then, all properties listing the class directly in their
domain are added to the intermediate model as
OwlProperty objects. Here, each defined property points
to a single class as domain and to a single class or data-
type as range. Set of classes are not actually supported.
Data-type properties are distinguished in our model by
the namespace of their range, which is
http://www.w3.org/2001/XMLSchema#. The only
handled restrictions are owl:cardinality,
owl:minCardinality and owl:maxCardinality, which are
used to set the minCardinality and maxCardinality
fields of the new OwlProperty object. The
rdfs:subClassOf element is handled in a similar way:
only parents being simple classes are taken into
consideration, and added to the model.

All remaining information in the OWL file is lost in
the translation, as it does not fit into the desired object-

oriented data model.

3.1.3 Generating JavaBeans. Rather than
generating the source files of the desired JavaBeans
directly from the application code, we decided to
integrate a template engine in our project. This helped to
keep the templates out of the application code, and
centralized in specific files, where they can be analyzed
and debugged much more easily. Moreover, new
templates can be added and existing ones can be
customized without modifying the application code.

The chosen template engine was Velocity [13],
distributed under LGPL licence by the Apache Group. It
is an open source project with a widespread group of
users. While its fame mainly comes from being
integrated into the Turbine Web framework, where it is
often preferred to other available technologies, as JSP
pages, it can be effortlessly integrated in custom
applications, too.

Currently, the OWLBeans toolkit provides templates
to generate the source file for JavaBeans and JADE
ontologies. JavaBeans are generated according to the
mapping between classes and concepts that we
described in the previous sections. In particular, all
JavaBeans are organized in a common package where,
first of all, some interfaces mapping the classes defined
in the ontology are written. Then, for each interface, a
Java class is generated, implementing the interface and
all accessor methods needed to get or set properties.

As stated in Section 2, creating an interface and then
a separate implementing Java class for each ontology
class is necessary to overcome the single-inheritance
limitation that applies to Java classes. Each interface,
instead, can extend an arbitrary number of parent
interfaces. The corresponding class is eventually
obliged to provide an implementation for all the
methods defined by one of the directly or indirectly
implemented interfaces.

The generated JADE ontology file can be compiled
and used to import an OWL ontology into JADE, thus
allowing agents to communicate about the concepts
defined in the ontology. The JavaBeans will be
automatically marshalled and un-marshalled from ACL
messages in a completely transparent way.

3.1.4 Additional components. Additional
components are provided to read and write ontologies in
different formats.

For example, the JadeReader class allows to load a
JADE ontology, to save it in OWL format or to generate
the corresponding JavaBeans.

Another component is provided to instantiate an
empty JADE ontology at run time, and to populate it
with classes and properties read from an OWL file, or
from other supported sources. This proves useful when
the agent does not really need JavaBeans, but can use
the internal ontology model of JADE to manage the
content of semantically annotated messages.

Finally, the OwlWriter class allows to convert an
ontology from its intermediate representation to an

 64

OWL model. This is quite straightforward, as all the
information stored in the intermediate model can easily
fit into an OWL ontology, in particular into a Jena
OntModel object. One particular point deserves
attention. While the property names in the OWLBeans
model are defined in the scope of their owner class, all
OWL properties are instead first level elements and
share the same namespace. This poses serious problems
if two or more classes own properties with the same
name, and above all if these properties have different
ranges or cardinality restrictions.

In the first version of the OWLBeans toolkit, this
issue is faced in two ways: if a property is defined by
two or more classes then a complex domain is created in
the OWL ontology for it; in particular, the domain is
defined as the union of all the classes that share the
property, using an owl:UnionClass element. Cardinality
restrictions are specific to classes in both models, and
they are not an issue. Currently, the range is assigned to
the property by the first class that defines it, and is kept
constant for the other classes in the domain. Obviously
this could be incorrect in some cases. Using some class-
scoped owl:allValuesFrom restrictions could solve most
of the problems, but difficulties would arise in the case
of a property defined in some classes as a data-type
property, and somewhere else as an object property.

Another mechanism allows to optionally use the
class name as a prefix for the names of all its properties,
hence automatically enforcing different names for
properties defined in different classes. This solution is
appropriate only for ontologies where property names
can be decided arbitrarily. Moreover it is appropriate
when resulting OWL ontologies are used only to
generate JavaBeans and JADE ontologies, as in this
case the leading class name would be automatically
stripped off by the OwlFileReader class.

3.1.5 Scripting Engine. The possibilities opened by
embedding a scripting engine into an agent system are
various. For example, agents for e-commerce often need
to trade goods and services described by a number of
different, custom ontologies. This happens in the
Agentcities network [1], where different basic services
can be composed dynamically to create new compound
services.

To increase adaptability, these agents should be able
to load needed classes and code at runtime. The
OWLBeans package allows them to load into the Java
Virtual Machine some JavaBeans directly from an OWL
file, together with the ontology-specific code needed to
reason about the new concepts.

This is achieved by embedding Janino [8], a Java
scripting engine, into the toolkit. Janino can be used as a
special class loader capable of loading classes directly
from Java source files without first compiling them into
bytecode.

Obviously, pre-compiled application code cannot
access newly loaded classes, which are not supposed to
be known at compile time. But, the same embedded
scripting engine can be used to interpret some ontology

specific code, which could be loaded at run time from
the same trusted source of the OWL ontology file, e.g.,
or provided to the application in other ways.

3.2 Ontology Server

The OWLBeans toolkit allows agents to import
taxonomies and classifications from OWL ontologies, in
the form of a hierarchy of Java classes. Anyway, a more
general solution must be provided for all those cases
where a simplified, object-oriented view of the ontology
is not enough.

For all those applications, that need a complete
support of OWL ontologies, we are developing an
Ontology Server. It is an agent-based application
proving ontology knowledge and reasoning facilities for
a community of agents. The main rationale for building
on Ontology Server is to endow a community of agents
with the ability to automatically process semantically
annotated documents and messages. The Ontology
server shares a common knowledge base about some
application domains with this community of agents.

The first functionality is related to loading,
importing, removing ontologies. Apart from loading
ontologies at agent startup, specific actions are defined
in terms of ACL requests to add ontologies to the agent
knowledge base, and to remove them. Ontologies that
are linked through import statements can be loaded
automatically with a single request. Moreover, new
relations among ontologies can be dynamically created,
and existing ones can be destroyed. This import
mechanism can be used to build a distributed knowledge
base hierarchy; in this way, a new ontology can be
plugged in easily and inherit the needed general
knowledge base, instead of building it totally from
scratch.

After the initial set up, though a number of
potentially related ontologies, this knowledge base can
be queried from other agents. A set of predicates is
defined, to check the existence of specific relations
among entities. For example the Ontology Server can be
asked about the equivalence of two classes, or about
their hierarchical relationships.

Apart from checking the existence of specific
relations, the knowledge base can also be used to search
for the entities satisfying certain constraints. For
example, the list of all the super-classes, or of all the
sub-classes, of a given class can be obtained.

Finally, client agents may be allowed to modify an
ontology managed by the Ontology Server. Agents can
ask to add new classes, individuals and properties to the
ontology, or to remove defined entities. Moreover,
relations among ontology entities can be added and
removed at runtime, too.

Our current implementation is built as a JADE
agent, using the Jena toolkit to load and mange OWL
ontologies. An inference engine can be plugged into the
application to reason on the knowledge base. An
ontology is defined, to allow the management of the
internal knowledge base. ACL requests, to access and

 65

query the Ontology Server about its knowledge base,
can use this meta-ontology to represent their semantic
content.

Anyway, for the Ontology Server to be really useful
in an open environment, we are adding proper
authorization mechanisms. In particular, we leverage the
underlying JADE security support to implement a
certificate-based access control. Only authenticated and
authorized users will be granted access to managed
ontologies. The delegation mechanisms of JADE allow
the creation of communities of trusted users, which can
share a common ontology, centrally managed by the
Ontology Server.

Finally, we are developing a graphical user interface
to allow the interaction with the Ontology Server
through Web pages. It allows both the introspection of
the existing knowledge base, as well as its modification
by human users.

4 Conclusion

In this paper, we have presented a software
implementation intended to provide an OWL ontology
management support for multi-agent systems
implemented by using JADE. The key feature that
distinguishes our approach from others is the fact that
lightweight agents have the possibility of directly
managing ontologies which can be mapped in
JavaBeans, while they can take advantage of specialized
agents, called Ontology Servers, when they need to use
more complex ontologies which cannot be completely
mapped in JavaBeans. Well aware of the need to clearly
define the weakness of our approach in comparison to a
fully-fledged OWL support, we have carried out a
meticulous analysis of its expressiveness.

Our current activities are related to the
experimentation of the implemented software in the
realization of a multi-agent system for the remote
assistance of software programmers. Furthermore we
are working on the improvement of our two level

software solution by trying alternative solutions to the
use of the Jena software tool.

5 References

1. The Agentcities Network project home page.
http://www.agentcities.net.

2. K Baclawski, M. K. Kokar, P. Kogut, L. Hart, J. E. Smith,
J. Letkowski, and P. Emery, Extending the Unified
Modeling Language for ontology development,
International Journal Software and Systems Modeling
(SoSyM) 1(2) (2002) 142-156.

3. Bechhofer, R. Volz, and P. Lord. Cooking the semantic
web with the OWL API. In Proc. Int Semantic Web
Conference, pages 659 - 675, Sanibel Island, FL, 2003.

4. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A.
Seaborne, K. Wilkinson. Jena: Implementing the Semantic
Web Recommendations. In Proc 13th Int World Wide
Web Conference, pages 74-83, New York, NY, 2004.

5. The Description Logic Handbook: Theory,
Implementation and Applications. Cambridge University
Press, 2002.

6. Hart, L., Emery, P., Colomb, B., Raymond, K.,
Taraporewalla, S., Chang, D., Ye, Y., Kendall, E., Dutra,
M.: OWL Full and UML 2.0 Compared, 2004.
http://www.omg.org/docs/ontology/04-03-01.pdf

7. JADE software and documentation. http://jade.tilab.com.
8. Janino software and documentation. http://janino.net.
9. Jena, HP Labs Semantic Web Toolkit software and

documentation. http://jena.sourceforge.net/
10. A. Kalyanpur, D. Pastor, S. Battle, and J. Padget.

Automatic mapping of owl ontologies into java. In
Proceedings of Software Engineering .and Knowledge
Engineering Conference. (SEKE) 2004, Banff, Canada,
2004.

11. B. Meyer. Object-Oriented Software Construction.
Prentice-Hall, 2nd edition, 1997

12. OWL API software and documentation.
http://owl.man.ac.uk/api.shtml

13. Velocity software and documentation. Available from
http://jakarta.apache.org/velocity. Word Wide Web
Consortium (W3C). OWL . Web Ontology Language.
http://www.w3.org/TR/owl-ref

On the Cost of Agent-awareness for Negotiation Services

Andrea Giovannucci
Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC

08193 Bellaterra, Barcelona, Spain
andrea@iiia.csic.es

Juan A. Rodrı́guez-Aguilar
Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC

08193 Bellaterra, Barcelona, Spain
jar@iiia.csic.es

Abstract

Significant advances in the development of agent tech-
nology have spurred the development of agent-oriented in-
formation systems (AOIS). Nonetheless, accounts on the
benefits and shortcomings of state-of-the-art agent technol-
ogy when employed for the deployment of AOIS for elec-
tronic commerce are scant. The purpose of this work is to
report on a case study that attempts at shedding some light
on this matter.

1. Introduction

While a significant number of agent-based applications
for electronic commerce has been presented to the agent
community during the last years, little attention has been
devoted to analysing the practical benefits and shortcom-
ings of agent technology when applied to such domain. To
the best of our knowledge little effort has been devoted to
study the applicability of state-of-the-art agent technology
to develop actual-world e-commerce applications. In partic-
ular, we believe that it is necessary to assess the computa-
tional cost added by agent technology in this type of appli-
cations so that we can diagnose the improvements required
by state-of-the-art agent technology.
For this purpose we report on a case study that intends

to shed some light on this matter. We depart from iBundler
(fully described in [5]), an agent-aware negotiation service
for combinatorial negotiations designed to be employed as:
(1) an open agent platform within the Agentcities.RDT1
(http://www.agentcities.org/EURTD) project that could be
discovered, communicate, and offer services to any FIPA
compliant agent (http://www.fipa.org); (2) an agent façade
to Quotes[12], a commercial negotiation tool, to allow for

1 The Agentcities.RDT project’s objectives were to create an on-line,
distributed test-bed to explore and validate the potential of agent tech-
nology for future dynamic service environments.

the participation of third-party business agents in actual-
world procurement events. In both cases, our aim has been
to study the computational cost of agent awareness for the
iBundler negotiation service so that its users are aware of
the type of negotiation scenarios that iBundler can accept-
ably handle when buying and providing agents are involved.
This exercise has also included the determination of those
general or domain-dependent measures that can help reduce
the cost of the service.
At this aim, we have measured the performance in time

and memory of iBundler through a wide range of artifi-
cially generated negotiation scenarios. For each scenario we
sampled at several stages both the time and memory that
iBundler employed to handle it. We have interestingly ob-
served that the management of ontologies is a rather deli-
cate issue that actually causes a significant overload. Fur-
thermore, we have also observed that the design of highly
expressive, compact bidding languages can definitely help
cut down the computational cost for any agent-aware nego-
tiation service considering combinatorial scenarios.
The paper is organised as follows. First, section 2 briefly

reviews the literature concerning scalability and applica-
bility of agent technology. Section 3 succinctly introduces
iBundler. Section 4 deals with the description of the evalu-
ation scenarios arranged to evaluate iBundler. In section 5
we present and thoroughly discuss the test results. Finally,
section 6 discusses some conclusions deriving from the re-
sults’ analysis.

2. Related work

The applicability analysis of agent technology in the lit-
erature primarily focuses on scalability issues as robustness,
system performance with large populations of agents and
ontology engineering. Brazier et al. [2] address the problem
of scalability in naming services and location services. Be-
sides, they analyse the concept of scalability in multi agent
systems (MAS) and discuss scalability for many existing
multi-agent frameworks. Deters [3] studies the problems

66

derived from large number of agents running in a MAS,
agent resource consumption, the exchange of great number
of messages, identifying agent hosting and message routing
as bottle-necks. Furthermore, he performs some scalability
experiments. An important result in [3] is that the main defi-
ciencies of JESS (http://herzberg.ca.sandia.gov/jess/) derive
from serialisation processes. Kahn investigates how timing
of sequential agent registration and lookup varies as the to-
tal number of registered agents increases in COABS [8].
The works in [9] and [4] analyse robustness and fault toler-
ance, whereas [15] exemplifies ad-hoc, domain-dependent
agent technology scaling techniques. On the other hand, the
literature on ontology scalability focuses on three major is-
sues: the size of ontology contents, the complexity of ontol-
ogy construction and knowledge re-usability ([7], [14]). In
particular, Jarrar states that experience shows that ”unscal-
able solutions emerging from academic research often fails
at the industrial level” [7].
Thus, we believe that it is an urging necessity to report on

practical deployments of actual-world agent-based applica-
tions in order to: (1) progressively derive best methodolog-
ical practices; and (2) assess the improvements required by
state-of-the-art agent technologies to be adopted at industry
level. Particularly since much of the research effort on agent
technology does not consider the application of widely em-
ployed agent frameworks and programming tools to real-
world problems.
We consider iBundler as representative of the main

trends on the state-of-the-art agent programming tools and
platforms. Firstly, because it is based on the FIPA specifi-
cation standard, that is surely the most widely adopted by
the agent community2. Secondly, the considerations emerg-
ing from the experiments derived in this paper are related
to the FIPA nature of the agent platform, not to a par-
ticular JADE implementation. Thus, the results in sec-
tion 5 are not limited to the JADE framework, being valid
for all the FIPA-compliant agent frameworks.

3. iBundler An Agent-aware Negotiation Ser-
vice

Consider the problem faced by a buying agent when ne-
gotiating with providing agents. In a negotiation event in-
volving multiple, highly customisable goods, buying agents
need to express relations and constraints between attributes
of different items. Moreover, it is common practice to buy
different quantities of the very same product from differ-
ent providing agents, either for safety reasons or because

2 OGM (www.ogm.org) is another standardisation effort based on
CORBA IDL interface. This solution is efficient for agent migration
and client-server applications, but less suitable than FIPA-compliant
platforms for peer-to-peer applications. For an interesting comparison
refer to [11].

offer aggregation is needed to cope with high-volume de-
mands. This introduces the need to express business con-
straints on providing agents and the contracts they may have
assigned. Not forgetting the provider side, providing agents
may also wish to impose constraints or conditions over their
offers. These may be only valid if certain configurable at-
tributes (e.g. quantity, delivery days) fall within some inter-
vals, or assembly and packing constraints need to be con-
sidered. Once a buying agent collects all offers, he is faced
with the burden of determining the winning offers. It would
be desirable to relieve buying agents from solving such a
problem. iBundler is an agent-aware decision support ser-
vice that makes headway in this direction by acting as a
combinatorial negotiation solver (solving the winner deter-
mination problem) for both multi-item, multi-unit negoti-
ations and auctions. Thus, the service can be employed by
both buying agents and auctioneers in combinatorial negoti-
ations and combinatorial reverse auctions[13] respectively.
To the best of our knowledge, iBundler represents the first
agent-aware service for multi-item negotiations, since agent
services have mostly focused on infrastructure issues re-
lated to negotiation protocols and ontologies.
The iBundler service has been implemented as an agency

composed of agents that cooperatively interact to offer a ne-
gotiation support service. A fundamental aspect of iBundler
is that it was not only intended as a stand-alone agent-aware
service. iBundler was also designed to become the agent
façade of the commercial sourcing tool Quotes [12] with
the aim of providing a higher level of automation to ex-
ternal parties. In this manner, the negotiations run through
Quotes allow for the participation of both human and soft-
ware buyers and providers. However, while human buyers
and providers negotiate via web-based interfaces, buying
and providing agents owned by third parties can also nego-
tiate through the service whenever they incorporate proto-
cols and the ontology required by iBundler. In this work we
do not address security issues, such as buyers and providers
trusting a central server. It could be considered as a next
step in the deployment of an actual-world negotiation ser-
vice.
Figure 1 depicts the components of the iBundler agency

(along with the fundamental connections of buying and pro-
viding agents with the service):
[Logger agent]. It manages the access to the iBundler
agency from outside.
[Manager agent]. Agent devoted to providing the solution
of the problem of choosing the set of bids that best matches
a user’s requirements. There exists a single Manager agent
per user (buyer or auctioneer), created by the Logger agent,
offering the following services: brokering service to for-
ward buyersŕequirements (RFQs) to selected providers ca-
pable of fulfilling them; collection of bids; winner deter-
mination in a combinatorial negotiation/auction; and award

67

SOLVER

MANAGER TRANSLATOR

LOGGER

IBUNDLER
AGENCY

BUYER
(auctioneer)

PROVIDER#1 PROVIDER#2 PROVIDER#n

Figure 1. Architecture of the iBundler Agency

of contracts on behalf of buyers. Furthermore, the manager
agent is also responsible for: bundling each RFQ and its bids
into a negotiation problem in FIPA-compliant format to be
conveyed to the Translator agent; and to extract the solu-
tion to the negotiation problem handled back by the Trans-
lator agent.
[Translator agent]. It creates a representation of the nego-
tiation problem in a format understandable by the Solver de-
parting from the FIPA-compliant description received from
the Manager. It also translates the solution returned by the
Solver into an object of the ontology employed by user
agents.
[Solver component]. The iBundler component itself ex-
tended with the offering of a language for expressing of-
fers, constraints, and requirements. The specification is
parsed into a Mixed Integer Programming (MIP) formula-
tion and solved using available MIP solvers (a version us-
ing ILOG CPLEX; and another version using using a Java
MIP modeller that integrates the GNU Programming Kit
GLPK (http://www.gnu.org/directory/GNU/glpk.html)).
The Solver component is complete in the meaning that
if an optimal solution exists, it will find it. If the prob-
lem has a set of Pareto-optimal, equivalent solutions, the
solver component will return only one solution, which
one depending on the underlying branch-and-bound algo-
rithm ([6]).
Our design manages to separate concerns among the

three members of the agency. On the one hand, the Man-
ager is strictly devoted to coordination. It represents the
façade of the service. Besides, since every negotiation re-
quested by a buyer makes the agency create an instance of
the Manager, the service can cope with asynchronous and
multiple accesses to the service. The Translator agent is in
charge of relieving both Managers and Solver from the bur-
den of translating FIPA-compliant specifications into the
language required by Solver. Notice that the fact of hav-
ing only one Translator agent represents a bottle-neck in the
overall process when many buyers access the service con-
currently. Such limitation could be overcome by creating
multiple instances of Translator Agents and Solvers on dif-
ferent machines. Anyway in this work we focused on the

service performances in managing big size negotiation sce-
narios, not on multiple concurrent accesses to the service.
We leave such issue as a possible future development.
Figure 2 depicts the interaction protocol involved in the

interplay of buyers and provides with iBundler. It is ex-
pressed in AUML (Agent UnifiedModelling Language)[10]
following the FIPA interaction protocol library specification
compiled in [1]. Observe that the specification in figure 2 in-
volves four roles, namely: buyer, manager, translator, and
provider. Whereas multiple agents can act as providers, the
remaining roles can be uniquely adopted by a single agent
each. Notice too that the iBundler interaction protocol is
composed of several interleaved interaction protocols:

buyer manager

request(RFQ)
cfp(RFQ)

j

refuse

propose

translator provider

refuse

agree

deadline

request
refuse

agree

inform(offers)

request(award)

refuse

agree

not-understood

[j>0][j=0]

failure

inform-result

inform-done

failure

inform-result

inform-done

inform

failure

reject-proposal

accept-proposal

IP-RFQ IP-CFP

IP
Request
solution

IP-AWARD

iBUNDLER-Protocol

[k>0]

k

[k=0]
reject-proposal

reject-proposal

Figure 2. iBundler Interaction Protocol

[IP-RFQ]Held between a buyer and the manager agent cre-
ated by the Logger agent after registration. The buyer deliv-
ers an RFQ to his manager agent requesting to obtain the

68

optimal set of offers from the available providers. In case it
is not possible to obtain a solution to the problem, the re-
ceived response is an empty bid set.
[IP-CFP] Prior to delivering the optimal set of offers, the
manager interacts with the available providers to request
their offers under the rules of this CFP interaction proto-
col. If no offers are received the manager refuses to deliver
the optimal set of offers in the context of the IP-RFQ in-
teraction protocol. Otherwise, the manager agrees on pro-
viding the service and proceeds ahead by starting out an in-
stance of the IP-Request-Solution interaction protocol. The
protocol winds up with the notification of contract awards
to selected providers according to the buyer’s decision. In
the case in which no optimal solution could be found, the
buyer is sent an empty bid set and the IP-CFP protocol is
ended communicating a Reject-Proposal to each provider
involved. Notice that the manager mediates between buyer
and providers.

Figure 3. Problem concept

[IP-Request Solution] This interaction protocol held be-
tween the manager and the translator agent within the
iBundler agency aims at calculating the optimal set of of-
fers considering the offers submitted by providers, along
with the buyer’s requirements and constraints. The re-
sult delivered by the translator is further conveyed by
the manager to the buyer in the context of the inter-
leaved IP-RFQ interaction protocol.
[IP-AWARD] At the end of the IP-RFQ interaction proto-
col the buyer obtains the optimal set of offers. He may re-
quest also to receive all offers. Thereafter, if the buyer re-
ceived a non-empty optimal set of offers (k¿0 in figure 2),
the buyer initiates the IP-AWARD interaction protocol in
order to request the manager to award contracts to selected
providers. Observe that the contract award distribution is
autonomously composed by the buyer, and thus the buyer

may decide to either ignore or alter the optimal set.
iBundler’s ontology is founded on the following core

concepts: RFQ, ProviderResponse, Problem, and Solution.
As an example, figure 3 depicts -as shown by the Ontoviz
Protégé plug-in (http://protege.stanford.edu)- the Problem
ontological concept. The RFQ concept is employed by buy-
ing agents to express their requests for bids (via request in
IP-RFQ). An RFQ is composed of a sequence of Request
concepts, one per requested item along with the buyer’s
business rules expressed as constraints. On the provider
side, providers express their offers in terms of the Provider-
Response concept (via a propose in IP-CFP), which in turn
is composed of several elements: a list of Bid concepts (each
Bid allows to express a bid per either a single requested item
or a bundle of items) along with; constraints on the produc-
tion/servicing capabilities of the bidding provider (Capac-
ity concept); and constraints on bundles of bids formulated
with the BidConstraint concept.
Once the manager agent collects all offers submitted by

providers, he wraps up the RFQ concept as received from
the buyer along with the offers as ProviderResponse con-
cepts to compose the negotiation problem to be solved by
the Solver component (via request in IP-Request-Solution).
Finally, the solution produced by the Solver component is
transformed by the translator agent into a Solution concept,
that is handed over to the manager (via inform-result in IP-
Request-Solution). The Solution concept contains the spec-
ification of the optimal set of offers calculated by Solver.
Thus Solution contains a list of SolutionPerProvider con-
cepts, each one containing the bids selected in the optimal
bid set per provider, as a list of BidSolution concepts, along
with the provider’s agent identifier, as an AID concept. Each
BidSolution in turn is composed of a list of BidItemFixed
concepts containing the number of units selected per bid
along with the bid’s total cost.

4. Evaluation Scenario

In this section we detail the way we conducted our evalu-
ation. Firstly, we describe how to generate artificial negoti-
ation scenarios for testing purposes. Next, we detail the dif-
ferent stages considered through our evaluation process.

4.1. Artificial Negotiation Scenarios

In order to evaluate the agent service performance, the
times needed by iBundler to receive an RFQ from a Buyer
agent and to collect the different bids from providers is con-
sidered of no interest. Because they depend on some uncon-
trolled variables (e.g. the time needed by providers to send
their bids and the network delay). Thus, our evaluation starts
from the moment at which all the required data (RFQ and
bids) are available to the Manager agent. We tried to sim-

69

ulate such an ideal situation generating multiple datasets in
separate files, each one standing for a different input nego-
tiation problem composed of FIPA messages, each one con-
taining both an RFQ and the bids received as a response to
this. In this way we can use the file stream as if it was the
incoming message stream, and perform all the subsequent
message manipulation as if the message had been received
from a socket.
Another important consideration has to do with the way

we sampled time and memory. We established checkpoints
through the process carried out by iBundler when solving
a negotiation problem. Such checkpoints partition the pro-
cess into several stages. We observed time and memory at
the beginning and at the end of these stages.
In order to automate the testing it was necessary to de-

velop a generator of artificial negotiation scenarios involv-
ing multiple units of multiple items. The generator is fed
with mean and variance values for the following parame-
ters: number of providers participating in the negotiation;
number of bids per provider (number of bids each provider
sends to the Manager agent); number of RFQ items (num-
ber of items to be negotiated by the Buyer agent); number
of items per bid (number of items within each bid sent by
a provider); number of units per item per bid; and bid cost
per item. In this first experimental scenario we did not gen-
erate neither inter-item nor intra-item constraints.
The generator starts by randomly creating a set of win-

ning combinatorial offers. After that, it generates the rest of
bids for the negotiation scenario employing normal distri-
butions based on the values set for the parameters above.
Thus, in some sense, the negotiation scenario can be re-
garded as a set of winning combinatorial bids surrounded by
noisy bids (far less competitive bids). Notice that the gen-
erator directly outputs the RFQ and bids composing an ar-
tificial negotiation scenario in FIPA format. In this manner,
both RFQ and bids can be directly fed into iBundler as buy-
ers’ and providers’ agent messages.
We have analysed the performance of iBundler through a

large variety of negotiation scenarios artificially generated
by differently setting the parameters above. The data rep-
resenting each negotiation scenario are saved onto a file,
named by a string of type A.B.C.D, where A stands for
the number of providers, B stands for the number of bids
per provider, C stands for the number of RFQ items, and
D stands for the number of items per bid. For instance,
250.20.100.20 represents the name of a dataset generated
for 250 providers, 20 bids per provider, 100 RFQ items, and
20 items per bid.
The artificial negotiation scenarios we have generated

and tested result from all the possible combinations of the
following values:
Number of providers: 25, 50, 75, 100
Number of bids per provider: 5, 10, 15, 20

Number of RFQ items: 5, 10, 15, 20
Number of items per bid: 5, 10, 25, 50

4.2. Evaluation Stages

In order to introduce the evaluation stages that we con-
sidered, it is necessary to firstly understand how JADE ma-
nipulates messages and ontological objects. In particular we
summarise the process of sending and receiving messages
(for a complete description refer to the JADE documen-
tation). Figure 4 graphically summarises the activities in-
volved in sending and receiving messages. In the figure, the
squared boxes represent data, whereas the rounded boxes
represent processes.
JADE agents receive messages as serialised objects in

string format. JADE decodes the string into a Java class, the
ACLMessage JADE class (which represents a FIPA ACL
Message). One of these class fields is the content field,
which usually contains either the action to be performed or
the result of a performed action. Next, JADE extracts the
content of the message. The content is once more a string,
on which JADE needs to perform an ontology check to de-
code it. As a result, a Java object representing the ontolog-
ical object is built upon the content field, guaranteeing that
the ontological structure is not violated.
As to the dual case, i.e. when a JADE agent sends a mes-

sage, the process works the other way around. JADE en-
codes the ontological object representing the communica-
tion content into a string, that sets the content field of the
ACLMessage class. During this process JADE verifies that
the message content matches perfectly with an ontology ob-
ject. Once the content field is set, the agent sends the mes-
sage: the ACLMessage class is decoded into a string that is
sent through a socket.

Serialized
Object
(String)

MESSAGE
DECODING

ACLMessage
(Java class)

CONTENT
DECODING

Ontology object
(Java class)

MESSAGE RECEPTION

MESSAGE SENDING

Ontology object
(java class)

ACLMessage
(Java class)

serialized
Object
(String)

CONTENT
ENCODING

MESSAGE
ENCODING

Figure 4. Message life cycle in JADE

Considering the process above, we sampled both the
time and memory use through the following stages of the
iBundler’s solving process:
∆t1: JADE decodes all the FIPA messages contained in the
data set file containing the input negotiation problem, con-

70

verting them into instances of the ACLMessage Java class.
∆t2: the Manager agent composes the problem by creat-
ing an instance of the Problem Java ontology class and set-
ting its fields after merging the RFQ and the collected bids.
∆t3: the ACLMessage to be sent to the Translator Agent
is filled with the Java class representing the Problem ontol-
ogy class. At this stage an ontology check occurs.
∆t4: the above-mentioned ACLMessage is now encoded by
theManager agent, and subsequently sent to the Translator
agent through a socket. Once received, the Translator agent
decodes it into an ACLMessage class.
∆t5: the Translator agent extracts from the received mes-
sage the Problem ontology class containing the RFQ and all
the collected Bids. Another ontology check occurs.
∆t6: this stage is devoted to the transformation of the Prob-
lem ontology class into a matrix-based format to be pro-
cessed by the Solver component.
∆t7: at this stage the Solver component solves the MIP
problem using ILOG CPLEX.
∆t8: the output generated by Solver in matrix-based format
is decoded by the Translator agent into the Solution ontol-
ogy class.
∆t9: the Translator agent fills the response message
with the Solution ontology class, encodes the correspond-
ing ACLMessage class, and sends it. Then, the Manager
agent decodes the message upon reception.
∆t10: the Manager agent extracts the Solution concept
from the received ACLMessage with a last ontology check.
∆t11: the solution is decomposed into different parts, one
per provider owning an awarded bid.
∆t12: the solution containing the set of winning offers is
sent from the Manager agent to the Buyer agent. Note that
this object is small with respect to the original problem
since it only contains the winning bids.

5. Evaluation

In this section we give a quantitative account of the
tests we run. Firstly, in section 5.1, we analyse time per-
formance, and secondly, in section 5.2 the memory use
for all the evaluation stages described above. In or-
der to run our tests we employed the following tech-
nology: a PC with a Pentium IV processor, 3.1 Ghz, 1
Gbyte RAM running a Linux Debian (kernel v.2.6) oper-
ating system (http://www.debian.org); Java SDK 1.4.2.04
(http://java.sun.com); JADE v2.6; and ILOG CPLEX 9.0
(http://www.ilog.com).

5.1. Time performance

Next we show the variation in time performance per
stage by varying the different degrees of freedom available

to create an artificial negotiation scenario. In particular, we
consider the following types of negotiation scenarios:
100.20.100.X: the number of items contained in a single bid
varies (where X takes on the 5,10,25, and 50 values).
100.X.100.50: the number of bids each provider sends
varies (where X takes on the 5,10,15, and 20 values).
X.20.100.50: the number of providers varies (where X takes
on the 25,50,75, and 100 values).

5
10

15
20 dt

1 dt
2 dt

3 dt
4 dt

5 dt
6 dt

7 dt
8 dt
9

dt
10 dt
11 dt
12

0

10

20

30

40

50

60

70

80

90

tim
e(

se
c.

)

Bids/
provider

dt1
dt2
dt3
dt4
dt5
dt6
dt7
dt8
dt9
dt10
dt11
dt12

Figure 5. Time measures when varying the
number of bids per provider.

Figure 5 depicts the time spent in each of the described
stages, considering different number of bids per provider.
We experimented similar trends varying the number of
items and the number of providers3. These results suggest
that the variables’ sensitivity is similar in all cases, i.e. vary-
ing the number of items per bid, the number of providers
or the number of bids per provider leads to similar trends.
Therefore, the stages that are more time-consuming are
quite the same in every possible configuration: for instance,
stage ∆t10 is always the most time consuming, no matter
the parameter being varied. Moreover, we can observe sim-
ilar trends for the rest of stages (from∆t1 to∆t10). Hence,
it seems that the time distribution along the different stages
can be regarded as independent from the parameter setting.
Figure 6 illustrates the average percentage, over all the

performed trials, of the total time that each stage consumes.
We observe that: (1) The ∆t1, ∆t3, ∆t4, ∆t5, ∆t9, ∆t10
stages are the most time-consuming (92% of the total time).
Since these stages involve ontology checking and message
encoding and decoding, we can conclude that these activi-
ties are a bottle-neck. (2) The solver time (∆t7) is almost
a negligible part of the total time. (3) Manipulating classes
(stages ∆t2, ∆t6, ∆t8 and ∆t11) and solving the combina-

3 The way the times vary when increasing those parameters is not lin-
ear. Nonetheless we did not deeply study this aspect, because the main
issue for us was to assess the difference of these times with respect to
the solver component time by itself

71

torial problem (∆t7) is not as time-consuming as encoding
and decoding messages and ontology objects.

dt1
18%

dt3
12%

dt4
16%dt5

16%

dt6
1%

dt7
7%

dt9
12%

dt10
18%

dt8
~0%

dt2
~0%

dt11
~0%

dt12
~0%

Figure 6. Average times spent at the different
evaluation stages.

Figure 8 depict the accumulated time spent on all stages
for a collection of negotiation scenarios, which we refer to
as the total time. More precisely, figure 8 depicts configu-
rations whose total time lies between 30 and 50 seconds. It
is conceivable to regard them as the edge values, although
it is a very arbitrary matter. Some observations follow from
analysing the figures above:

1. The agent-awareness of iBundler is costly. We observe
that the percentage of total time employed to solve the
winner determination problem is small with respect to
agent related tasks.

2. Using the solver component we can easily solve prob-
lems of more than 2000 bids in less than one minute,
whereas the agent service can handle in reasonable
time less than 750 bids.

3. Therefore, small, and medium-size negotiation sce-
narios can be soundly tackled with iBundler. Nonethe-
less, time performance significantly impoverishes
when handling large-size negotiation scenarios.

5.2. Memory Use

In this case we found similar results when comparing the
Solver component with iBundler. The amount of memory
required in the worst case is quite the same for both cases.
The memory consumption in both cases is highly dependent
on the ontology structure. It is not surprising that the mem-
ory peak is similar in both cases, as the information quantity
to represent is actually the same. The biggest amount of in-
formation is used to represent all the bids. Both Solver and
JADE have to load in memory the information representing

75
.2

0.
25

.1
0

10
0.

10
.5

0.
25

75
.1

0.
10

0.
50

50
.2

0.
10

0.
10

75
.1

5.
10

0.
50

10
0.

15
.1

00
.5

0

10
0.

20
.1

00
.2

5

10
0.

20
.1

00
.5

0

SOLVER

0
50

100
150
200
250
300
350
400
450

M
em
or
y(
M
by
te
s)

SOLVER
IBUNDLER AGENCY

Figure 7. Memory consumption.

a problem, namely an RFQ and the received bids (the for-
mer as a Java object and the latter as a file containing ma-
trices). Figure 7 compares the memory use for the iBundler
agency and Solver.

6. Conclusions

The tests we ran show that offering iBundler as an agent
service implies a significant time overload, while the mem-
ory use is only slightly affected. The main cause of such an
overload is related to the encoding and the decoding of on-
tological objects and messages. The message serialisations
and deserializations, along with ontology checkings heav-
ily overload the system as the dimensions of the negotiation
scenario grow. We propose several actions to alleviate this
effect. Firstly, we have observed that the main amount of in-
formation is gathered in representing bids. Their presence
in objects and messages is the foremost cause of iBundler’s
time overload. Thus, a suitable work-around is to use, at on-
tology design time, a more synthetic bidding language, in
which bids can be expressed more concisely. For instance,
introducing a preprocessing phase in which equal (and even
similar) bids are grouped, in order to obtain a more com-
pact representation. The resulting ontology would generate
more tractable objects. Secondly, it would be also helpful to
improve the performances of the JADE modules devoted to
the ontology checking and serialisation processes. All in all
iBundler can satisfactorily handle small and medium-size
negotiation scenarios. Thus, although the automation of the
negotiation process with agents helps in saving time in man-
aging negotiations, the scalability in terms of time response
of iBundler is limited.
As future work we propose a comparison of iBundler

with other distributed solutions such as CORBA
(http://www.corba.org) or JAVA RMI (http://java.sun.com).
Nonetheless, we should notice that agent technology of-
fers a higher level of abstraction, and thus we would

72

31
32

33
33

34
35
35

36
37
37

39
40
40
40

41
41
41
41

42
43

45
46

48

0 10 20 30 40 50 60

50.20.50.5

50.15.100.5

100.5.50.10

100.10.25.5

50.10.100.10

75.5.100.10

75.15.25.5

50.15.25.10

100.5.100.5

75.10.25.10

50.5.100.25

50.15.50.10

100.10.50.5

75.15.50.5

25.15.50.25

75.10.100.5

50.20.100.5

75.20.10.5

100.15.10.5

75.10.50.10

75.20.25.5

25.15.100.25

75.5.50.25

Total Time(sec.)

Figure 8. Time performance for negotiation scenarios on the edge of acceptability

lose the transparency and portability offered by the agent
paradigm.
We conclude that, while agent technology adds a higher

level of abstraction and eases inter-platform communica-
tion, state-of-the-art agent technologies require further im-
provements to tackle real-world domains.

References

[1] FIPA interaction protocol library specification. Techni-
cal Report DC00025F, Foundation for Intelligent Physical
Agents.

[2] F. Brazier, M. van Steen, and N. Wijngaards. On MAS scal-
ability. In Proceedings of Second International Workshop
on Infrastructure for Agents, MAS, and Scalable MAS, pages
121–126, Montreal, May 2001.

[3] R. Deters. Scalability & multi-agent systems. In Proceed-
ings of Second International Workshop on Infrastructure for
Agents, MAS, and Scalable MAS, Montreal, May 2001.

[4] A. Fedoruk and R. Deters. Improving fault-tolerance by
replicating agents. In AAMAS ’02: Proceedings of the first in-
ternational joint conference on Autonomous agents and mul-
tiagent systems, pages 737–744. ACM Press, 2002.

[5] A. Giovanucci, J. A. Rodrı́guez-Aguilar, A. Reyes-Moro,
F. X. Noria, and J. Cerquides. Towards automated procure-
ment via agent-aware negotiation support. In Third Interna-
tional Joint Conference on Autonomous Agents and Multia-
gent Systems, New York, July 19-23 2004.

[6] F. S. Hillier and G. J. Liberman. Introduction to Operations
Research, pages 576–653. Mc Graw Hill, 2001.

[7] M. Jarrar and R. Meersman. Scalability and knowl-
edge reusability in ontology modeling. In Proceedings

of the International conference on Infrastructure for e-
Business, e-Education, e-Science, and e-Medicine, volume
SSGRR2002s, Rome, 2002. SSGRR education center.

[8] M. L. Kahn and C. Della Torre Cicalese. COABS grid scala-
bility experiments. Autonomous Agents andMulti-Agent Sys-
tems, 7(1-2):171–178, 2003.

[9] M. Klein, J. Rodriguez-Aguilar, and C. Dellarocas. Using
domain-independent exception handling services to enable
robust open multi-agent systems: The case of agent death.
Autonomous Agents and Multi-Agent Systems, 7(1-2):179–
189, 2003.

[10] J. Odell, H. van Dyke Parunak, and B. Bauer. Extending
UML for agents. In Proceedings of the Agent-Oriented In-
formation Systems Workshop, pages 3–17, Austin, TX, 2000.
17th National Conference on Artificial Intelligence.

[11] OMG and FIPA standardisation for agent technology: com-
petition or convergence? http://www.cordis.lu/infowin/
acts/analysys/products/thematic/agents/ch2/ch2.htm.

[12] A. Reyes-Moro, J. A. Rodrı́guez-Aguilar, M. López-
Sánchez, J. Cerquides, and D. Gutiérrez-Magallanes. Em-
bedding decision support in e-sourcing tools: Quotes, a case
study. Group Decision and Negotiation, 12:347–355, 2003.

[13] T. Sandholm, S. Suri, A. Gilpin, and D. Levine. Winner de-
termination in combinatorial auction generalizations. In First
Joint Conference on Autonomous Agents andMultiagent Sys-
tems (AAMAS’02), pages 69–76, Bologna, July 2002.

[14] H. Wache, L. Serafini, and R. Garcı́a-Castro. D2.1.1 sur-
vey of scalability techniques for reasoning with ontologies.
Technical report, Knowledge Web, July 2004.

[15] M.-J. Yoo. An industrial application of agents for dynamic
planning and scheduling. In AAMAS ’02: Proceedings of
the first international joint conference on Autonomous agents
and multiagent systems, pages 264–271. ACM Press, 2002.

73

Automated Interpretation of Agent Behavior

D. N. Lam and K. S. Barber
The University of Texas at Austin

The Laboratory for Intelligent Processes and Systems
dnlam@lips.utexas.edu, barber@lips.utexas.edu

Abstract

Software comprehension, which is essential for debug-
ging and maintaining software systems, has lacked atten-
tion in the agent community. Comprehension has been
a manual process, involving the interpretation of agent
behavior of the implemented system. This paper describes
an approach and tool to automate creating interpretations
of agent behavior from observations of the implementation
execution, thus helping users (i.e., designers, developers,
and end-users) comprehend agent behaviors. By explicitly
modeling the user’s comprehension of the implemented
system as background knowledge for the tool, feedback
can be provided as to whether the user’s comprehension
accurately represents the implementation’s behavior and
if not, how it can be corrected. Additionally, with the
aid of the Tracer Tool, many of the manual tasks are
automated, such as verifying that agents are behaving as
expected, identifying unexpected behavior, and generating
explanations.

1. Introduction

Agents are distributed software entities that are capable
of autonomous decision-making. Besides being motivated
by its own goals, an agent’s behavior is influenced by
interactions with other agents (i.e., their goals, beliefs,
and intentions), by events that have occurred in the past,
and by the current situation. With so many factors that
can influence an agent’s decision, end-users may not trust
the agent’s decision, and developers may have difficulty

This research was funded in part by the Defense Advanced Research
Projects Agency and Air Force Research Laboratory, Air Force Materiel
Command, USAF, under agreement number F30602-00-2-0588. The U.S.
Government is authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright annotation thereon.
The views and conclusions herein are those of the authors and should
not be interpreted as necessarily representing the official policies or
endorsements, either expressed on implied, of the Defense Advanced
Research Projects Agency (DARPA), the Air Force Research Laboratory,
or the U.S. Government.

debugging the implementation. Software designers, devel-
opers, and end-users often need to comprehend why an
agent acted in a particular way when situated in its oper-
ating environment, which itself can be unpredictable and
uncertain. Currently, the process of comprehending agent
behavior is done manually by interpreting observations
from the implementation executions. The interpretation
process links (usually a causal link) observations together
to create a connected, comprehensive view of what the
software is doing. In essence, interpretation compares the
actual implementation behavior with expected behavior,
which may have been gathered from the software design,
previous experience, intuition, etc.

Considering the complexities of agent software (e.g.,
autonomous decision-making and a high degree of inter-
action) and the usual disparity between software design
and implementation, software comprehension is a difficult,
time-consuming, and tedious process. To alleviate these
issues, this research aims to automate the comprehension
process as much as possible. This paper describes how the
interpretation of agent behavior can be automated and how
the Tracer Tool can be used to help build and verify the
user’s comprehension of the implemented agent system.

Sophisticated software such as agent systems presents
obstacles that are difficult to overcome using current soft-
ware comprehension and verification tools. In general, tra-
ditional software comprehension (or reverse engineering)
tools are limited by their detailed abstraction level, their
dependence on analyzing source code, their lack of automa-
tion to help decipher tremendous amounts of resulting data,
and their lack of a model for how much the user under-
stands. Taking the formal approach to modeling systems
(and thus, understanding properties of systems), model-
checking is limited by its demand for expert knowledge of
the model-checking process, its high computational com-
plexity, and the translation gap between the model being
checked and the actual system.

To remedy limitations of current comprehension tech-
niques, this research offers a novel approach to computer-
aided software comprehension that involves: (1) modeling

74

the user’s comprehension of the system as background
knowledge usable by tools, (2) ensuring that the user’s
comprehension accurately reflects the actual system, and (3)
generating interpretations and explanations as evidence of
comprehension.

This paper describes an approach and tool that builds
on the ideas from reverse engineering and model-checking
to better assist the human user (of various skill levels) in
comprehending agent-based software. Section 2 reviews
limitations of existing work and highlights advantages that
are used in this research. Section 3 presents the formulation
of the problem and the approach employed to automate
building the interpretation of agent behavior. Section 4
describes how the Tracer Tool implements the approach.
Section 5 demonstrates how the interpretation can be used
to generate explanations. Finally, Section 6 summarizes the
contributions of this research.

2. Background

Agent concepts (e.g., beliefs, goals, intentions, actions,
and messages) are abstractions of low-level implementation
constructs (e.g., data structures, classes, and variables)
that make designing and communicating the design easier.
Though agent concepts help in designing software for
sophisticated and distributed domains, there has been little
research in leveraging them for the expensive maintenance
phase of software engineering. Since software designs use
agent concepts to describe agent structure (e.g., an agent
encapsulates localized beliefs, goals, and intentions) and
behavior (e.g., an agent performs an action when it believes
an event occurred), agent concepts should be leveraged
for comprehending the software. If the same concepts and
models are used in forward and reverse engineering, tools
would be able to better support re-engineering, round-trip
engineering, maintenance, and reuse [10]. In this research,
agent concepts are used to take advantage of the user’s
intuitive knowledge of agent-based systems to comprehend
agent behavior in the implementation.

Software comprehension, which historically has been
associated with program comprehension and reverse en-
gineering, involves extracting and representing the struc-
tural and behavioral aspects of the implementation in an
attempt to recreate the intended design of the software.
Software comprehension is motivated by the fact that the
software may need to be (1) verified to ensure that the
implementation is behaving as it was designed to behave;
(2) maintained to fix bugs or make modifications; or (3) re-
designed and evolved to improve performance, reusability,
or extensibility (among other reasons). In order to perform
these tasks, an understanding of the current implementation
is required and is attained using reverse engineering (RE)
tools and techniques.

RE tools (e.g., Rigi [1] and PBS [3]) analyze the imple-
mentation at a very low abstraction level (i.e., at the source
code level) and, thus, are inappropriate for agent software
because they produce models of the implementation that
are too detailed (e.g., component dependence and class
inheritance models). Besides being limited to supported
programming languages, these tools do not provide ab-
stracted views of the implementation as a whole in terms
of high-level agent concepts (e.g., beliefs, tasks, goals,
and communication messages). Wooldridge states that as
software systems become more complex, more powerful
abstractions and metaphors are needed to explain their
operation because “low level explanations become imprac-
tical” [11]. To attain an understanding of agent behavior,
the models resulting from the comprehension process must
be at the abstraction level where agent concepts are the
elemental or base concepts.

In addition to static analysis of the source code, dy-
namic analysis tools (e.g., SCED [6] and Hindsight [4])
can create flowcharts, control-flow, and state diagrams.
However, these tools also face the same problem of detailed
representation of programmatic concepts such as process
threads, remote procedure calls, and data structures, rather
than agent-oriented models of goals, plans, and interaction
protocols. Dynamic analysis is particularly important for
agent systems that operate in the presence of environmental
dynamics and uncertainty. This research leverages agent
concepts to build abstract representations of the agents’ run-
time behavior (i.e., relational graphs), which can be quickly
understood by the user and can also be used for automated
reasoning to further assist the user.

To deal with the large amount of data resulting from
source code or execution analysis, some RE tools (e.g.,
SoftSpec [2]) allow users to query a relational database of
gathered data. However, most RE tools leave it up to the
user to parse, interpret, and digest the data. The research
described in this paper deals with the large amount of data
by automating data interpretation for the user. Instead of a
list of unconnected, detailed data that the user must relate
manually, the presented solution automatically relates run-
time observations together in a causal graph. This is similar
to the GUPRO toolset [7], where source code is transformed
into graphs, except that the graphs nodes are in terms agent
concepts.

As described, RE tools only produce representations
of the implementation and have no model of the user’s
comprehension. It is the user’s responsibility to digest
the RE results (e.g., diagrams, charts, and databases). RE
tools do not reflect how much the user understands and
thus, cannot provide feedback to the user about the user’s
comprehension. However, in model-checking, the user ex-
presses their understanding of the implementation as a
“model”, which can be automatically checked for specified

75

properties. Thus, model-checking tools have a representa-
tion of the user’s comprehension of the system. Though
useful due to the exhaustive state-space search, model-
checking techniques in general do not verify the accuracy of
the “model” with respect to the actual system (often referred
to as the translation gap problem). Hence, any checked
properties may not apply to the actual implementation.
Additionally, the model must be made simple enough such
that the model-checker can search the entire state-space. By
combining model-checking with reverse engineering, this
research maintains a model of the user’s comprehension (as
the user is learning about the implemented agent system)
and also ensures that the model accurately represents of the
actual system.

3. Building the Interpretation

When a user tries to comprehend agent behavior in the
implemented system, the user is essentially building an
interpretation by observing and examining agent actions,
communicated messages, environmental events, and any
other run-time data that can be acquired from the imple-
mentation. As shown in Figure 1, background knowledge
about the expected behavior of the implemented system is
required to relate the otherwise unconnected observations
together. Background knowledge K represents the user’s
comprehension of the system, which is commonly derived
from many sources, such as specifications of the design,
experience with the implementation, and intuition from
presentations. In model-checking, K is a model that is to
be checked and it is manually specified by the user.

In this research, K is modeled using a semantic network
(i.e., directed graph) of agent concepts that are intercon-

Figure 1. An interpretation for an agent,
given the background knowledge K and
observations Os.

nected by causal relations. The current set of agent concepts
includes goal, belief, intention, action, event, and message
– the set can be extended to include other concepts that
may be of interest to the user. For example, in Figure 1, the
background knowledge for an agent’s behavior denotes an
intention that is influenced by two different beliefs (denoted
by a circle and square). The intention causes an action to
occur, which in turn affects one of the beliefs.

This research takes advantage of agent concepts to create
interpretations of agent behavior in the implemented sys-
tem. Note that K represents a behavioral pattern and, thus,
can have cycles in the graph. However, the interpretation,
which consists of actual observations and their relation-
ships, do not have cycles.

To build an interpretation, observations are mapped to
agent concepts in K and are linked together using relations
defined in K . For example, observations b1 and b5 are
mapped to agent concept B because the observations are
beliefs about a target’s state; b′2 and b′6 are mapped to
B′ because the observations are beliefs about the target’s
location; i3 and i7 are mapped to I; etc. Since I is causally
related to B and B′, directed edges are added between the
appropriate nodes (e.g., from b1 and b2 to i3) to relate the
observations together. In other words, since the user expects
beliefs about a target’s state B to influence the agent’s
intention I , the user will create an interpretation where
the corresponding observations for that agent are causally
linked.

Figure 2. Manual software comprehension

Background knowledge K is constructed by the user and
describes how the agents are expected to behave in terms
of the agent concepts. As shown in Figure 2, the manual
procedure for building comprehension can be expressed as

K ′ = updatemanual(K, D, I, Os) (1)

where K is the previous background knowledge, D is the
design models and documentation, I is the implementation
expressed in source code, and Os is a set of observations

76

Figure 3. Reverse engineering approach

Figure 4. Automated interpretation approach using Tracer

resulting from executing the implementation I in some
scenario s:

Os = observe(execute(I, s)) (2)

Note that since comprehension is an iterative process,
construction of K ′ involves modifying and updating the
previous background knowledge K . To build up com-
prehension, the user has the tedious task of gathering,
organizing, and relating the data from the design D, the
implementation I , and the observations Os.

Due to human error or outdated design specifications,
system behavior described by K may be erroneous or inac-
curate with respect to the actual behavior of the system, par-
ticularly as the implementation is updated and maintained
over time. To generate accurate interpretations, K must
accurately reflect the implementation’s actual behavior. Us-
ing empirical techniques, the user must manually verify
that the expected behavior expressed as K is representa-
tive of the actual behavior from the implementation. Due
to complexities and uncertainties of some systems, agent
behaviors cannot always be predicted from only the design

specification in general [5]. Thus, the construction of K
must incorporate empirical studies of the implementation.

The overall approach of this research is to build up
the background knowledge K using observations from
the actual implementation’s executions, rather than relying
on design specifications as it is in model-checking. As
a result, everything in K is based directly on the actual
implementation (similar to the RE approach). Modifications
to K (e.g., addition of relations between agent concepts)
are automatically suggested by the Tracer Tool. However,
unlike RE, where detailed models are automatically created
for the user to digest, this approach demands that the user
confirms all modifications to K so that K also reflects
what the user comprehends. In other words, since the user
is building K , there is nothing in K that the user does
not already comprehend or at least has seen. Consequently,
the user does not have to digest all interpretations. Any
new or inconsistent behaviors are automatically detected
and brought to the attention of the user. Additionally,
automatically generated suggestions and explanations can
help the user deal with the anomalous behavior.

77

The following describes the overall approach taken by
this research to ensure the representativeness of the back-
ground knowledge. Functions begin with a lowercase letter
(e.g., interpret(K, Os)), while predicates begin with an
uppercase letter (e.g., Consistent(K, Ns)).

As seen in Figure 3, the reverse engineering approach
helps the user by analyzing Os to produce interpretations
Ns, which consists of models derived from observations Os

resulting from actual system behavior:

Ns = interpretRE(Os) (3)

However, the user still has the task of ensuring that K
accurately represents Ns.

To aid the user in software comprehension, this research
automates the tasks of interpreting the observations with
respect to K (and in the process, verifying K) and sug-
gesting modifications to K (see Figure 4). This is possible
by explicitly modeling the user’s background knowledge
K and using it as input to the Tracer Tool. Thus, the new
update function is

K ′ = update(K, D, Ns, k) (4)

where interpretation Ns is derived by mapping the observa-
tions Os to agent concepts in K:

Ns = interpret(K, Os) (5)

and the set of suggestions k consists of relations that can be
added to the background knowledge K:

k = suggest(Ns) (6)

Since background knowledge K should accurately
model the user’s comprehension, the user remains
in control of K and must confirm all suggestions
before K is modified. However, the user no longer
needs to directly analyze the observations Os from the
implementation execution or verify that K accurately
reflects the implementation’s behavior, as these tasks are
automated by the Tracer Tool. With the interpretations Ns

readily available, the user can modify K as they see fit.
Through each iteration of building up K , the Tracer Tool
verifies K against the observations Os in case the user
introduced errors into K .

If the implementation’s behavior changes (resulting from
design changes or maintenance tasks) and is different from
the expected behavior represented by K , the Tracer Tool
alerts the user of the new or inconsistent behavior in Ns

and generates suggestions for updating K . Since changes to
the implementation can be propagated to K , the accuracy of
K with respect to the implementation is maintained as the
implementation evolves.

Formally stated, the background knowledge K is rep-
resentative of the implementation I if and only if K is

complete and consistent with respect to interpretations Ns

for each execution scenario s in a set of scenarios S:

Representative(K, I, S) ⇐⇒
∀s ∈ S (Complete(K, Ns) ∧ Consistent(K, Ns)) (7)

where Complete(K, Ns) is true if there is no suggestions
for updating K (i.e., k = ∅) and Consistent(K, Ns) is true
if there are no contradicting behaviors. Ideally, S would be
a complete set of scenarios covering all possible threads of
execution the implementation would encounter. Since this is
not usually feasible, a scenario set that covers a reasonable
number of execution threads is assumed to be given.

4. Tracer Tool

To generate accurate interpretations, the background
knowledge K should be representative of what is being
explained (i.e., agent behavior in the implementation). This
implies that the K (representing expected agent behavior)
must be complete and consistent with the implementation’s
behavior (Equation 7). By explicitly modeling the user’s
comprehension as K , the accuracy of K can be verified
during the interpretation process, which has been mostly
automated by the Tracer Tool.

The Tracer Tool addresses the comprehension issues
(described in Section 2) in the following ways:

low abstraction level : Background knowledge K is rep-
resented as a collection of high-level agent concepts
familiar to designers, developers, and end-users.

language-dependent : The Tracing Tool records obser-
vations logged from the implementation’s execution,
rather than analyzing language-dependent stack traces
and process threads.

large amount of data : The Tracer Tool automates the
task of collecting, organizing, and interpreting the
observations and can present the interpretation to the
user as a relational graph that can be quickly digested.

human user must digest data : Given interpretations and
K , automated reasoning can highlight new concepts
and relations that the user has not yet modeled in K
and ignore already modeled relations.

The following subsections describe the Tracer Tool with
respect to Equations 2, 5, and 6.

4.1. Equation 2: Os = observe(execute(I, s))

Since K and Ns are modeled at the agent concept
abstraction level, only agent concepts are extracted from
the implementation – more detailed concepts (e.g., data
structures and method calls) are not needed. To acquire only
the agent concepts from the implementation, the approach

78

symptom cause Tracer’s solution
node in Ns is
missing in K

user logged an observation that has no
corresponding agent concept in K

Tracer adds the agent concept and suggests relation(s) that
link the new agent concept to other agent concepts in K .

edge in Ns is
missing in K

not possible since edges are created only
if a corresponding relation exists in K

Not applicable

node in K is
missing in Ns

observation did not occur in the scenario;
or user did not correctly insert the
corresponding logging code;
or user incorrectly added the node in K

not considered an error by Tracer because there is
no inconsistency – K models a superset of behaviors
exhibited in Ns. The node may appear for an interpretation
of another scenario.

edge in K is
missing in Ns

the relation did not occur in the scenario not considered an error by Tracer because there is no
inconsistency. The edge may appear for an interpretation
of another scenario.

Table 1. Possible completeness and consistency problems between K and Ns

is to instrument the source code (i.e., add extra code
to log data). The extra logging code (generated by the
Tracer Tool) is inserted at locations where agent concepts
occur or change. When the implementation is executed
in a scenario s, only agent-relevant data is logged as
observations Os, which are collected by the Tracer Tool.
By not parsing the implementation’s source code, the Tracer
Tool can operate with any software system implemented in
practically any mix of languages. This reverse engineering
approach requires only a high-level structural understanding
of the implementation and encompasses the entire agent
system implementation rather than just portions of the code.
Scalability is better than reverse engineering because only
relevant data about the system is analyzed, not every method
call or data structure change. This approach translates
run-time data and occurrences from the implementation
execution into observations of agent concepts. Since the
observations are coming from numerous agents and may
be out of order, the Tracer Tool sorts and organizes the
observations (during run-time) for the next step, which is
creating the interpretations.

4.2. Equation 5: Ns = interpret(K, Os)

To produce interpretations Ns from the implementation,
observations Os of the implementation execution are used
as shown in Figure 4. Instead of having the user manually
organize and relate observations, the Tracer Tool automati-
cally collects and interprets the observations for the user by
linking observations with each other based on the explicitly
modeled background knowledge K . If K is initially empty
or minimal, the Tracer Tool will suggest updates for K
to the user, as described in the next section. In this case,
the interpretations are semantic graphs with observations as
nodes. Run-time attributes of the the observations, such as
observation type and name, time-stamp, and belief values,
are used to map observations to agent concepts in K . If

a relation exists between two agent concepts according to
K , a directed edge is created between the corresponding
observations. In [9], a detailed demonstration of creating
interpretations using the Tracer Tool is described.

Essentially, K is being used as a template for creating the
interpretation. K is a representation of expected behavior,
while Ns is a representation of actual behavior. If there are
inconsistencies between the Ns and K , then K may need
to be modified, similar to the changes that need to be made
to the user’s comprehension if the implementation does not
behave as expected. Suggestions provided by the Tracer
Tool can help the users correctly modify K .

4.3. Equation 6: k = suggest(Ns)

Since the interpretation process performs the mapping
between the observations Os and agent concepts in K , K
is verified against the implementation I . If there exists an
observation o ∈ Os that cannot be related to some other
observation based on defined relations in the current K ,
then a suggestion is offered by the Tracer Tool to update K
so that o is a consequence of some other observation. This
happens when there is no incoming relation for the agent
concept corresponding to the observation o. Beginning with
o, the relations-suggesting algorithm searches temporally
backwards through the observation list to determine if a
previous observation is related in some way to o using
heuristics. The heuristics leverage the typical relationships
among agent concepts. For example, if o is an action, then
the algorithm searches for the last observed intention i that
has some similar attribute as those of action o. If such an
intention is found, a relation from i to o is suggested.

If there is no suggestion (i.e., k = ∅), then K is
complete – all actual behaviors are modeled by the expected
behavior representation of the background knowledge. If
K is not representative of the implementation’s behavior
(¬Representative(K, I, S)) and suggestions do not help,

79

then K and/or the implementation need to be manually
modified since neither K nor the implementation is as-
sumed to be correct. For example, if the user expects (as
modeled in K) an agent to have a belief called ‘target loca-
tion’ before creating an intention involving that target and
that belief observation is not in Os, then the implementation
may need to be updated to ensure that the belief ‘target
location’ is actually being ascertained by the agent. On the
other hand, K may need to be updated according to design
changes that may have occurred during development that
were not incorporated into K . This type of inconsistency
is manifested as a missing incoming edge for the intention
observation in the semantic network interpretation. How-
ever, experiments show that the generated suggestions can
correct most of the representative errors in K [8].

Table 4 enumerates completeness and consistency prob-
lems between K and Ns that can be identified with the help
of Tracer Tool. Causes and solutions for those problems
are also listed. Nodes are observations when referring to
Ns and agent concepts when referring to K; and edges
refer to relations between nodes. The Tracer Tool offers
suggestion for all observations without a (casual) relation
from another observation – nodes with no incoming edge,
which are detected by the tool. Note that the Tracer tool
cannot verify whether all causal agent concepts have been
identified – such information is application-dependent and
relies on the user’s knowledge of the domain.

5. Using interpretations

Explanations of agent actions offer an understanding of
why agents behave in a certain way in a given scenario.
An explanation of agent behavior answers a question like
“Why did agent action m occur?” A desirable explanation
could be “Action m was performed by agent n1 because
n1 believed belief b, which was due to the occurrence of
event e, which was an expected consequence of agent n1

performing action a, which was planned as a result of nego-
tiations with agent n2 about n2’s goal g.” Other relevant
agent concepts can include details about communication
messages and updated beliefs resulting from the messages.

Since there is no direct way to measure how much the
user comprehends, a person’s comprehension of a subject
is indirectly measured by how much the person can explain
about the subject because the process of creating an accurate
explanation demands correct comprehension of the system.
Explanations bridge the gap between expected and actual
behavior (i.e., between the explainer’s background knowl-
edge and the implementation’s execution). Thus, explana-
tions can be very important in designing, debugging, and
trusting agent behavior.

Unfortunately, ensuring accurate explanations is difficult
because the implementation evolves over time and there

are many factors that can influence agent behavior. First,
since comprehending the behavior of the implemented sys-
tem relies on how accurately the background knowledge
represents the implementation, the representative accuracy
of the background knowledge must be maintained as the
implementation changes. The second problem in manual
explanation generation is that an explanation may be too
difficult to conceive due to the sophistication (e.g., in
reasoning or agent interaction) of the agent system or the
amount of observed data to consider. In response to these
difficulties, this research proposes an automated approach
to agent software comprehension that can handle large
amounts of observation data and can automate the gener-
ation of explanations to aid the user in comprehending the
system as the implementation evolves over time.

Once background knowledge K has been checked for
representative accuracy over the chosen set of scenarios S,
K can be used to accurately explain an observation (called
the manifestation m ∈ Os), such as an agent action, that
occurred in a specific scenario s using observations Os

(resulting from the scenario in which m occurred). An ex-
planation ε consists of a subset of observations from Os and
relations among those observations that contributed to (i.e.,
caused or influenced) the occurrence of m. The relations
are derived from K , which defines relations among agent
concepts. Thus, explanation generation involves mapping
observations to agent concepts and following the relations
(backwards) from m to observations that caused m.

Based on the approach illustrated in Figure 4, an expla-
nation ε for manifestation m ∈ Os (e.g., agent action) can
be generated using the checked background knowledge K
and observations Os (arrows not shown in Figure 4). To
generate an explanation for an observation m, the explainer
uses the same technique as in interpretation – mapping
observations to agent concepts in K and using relations in
K to link observations together. If an interpretation Ns of
the scenario exists, the same explanation can be generated
faster using Ns because interpret(K, Os) has already
done the work of mapping and relating the observations.
Starting from observation m in the interpretation Ns, the
explanation is generated by identifying observations that
cause or influence the occurence of m by following edges
pointing to m. This can be performed recursively to an
arbitrary depth to find causes of causes.

ε = explain(m, Ns) = explain(m, K, Os) (8)

From Equation 8, generating explanations is dependent on
the quality of the K , specifically on how accurately the
K reflects the context of what is being explained – thus,
stressing the need to maintain the representativenss between
K and I as described in Section 3.

Since background knowledge K is represented using
agent concepts, the generated explanations will be in terms

80

Figure 5. Explanation in Tracer

of the same high-level agent concepts, understandable by
anyone with a general knowledge of agents. The explana-
tion can be expressed as a tree graph (as seen in Figure 5),
where the root of the tree is the observation m that is being
explained. Child nodes are observations that influenced or
caused the parent node observation to occur. The depth
of the explanation tree continues until an observation with
no causal observation exists, which is one of the initial
observations or an exogenous event that independently
occurs in the environment. If the explanation does not end
with one of these observations, then K may be incomplete
and require relations to be added.

Explanations can help focus on and track down the cause
of the undesirable behavior. With explanations readily avail-
able to the user, tasks such as redesigning, debugging, and
understanding agent behavior becomes a more manageable
task and less prone to human error.

6. Summary

The objective of this research is to help users (i.e.,
designers, developers, and end-users) comprehend agent be-
haviors within agent-based software systems. This paper de-
scribes an approach to automate the process of interpreting
agent behavior. Borrowing the model-checking approach,
a model of the user’s comprehension (i.e., background
knowledge) is maintained as the user is learning about the
implemented agent system. Using the reverse engineering
approach, the background knowledge is verified against
the actual system using observations of the implementation
execution. In this way, the correctness of the background
knowledge can be given as feedback to update the user’s
comprehension of the system.

The contribution of this paper is a practical method to
produce a model that (1) accurately represents the actual
system (i.e., the implementation) in terms of agent con-
cepts familiar to the designer, developer, and end-user, (2)

explicitly represents the user’s growing knowledge of the
software’s behavior, and (3) can be used for automated
reasoning to reduce the effort of software comprehension.
The method describes a process to create, refine, and verify
the user’s comprehension of the system with respect to the
implementation. With the aid of the Tracer Tool, many of
the manual tasks are automated, such as verifying expected
behavior, scanning for unexpected behavior, and generating
explanations. With the verified background knowledge,
accurate explanations of actual agent behavior that are
consistent with run-time observations can be generated. The
Tracer Tool generates interpretations and explanations as
evidence of software comprehension and allows the user
to analyze reasons for agent behavior, thereby facilitating
software maintenance tasks and promoting confidence in
the adoption of agent technology.

References

[1] A. Agrawal, M. Du, C. McCollum, T. Syst, K. Wong, P. Yu,
and H. Mller. Rigi - An End-User Programmable Tool
for Identifying Reusable Components. In 5th International
Conference on Software Reuse, June 2-5, 1998.

[2] D. Bruening, S. Devabhaktuni, and S. Amarasinghe. Soft-
spec: Software-based Speculative Parallelism. In 3rd ACM
Workshop on Feedback-Directed and Dynamic Optimization,
Montery, California, December 10 2000. ACM Press.

[3] P. J. Finnigan, R. C. Holt, I. Kalas, S. Kerr, K. Kontogiannis,
H. A. Meller, J. Mylopoulos, S. G. Perelgut, M. Stanley, and
K. Wong. The Software Bookshelf. IBM Systems Journal,
36(4):564–593, 1997.

[4] Hindsight, 2004. http://www.testersedge.com/hindsight.htm.
[5] N. R. Jennings. On Agent-based Software Engineering.

Artificial Intelligence, 117:277–296, 2000.
[6] K. Koskimies, T. Mnnist, T. Syst, and J. Tuomi. Automated

Support for Modeling OO Software. IEEE Software,
15(1):87–94, 1998.

[7] B. Kullbach and A. Winter. Querying as an Enabling
Technology in Software Reengineering. In P. Nesi
and C. Verhoef, editors, 3rd European Conference on
Softward Maintenance and Reengineering, pages 42–50, Los
Alamitos, 1999. IEEE Computer Society.

[8] D. N. Lam and K. S. Barber. Comprehending Agent
Software. In 4th International Joint Conference on
Autonomous Agents and Multi-Agent Systems, Utrecht,
Netherlands, July 25-29, 2005.

[9] D. N. Lam and K. S. Barber. Debugging Agent Behavior in
an Implemented Agent System. In Bordini, Dastani, Dix, and
Seghrouchni, editors, Lecture Notes in Computer Science,
volume 3346, pages 103–125. Springer-Verlag, 2005.

[10] E. Stroulia and T. Syst. Dynamic Analysis for Reverse
Engineering and Program Understanding. ACM SIGAPP
Applied Computing Review, 10(1):8–17, 2002.

[11] M. Wooldridge. An Introduction to MultiAgent Systems.
John Wiley and Sons, Chichester, England, 2002.

81

 82

Requirements Analysis of an Agent’s Reasoning Capability

Tibor Bosse1, Catholijn M. Jonker2, and Jan Treur1

1 Vrije Universiteit Amsterdam,
Department of Artificial Intelligence

De Boelelaan 1081a,
1081 HV Amsterdam, The Netherlands

{tbosse, treur}@cs.vu.nl

2 Radboud Universiteit Nijmegen, Nijmegen
Institute for Cognition and Information,

Montessorilaan 3,
6525 HR Nijmegen, The Netherlands

C.Jonker@nici.ru.nl

Abstract

The aim of requirements analysis for an agent that is to be
designed is to identify what characteristic capabilities the
agent should have. One of the characteristics usually
expected for intelligent agents is the capability of
reasoning. This paper shows how a requirements analysis
of an agent’s reasoning capability can be made.
Reasoning processes may involve dynamically introduced
or retracted assumptions: ‘reasoning by assumption’. It is
shown for this type of reasoning how relevant dynamic
properties at different levels of aggregation can be
identified as requirements that characterise the reasoning
capability. A software agent has been built that performs
this type of reasoning. The dynamic properties have been
expressed using the temporal trace language TTL and can
and have been checked automatically for sample traces.

1. Introduction

Requirements analysis addresses the identification and
specification of the functionality expected for the system
to be developed, abstracting from the manner in which
this functionality is realised in a design and
implementation of this system; e.g., [9], [16], [21].
Recently, requirements analysis for concurrent systems
and agent systems has been addressed in particular, for
example, in [11], [13]. An agent-oriented view on
requirements analysis can benefit from the more specific
assumptions on structures and capabilities expected for
agents, compared to software components in general. To
obtain these benefits a dedicated agent-oriented
requirements analysis process can be performed that takes
into account specific agent-related structures and
capabilities. For example, for a number of often occurring
agent capabilities, a requirements analysis can be made
and documented that is reusable in future agent-oriented
software engineering processes. In the process of building
agent systems, software engineering principles and
techniques, such as scenario and requirements
specification, verification, and validation, can be

supported by the reusable results of such a requirements
analysis.

In this paper the results are presented of a
requirements analysis of an agent’s reasoning capability.
Since reasoning can take different forms, intelligent
agents may sometimes require nontrivial reasoning
capabilities. The more simple forms of reasoning amount
to determining the deductive closure of a logical theory (a
knowledge base), given a set of input facts. Requirements
for such reasoning processes can be specified in the form
of a functional relation between input and output states,
abstracting from the time it takes to perform the
reasoning; e.g., [22]. Properties of such a functional
relation can be related to properties of a knowledge base
used to realise the functionality, which provides
possibilities for verification and validation of this
knowledge; e.g., [18]. However, more sophisticated
reasoning capabilities can better be considered as
involving a process over time; especially for nontrivial
reasoning patterns the temporal aspects play an important
role in their semantics; cf. [12], [19]. Therefore, within an
agent-oriented software engineering approach to an
agent’s reasoning capability, requirements specification
has to address dynamic properties of a reasoning process.

This paper shows how such a requirements analysis
of the dynamics of an agent’s reasoning capability can be
made. The approach makes use of a semantic
formalisation of reasoning processes by traces consisting
of sequences of reasoning states over time, following the
semantic formalisation introduced in [12]. Reasoning
processes as performed by humans may involve
dynamically introduced or retracted assumptions: a pattern
used as a case study in this paper, further on called
‘reasoning by assumption’. For requirements acquisition,
it is to be shown for this type of reasoning which relevant
dynamic properties can be identified that characterise the
reasoning pattern.

A number of scenarios of practical human reasoning
processes considered as ‘reasoning by assumption’ have
been analysed and specified to identify requirements that
are characteristic for this reasoning pattern. Required
dynamic properties at different levels of aggregation (or
grain size) have been identified. Logical relationships

 83

have been determined between dynamic properties at one
aggregation level and those of a lower aggregation level.
These characterising properties have been formalized
using the temporal trace language TTL, thus enabling
automated support of analysis. As an additional validation
of this characterisation, a number of reasoning puzzles
were used to acquire scenarios of further practical human
reasoning processes that intuitively fit the pattern of
reasoning by assumption [5]. Supported by software tools,
the properties were checked against the formalised
scenarios of these human traces, and confirmed.

The specified dynamic properties at the lowest
aggregation level are in an executable format; they specify
reasoning steps. Using a variant of Executable Temporal
Logic [2], and a dedicated software environment for
simulation that has been developed [3], these executable
properties were used to generate simulation traces.
Moreover, for these traces the (higher-level) dynamic
properties were checked and confirmed, which validates
the identified logical relationships between the dynamic
properties at different aggregation levels.

Finally, a design of an existing software agent
performing reasoning by assumption [15] was analysed.
This agent was designed using the component-based
design method DESIRE [6]. Using the DESIRE execution
environment, for this agent a number of reasoning traces
were generated. For these traces all identified dynamic
properties (also the executable ones) were checked, and
found confirmed.

In Section 2 the dynamic perspective on reasoning is
discussed in some more detail, and focussed on the pattern
‘reasoning by assumption’. Section 3 addresses some
details of the language used. Section 4 presents a number
of requirements in the form of dynamic properties
identified for patterns of reasoning by assumption. Section
5 discusses relationships between dynamic properties at
different aggregation levels. In Section 6 it is discussed in
which respects verification has been performed. In Section
7 the contribution of the research presented in the paper is
briefly discussed.

2. The Dynamics of Reasoning

Analysis of reasoning processes has been addressed from
different areas and angles, for example, Cognitive
Science, Philosophy and Logic, and AI. For reasoning
processes in natural contexts, which are usually not
restricted to simple deduction, dynamic aspects play an
important role and have to be taken into account, such as
dynamic focussing by posing goals for the reasoning, or
making (additional) assumptions during the reasoning,
thus using a dynamic set of premises within the reasoning
process. Also dynamically initiated additional
observations or tests to verify assumptions may be part of

a reasoning process. Decisions made during the process,
for example, on which reasoning goal to pursue, or which
assumptions to make, are an inherent part of such a
reasoning process. Such reasoning processes or their
outcomes cannot be understood, justified or explained
without taking into account these dynamic aspects.

The approach to the semantical formalisation of the
dynamics of reasoning exploited here is based on the
concepts reasoning state, transitions and traces.

Reasoning state. A reasoning state formalises an
intermediate state of a reasoning process. The set of all
reasoning states is denoted by RS.

Transition of reasoning states. A transition of reasoning
states or reasoning step is an element < S, S' > of RS x RS.
A reasoning transition relation is a set of these
transitions, or a relation on RS x RS that can be used to
specify the allowed transitions.

Reasoning trace. Reasoning dynamics or reasoning
behaviour is the result of successive transitions from one
reasoning state to another. A time-indexed sequence of
reasoning states is constructed over a given time frame
(e.g., the natural numbers). Reasoning traces are
sequences of reasoning states such that each pair of
successive reasoning states in such a trace forms an
allowed transition. A trace formalises one specific line of
reasoning. A set of reasoning traces is a declarative
description of the semantics of the behaviour of a
reasoning process; each reasoning trace can be seen as one
of the alternatives for the behaviour. In Section 3 a
language is introduced in which it is possible to express
dynamic properties of reasoning traces.

 The specific reasoning pattern used in this paper to
illustrate the approach is ‘reasoning by assumption’. This
type of reasoning often occurs in practical reasoning; for
example, in everyday reasoning, diagnostic reasoning
based on causal knowledge, and reasoning based on
natural deduction. An example of everyday reasoning by
assumption is ‘Suppose I do not take my umbrella with
me. Then, if it starts raining at 5 pm, I will get wet, which
I don’t want. Therefore I'd better take my umbrella with
me’. An example of diagnostic reasoning by assumption
in the context of a car that won’t start is: ‘Suppose the
battery is empty, then the lights won’t work. But if I try,
the lights turn out to work. Therefore the battery is not
empty.’ Examples of reasoning by assumption in natural
deduction are as follows. Method of indirect proof: ‘If I
assume A, then I can derive a contradiction. Therefore I
can derive not A.’. Reasoning by cases: ‘If I assume A, I
can derive C. If I assume B, I can also derive C. Therefore
I can derive C from A or B.’.

Notice that in all of these examples, first a reasoning
state is entered in which some fact is assumed. Next
(possibly after some intermediate steps) a reasoning state
is entered where consequences of this assumption have

 84

been predicted. Finally, a reasoning state is entered in
which an evaluation has taken place; possibly in the next
state the assumption is retracted, and conclusions of the
whole process are added. In Section 3 and 4, this pattern is
to be characterised by requirements.

3. Dynamic Properties

To specify properties on the dynamics of reasoning, the
temporal trace language TTL used in [13] is adopted. This
is a language in the family of languages to which also
situation calculus [20], event calculus [17], and fluent
calculus [14] belong.

Ontology. An ontology is a specification (in order-sorted
logic) of a vocabulary. For the example reasoning pattern
‘reasoning by assumption’ the state ontology includes
binary relations such as assumed, rejected, on sorts
INFO_ELEMENT x SIGN and the relation prediction_for on
INFO_ELEMENT x SIGN x INFO_ELEMENT x SIGN. Table 1
contains all relations that will be used in this paper, as
well as their explanation. The sort INFO_ELEMENT

includes specific domain statements such as car_starts,
lights_burn, battery_empty, sparking_plugs_problem. The sort
SIGN consists of the elements pos and neg.

Reasoning state. A (reasoning) state for ontology Ont is
an assignment of truth-values {true, false} to the set of
ground atoms At(Ont). The set of all possible states for
ontology Ont is denoted by STATES(Ont). A part of the
description of an example reasoning state S is:

assumed(battery_empty, pos) : true
 prediction_for(lights_ burn, neg,

battery_empty, pos) : true
 observation_result(lights_burn, pos) : true
 rejected(battery_empty, pos) : false

The standard satisfaction relation |== between states and
state properties is used: S |== p means that state property p

holds in state S. For example, in the reasoning state S
above it holds S |== assumed(battery_empty, pos).

Reasoning trace. To describe dynamics, explicit
reference is made to time in a formal manner. A fixed
time frame T is assumed which is linearly ordered.
Depending on the application, for example, it may be
dense (e.g., the real numbers), or discrete (e.g., the set of
integers or natural numbers or a finite initial segment of
the natural numbers). A trace γover an ontology Ont and
time frame T is a mapping γ : T → STATES(Ont), i.e., a
sequence of reasoning states γt (t ∈ T) in STATES(Ont). The
set of all traces over ontology Ont is denoted by Γ(Ont), i.e.,
Γ(Ont) = STATES(Ont)T. The set Γ(Ont) is also denoted by Γ if
no confusion is expected. Please note that in each trace,
the current world state is included.

Expressing dynamic properties. States of a trace can be
related to state properties via the formally defined
satisfaction relation |== between states and formulae.
Comparable to the approach in situation calculus, the
sorted predicate logic temporal trace language TTL is
built on atoms such as state(γ , t) |== p, referring to traces,
time and state properties. This expression denotes that
state property p is true in the state of trace γ at time point t.
Here |== is a predicate symbol in the language (in infix
notation), comparable to the Holds-predicate in situation
calculus. Temporal formulae are built using the usual
logical connectives and quantification (for example, over
traces, time and state properties). The set TFOR(Ont) is the
set of all temporal formulae that only make use of
ontology Ont. We allow additional language elements as
abbreviations of formulae of the temporal trace language.
The fact that this language is formal allows for precise
specification of dynamic properties. Moreover, editors can
and actually have been developed to support specification
of properties. Specified properties can be checked
automatically against example traces to find out whether
they hold.

Internal concepts:
initial_assumption(A:INFO_ELEMENT, S:SIGN) The agent beliefs that it is most plausible to assume (A,S). Therefore, this

is the agent’s default assumption. For example, if it is most likely that the
battery is empty, this is indicated by initial_assumption(battery_empty, pos).

assumed(A:INFO_ELEMENT, S:SIGN) The agent currently assumes (A,S).
prediction_for(A:INFO_ELEMENT, S1:SIGN, B:INFO_ELEMENT, S2:SIGN) The agent predicts that if (B,S2) is true, then (A,S1) should also be true.
rejected(A:INFO_ELEMENT, S:SIGN) The agent has rejected the assumption (A,S).
alternative_for(A:INFO_ELEMENT, S1:SIGN, B:INFO_ELEMENT, S2:SIGN) The agent beliefs that (A,S1) is a good alternative assumption in case

(B,S2) is rejected.
Input and output concepts:
to_be_observed(A:INFO_ELEMENT) The agent starts observing whether A is true.
observation_result(A:INFO_ELEMENT, S:SIGN) If S is pos, then the agent observes that A is true. If S is neg, then the agent

observes that A is false.
External concepts:
domain_implies(A:INFO_ELEMENT, S1:SIGN, B:INFO_ELEMENT, S2:SIGN) Under normal circumstances, (A,S1) leads to (B,S2). For example, an

empty battery usually implies that the lights do not work.
holds_in_world(A:INFO_ELEMENT, S:SIGN) If S is pos, then A is true in the world. If S is neg, then A is false.

Table 1 State ontology for the pattern ‘reasoning by assumption’

 85

Simulation. A simpler temporal language has been used
to specify simulation models. This temporal language, the
LEADSTO language [3], offers the possibility to model
direct temporal dependencies between two state properties
in successive states. This executable format is defined as
follows. Let α and β be state properties of the form
‘conjunction of atoms or negations of atoms’, and e, f, g, h
non-negative real numbers. In the LEADSTO language α

→→e, f, g, h β, means:

If state property α holds for a certain time interval with duration g,
then after some delay (between e and f) state property β will hold

for a certain time interval of length h.

For a precise definition of the LEADSTO format, see [3].
A specification of dynamic properties in LEADSTO
format has as advantages that it is executable and that it
can easily be depicted graphically.

4. Dynamic Properties as Characterising
Requirements

Careful analysis of the informal reasoning patterns
discussed in Section 2 led to the identification of dynamic
properties that can serve as requirements for the capability
of reasoning by assumption. In this section a number of
the most relevant of those properties are presented in both
an informal and formal way. The dynamic properties
identified are at three different levels of aggregation:

 Local properties address the step-by-step reasoning
process of the agent. They represent specific
transitions between states of the process: reasoning
steps. These properties are represented in executable
format, which means that they can be used to
generate simulation traces.

 Global properties address the overall reasoning
behaviour of the agent, not the step-by-step reasoning
process of the agent. Some examples of global
properties are presented, regarding matters as
termination, correct reasoning, and result production.

 Intermediate properties are properties at an
intermediate level of aggregation, which are used for
the analysis of global properties (see also Section 5).

A number of local properties are given in Section 4.1. It
will be shown how they can be used in order to generate
simulation traces. Next, Section 4.2 provides some global
properties, and Section 4.3 some intermediate properties.

4.1 Local Dynamic Properties

At the lowest level of aggregation, a number of dynamic
properties have been identified for the process of
reasoning by assumption. These local properties are given

below (both in an informal and in formal LEADSTO
notation):

LP1 (Assumption Initialisation)
The first local property LP1 expresses that a first
assumption is made. Here, note that initial_assumption is an
agent-specific predicate, which can be varied for different
cases. Formalisation:
initial_assumption(A, S) →→0,0,1,1 assumed(A, S)

LP2 (Prediction Effectiveness)
Local property LP2 expresses that for each assumption
that is made, all relevant predictions are generated.
Formalisation:
assumed(A, S1) and domain_implies(A, S1, P, S2) →→0,0,1,1
prediction_for(P, S2, A, S1)

LP3 (Observation Initiation Effectiveness)
Local property LP3 expresses that all predictions made
will be observed. Formalisation:
prediction_for(P, S1, A, S2) →→0,0,1,1 to_be_observed(P)

LP4 (Observation Result Effectiveness)
Local property LP4 expresses that, if an observation is
made the appropriate observation result will be received.
Formalisation:
to_be_observed(P) and holds_in_world(P, S) →→0,0,1,1
observation_result(P, S)

LP5 (Evaluation Effectiveness)
Local property LP5 expresses that, if an assumption was
made and a related prediction is falsified by an
observation result, then the assumption is rejected.
Formalisation:
assumed(A, S1) and prediction_for(P, S2, A, S1) and
observation_result(P, S3) and S2≠S3 →→0,0,1,1 rejected(A, S1)

LP6 (Assumption Effectiveness)
Local property LP6 expresses that, if an assumption is
rejected, and there is still an alternative assumption
available, this will be assumed. Formalisation:
assumed(A, S1) and rejected(A, S1) and alternative_for(B, S2, A,
S1) and not rejected(B, S2) →→0,0,1,1 assumed(B, S2)

LP7 (Assumption Persistence)
Local property LP7 expresses that assumptions persist as
long as they are not rejected. Formalisation:
assumed(A, S) and not rejected(A, S) →→0,0,1,1 assumed(A, S)

LP8 (Rejection Persistence)
Local property LP8 expresses that rejections persist.
Formalisation:
rejected(A, S) →→0,0,1,1 rejected(A, S)

LP9 (Observation Result Persistence)
Local property LP9 expresses that observation results
persist. Formalisation:
observation_result(P, S) →→0,0,1,1 observation_result(P, S)

Using the software environment that is described in [3],
these local dynamic properties can be used to generate
simulation traces. Using such traces, the requirements
engineers and system designers obtain a concrete idea of

 86

the intended flow of events over time. A number of
simulation traces have been created for several domains.
An example simulation trace in the domain of car
diagnosis is depicted in Figure 1. Here, time is on the
horizontal axis, and the state properties and on the vertical
axis. A dark box on top of the line indicates that the state
property is true during that time period, and a lighter box
below the line indicates that the state property is false.
This figure shows the characteristic cyclic process of
reasoning by assumption: making assumptions,
predictions and observations for assumptions, then
rejecting assumptions and creating new assumptions. As
can be seen in Figure 1, it is first observed that the car
does not start. On the basis of this observation, an initial
assumption is made that this is due to an empty battery.
However, if this assumption turns out to be impossible
(because the lights are burning), this assumption is
rejected. Instead, a second assumption is made (there is a
sparking plugs problem), which turns out to be correct.

4.2 Global Dynamic Properties

At the highest level of aggregation, a number of dynamic
properties have been identified for the overall reasoning
process. These global properties are given below (both in
an informal and in formal TTL notation):

GP1 (Reasoning Termination)
Eventually there is a time point at which the reasoning
terminates.
∀ γ : Γ ∃ t: T termination(γ, t)

Here termination(γ, t) is defined as follows:
∀ t’: T t’ ≥ t state(γ, t) = state(γ, t’).

GP2 (Correctness of Rejection)
Everything that has been rejected does not hold in the
world situation.
∀γ:Γ ∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |== rejected(A,S)
 state(γ,t) |=/= holds_in_world(A,S)

GP3 (At least one not Rejected Assumption)
If the reasoning has terminated, then there is at least one
assumption that has been evaluated and not rejected.

∀ γ : Γ ∀ t : T termination(γ, t)
 [∃ A: INFO_ELEMENT, ∃ S: SIGN
 state(γ, t) |== assumed(A, S) ∧ state(γ, t) |=/= rejected(A, S)]

In addition, some assumptions on the domain can be
specified:

WP1 (Static World)
If something holds in the world, it will hold forever.
∀γ:Γ ∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |== holds_in_world(A,S)
 [∀t’:T ≥ t:T state(γ,t’) |== holds_in_world(A,S)]
∀γ:Γ ∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |=/= holds_in_world(A,S)
 [∀t’:T ≥ t:T state(γ,t’) |=/= holds_in_world(A,S)]

WP2 (World Consistency)
If something holds in the world, then its complement does
not hold.
∀γ:Γ ∀t:T ∀A:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== holds_in_world(A,S1) ∧ S1 ≠ S2
 state(γ,t) |=/= holds_in_world(A,S2)

DK1 (Domain Knowledge Correctness)
The domain-specific knowledge is correct in the world.
∀γ:Γ ∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== holds_in_world(A,S1) ∧ domain_implies(A,S1,B,S2)
 state(γ,t) |== holds_in_world(B,S2)]

4.3 Intermediate Dynamic Properties

In the sections above, on the one hand global properties
for a reasoning process as a whole have been identified.
On the other hand at the lowest level of aggregation local
(executable) properties representing separate reasoning
steps have been identified. It may be expected that any
trace that satisfies the local properties automatically will
satisfy the global properties (semantic entailment). As a
form of verification it can be proven that the local
properties indeed imply the global properties. To construct
a transparent proof a number of intermediate properties
have been identified. Examples of intermediate properties
are property IP1 to IP7 shown below (both in an informal
and in formal TTL notation).

assumed(battery_empty, pos)
assumed(sparking_plugs_problem, pos)

observation_result(car_starts, neg)
observation_result(lights_burn, pos)

prediction_for(car_starts, neg, battery_empty, pos)
prediction_for(lights_burn, neg, battery_empty, pos)

rejected(battery_empty, pos)
to_be_observed(car_starts)

to_be_observed(lights_burn)
time 0 1 2 3 4 5 6 7 8 9 10 11 12

Figure 1 Example simulation trace

 87

IP1 (Proper Rejection Grounding)
If an assumption is rejected, then earlier on there was a
prediction for it that did not match the corresponding
observation result.
∀γ:Γ ∀t:T ∀A:INFO_ELEMENT ∀S1:SIGN
 state(γ,t) |== rejected(A,S1)
 [∃t’:T ≤ t:T ∃B:INFO_ELEMENT ∃S2,S3:SIGN
 state(γ,t’) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t’) |== observation_result(B,S3) ∧ S2 ≠ S3]

IP2 (Prediction-Observation Discrepancy implies
Assumption Incorrectness)
If a prediction does not match the corresponding
observation result, then the associated assumption does
not hold in the world.
∀γ:Γ ∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2,S3:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t) |== observation_result(B,S3) ∧ S2 ≠ S3
 state(γ,t) |=/= holds_in_world(A,S1)

IP3 (Observation Result Correctness)
Observation results obtained from the world indeed hold
in the world.
∀γ:Γ ∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |== observation_result(A,S)
 state(γ,t) |== holds_in_world(A,S)

IP4 (Incorrect Prediction implies Incorrect
Assumption 1)
If a prediction does not match the facts from the world,
then the associated assumption does not hold either.
∀γ:Γ ∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2,S3:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t) |== holds_in_world(B,S3) ∧ S2 ≠ S3
 state(γ,t) |=/= holds_in_world(A,S1)

IP5 (Observation Result Grounding)
If an observation has been obtained, then earlier on the
corresponding fact held in the world.
∀γ:Γ ∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |== observation_result(A,S)
 [∃t’:T ≤ t:T state(γ,t’) |== holds_in_world(A,S)]

IP6 (Incorrect Prediction implies Incorrect
Assumption 2)
If a prediction does not hold in the world, then the
associated assumption does not hold either.
∀γ:Γ ∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t) |=/= holds_in_world(B,S2)
 state(γ,t) |=/= holds_in_world(A,S1)

IP7 (Prediction Correctness)
If a prediction is made for an assumption that holds in the
world, then the prediction also holds.
∀γ:Γ ∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t) |== holds_in_world(A,S1)
 state(γ,t) |== holds_in_world(B,S2)

5. Relationships Between Dynamic
Properties

A number of logical relationships have been the identified
between properties at different aggregation levels. An
overview of all identified logical relationships relevant for
GP2 is depicted as an AND-tree in Figure 2. Here the grey
ovals indicate that the so-called grounding variant of the
property is used. Grounding variants make a specification
of local properties more complete by stating that there is
no other means to produce certain behaviour. For
example, the grounding variant of LP2 can be specified as
follows (in TTL notation):

LP2G Prediction effectiveness groundedness
Each prediction is related (via domain knowledge) to an
earlier made assumption.
∀γ:Γ ∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1)
 [∃t’:T ≤ t:T state(γ,t’) |== assumed(A,S1) ∧
 domain_implies(A,S1,B,S2)]

This property expresses that predictions made always
have to be preceded by a state in which the assumption
was made, and the domain knowledge implies the
prediction.

Figure 2 AND-Tree of Dynamic Properties

The relationships depicted in Figure 2 should be
interpreted as semantic entailment relationships. For
example, the relationship at the highest level expresses
that the implication IP1 & IP2 & WP1 => GP2 holds. A
sketch of the proof for this implication is as follows.

Suppose IP1 holds. This means that, if an assumption
is rejected at time t, then at a certain time point in the
past (say t') there was a prediction for it that did not
match the corresponding observation result.
According to IP2, at the very same time point (t') the
assumption for which the prediction was made did not
hold in the world. Since the world is static (WP1), this
assumption still does not hold at time point t. We may
thus conclude that, if something is rejected at a certain
time point, it does not hold in the world.

WP WP IP6 IP5

IP4 IP3

GP2

WP

LP5

LP4

IP1 IP2

IP7

LP2 DK

 88

Logical relationships between dynamic properties can
be very useful in the analysis of empirical reasoning
processes. For example, if a given person makes an
incorrect rejection (i.e. property GP2 is not satisfied by
the reasoning trace), then by a refutation process it can be
concluded that either property IP1, property IP2, or
property WP1 fails (or a combination of them). If, after
checking these properties, it turns out that IP1 does not
hold, then this must be the case because LP5G does not
hold. Thus, by this example refutation analysis it can be
concluded that the cause of the unsatisfactory reasoning
process can be found in LP5G. For more information
about the analysis of human reasoning processes, see [5].

6. Verification

In addition to the simulation software described in Section
4, a special tool has been developed that takes a formally
specified property and a set of traces as input, and verifies
whether the property holds for the traces.

Using this checker tool, dynamic properties (of all
levels) can be checked automatically against traces,
irrespective of who/what produced those traces: humans,
simulators or an implemented (prototype) system. A large
number of such checks have indeed been performed for
several case studies in reasoning by assumption. Table 2
presents an overview of all combinations of checks and
their results. A ‘+’ indicates that all properties were
satisfied for the traces, a ‘+/-’ indicates that some of the
properties were satisfied.

 Human Traces
(Taken from [5])

Simulation Traces
(This paper)

Prototype Traces
(Taken from [15])

Local
Properties

+/-

+

+
Intermediate
Properties

+/-

+

+
Global
Properties

+/-

+

+

Table 2 Overview of the different verification results

As can be seen in Table 2, three types of traces were
considered. First, the dynamic properties have been
checked against human traces in reasoning experiments. It
turned out that some of the properties were satisfied by all
human traces, whereas some other properties sometimes
failed. This implies that some properties are indeed
characteristic for the pattern ‘reasoning by assumption’,
whereas some other properties can be used to discriminate
between different approaches to the reasoning. For
example, human reasoners sometimes skip a step;
therefore LP2 does not always hold. More details of these
checks can be found in [5].

Second, the dynamic properties have been checked
against simulation traces such as the one presented in
Section 4.1 of this paper. As shown in Table 2, all
properties eventually were satisfied for all traces. Note
that this was initially not the case: in some cases small

errors were made during the formalisation of the
properties. Checking the properties against simulation
traces turned out to be useful to localise such errors and
thereby debug the formal dynamic properties.

Finally, all dynamic properties have been verified
against traces generated by a prototype of a software agent
performing reasoning by assumption, see [15]. This agent
was designed on the basis of the component-based design
method DESIRE, cf. [6]. Also for these traces eventually
all dynamic properties turned out to hold.

To conclude, all automated checks described above
have played an important role in the requirements analysis
of reasoning capabilities of software agents, since they
enabled the results of the requirements elicitation and
specification phase to be formally verified and improved.

7. Discussion

In the literature, software engineering aspects of reasoning
capabilities of intelligent agents have not been addressed
well. Some literature is available on formal semantics of
the dynamics of non-monotonic reasoning processes; for
an overview, see [19]. However, these approaches focus
on formal foundation and are far from the more practical
software engineering aspects of actual agent system
development.
 In this paper it is shown how during an agent
development process a requirements analysis can be
incorporated. The desired functionality of the agent’s
reasoning capabilities can be identified (for example, in
cooperation with stakeholders), using temporal
specifications of scenarios and requirements specified in
the form of (required) traces and dynamic properties. This
paper shows for the example reasoning pattern ‘reasoning
by assumption’, how relevant dynamic properties can be
identified as requirements for the agent’s reasoning
behaviour, expressed in a temporal language, and verified
and validated. Thus a set of requirements is obtained that
is reusable in other agent development processes.

The language TTL used here allows for precise
specification of these dynamic properties, covering both
qualitative and quantitative aspects of states and their
temporal relations. Moreover, software tools have been
developed to (1) support specification of (executable)
dynamic properties, and (2) automatically check specified
dynamic properties against example traces to find out
whether the properties hold for the traces. This provides a
useful supporting software environment to evaluate
reasoning scenarios both in terms of simulated traces (in
the context of prototyping) and empirical traces (in the
context of requirements elicitation and validation in co-
operation with stakeholders). In the paper it is shown how
this software environment can be used to automatically
check the dynamic properties during a requirements

 89

analysis process. Note that it is not claimed that TTL is
the only language appropriate for this. For example, most
of the properties encountered could as well have been
expressed in a variant of linear time temporal logic. The
language is only used as a vehicle; the contribution of the
paper is in the method to requirements analysis of an
agent’s reasoning capability, and the reusable results
obtained by that method.

For an elaborate description about the role that the
current approach may take in Requirements Engineering,
the reader is referred to [4]. In that paper, it is shown in
detail how dynamic properties can be used to specify
(both functional and non-functional) requirements of
Agent Systems. Moreover, it is shown how these
requirements may be refined and fulfilled according to the
Generic Design Model (GDM) by Brazier et al. [6].
However, GDM is just one possible approach for Agent-
Oriented Software Engineering. Recently, several other
architectures have been proposed, for example, Tropos
[8], KAOS [10] or GBRAM [1]. In future work, the
possibilities may be explored to incorporate the approach
based on dynamic properties presented here within such
architectures. Especially for architectures that provide a
specific language for formalisation of requirements
(KAOS for example uses a real-time temporal logic to
specify requirements in terms of goals, constraints and
objects), these possibilities are promising.

References

[1] Antón, A.I. (1996). Goal-based Requirements Analysis,
Proc. of the International Conference on Requirements
Engineering (ICRE'96), IEEE Computer Soc. Press,
Colorado Springs, Colorado, USA, pp. 136- 144.

[2] Barringer, H., Fisher, M., Gabbay, D., Owens, R., and
Reynolds, M. (1996). The Imperative Future: Principles of
Executable Temporal Logic, Research Studies Press Ltd.
and John Wiley & Sons.

[3] Bosse, T., Jonker, C. M., van der Meij, L., and Treur, J.
(2005). LEADSTO: a Language and Environment for
Analysis of Dynamics by SimulaTiOn (extended abstract).
Proc. of the 18th International Conference on Industrial &
Engineering Applications of Artificial Intelligence & Expert
Systems, IEA/AIE 2005. LNAI, Springer Verlag. In press.

[4] Bosse, T., Jonker, C.M., and Treur, J. (2004). Analysis of
Design Process Dynamics. In: R. Lopez de Mantaras, L.
Saitta (eds.), Proceedings of the 16th European Conference
on Artificial Intelligence, ECAI’04, IOS Press, pp. 293-297.

[5] Bosse, T., Jonker, C.M., and Treur, J. (2005). Reasoning by
Assumption: Formalisation and Analysis of Human
Reasoning Traces. In: Proceedings of the First
International Work-conference on the Interplay between
Natural and Artificial Computation, IWINAC’05. LNAI,
vol. 3561, Springer Verlag, pp. 430-439.

[6] Brazier, F.M.T., Jonker, C.M., and Treur, J. (2002).
Principles of Component-Based Design of Intelligent

Agents. Data and Knowledge Engineering, vol. 41, pp. 1-
28.

[7] Brazier F.M.T., Langen P.H.G. van, Treur J. (1996). A
logical theory of design. In: J.S. Gero (ed.), Advances in
Formal Design Methods for CAD, Proc. of the Second
International Workshop on Formal Methods in Design.
Chapman & Hall, New York, pp. 243-266.

[8] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J.,
and Perini, A. (2004). Tropos: An Agent-Oriented Software
Development Methodology. Journal of Autonomous Agent
and Multi-Agent Systems, vol. 8, pp. 203-236.

[9] Dardenne, A., Lamsweerde, A. van, and Fickas, S. (1993).
Goal-directed Requirements Acquisition. Science in
Computer Programming, vol. 20, pp. 3-50.

[10] Darimont, R., Delor, E., Massonet, P., and van
Lamsweerde, A. (1998). GRAIL/KAOS: An Environment
for Goal-Driven Requirements Engineering, Proc. ICSE’98
- 20th International Conference on Software Engineering,
Kyoto, vol. 2, pp. 58-62.

[11] Dubois, E., Du Bois, P., and Zeippen, J.M. (1995). A
Formal Requirements Engineering Method for Real-Time,
Concurrent, and Distributed Systems. In: Proceedings of
the Real-Time Systems Conference, RTS’95.

[12] Engelfriet, J., and Treur, J. (1995). Temporal Theories of
Reasoning. Journal of Applied Non-Classical Logics, 5, pp.
239-261.

[13] Herlea, D.E., Jonker, C.M., Treur, J., and Wijngaards,
N.J.E. (1999). Specification of Behavioural Requirements
within Compositional Multi-Agent System Design. In: F.J.
Garijo, M. Boman (eds.), Multi-Agent System Engineering,
Proc. of the 9th European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, MAAMAW'99.
LNAI, vol. 1647, Springer Verlag, pp. 8-27.

[14] Hölldobler, S., and Thielscher, M. (1990). A new
deductive approach to planning. New Generation
Computing, 8:225-244.

[15] Jonker, C.M., and Treur, J. (2003). Modelling the
Dynamics of Reasoning Processes: Reasoning by
Assumption. Cognitive Systems Research Journal, vol. 4,
pp. 119-136.

[16] Kontonya, G., and Sommerville, I. (1998). Requirements
Engineering: Processes and Techniques. John Wiley and
Sons, New York.

[17] Kowalski, R., and Sergot, M. (1986). A logic-based
calculus of events. New Generation Computing, 4, pp. 67-
95.

[18] Leemans, N.E.M., Treur, J., and Willems, M. (2002). A
Semantical Perspective on Verification of Knowledge. Data
and Knowledge Engineering, vol. 40, pp. 33-70.

[19] Meyer, J.-J., Ch., and Treur, J. (eds.) (2001). Dynamics and
Management of Reasoning Processes. Series in Defeasible
Reasoning and Uncertainty Management Systems (D.
Gabbay, Ph. Smets, series eds.), Kluwer Acad. Publishers.

[20] Reiter, R. (2001). Knowledge in Action: Logical
Foundations for Specifying and Implementing Dynamical
Systems. MIT Press.

[21] Sommerville, I., and Sawyer P. (1997). Requirements
Engineering: a good practice guide. John Wiley & Sons,
Chicester, England.

[22] Treur, J. (2002). Semantic Formalisation of Interactive
Reasoning Functionality. International Journal of
Intelligent Systems, vol. 17, pp. 645-686.

 90

Identification of Reusable Method Fragments from the PASSI Agent-Oriented
Methodology

B. Henderson-Sellers,
J. Debenham, N. Tran

University of Technology, Sydney
{brian,debenham}@it.uts.edu.au;

numitran@yahoo.com

M. Cossentino
ICAR - Consiglio

Nazionale Ricerche
cossentino@pa.icar.

cnr.it

G. Low
University of New South Wales

g.low@unsw.edu.au

Abstract

Theoretical proposals for the development of reusable
method fragments are applied to the identification of
method fragments in the agent-oriented methodology,
PASSI. The format of these fragments is ensured as
compatible with the structure and format already
established for the OPEN Process Framework’s (OPF)
repository, which uses a method engineering (ME)
approach. Since the OPF repository has already been
enhanced by fragments from several other AO
methodologies, we expect a “convergence to completion”
(or near-completion) such that most of the PASSI
fragments are likely to map to existing OPF fragments.
Indeed, only seven new fragments (six of which are novel
diagram types) are identified in this study.

Keywords: method engineering, agent-oriented
methodology, reuse, case study

1. Introduction: Acquisition of New Method
Fragments

Method engineering (ME) offers a novel approach to a
formalized way of creating a software development
methodology [1-7]. Rather than create a single method-
ology in which there is significant intertwining of
elements of the methodology, method engineering
proposes that a methodology can be decomposed into a
number of method fragments [5] (or method chunks).
With the necessary interfaces on these method fragments,
they can then be used in more than one methodology
construction effort [7] and thus fulfil the criterion of
methodological reuse [6]. Either this decomposition can
be done on existing methodologies in order to extract
these reusable method fragments or else method fragments
can be identified ab initio (called Ad-Hoc construction in
[6]). We apply the first of these approaches (decompo-
sition of an existing methodology) to a case study of the
PASSI agent-oriented methodology [8-10]. To guide the
decomposition, we utilize an existing metamodel-under-

pinned repository of method fragments – the OPEN
Process Framework (OPF) [11]. Within that framework,
once a candidate method fragment for inclusion in the
OPF repository has been identified (from PASSI), a
decision can be made as to whether (1) to reject the pro-
posal, (2) to accept as new fragment either “as is” (or with
possibly small modifications to ensure compatibility with
existing fragments) or (3) to merge the new fragment with
others already in the repository, e.g. by taking an existing
fragment and extending it to encompass the new detail.

The analysis of PASSI discussed here is the next in a
series of such extractions of method fragments from
extant AO methodologies. It is therefore anticipated that
the proposed additions of these newly identified method
fragments to the OPF’s repository will lead asymptotically
to completeness such that the new method fragments
likely to be identified will be few. In the next phase of the
project, we intend to test out this hypothesis (that
completion has been attained) by use of an external
(methodological) data set.

In Section 2, we give a brief overview of both PASSI
and the OPF, followed, in Section 3, by identification of
appropriate method fragments from PASSI. We then ask
for each fragment whether it already exists in the OPF
repository – if so, it will likely be rejected (decision 1) –
or whether it should be accepted either as a new fragment
(decision 2) or whether additional work is needed to
merge together the newly proposed fragment with a pre-
existing one (decision 3).

2. Very Brief Overviews of PASSI and OPF

2.1 PASSI

PASSI (A Process for Agent Societies Specification

and Implementation) [8-10] offers a step-by-step require-
ment-to-code process for the development of an MAS
(Figure 1), integrating models and concepts from both the
object-oriented (OO) software engineering and the agent-
oriented paradigms. The methodology adopts (and largely
extends/adapts) the UML notation for its work products
and targets the FIPA implementation environment.

 91

2.2 OPF

OPEN (Object-oriented Process, Environment and

Notation) [11] is an established approach for developing
software, primarily that with an object-oriented
implementation. Within the OPEN approach, the most
relevant element is the OPF, which comprises a
metamodel that defines all the methodology1 elements at a
high level of abstraction plus a repository that contains
instances of those metalevels concepts supplemented by a
set of construction guidelines (Figure 2).

Deployment Model

Syst. Req. Model

Tasks
Specification

Roles
Identification

Ag. Impl. Model

Agent Structure
Definition

Agent Behavior
Description

Code Model

Code Reuse

Code
Completion

Ontology
Description

Roles
Description

Protocols
Description

Agent Society Model

Initial
Requirements New Requirements

Agents
Identification

Domain
Description

Deployment
Configuration

Figure 1 – Overview of PASSI

OPEN

OPF
Metamodel

Repository of
method fragments

Construction guidelines

OPF-compatible
notations

OPF-compatible
tools

(Optional) Metamodel
extensions

OPEN

OPF
Metamodel

Repository of
method fragments

Construction guidelines

OPF-compatible
notations

OPF-compatible
tools

(Optional) Metamodel
extensions

Figure 2 The OPF consists of a metamodel, a

repository and construction guidelines. OPEN
consists of the OPF, OPF-compatible notations
and tools and optionally metamodel extensions.

Each element in the repository is a method fragment

generated, by instantiation, from the metamodel. There are
several (meta)classes in the metamodel [11] but the most
relevant for our study are two subclasses of Work Unit
(namely Task and Technique) and the class Work Product.

Individual OPEN-compliant processes can then be
constructed, using the method engineering approach, from
the appropriate method fragments of the repository – see
the example constructed process in [7].

1 We use a definition in which the term methodology encompasses both
process and product [4].

3. Method Fragments in PASSI

In this section, we analyze PASSI by decomposing it
(as an existing methodology) into fragments for process
(cycles, phases), work units (tasks and techniques) and
work products (models and diagrams). Each of these is
first identified from PASSI and then we evaluate whether
the pre-existing support in the OPF repository is adequate.

3.1. Fragments for Process Elements

3.1.1. Cycle: PASSI adopts an iterative and recursive
lifecycle, where iteration is driven by new requirements,
dependencies between structural and behavioural
modelling, and dependencies between multi-agent and
single-agent views. This lifecycle fits well into OPEN’s
“Iterative, Incremental, Parallel Lifecycle”.

3.2.2. Phases: PASSI uses the term “phase” to refer to
each of its steps in the MAS development process.
However, in OPEN, the term “Phase” is defined as a
large-grained span of time within the lifecycle that works
at a given level of abstraction. Thus, “phases” of PASSI
do not match the definition of OPEN “Phases”, but instead
correspond to OPF “Tasks”, which are small-grained,
atomic units of work that specify what must be done in
order to achieve some stated result. We thus discuss
PASSI’s “phases” in Section 3.2 and note here that PASSI
covers the OPF Phases of “Initiation” and “Construction”.

3.2 Fragments for Tasks

In this section, we briefly describe each task fragment
gleaned from PASSI and identify those that already exist
in the OPF repository (decision 1), those that need to be
added (decision 2) and those that enhance existing
fragments (decision 3). In some instances, there is a one to
many or many to one mapping (Table 1) as a consequence
of the different granularities between the PASSI fragment
and the OPF repository fragment.

3.2.1 “Domain Description”: This task aims to elicit the
functional requirements of the target system via the
development of use case diagrams (called Domain
Description Diagrams in PASSI). It is a large task
supported by three existing OPF tasks - as documented in
Table 1. (Decision 1 fragment).

3.2.2 “Agent Identification”: PASSI identifies agents
early in the development process because it views an
MAS as a society of intended and existing agents. Agents
are introduced from the identified requirements, and
modelled in an Agent Identification Diagram(s) (see
Section 3.4). Existing support from the OPF repository is
shown in Table 1. (Decision 1 fragment).

 92

Table 1 Mappings of PASSI fragments to existing
OPF fragments

PASSI fragment Existing OPF fragment(s)

Domain description Elicit requirements

Analyze requirements
Use case modelling

Agent identification Construct the agent model [12-14]
Role identification Model agent’s roles [15]
Task specification Construct the agent model

Model agents’ tasks (new here)
Ontology description Define ontologies [16]

Construct the agent model
Role description Model agents’ roles [15]
Protocol description Determine agent interaction

protocol
Determine agent communication
protocol

Agents structure
definition

Construct the agent model
Model agents’ tasks (new here)

Agents behaviour
description

Construct the agent model
Model agents’ tasks (new here)

Code reuse Code
Identify appropriate reusable
work products
Acquire reusable work products
Manage library of reusable
components.

Code completion Code
Deployment
configuration

Create a system architecture

3.2.3 “Role Identification”: This task is concerned with
the definition of agents’ externally visible behaviour in the
form of roles. Role identification produces a set of
sequence diagrams (referred to as Role Identification
Diagrams) that describe the scenarios in which the agents
interact to achieve the required behaviour of the target
system, and the roles played by each agent in these
scenarios. Existing support from the OPF repository is
shown in Table 1. (Decision 1 fragment).

3.2.4 “Task Specification”: This task is concerned with
the definition of each agent’s behaviour in the form of
agent tasks. A Task Specification Diagram summarizes
what each agent is capable of doing, ignoring information
about roles that the agent plays when performing
particular tasks. Existing support from the OPF repository
is shown in Table 1. (Decision 1 fragment).

Support from OPF repository: The OPF Task
“Construct the Agent Model” covers the specification of
tasks or responsibilities for each agent. However, to make
explicit PASSI’s “task specification”, we propose here a
new Sub-Task to this Task, the new subtask to be named
“Model agents’ tasks”. (Decision 2 fragment).

SUBTASK NAME: Model agents’ tasks
Focus: Delineation of responsibilities/services of agents
Typical supportive techniques: “Responsibility
identification”, “Service identification”, “Commitment
management”, “Deliberative reasoning”, “Reactive
reasoning”, “Task selection by agents”
Explanation: This sub-task defines the tasks (or
responsibilities or services) of each agent in the Agent
Model. The internal structure of the tasks should be
specified, i.e. the required knowledge and the involved
operations/methods. Transitions among tasks within and
between agents should also be defined. Task transitions
are typically caused by events (e.g. an incoming message
or task conclusion) or method invocation.

3.2.5 “Ontology Description”: This PASSI task develops
domain-specific ontology for the target MAS in order to
describe the pieces of domain knowledge that are ascribed
to the agents. It produces two diagrams: Domain Ontology
Description Diagram (to model the content of the
ontology) and Communication Ontology Description
Diagram (to model the agents’ knowledge and the
ontology used for each inter-agent communication).
Existing support from the OPF repository is shown in
Table 1. (Decision 1 fragment).

3.2.6 “Role Description”: This task provides an overview
of the roles played by the agents, the changes in roles of
an agent, the tasks performed by each role, the
communications between roles, and inter-role
dependencies. These elements are captured in Role
Description Diagrams. Existing support from the OPF
repository is shown in Table 1. (Decision 1 fragment).

3.2.7 “Protocol Description”: Each interaction protocol
governing the inter-agent communications in the
Communication Ontology Description Diagram (cf.
PASSI task “Ontology description”) needs to be
documented using AUML sequence diagrams. Existing
support from the OPF repository is shown in Table 1.
(Decision 1 fragment).

3.2.8 “Agents Structure Definition”: This task specifies
the general architecture of the system in terms of agents
making up the system, their knowledge and their tasks,
using a Multi-Agent Structure Definition Diagram. It also
models the internal structure of each agent in terms of
agent’s knowledge and methods, and its tasks’ knowledge
and methods, using Single-Agent Structure Definition
Diagrams. Existing support from the OPF repository is
shown in Table 1. (Decision 1 fragment).

3.2.9 “Agents Behaviour Description”: This task
influences and is influenced by the Agents Structure
Definition task. At the system level, it specifies the
transitions between the methods of different agents and/or

 93

the methods of different agents’ tasks using Multi-Agent
Behaviour Description Diagrams. At the agent level, it
specifies the implementation of the methods of each agent
and each agent’s task via Single-Agent Behaviour
Description Diagrams. Existing support from the OPF
repository is shown in Table 1. (Decision 1 fragment).

3.2.10 “Code reuse”: The designer should try to reuse
predefined patterns and coding of agents and tasks.
Existing support from the OPF repository is shown in
Table 1. (Decision 1 fragment).

3.2.11 “Code Completion”: This is a conventional task in
the system development process where the programmer
completes the code of the application, taking as inputs the
design specification and the reused patterns. Existing
support from the OPF repository is shown in Table 1.
(Decision 1 fragment).

3.2.12 “Deployment Configuration”: This task is
particularly important if the system is highly distributed
and/or contains mobile agents. A Deployment
Configuration Diagram should be developed to detail the
locations of agents. Existing support from the OPF
repository is shown in Table 1. (Decision 1 fragment).

3.3 Fragments for Techniques

In this section, we briefly describe the techniques
discussed in PASSI. These are not explicit so we have to
identify appropriate technique fragments from the OPF
repository or else identify areas where no such fragments
pre-exist. Each subsection below refers to one of the
PASSI tasks discussed above in Section 3.2.

3.3.1 For “Domain Description”: The functional
requirements of the target system are described using a
hierarchical series of use case diagrams, with the
uppermost diagram serving as a context diagram.

Support from OPF repository: the OPF repository
offers Technique “Scenario development” that directly
supports the identification and construction of use cases
and scenarios.

3.3.2 For “Agent Identification”: Starting from a
sufficiently detailed use case diagram, agents are
identified as a use case or a package of use cases. The
functionality of the (package of) use case defines the
functionality of the agent.

Support from OPF repository: Currently the OPF
repository provides a Technique “Intelligent agent
identification” which addresses the need for agents and
agent modelling notation.

3.3.3 For “Role Identification”: Roles of each agent are
identified by exploring all the communication paths

between agents in the Agent Identification Diagram
(produced by PASSI task “Agent Identification”). A
communication path is captured as a «communicate»
relationship between two agents in the diagram. At least
one scenario should be developed for each path to specify
how the agents interact, and to discover which role each
agent plays during this interaction.

Support from OPF repository: The development of
scenarios during the process of role identification is sup-
ported by OPF Technique “Scenario development”. OPF
Technique “Collaboration analysis” may also be useful to
analyze inter-agent interactions for role discovery.

3.3.4 For “Task Specification”: The designer should
examine all Role Identification Diagrams produced by
task “Role Identification” (i.e. all scenarios that the agents
participate). From each Role Identification Diagram (i.e.
each scenario), a collection of related tasks can be
identified for each agent by exploring the interactions and
the internal actions that the agent performs to accomplish
the scenario’s purpose. Grouping all the tasks identified
for a particular agent will result in a Task Specification
Diagram for that agent.

Support from OPF repository: The identification of
agents’ tasks can be assisted by various OPF Techniques
such as “Responsibility identification”, “Service
identification”, “Commitment management”, “Deliber-
ative reasoning”, “Reactive reasoning” and “Task
selection by agents” [15].

3.3.5 For “Ontology Description”: PASSI does not offer
any techniques for the development of the Domain
Ontology Description Diagram, such as how to identify
the concepts, predicates, actions and relationships in the
ontology. Regarding the Communication Ontology
Description Diagram, agents in the diagram are those
identified by the Agent Identification Diagram, while the
communications between agents are deduced from the
interactions between agents’ roles in Role Identification
Diagrams. The designer must define agents’ knowledge
(represented as attributes) and the ontology governing
each inter-agent communication in terms of the elements
of the Domain Ontology Description Diagram.

Support from OPF repository: For the specification
of domain ontology, OPF Technique “Domain analysis”
can be applied to identify the relevant domain-specific
concepts, predicates, actions and their relationships.
Regarding the specification of agents’ knowledge in terms
of domain ontology, OPF Technique “Agent Internal
Design” [12] needs to be enhanced in order to exercise the
consistency rule between the definition of agents’
knowledge and the definition of domain ontology. OPF
Technique “Interaction modelling” is also useful here.

3.3.6 For “Role Description”: The roles of each agent
are identified from the Role Identification Diagram.

 94

Communications between roles can be deduced from the
communications between agents in Communication
Ontology Description Diagram, using exactly the same
names for the communication relationships. Changes in
roles of an agent and inter-role dependencies should also
be specified. Three potential types of dependencies are:

! Service dependency: where a role depends on
another role to bring about a goal;

! Resource dependency: where a role depends on
another for the availability of an entity; and

! Soft-Service or Soft-Resource dependency:
where the requested service or resource is helpful
but not essential to bring about a role’s goal.

PASSI does not document any techniques for the
identification of tasks for each agent’s role.

Support from OPF repository: Support for model-
ling communication between roles, changes in roles of an
agent and inter-role dependencies can be accommodated
by OPF Technique “Role Modelling”, although this
technique is to be enhanced here by inclusion of the
various guidances suggested by PASSI. For the
identification of tasks for each role, OPF Techniques
“Responsibility identification”, “Service identification”
and “Scenario development” should be applied.

3.3.7 For “Protocol Description”: PASSI advocates the
adoption of standard FIPA interaction protocols and
AUML sequence diagrams to document these protocols. If
the existing FIPA protocols are found inadequate for the
target system, the designer may specify his or her own,
using the same FIPA documentation’s approach.

Support from OPF repository: Conventional OPF
Technique “Interaction modelling” and OPF Techniques
“Contract net”, “Market mechanisms” and “FIPA-KIF
compliant language” [15] can be applied to specify
protocols and the exchanged messages between agents.

3.3.8 For “Agents Structure Definition”: The names of
the agents in the Multi-Agent Structure Definition
Diagram can be derived from the Agent Identification
Diagram, their knowledge from Communication Ontology
Description Diagram, their tasks from Task Specification
Diagrams and their communications from Role
Description Diagrams. The internal structure of each agent
should then be defined in a Single-Agent Structure
Definition Diagram (one diagram for each agent). The
agent internal structure consists of the agent’s knowledge
and methods, together with the knowledge and methods of
each of its tasks. The designer should not overlook
methods that are needed for the implementation platform,
e.g. constructor and shutdown methods. Tasks that require
inter-agent communication should also contain methods
that deal with communication events.

Support from OPF repository: The Technique of
“Organizational structure specification” [13] is useful in
multi-agent structure definition; while the specification of

agent internal structure (including agent knowledge, tasks,
methods etc) is directly supported by OPF Technique
“Agent internal design” [12]. In addition, since PASSI
employs the OO concepts of class, attribute and method to
model agents and agents’ tasks, the OPF conventional
Technique “Class internal design” is also appropriate.

3.3.9 For “Agents Behaviour Description”: One or more
Multi-Agent Behaviour Description Diagrams should be
developed for the target system to show the transitions
between the methods of agents and/or methods of agent’s
tasks. These transitions represent either events (e.g. an
incoming message or task conclusion) or invocation of
methods. They can be identified from inter-role/inter-
agent communications captured in the Role Identification
Diagram, Task Specification Diagram and Communic-
ation Ontology Description Diagram. If the transition
represents an exchanged message, the message’s
performatives must be consistent with the protocol defined
in the Communication Ontology Description Diagram and
Role Description Diagram, and the message’s content
should contain elements defined in the Domain Ontology
Description Diagram. With regard to the implementation
of methods (of agent classes and task classes), standard
OO diagrams such as flowcharts and state diagrams can be
used as Single-Agent Behaviour Description Diagrams.

Support from OPF repository: Standard OPF
Techniques “Event modelling” and “State modelling” are
appropriate to the identification and modelling of
transitions between methods and implementation of each
method (no matter whether the methods belong to agents
or to agents’ tasks).

3.3.10 For “Code Reuse”: Code reuse does not merely
mean the reuse of pieces of codes, but also pieces of
design of agents and tasks. The designer should thus look
at the design diagrams detailing the library of patterns
rather than at the code directly. PASSI provides an add-in
to the Rational Rose UML CASE tool (called “PASSI
Toolkit”) and a pattern reuse application (called “Agent
Factory”) that assist in code reuse. “PASSI Toolkit”
(PTK) can generate the code for all skeletons of agents. In
the context of the generation of PASSI from the newly
enhanced OPF repository (as described here), PASSI tools
become elements of the OPF-compatible tools (Figure 2).

Support from OPF repository: the OPF repository
provides various Techniques for reuse that can be applied
to PASSI, namely “Pattern recognition”, “Library class
incorporation”, “Library management” and “Reuse
measurement”.

3.3.11 For “Code completion”: No specific techniques
are documented by PASSI because this is a classical task
of the programmer.

Support from OPF repository: the OPF repository
contains a number of Techniques for coding, which,

 95

although originally intended for objects, are equally
applicable to agents, e.g. “Inspection”, “Creation charts”,
“Pair programming”, “Screen scraping” and “Wrappers”.

3.3.12 For “Deployment configuration”: No techniques
are given by PASSI to support agent deployment
configuration, for example how to allocate agents to
processing units or how to configure agent mobility.

Support from OPF repository: the OPF repository
offers Technique “Distributed systems partitioning and
allocation”. However, it offers inadequate support for the
deployment configuration of agent systems, including
mobility of agents. Since PASSI offers no guidance here,
in the context of this paper, we must defer this extension
to future work.

3.3.13 Summary. Although only a single subtask is
identified as needing adding to the OPF repository
(together with the need to investigate extending a single
technique (Distributed systems partitioning and
allocation), this does not reflect upon any lack of
comprehensiveness in PASSI itself. The reason is that a
significant number of other agent-oriented methodologies
have already been analyzed [17], each of which has
provided method fragments that could equally well have
been derived from PASSI. We have chosen not to
highlight these here to avoid duplication with those
previously published [12-16].

3.4 Fragments for Work Products

All work products of PASSI are represented in UML
notation although with some extensions.

3.4.1. System Requirements Model: This is an
anthropomorphic model of the system requirements in
terms of agency and purpose. It is composed of the
following types of diagrams:

" Domain Description Diagram: This is a standard
UML use case diagram that is used (by PASSI task
“Domain Description”) to capture the functional
description of the target system.

" Agent Identification Diagram: One or more use cases
in the above use case diagrams are grouped into
stereotyped packages to form Agent Identification
Diagrams (Figure 3). This assumes that use cases are
fully contained in a single agent, which is not the case
for object-oriented systems. The names of the pack-
ages are the names of the resulting agents. Relation-
ships between use cases of different agents are
stereotyped as «communicate», while relationships
between uses cases of the same agent are modelled
using the standard UML relations (i.e. «include» and
«extend»). This is a new style of diagram
recommended for addition to the OPF repository.

PurchaseMonitor
<<Agent>>

PurchaseManager
<<Agent>>

Univ Courses
Web Server

Keep Univ Needs Updated

<<communicate>>

Predict Students Needs

<<include>>

Provide Books

<<communicate>>

Figure 3 Agent Identification Diagram

" Role Identification Diagram: This is a UML sequence
diagram where objects represent agent roles, speci-
fied using the syntax <role-name>:<agent_name>. An
agent may play distinct roles within the same
sequence diagram. Messages in the sequence diagram
may either signify events generated by the
environment or communication between roles. This is
a new style of diagram recommended for addition to
the OPF repository.

" Task Specification Diagram: This diagram is drawn
as a UML activity diagram with two swimlanes. The
right-hand lane contains a collection of tasks of the
target agent, while the left-hand lane specifies the
relevant tasks of other interacting agents.
Relationships between tasks signify transitions
between them (e.g. exchanged messages or task
triggering events). This is a new style of diagram
recommended for addition to the OPF repository.

 3.4.2. Agent Society Model: This model captures the
communications and dependencies among agents in the
target system. It is composed of the following types of
diagrams:

" Domain Ontology Description Diagram: This
diagram models the domain ontology of the target
system in terms of concepts (domain entities),
predicates (assertions on properties of concepts),
actions (performed in the domain) and their
relationships (association, generalization and
aggregation). This diagram is represented as a UML
class diagram, while the elements of the ontology (i.e.
concepts, predicates, actions and relationships) are
described in an XML schema.

" Communication Ontology Description Diagram: This
is a UML class diagram that shows all agents of the
system, their knowledge (represented as attributes)
and the ontology governing their communications
(Figure 4). Each communication (drawn from the
initiator to the participant) is characterized by three
attributes: ontology, language and interaction proto-
col, which are grouped into an association class. Roles
played by agents are denoted at the respective ends of
the association lines. This is a new style of diagram
recommended for addition to the OPF repository.

 96

DeliveryNotification

Ontology : Delivery
Language : RDF
Protocol : Inform

StoreUI

_delivery_details : Delivery

PurchaseManager

open_purchases : GoingOnPurchases
suppliers_list : SuppliersArchive

BooksReceiver DeliveryNotifier

Figure 4 Communication Ontology Description

Diagram

Purchase Advisor
<<Agent>>

Consultant : PurchaseAdvisor

IdleTask()
ReceiveAdviceRequest()
QueryOnHistory()

Recorder : PurchaseAdvisor

IdleTask()
ReceiveRecordingRequest()
UpdateHistory()

BooksProvider : PurchaseManager

IdleTask()
ReceivePurchaseRequest()
StartPurchase()
AskForAdvise()
StartNegotiation()
StartOrdering()
ReceiveDeliveryNotification()
NotifyEndOfPurchase()
UpdatePurchaseHistory()

Purchase Manager
<<Agent>>

[ROLE CHANGE]

QueryForAdvice

PurchaseDetails

(service)

Figure 5 Role Description Diagram

" Role Description Diagram: This is a UML class

diagram which shows agents as packages, and agents’
roles as classes (Figure 5). Each role’s tasks are
specified in the operation compartment of the role
class. Connections between roles represent either
changes of roles (if the roles belong to the same
agent) or inter-role communications (if the roles
belong to different agents). Dependencies among
roles are also shown. This is a new style of diagram
recommended for addition to the OPF repository.

" AUML Sequence Diagram: This diagram is used for
documenting inter-agent interaction protocols.

3.4.3. Agent Implementation Model: This model
captures the solution for the target MAS in terms of
classes and methods. It consists of four types of diagram:

Univ Courses
Web Server

PurchaseManager

ReceivePurchaseRequest()
StartPurchase()
AskForAdvise()
StartNegotiation()
StartOrdering()
ReceiveDeliveryNotification()
NotifyEndOfPurchase()
UpdatePurchaseHistory()

<<Agent>>

PurchaseMonitor

RequestBooks()
LookForChanges()

<<Agent>>

Figure 6 Multi-Agent Structure Definition

Diagram

" Multi-Agent Structure Definition Diagram: This is a
UML class diagram where classes represent agents
and associations between classes signify inter-agent
communications (Figure 6). Attributes represent the
agents’ knowledge, while operations are used to
specify agents’ tasks. This is a new style of diagram
recommended for addition to the OPF repository.

" Single-Agent Structure Definition Diagram: One
UML class diagram is developed for each agent. This
diagram contains one main class to represent the
target agent, and multiple inner classes to represent
the agent’s tasks (one inner class for each task). The
knowledge and methods of each agent class and task
class should be specified in the attribute and operation
compartments respectively.

" Multi-Agent Behaviour Description Diagram: This is
a UML activity diagram where each swimlane
specifies the methods of each agent or each agent’s
task. The methods (represented as activities) are
connected with each other through transitions, i.e.
events (e.g. an incoming message or a task
conclusion) or invocations of methods.

" Single-Agent Behaviour Description Diagram: This
diagram can be represented as standard UML
flowcharts, state diagrams or even semi-formal text
description.

3.4.4. Code Model: This model captures the codes for
implementing the solution.

3.4.5. Deployment Model: This model contains a
Deployment Configuration Diagram, which is represented
as a UML deployment diagram. This diagram shows the
locations of agents (i.e. the implementation platforms and
processing units where the agents reside), the agents’
movements and their communication. A «move_to»
stereotyped connection is introduced by PASSI to model
agent mobility, connecting an agent from its initial
processing unit to the final location.

3.4.6 Recommendations. PASSI focuses on the use of
UML diagrams. There are, however, some interesting
observations to make. Firstly, in the UML there is a
tendency to have a one to one relationship between a dia-
gram type and its context of application. In PASSI (and
also incidentally in Tropos e.g. [18]), one diagram type is
used to serve many purpose. In PASSI, the UML class
diagram, for example, is used as (i) a domain ontology
description diagram, (ii) a communication ontology de-
scription diagram, (iii) a role description diagram, (iv) a
multi-agent structure definition diagram and (v) a single-
agent structure definition diagram. Such multi-viewpoint
usage can be beneficial in terms of only using one notat-
ional style but potentially confusing unless the boundaries
between the diagram types and the contexts and scales of
the various viewpoints are carefully delineated.

In terms of OPF method fragments, six of the PASSI
diagrams are distinctive to warrant proposal for inclusion
in the OPF repository (Table 2).

Inadequate support for distributed systems partitioning
and allocation was identified in both PASSI and the OPF
and remains a topic for future investigation.

 97

Table 2 New Work Products, derived from PASSI,
recommended for inclusion in the OPF

repository

Agent Identification Diagram
Communication Ontology Description Diagram
Multi-Agent Structure Definition Diagram
Role Description Diagram
Role Identification Diagram
Task Specification Diagram

4. Conclusion

By decomposing PASSI into a set of fragments and then
comparing these newly derived fragments with those
already stored in the OPF repository, as enhanced by
previous AO methodology studies [12-17], we have
identified only one major WorkUnit fragment (Subtask:
Model agent’s tasks) that needs to be added to this
particular repository plus a recommendation to (a) extend
the “Distributed systems partitioning and allocation”
technique described in [19] and (b) consider six of the
twelve PASSI work products for inclusion in the
repository The next stage of the work will posit the
hypothesis that completeness of the repository has been
reached, testing this by means of an external data set, as
provided in [20]. It is also interesting to note that the work
reported here represents an evaluation of the possibilities
of interaction of the FIPA Methodology TC2 approach
with the OPF one. Since the original PASSI fragments
have been built by following the FIPA Method Fragment
Specification and their introduction in the OPF repository
has been smooth enough, we think there is a reasonable
hope of making the two approaches converge towards
some interoperability level and we plan to explore this
possibility further.

5. References

[1] Kumar, K. and Welke, R.J., 1992, Method engineering: a
proposal for situation-specific methodology construction, in
Systems Analysis and Design: A Research Agenda, (eds. W.W.
Cotterman and J.A. Senn), J. Wiley & Sons, NY, USA, 257-269.
[2] Brinkkemper, S., 1996, Method engineering: engineering of
information systems development methods and tools, Inf.
Software Technol., 38(4), 275-280.
[3] Ralyté, J. and Rolland, C., 2001, An assembly process model
for method engineering, in K.R. Dittrich, A. Geppert and M.C.
Norrie (Eds.) Advanced Information Systems Engineering,
LNCS2068, Springer-Verlag, Berlin, 267-283.
[4] Rolland, C., Prakash, N. and Benjamen, A., 1999, A multi-
model view of process modelling, Req. Eng. J., 4(4), 169-187
[5] van Slooten, K. and Hodes, B., 1996, Characterizing IS
development projects, in S. Brinkkemper, K. Lyytinen and R.
Welke (Eds.) Procs. IFIP TC8 Working Conference on Method

2 http://www.pa.icar.cnr.it/~cossentino/FIPAmeth/

Engineering: Principles of method construction and tool
support, Chapman & Hall, London, 29-44.
[6] Ralyté, J., 2004, Towards situational methods for information
systems development: engineering reusable method chunks,
Procs. 13th Int. Conf. on Information Systems Development.
Advances in Theory, Practice and Education (eds. O. Vasilecas,
A. Caplinskas, W. Wojtkowski, W.G. Wojtkowski, J. Zupancic
and S. Wrycza), Vilnius Gediminas Technical University,
Vilnius, Lithuania, 271-282.
[7] Henderson-Sellers, B., Serour, M., McBride, T., Gonzalez-
Perez, C. and Dagher, L., 2004, Process construction and
customization, J. Universal Computer Science, 10(4), 326-358
[8] Burrafato, P. and Cossentino, M., 2002. Designing a multi-
agent solution for a bookstore with the PASSI methodology.
Procs. 4th International Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS-2002). May 2002, Toronto
[9] Cossentino, M., 2005, From requirements to code with the
PASSI methodology, in Agent-Oriented Methodologies (eds. B.
Henderson-Sellers and P.Giorgini), Idea Group, 79-106.
[10] PASSI website. http://mozart.csai.unipa.it/passi/
[11] Firesmith, D.G. and Henderson-Sellers, B., 2002, The
OPEN Process Framework, Addison-Wesley, UK.
[12] Tran, Q.N., Henderson-Sellers, B. and Debenham, J. 2004.
Incorporating the elements of the MASE methodology into
Agent OPEN. Procs. 6th Int. Conference on Enterprise
Information Systems (ICEIS'2004), 380-388.
[13] Henderson-Sellers, B., Debenham, J., and Tran, Q.N. 2004.
Adding Agent-Oriented Concepts Derived from GAIA to Agent
OPEN. Advanced Information Systems Engineering. 16th
International Conference, CAiSE 2004, Riga, Latvia, June 2004
Proceeding (eds. A. Persson and J. Stirna), LNCS 3084,
Springer-Verlag, Berlin, 98-111.
[14] Henderson-Sellers, B., Tran, Q-N.N. and Debenham, J.
2004. Incorporating elements from the Prometheus agent-
oriented methodology in the OPEN Process Framework. Procs.
AOIS@CAiSE*04, Faculty of Computer Science and
Information, Riga Technical University, Latvia, 370-385
[15] Henderson-Sellers, B. and Debenham, J., 2003. Towards
OPEN methodological support for agent-oriented systems
development. Procs. 1st International Conference on Agent-
Based Technologies and Systems, 14-24.
[16] Henderson-Sellers, B., Tran, Q-N.N., Debenham, J. and
Gonzalez-Perez, C., 2005. Agent-oriented information systems
development using OPEN and the Agent Factory. Information
Systems Development Advances in Theory, Practice and
Education, 13th International Conference on Information
Systems Development, ISD 2004, Vilnius, Lithuania, September
2004, Proceedings, Kluwer, New York, USA, 149-160.
[17] Henderson-Sellers, B., 2005, Creating a comprehensive
agent-oriented methodology - using method engineering and the
OPEN metamodel, in Agent-Oriented Methodologies (eds. B.
Henderson-Sellers and P. Giorgini), Idea Group, 368-397.
[18] Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopolous, J.
and Perini, A., 2004, Tropos: an agent-oriented software
development methodology, Autonomous Agents and Multi-Agent
Systems, 8(3), 203-236.
[19] Henderson-Sellers, B., Simons, A.J.H. and Younessi, H.,
1998, The OPEN Toolbox of Techniques, Addison-Wesley, UK
[20] Zhang, T.I., Kendall, E. and Jiang, H., 2002, An agent-
oriented software engineering methodology with applications of
information gather systems for LLC, Procs AOIS-2002, (eds. P.
Giorgini, Y. Lespérance, G. Wagner and E. Yu), Toronto, 32-46

