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Abstract. Auctions, and combinatorial auctions (CAs), have been successfully
employed to solve coordination problems in a wide range of application domains.
However, the scale of CAs that can be optimally solved is small because of the
complexity of the winner determination problem (WDP), namely of finding the
bids that maximise the auctioneer’s revenue. A way of approximating the solution
of a WDP is to solve its linear programming relaxation. The recently proposed
Alternate Direction Dual Decomposition algorithm (AD3) has been shown to ef-
ficiently solve large-scale LP relaxations. Hence, in this paper we show how to
encode the WDP so that it can be approximated by means of AD3. Moreover, we
present PAR-AD3, the first parallel implementation of AD3. PAR-AD3 shows to
be up to 12.4 times faster than CPLEX in a single-thread execution, and up to
23 times faster than parallel CPLEX in an 8-core architecture. Therefore PAR-
AD3 becomes the algorithm of choice to solve large-scale WDP LP relaxations
for hard instances. Furthermore, PAR-AD3 has potential when considering large-
scale coordination problems that must be solved as optimisation problems.

Keywords: Combinatorial auctions, Large-scale coordination, Large-scale opti-
misation, Linear programming

1 Introduction

Auctions are a standard technique to solve coordination problems that has been success-
fully employed in a wide range of application domains [24]. Combinatorial auctions
(CAs) [7] are a particular type of auctions that allow to allocate entire bundles of items
in a single transaction. Although computationally very complex, auctioning bundles has
the great advantage of eliminating the risk for a bidder of not being able to obtain com-
plementary items at a reasonable price in a follow-up auction (think of a CA for a pair
of shoes, as opposed to two consecutive single-item auctions for each of the individual
shoes). CAs are expected to deliver more efficient allocations than non-combinatorial
auctions complementarities between items hold.
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CAs have been also employed to solve a variety of coordination problems (e.g.
transportation [31], emergency resource coordination in disaster management [26], or
agent coordination in agent-driven robot navigation [32]). However, although such ap-
plication domains claim to be large-scale, namely involving thousands and even mil-
lions of bids, current results indicate that the scale of the CAs that can be optimally
solved is small [19, 25]. For instance, CPLEX (a state-of-the-art commercial solver)
requires a median of around 3 hours to solve the integer linear program encoding the
Winner Determination Problem (WDP) of a hard instance of a CA with only 1000 bids
and 256 goods. This fact seriously hinders the practical applicability of current solvers
to large-scale CAs.

Linear Programming (LP) relaxations are a standard method for approximating
combinatorial optimisation problems in computer science [5]. Yanover et al. [36] re-
port that realistic problems with a large number of variables cannot be solved by off-
the-shelf, commercial LP solvers (such as CPLEX). Instead, they propose the usage of
TRBP, a message-passing, dual-decomposition algorithm, to solve LP relaxations, and
show that TRBP significantly outperforms CPLEX. Since then, many other message-
passing and dual decomposition algorithms have been proposed to address this very
same problem [17, 18, 13, 28]. The advantage over other approximate algorithms is that
the underlying optimisation problem is well-understood and the algorithms are conver-
gent and provide certain guarantees. Moreover, there are ways of tightening the relax-
ation toward the exact solution [34].

In order to solve LP relaxations, there has been a recent upsurge of interest in the Al-
ternating Direction Method of Multipliers (ADMM), which was invented in the 1970s
by Glowinski and Marroco [14] and Gabay and Mercier [12]. As discussed in [6],
ADMM is specially well suited for application in a wide variety of large-scale dis-
tributed modern problems. Along this line, Martins has proposed AD3 [22], a novel
algorithm based on ADMM, which proves to outperform off-the-shelf, commercial LP
solvers for problems including declarative constraints. AD3 has the same modular archi-
tecture of previous dual decomposition algorithms, but it is faster to reach consensus,
and it is suitable for embedding in a branch-and-bound procedure toward the optimal
solution. Martins derives efficient procedures for handling logic factors and a general
procedure for dealing with dense, large, or combinatorial factors. Notice that until [21],
the handling of declarative constraints by message-passing algorithms was barely ad-
dressed, and not well understood. This hindered their application to combinatorial auc-
tion WDPs, which typically require this type of constraints. Therefore, AD3 constitutes
a promising tool to solve WDPs in CAs.

As discussed in [21] (see section 7.5), AD3 is largely amenable to parallelisation,
since AD3 separates an optimisation problem into subproblems that can be solved in
parallel. Nonetheless, to the best of our knowledge there is no parallel implementation
of AD3. Therefore, the potential speedups that AD3 may obtain when running on multi-
core environments remain unexplored. And yet, this path of research is encouraged
by recent experiences in parallelisation of ADMM applied to solve an unconstrained
optimisation problem [23]. Indeed, Miksik et al. show that a parallel implementation of
ADMM delivers large speedups for large-scale problems. Notice though that the work



in [23] cannot be employed to solve the WDP for CAs because it cannot handle hard
constraints.

The main purpose of this paper is to demonstrate that the optimisation and paral-
lelisation of AD3 can deliver enormous benefits when solving relaxations of large-scale
combinatorial optimisation problems, and in particular WDPs in large-scale CAs. With
this aim, we make the following contributions:

– We show how to encode the WDP for CAs so that it can be approximated by AD3.
For this endeavour we employ the computationally-efficient factors provided by
AD3 to handle hard constraints.

– We propose an optimised, parallel implementation of AD3, the so-called PAR-AD3.
Our implementation is based on a mechanism for distributing the computations
required by AD3 as well as on a data structure organisation that together favor
parallelism.

– We show that while AD3 is up to 12.4 times faster than CPLEX in a single-thread
execution, PAR-AD3 is up to 23 times faster than parallel CPLEX in an 8-core
architecture. Therefore PAR-AD3 becomes the algorithm of choice to solve large-
scale WDP LP relaxations.

To summarise, our results indicate that PAR-AD3 obtains significant speed-ups on
multi-core environments, hence increasing AD3’s scalability and showing its potential
for application to large-scale combinatorial optimisation problems in particular and for
large-scale coordination problems that can be cast as combinatorial optimisation prob-
lems. The rest of the paper is organised as follows. First, we introduce some background
on AD3. Next, we detail how to encode the WDP for CAs by means of AD3. Thereafter,
we thoroughly describe PAR-AD3 and afterwards we present empirical results. Finally,
we draw some conclusions and set paths to future research.

2 Background

Graphical models are widely used in computer vision, natural language processing and
computational biology, where a fundamental problem is to find the maximum a posteri-
ori probability (MAP) given a factor graph. Since finding the exact MAP is frequently
an intractable problem, significant research has been carried out to develop algorithms
that approximate the MAP.

Linear Programming (LP) relaxations have been extensively applied to approximate
the MAP for graphical models since [30]. Typically, such application domains lead to
sparse problems with a large number of variables and constraints (i.e beyond 104). As
shown in [36], message passing algorithms have been proved to outperform state-of-
the-art commercial LP solvers (such as e.g. CPLEX) when approximating the MAP for
large-scale problems. This advantage stems from the fact that message-passing algo-
rithms better exploit the underlying graph structure representing the problem.

Along this direction, several message passing algorithms have been proposed in the
literature: ADMM [10], TRBP [35], MPLP [13], PSDD [18], Norm-Product BP [16],
and more recently Alternate Direction Dual Decomposition (AD3) [2].



As discussed in [22], the recently-proposed AD3 has some very interesting features
in front of other message passing algorithms: it reaches consensus faster than other
algorithms such as ADMM, TRBP and PSDD; it does have neither the convergence
problems of MPLP nor the instability problems of Norm-Product BP; and its anytime
design allows to stop the optimisation process whenever a pre-specified accuracy is
reached. Furthermore, as reported in [22], AD3 has been empirically shown to outper-
form state-of-the-art message passing algorithms on large-scale problems.

Besides these features, AD3 also provides a library of computationally-efficient fac-
tors that allow to handle declarative constraints within an optimisation problem. This
opens the possibility of employing AD3 to approximate constrained optimisation prob-
lems.

Algorithm 1 outlines the main operations performed by AD3 on a factor graph G
with a set of factors F, a set of variables V , and a set of edges E ⊆ F × V . AD3 receives
a set of parameters θ that encode variable coefficients and a penalty constant η able to
regulate the update step size. We use the function ∂(x) to denote all the neighbours (i.e.
connected nodes) of a given graph node. The primal variables q and p, the dual λ as
well as the unary log-potentials ξ are vectors which are updated during the execution
.We refer the reader to [22] for a detailed description of the algorithm. AD3 is an it-
erative three-step algorithm designed to approximate an objective function encoded as
a factor graph. A key aspect of AD3 is that it separates the optimisation problem into
independent subproblems that progress to reach consensus on the values to assign to
primal and dual variables. Thus, during the first step, broadcast, the optimisation prob-
lem is split into separate subproblems, each one being distributed to a factor. Thereafter,
each factor locally solves its local subproblem. In AD3, this computations is carried on
solving a quadratic problem. During the second step, gather, each variable gathers the
subproblems’ solutions of the factors it is linked to. Finally, during the third step, La-
grange updates, the Lagrange multipliers for each subproblem are updated.

Algorithm 1 Alternating Directions Dual Decomposition(AD3)
input: factor graph G, parameters θ, penalty constant η
1: initialize p (i.e. pi = 0.5∀i ∈ 1 . . . |V |), initialize λ = 0
2: repeat . Broadcast
3: for each factor α ∈ F do
4: for each i ∈ ∂(α) do
5: set unary log-potentials ξiα := θiα + λiα
6: end for
7: q̂α := SolveQP(θα + ξα, (pi)i∈∂(α))
8: end for
9: for each variable i ∈ V do . Gather

10: compute avg pi := |∂(i)|−1∑
α∈∂(i) q̂iα

11: for each α ∈ ∂(i) do . Lagrange updates
12: λiα := λiα − η(q̂iα − pi)
13: end for
14: end for
15: until convergence
output: primal variables p and q, dual variable λ



A distinguishing feature of AD3 is that both the broadcast and update steps can
be safely run in parallel. Indeed, notice that, since subproblems are independent, they
can be safely distributed in different factors so that each one independently computes
a local solution. AD3 provides a collection of factors for which their quadratic prob-
lems are defined. As an example we present how the quadratic problem for the XOR
factor is solved in Algorithm 2, where the input of the algorithm are the potentials
Zα : z0, . . . , zK relative to the factor α. Note that in Algorithm 1 the call to the SolveQP
method has two parameters, the second parameter is omitted here since it is not needed
to solve the XOR. Algorithm 2 proceeds as follows. Lines 11-13 are responsible of
checking if the constraint XOR is already satisfied. Then, if not satisfied, the Zα vector
is transformed using the projection onto simplex method described by [9]. This method
navigates through Zα in decreasing order, to find the pivot element yi and the value of
τ. Afterwards this τ is used to perform the actual projection. To this end, two auxiliary
vectors Z′α and Yα are used: the former will contain the algorithm output and the latter
is used to contain a sorted copy of Zα. Although there are ways to obtain the pivot with-
out the need of sorting the vector Zα (described in [9]), in AD3 is preferable to have a
persistent sorted vector since order of elements is commonly preserved or barely altered
across the iterations. Therefore efficient sorting methods on nearly-ordered sequences
can be applied. An important feature of the XOR factor is that its quadratic problem can
be solved in O(K · logK), where K stands for the number of variables connected to the
factor.

Algorithm 2 SolveQP for an XOR factor
input: Zα : z0, . . . , zK , vector with α log-potentials

1: function FindTau(Yα)
2: τ = 0.0;
3: sum :=

∑
yi∈Yα

yi
4: for each yi ∈ Yα do
5: τ := sum−1

K−i
6: if yi > τ then break
7: update sum := sum − yi
8: end for
9: return τ

10: end function
11: z′i := max(0, zi), for each zi ∈ Zα

12: sum :=
∑

z′i∈Z
′
α

z′i
13: if sum > 1.0 then . Projection onto simplex
14: sort Zα into Yα: y0 ≤ . . . ≤ yK
15: τ := FindTau(Yα)
16: z′i := max(zi − τ,0) , for each zi ∈ Zα

17: end if
output: Z′α

As to gather, the step in which the subproblems communicate their local results,
each variable can independently (from the rest of variables) gather and aggregate the



results computed by the factors it is linked to. Despite being highly prone to paralleli-
sation, to the best of our knowledge there is only one public implementation of AD3

and cannot run in parallel 3. The recent contributions to the parallelisation of ADMM
to solve unconstrained optimisation problems [23] are very encouraging because they
show that it is possible to obtain very significant speedups by exploiting nowadays par-
allel hardware. This finding spurs and motivates the need for a parallel implementation
of AD3.

But before that, in the next section we show that the WDP for CAs can be solved
by means of AD3.

3 Solving combinatorial auctions with AD3

A Combinatorial Auction (CA) is an auction in which bidders can place bids for a
combination of items instead of individual ones. In this scenario, one of the fundamental
problems is the Winner Determination Problem (WDP), which consists in finding the set
of bids that maximise the auctioneer’s benefit. Notice that the WDP is anNP-complete
problem.

Although special-purpose algorithms have addressed the WDP (e.g. [11, 29]), the
state-of-the-art method for solving a WDP is to encode it as an integer linear program
(ILP) and solve it using an off-the-shelf commercial solver (such as CPLEX [1] or
Gurobi [15]). Nonetheless, this approach fails to scale to large CA instances. Indeed, as
noticed in [31], real problems may involve up to millions of bids. Therefore, such real
problems are out of reach for state-of-the-art optimal solvers, and hence the need for
heuristic approaches arise.

As observed in [4], ”The simplest and, perhaps most tempting approach, to an
optimization-based heuristic is to round the solution to a linear programming relax-
ation”. Furthermore, solutions to an LP relaxation can provide a very effective start to
finding a good feasible solution to the non-relaxed optimisation problem. Hereafter we
focus on solving the LP relaxation of the WDP by means of AD3. Since AD3 requires a
factor graph to operate, we first show how to encode the WDP as a factor graph. Then
we show how AD3 can run on top of this factor graph. We shall start by showing such
encoding by means of an example to finally derive a general procedure.

Consider an auctioneer puts on sale a pair of goods g1, g2. Say that the auctioneer
receives the following bids: b1 offering $20 for g1 ; b2 offering $10 for g2; and finally
b3 offering $35 for goods g1 and g2 together. The WDP for this CA can be encoded as
the following ILP:

maximise 20 · x1 + 10 · x2 + 35 · x3

subject to x1 + x3 ≤ 1 [constraint c1]
x2 + x3 ≤ 1 [constraint c2]
x1, x2, x3 ∈ {0, 1}

where x1, x2, and x3 stand for binary decision variables that indicate whether each
bid is selected or not; constraint c1 expresses that good g1 can only be allocated to either

3 Available at http://www.ark.cs.cmu.edu/AD3/



bid b1 or bid b3 and constraint c2 encodes that good g2 can only be allocated to either
bid b2 or bid b3.

x1

AtMost1AtMost1

x2 x3

c1

Decision
Variables

Constraint 
Factors

c2

20 10 35

Fig. 1. Factor graph encoding of our CA example.

Now we can encode the optimisation problem above into a factor graph as illustrated
in Figure 1. First, we create a variable node for each bid. Each variable contains its bid’s
offer (indicates the value that the auctioneer obtains when the variable is active). For
instance, variable x1 for bid b1 contains value 20. Then we create a factor node per good,
connecting the bids that compete for the good, and which are therefore incompatible.
For instance, factor c1 is linked to the variables corresponding to bids b1 and b3.

We observe that each factor representing a constraint in the factor graph in figure
1 corresponds to the ”AtMost1” function introduced by Smith and Eisner [33], which
is satisfied if there is at most one active input. Although AD3 does not directly support
”AtMost1” constraints, as seen in [21], an XOR factor can be used to define it by adding
a slack variable to the factor. The XOR factor complexity is O(K ·logK), where K stands
for the number of variables connected to the XOR factor. Notice that the operation of
AD3 when solving the WDP only involves computationally-efficient factors.

4 Parallel realisation of AD3

The AD3 algorithm is amenable to general, architecture-level optimisation and paral-
lelisation [21]. We propose an efficient realisation of the message-passing algorithmic
pattern using shared variables and targeting multicore computer architectures. The so-
called PAR-AD3, that exploits the inherent parallelism at two dimensions: thread-level
and data-level. For that, we reorganise both the data structures layout and the order of
operations. The approach is generalisable to other similar graph processing algorithms.
The key insights of our design are:

– An edge-centric representation of the shared variables that improves memory ac-
cess performance.

– A reorganisation of the operations that promotes parallel scaling (thread paral-
lelism) and vectorising (data parallelism).

4.1 Edge-centric shared data layout

AD3 is a message passing algorithm that iterates on three steps: broadcast, gather and
Lagrange multiplier update. The message passing pattern isolates the operations ap-
plied to the different elements of the graph (factors, variables and edges), so that multi-
ple operations can be performed concurrently on the graph data. These operations and



data can then be physically distributed along different computation and storage ele-
ments.

The memory requirements of AD3 are approximately proportional to the number of
edges, and, for the problem sizes considered, they are fulfilled by most current shared-
memory computer systems. In this situation, the fastest and most efficient mechanism
for communication and synchronisation between processing cores is using shared vari-
ables (instead of explicit messages). The different processing cores of the computer will
operate concurrently on the different elements of the graph (factors, variables or edges),
both reading input data and generating new results stored in the shared memory. Exe-
cution performance is improved with a careful selection of synchronisation operations
at the right point and an appropriate data structures layout.

Memory access performance is very sensitive to the data layout and data access
pattern. When a loop has to iterate along a large regular data structure, the best perfor-
mance is achieved when the next elements of the structure are naturally fetched from the
next memory positions at each step of the iteration. Since AD3 demands more computa-
tion work operating in edge data than in vertex or factor data, we adopt an edge-centric
data representation, as reported in [27]. We want all information related to edges, such
as unary log-potentials or lagrangian components, to be stored in consecutive memory
positions. With this purpose, we apply a memory layout transformation that converts
data structures originally designed in an Array of Structures (AOS) representation to a
Structure of Arrays (SOA) representation.

Figure 2 illustrates how data was stored in memory in AD3 and how the data layout
is modified in PAR-AD3. For the sake of clarity, we present data regarding 2 variables
and 4 edges. AD3 encodes the information following an AOS representation, where all
properties related to each variable or edge are stored consecutively (see figure 2a). As
the design is variable-centric, iterating on all the edges in the graph requires an indirect
and scattered access to the variables (edges are accessed using the pointers associated
to each variable). In contrast, the PAR-AD3 SOA memory layout (figure 2b) stores
the properties of variables and edges sequentially, thus resulting in a different array for
each edge or variable property. Now, iterating on all edges of the graph requires consec-
utive accesses to array elements. The AOS memory representation of AD3 benefits from
memory access patterns where all the variable properties are used together, meanwhile
the SOA memory representation of PAR-AD3 benefits from the access of any property
traversing all variables or edges.

To summarise, the PAR-AD3 data representation transforms many scattered mem-
ory accesses into sequential, improving the memory access throughput. A derived ad-
vantage of the simplified edge access pattern is to foster better parallel scaling and
vectorisation, but we need additional algorithmic transformations that are described in
the next section.

4.2 Reordering operations

Parallel scaling means distributing compute operations on large chunks of data along
different computational units sharing the same memory space. Vectorising applies data
parallelism strategies inside the same computational unit, and consists in using instruc-
tions that operate simultaneously on a small vector of consecutive data elements. Both
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Fig. 3. Processing phases and parallelism in PAR-AD3.

parallel scaling and vectorising are usually applied to simple loop iterations with clearly
separated inputs and outputs, no recurrent dependencies, and sequential accesses to vec-
tor elements.

Our proposal reshapes the way the algorithm defines the graph operations towards
a new structure of many simple consecutive loops, outlined in figure 3. The original
Broadcast step is now split in three phases: update edge, sort potential and solve factors.
Also, the original Gather step is now split in two phases: accumulate and average. Note
that we iterate on factors twice and also iterate on variables twice: this makes the loops
simpler and provides more data locality. As a result, all phases are now parallelised
for concurrent execution (thread parallelism) and four out of six are vectorised: update
edge, accumulate, average and update multiplier.

Algorithm 3 shows a pseudo-code of PAR-AD3 as a result of the optimizations ap-
plied. A pool of parallel threads is created outside of the main loop (line 2). Whenever
a parallel loop inside the main loop is reached (lines 4, 9, 12, 19, 24, 27), the loop
iterations are distributed to the threads for parallel execution. There is an implicit syn-
chronisation after each loop, so that all threads wait for the generation of the results in
one loop before starting the execution of the next.

As thoroughly described in the next section, these contributions have a significant
impact in the sequential execution as well as allow good parallel scalability when an
increasingly large number of threads are used. Since a clear trend in computer archi-
tecture is an increase of parallelism both at instruction and thread level, (for example,
the intel Xeon Phi accelerator operates with 512-bit vector registers and contains more



Algorithm 3 PAR-AD3 pseudo-code
input: factor graph G, parameters θ, penalty constant η
1: initialize p (i.e. pi = 0.5∀i ∈ 1 . . . |V |), initialize λ = 0
2: create threads
3: repeat
4: parallel for iα ∈ E do . Update edges
5: Update log-potentials ξiα := θiα + λiα
6: compute q̂iα = θiα + ξiα
7: compute q̂′iα = max(0, q̂iα)
8: end for
9: parallel for factor α ∈ F do . Sort potentials

10: q̂ sortedα := sort(q̂α)
11: end for
12: parallel for factor α ∈ F do . Solve factors
13: sum =

∑
i∈∂(α)(q̂′iα)

14: if sum > 1.0 then
15: τ := FindTau(q̂ sortedα)
16: q′iα := max(qiα − τ,0), for each qiα ∈ qα

17: end if
18: end for
19: parallel for variable i ∈ V do . Acummulate
20: for i ∈ ∂(α) do
21: p̃i := p̃i + q̂iα
22: end for
23: end for
24: parallel for variable i ∈ V do . Average
25: pi := p̃i/ |∂(i)|
26: end for
27: parallel for iα ∈ E do
28: λiα := λiα − η(q̂iα − pi) . Update multipliers
29: end for
30: update η
31: until convergence
output: primal variables p and q, dual variable λ

than 60 execution cores) the methodology applied to PAR-AD3 makes it ready to benefit
from upcoming improvements.

5 Empirical evaluation

In this section, we assess PAR-AD3 performance against the state-of-the-art optimisa-
tion software CPLEX with the aim of determining the scenarios for which PAR-AD3

is the algorithm of choice. We also quantify its current gains, both in sequential and
parallel executions. To this end, we first find the data distributions and range of prob-
lems that are best suited for PAR-AD3. Thereafter, we briefly analyse two algorithmic
key features: convergence and solution quality. Afterwards, we quantify the speedups of
PAR-AD3 with respect to CPLEX in sequential and parallel executions. From this anal-
ysis we conclude that PAR-AD3 does obtain larger benefits from parallelisation than
CPLEX. Indeed, PAR-AD3 achieves a peak speedup of 23X above CPLEX barrier, the
state-of-the-art solver for sparse problems.
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Fig. 4. Solving time for different distributions, single thread. a) Simplex b) Barrier

Experiment setup. In order to generate CA WDP instances, we employ CATS, the
CA generator suite described in [20]. Each instance is generated out of the following
list of distributions thoroughly described in [19]: arbitrary, matching, paths, regions,
scheduling, L1, L3, L4, L5, L6 and L7. We discarded to employ the L2 distribution,
because the CATS generator is not capable of generating large instances. While the
first five distributions were designed to generate realistic CA WDP instances, the latter
ones generate artificial instances. The main difference between the two distribution cat-
egories is the use of dummy goods that add structure to the problem inspired in some
real life scenarios. i.e. Paths models the transportation links between cities; Regions
models an auction of real estate or an auction where the basis of complementarity is
the two-dimensional adjacency of goods; Arbitrary extends regions by removing the
two-dimensional adjacency assumption, and it can be applied to model electronic parts
design or procurement; Matching models airline take-off and landing rights auctions;
and Scheduling models a distributed job-shop scheduling domain. Artificial (or Legacy)
distributions have been often criticised [3, 20, 8] mainly due to their poor applicabil-
ity, specially in the economic field. However they are interesting in order to study the
algorithm performance in different situations. Both AD3 and PAR-AD3 are well suited
for large-scale hard problems. For this reason, we first determine which of these distri-
butions are hard to solve, putting special attention to the realistic ones. For our exper-
imentation, we considered a number of goods within [103, 104] in steps of 103 goods.
Furthermore, the number of bids ranged within [104, 4 · 104] in steps of 104 bids. Each
problem scenario is characterised by a combination of distribution, number of goods,
and number of bids. Our experiments consider 5 different instances for each problem
scenario and we analyse their mean value. Experiments are executed in a computer
with two four-core Intel Xeon Processors L5520 @2.27GHz with 32 GB RAM with
the hyper-threading mechanism disabled.
Different distributions hardness. We empirically determine the hardness of the re-
laxation for our experimental data by solving the LP using CPLEX simplex (simplex
henceforth), CPLEX barrier (barrier henceforth), the state-of-the art algorithms. Results
are plot in figures 4a and 4b. According to the results, scheduling and matching from
the realistic distributions and L1, L4 from the legacy ones are very well addressed by
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Fig. 5. Fastest algorithm solving different distributions and problem sizes. a) Single-thread, b)
Multi-thread.

simplex, where solving time is, in general, less than one second. Both AD3 and PAR-
AD3 are not competitive in this scenario. Applicability of PAR-AD3 will be shown to
be effective to the rest of distributions, especially in hard instances. Barrier is also do-
ing a good job when the problems are hard, particularly in the arbitrary and regions
distributions, where the representation matrix is more sparse.
Single-thread analysis. After comparing the publicly-available version of AD3 against
sequential PAR-AD3, we observed that PAR-AD3 outperformed AD3 even in sequential
execution, reaching an average speedup of 3X and a peak speedup of 12.4X. More-
over, we observed that the harder the instances, the larger the speedups of PAR-AD3

with respect to AD3. Since both algorithms are well suited for hard instances, this is
particularly noticeable. Next, we compared the single-thread average performance of
PAR-AD3 against simplex and barrier. The results are plot in Figure 5a ,where we dis-
play the best algorithm for the different distributions and problem sizes. PAR-AD3 is
shown to be well suited for larger problems (the upper-right corner) in almost all the
distributions. In general, barrier is the best algorithm in the mid-sized problems, while
simplex applicability is limited to a small number of cases. Distribution paths presents
a different behaviour, where adding goods increases the average bid arity and this is
beneficial for simplex, which runs better in dense problems.

In general, the larger the WDP instances, the larger the PAR-AD3 benefits. Single-
threaded PAR-AD3 reaches a peak speedup of 12.4 for the hardest distribution when
compared to barrier, the best of the two state-of-the-art solvers.



Fig. 6. Speedup of PAR-AD3 for different distributions against barrier in a multi-thread execution
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Fig. 7. Convergence of simplex, barrier and PAR-AD3

Convergence and solution quality. Figure 7 shows a trace of an execution that illus-
trates the way the different solvers approximate the solution over time (using a regions
distribution, 5× 103 goods, and 104 bids). We chose this run because the similar perfor-
mance of the three algorithms made them comparable. Note that PAR-AD3 converges to
the solution in 29 sec., while barrier requires 102 sec. and simplex 202 sec. (not visible
in the figure). Furthermore, notice that PAR-AD3 quickly reaches a high-quality bound,
hence promptly guaranteeing close-to-the-solution anytime approximations. In general,
our experimental data indicate that the initial solution provided by PAR-AD3 is always
significantly better than the one assessed by both simplex and barrier. Finally, upon
convergence, there is a maximum deviation of 0.02% between PAR-AD3 solutions and
those assessed by CPLEX. Note that we run CPLEX with default parameters, has the
feasibility tolerance set to 10−6. This means that CPLEX solutions may be infeasible up
to a range of 10−6 per variable. In the same sense, PAR-AD3 feasibility tolerance is set
to 10−12. This good initial solution is a nice property that makes PAR-AD3 suitable to
be used as a method able to obtain quick bounds, either to be embedded in a MIP solver
or also to provide a fast solution able to be used towards an approximate solution.



Multi-thread analysis. We have run PAR-AD3, simplex and barrier with 8 parallel
threads each, hence using the full parallelism offered by our computer. The results are
displayed in figure 5b. When comparing with figure 5a (corresponding to the single-
thread execution), we observe that PAR-AD3 outperforms simplex and barrier in many
more scenarios, and in general PAR-AD3 applicability grows in concert with the parallel
resources in all cases. Hence, we infer that PAR-AD3 better benefits from parallelisation
than simplex and barrier. The case of the paths distribution is especially remarkable
since simplex is faster than other algorithms when running in a single-thread scenario.
Nonetheless, as PAR-AD3 better exploits parallelism, it revealed to be the most suitable
algorithm for hard distributions when running in multi-threaded executions, including
paths. In accordance with those results, it is expected that increasing the number of
computational units will widen the range of applicability of PAR-AD3.

Finally, we compared PAR-AD3 performance against barrier using 8 threads. We
only compare PAR-AD3 to barrier since it is the best suited algorithm for the selected
distributions (i.e in some executions PAR-AD3 can be up to three orders of magni-
tude faster than simplex). Figure 6 shows the average performance speedup of PAR-
AD3 versus barrier as a function of the total running time of the execution of barrier
(shown in the X-axis). We observe a clear trend in all scenarios: the harder the problem
becomes for barrier, the larger the speedups obtained by PAR-AD3. Our peak speedup
is 23X (16X when taking the mean execution time of the different instances). The best
results are achieved in the arbitrary distribution, which in addition was significantly bet-
ter solved by barrier than by simplex according to figure 4. We recall that arbitrary is a
distribution that can be applied to the design of electronic parts or procurement since it
removes the two-dimensional adjacency of regions. In arbitrary, larger speedups corre-
spond to the more sparse scenario, i.e. the bottom-right corner in figure 5.

6 Conclusions

In this paper we have tried to open up a path towards solving large-scale CAs. We
have proposed a novel approach to solve the LP relaxation for the WDP. Our approach
encodes the optimisation problem as a factor graph and uses AD3, a dual-decomposition
message-passing algorithm, to efficiently find the solution.

In order to achieve higher efficiency, we identified some of the bottlenecks found
in message-passing graph-based algorithms and proposed some techniques to achieve
good performance and scalability, in particular when executing in parallel. As a result
of this analysis, we rearranged the operations performed by AD3 providing a new algo-
rithm, the so-called PAR-AD3, which is an optimised and parallel version of AD3.

Our experimental results validate PAR-AD3 efficiency gains in large scale scenar-
ios. We have shown that PAR-AD3 performs better than CPLEX for large-scale CAs
in the computationally hardest distributions, both in single- and multi-threaded scenar-
ios, with a peak speedup of 23X. Furthermore, the speedup is larger in multi-threaded
scenarios, showing that PAR-AD3 scales better with hardware than CPLEX. Therefore,
PAR-AD3 has much potential to solve large-scale coordination problems that can be
cast as optimisation problems.
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