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Fuzzy logics are logics of graded truth that have been proposed as a suitable tool for
reasoning with imprecise information, in particular for reasoning with propositions con-
taining vague predicates. Their main feature is that they allow to interpret formulas in
a linearly ordered scale of truth-values, and this is specially suited for representing the
gradual aspects of vagueness. In particular, systems of fuzzy logic have been in-depth
developed within the frame of mathematical fuzzy logic [3] (MFL). Most well known and
studied systems of mathematical fuzzy logic are the so-called t-norm based fuzzy logics,
corresponding to formal many-valued calculi with truth-values in the real unit interval
[0, 1] and with a conjunction and an implication interpreted respectively by a (left-) con-
tinuous t-norm and its residuum, and thus, including e.g. the well-known £ukasiewicz
and Gödel infinitely-valued logics, corresponding to the calculi defined by £ukasiewicz
and min t-norms respectively. The most basic t-norm based fuzzy logic is the logic MTL
(monoidal t-norm based logic) introduced in [6].
In logical systems in MFL, the usual notion of deduction is defined by requiring the preser-
vation of the truth-value 1 (full truth-preservation), which is understood as representing
the absolute truth. For instance, let L be any extension of MTL, which we assume to be
complete w.r.t. the family CL = {[0, 1]ú | [0, 1]ú is a L-algebra} of standard L-algebras.
Then the typical notion of logical consequence is the following for every set of formulas
� fi {Ï}:

� |=L Ï if, for any [0, 1]ú œ CL and any [0, 1]ú-evaluation e,
if e(Â) = 1 for any Â œ �, then e(Ï) = 1 as well.

In [2], Bou, Esteva et al. introduced the degree preserving MTL-logics where they change
the (full) truth paradigm to the degree preserving paradigm, in which a conclusion follows
from a set of premises if, for all evaluations, the truth degree of the conclusion is greater
or equal than those of the premises. For any extension L of MTL complete w.r.t. the
family CL of standard L-algebras the degree preserving variant of L, denoted by L6 is
defined as
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� |=6
L

Ï if, for any [0, 1]ú œ CL, any [0, 1]ú-evaluation e and for any a œ [0, 1],
if e(Â) > a for any Â œ �, then e(Ï) > a.

As a matter of fact, the degree preserving logic L6 is strongly related to the 1-preserving
logic L. Indeed, on the one hand, it holds that |=6

L
Ï i� |=L Ï, so both logics share the set

of valid formulas. Moreover, if for any finite set of formulas � we let �· = ·{Â | Â œ �},
we can observe that

� |=6
L

Ï i� |=L �· æ Ï,

and hence, i� |=6
L

�· æ Ï. This property can be seen as a sort of deduction theorem for
|=6

L
.

It has been shown in [2] that in the case the logic L has a complete axiomatisation
with Modus Ponens as the only inference rule, then the logic £6 admits a complete
axiomatisation as well, having as axioms the axioms of L and as inference rules the rule
of adjunction:

(Adj) Ï, Â

Ï · Â
,

and the following restricted form of the Modus Ponens rule

(r-MP) Ï, Ï æ Â

Â
, if „L Ï æ Â.

If the logic L has additional inference rules

(R
i
) �i

Ï

for i œ I, then [4, Proposition 1] shows that L6 is axiomatised with the above axioms and
rules together with the following restricted forms of the rules (R

i
):

(r-R
i
) �i

Ï
, if „L �i.

Still, another way of defining di�erent variants of a fuzzy logic is put forward in [1], al-
though for the particular case of £ukasiewicz fuzzy logic. In this approach, the notion
of consequence at work is the non-falsity preservation, according to which a conclusion
follows from a set of premises whenever if the premises are non-false, so must be the
conclusion. In other words, assuming a [0, 1]-valued semantics, this is the case when, for
any evaluation, if truth degrees of the premises are above 0, then the truth-degree of the
conclusion is so as well. For any extension L of MTL complete w.r.t. the family CL of
standard L-algebras we define the following non falsity preserving variant:

� |=(0
L

Ï if, for any [0, 1]ú œ CL and any [0, 1]ú-evaluation e ,
if e(Â) > 0 for any Â œ �, then e(Ï) > 0.

The purpose of this talk is to obtain a similar type of axiomatisations for some non-
falsity preserving logics. First observe that for any truth preserving logic L with standard
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semantics and for any formula Ï it is obvious that |=L Ï implies |=(0
L

Ï, so the set of valid
formulas of L is contained in the set of valid formulas of the non falsity preserving variant
L(0. Moreover the finitary versions of both logics are strongly related.

Lemma 1. For every pair of formulas Ï, Â the following relation holds:

Ï |=(0
L

Â i� ¬Â |=L ¬Ï.

We now focus on logics defined by classes of standard IMTL-algebras (standard MTL-
algebras with an involutive negation). We remind that this means that ú is a left-
continuous t-norm such that the residual negation ¬, defined as ¬x = x æ 0 =´ {y œ
[0, 1] | x ú y = 0} satisfies the involutivity condition ¬(¬x) = x. Notable examples of such
t-norms are £ukasiewicz t-norm (which is continuous) and Nilpotent Minimum t-norm.
Assume L is an axiomatic extension of IMTL, complete w.r.t. a class of standard algebras
CL, and whose corresponding notion of proof is denoted „L. It is immediate to observe
that in the case of a IMTL logic L, Lemma 1 can be strengthened in the sense that
the 1-preserving logic L and the non-falsity preserving logic L(0 become interdefinable.
Namely,

(i) Ï |=L Â i� ¬Â |=(0
L

¬Ï, (ii) Ï |=(0
L

Â i� ¬Â |=L ¬Ï .

In order to syntactically characterise |=(0
L

, the following system nf-L, called the non-falsity
preserving companion of L, is defined in [5] as follows.

Definition 1. The calculus nf-L is defined by the following axioms and rules:

• Axioms of L

• Rule of Adjunction: (Adj) Ï, Â

Ï · Â

• Reverse Modus Ponens: (MPr) ¬Â ‚ ‰

¬Ï ‚ ¬(Ï æ Â) ‚ ‰

• Restricted Modus Ponens: (r-MP) Ï, Ï æ Â

Â
, if „L Ï æ Â

The above (MPr) rule captures the following form of reverse of modus ponens: if ¬Â
is non-false then either ¬Ï is non-false or ¬(Ï æ Â) is non-false. The addition of the
disjunct ‰ both in the premise and in the conclusion of the rule is needed for technical
reasons.
The following is a syntactic counterpart of part of Lemma 1.

Proposition 1. If Â „L Ï then ¬Ï „nf-L ¬Â.

Thanks to this relation, the logic nf-L has been shown to be complete with respect to the
intended semantics.
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Theorem 1. Let L be an axiomatic extension of IMTL. Then, the calculus nf-L is sound
and complete w.r.t. the finitary logic of L(0.

Note that, as a direct corollary, Definition 1 provides us with complete axiomatisations
of non-falsity preserving companions of prominent IMTL logics like £ukasiewicz logic or
Nilpotent Minimum logic.
We are also able to prove similar result as in the previous theorem without the requirement
of the negation ¬ to be involutive. Indeed, let MTL¬¬ be the (non-axiomatic) extension
of MTL with the rule

(R¬¬) ¬¬Ï

Ï
.

The algebraic semantics of MTL¬¬ consists of the quasi-variety generated by the class of
MTL-chains A such that its negation ¬ is such that, for any a œ A, ¬a = 0 i� a = 1, or
equivalently ¬a > 0 i� a < 1. If L is an axiomatic extension of MTL, let us denote by L¬¬
the extension of L with the rule (R¬¬). If L is complete w.r.t. a class of standard algebras
CL , then L¬¬ is also complete w.r.t. the class of standard algebras CL¬¬ . Moreover, in
L¬¬ we keep having at the semantical level the equivalence between the 1-preserving logic
and the non-falsity preserving logic, in the following sense.

Lemma 2. For any fuzzy logic L, then the following conditions hold:

(i) Ï |=L¬¬ Â i� ¬Â |=(0
L¬¬ ¬Ï, (ii) Ï |=(0

L¬¬ Â i� ¬Â |=L¬¬ ¬Ï.

Then one can define the non-falsity preserving companion of a MTL¬¬-logic and prove
its completeness as follows. In fact, we can restrict ourselves to extensions of MTL logics
with the rule (R¬¬). where ¬(Ï·¬Ï) is not a tautology, that is extensions of non SMTL-
logics with the rule (R¬¬). Indeed, note that if L is an SMTL logic, then L¬¬ collapses
into classical logic.

Theorem 2. Let L be an axiomatic extension of MTL that is non-SMTL. Then the
calculus nf-L¬¬, defined by the following axioms and rules:

• Axioms of L

• The rule (R¬¬)

• The rule of adjunction (Adj)

• The rule of Reverse Modus Ponens (MPr)

• The rule of Restricted Modus Ponens (r-MP)

is a sound and complete axiomatisation w.r.t. to the finitary logic of L(0
¬¬.

Finally, we turn our attention to logics preserving lower bounds of truth-values. Let L be
an extension (or expansion) of MTL complete w.r.t. some class of standard L-algebras
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CL, fix some positive value a œ (0, 1], we define the logic La as follows:

� |=a

L
Ï if, for any [0, 1]ú œ CL, any [0, 1]ú-evaluation e,

if e(Â) > a for any Â œ �, then e(Ï) > a.

We will end the talk by discussing some general but su�cient assumptions on L to guar-
antee a finitary axiomatisation of La.
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